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Abstract: The increasing interconnectivity between physical and cyber-systems has led
to more vulnerabilities and cyberattacks. Traditional preventive and detective measures
are no longer adequate to defend against adversaries. Artificial Intelligence (Al) is used to
solve complex problems, including those of cybersecurity. Adversaries also utilise Al for
sophisticated and stealth attacks. This study aims to address this problem by exploring
the symbiotic relationship of Al and cybersecurity to develop a new, adaptive strategic
approach to defend against cyberattacks and improve global security. This paper explores
different disciplines to solve security problems in real-world contexts, such as the challenges
of scalability and speed in threat detection. It develops an algorithm and a detective
predictive model for a Malicious Alert Detection System (MADS) that is an integration
of adaptive learning and a neighbourhood-based voting alert detection framework. It
evaluates the model’s performance and efficiency among different machines. The paper
discusses Machine Learning (ML) and Deep Learning (DL) techniques, their applicability
in cybersecurity, and the limitations of using Al Additionally, it discusses issues, risks,
vulnerabilities, and attacks against Al systems. It concludes by providing recommendations
on security for Al and Al for security, paving the way for future research on enhancing
Al-based systems and mitigating their risks.

Keywords: artificial intelligence; cybersecurity; machine learning; detection; alerts;
adversarial attacks; predictive model; evaluation

1. Introduction

Cybersecurity is a fast-evolving discipline, and threat actors (TAs) constantly en-
deavour to stay ahead of security teams with new and sophisticated attacks. The use of
interconnected devices to access data ubiquitously has increased exponentially, raising
more security concerns. Traditional security solutions are becoming inadequate in de-
tecting and preventing such attacks. However, advances in cryptographic and Artificial
Intelligence (AI) techniques show promise in enabling cybersecurity experts to counter
such attacks [1]. Al is being leveraged to solve a number of problems, from using chatbots
to virtual assistants to automation, allowing humans to focus on higher-value work; they
are also used for predictions, analytics, and cybersecurity.

Recovery from a data breach costs USD 4.35 million on average and takes 196 days [2].
Organisations are increasingly investing in cybersecurity, adding Al enablement to improve
threat detection, incident response (IR), and compliance. Patterns in data can be recognised
using Machine Learning (ML), monitoring, and threat intelligence to enable systems to
learn from past events. It is estimated that Al in the cybersecurity market will be worth
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USD 102.78 billion by 2032 globally [3]. Currently, different initiatives are defining new
standards and certifications to elicit users’ trust in AL. The adoption of Al can improve
best practices and security posture, but it can also create new forms of attacks. Therefore,
secure, trusted, and reliable Al is necessary, achieved by integrating security in the design,
development, deployment, operation, and maintenance stages.

Failures of Al systems are becoming common, and it is crucial to understand them
and prevent them as they occur [4,5]. Failures in general Al have a higher impact than in
narrow Al, but a single failure in a superintelligent system might result in a catastrophic
disaster with no prospect of recovery. Al safety can be improved with cybersecurity
practices, standards, and regulations. Its risks and limitations should also be understood,
and solutions should be developed. Systems commonly experience recurrent problems
with scalability, accountability, context, accuracy, and speed in the field of cybersecurity [6].
The inventory of ML algorithms, techniques, and systems have to be explored through the
lens of security. Considering the fact that Al can fail, there should be models in place to
make Al decisions explainable [7].

How can an ML-driven system effectively detect and predict cybersecurity incidents
in a dynamic and scalable multimachine environment using alert-level intelligence? This
paper addresses this question by exploring Al and cybersecurity with use cases and practi-
cal concepts in a real-world context based on the field experience of the authors. It gives
an overview of how Al and cybersecurity empower each other symbiotically. It discusses
the main disciplines of Al and how they can be applied to solve complex cybersecurity
problems and the challenges of data analytics. It highlights the need to evaluate both Al
for security and security for Al to deploy safe, trusted, secure Al-driven applications. Fur-
thermore, it develops an algorithm and a predictive model, the Malicious Alert Detection
System (MADS), to demonstrate Al applicability. It evaluates the model’s performance;
proposes methods to address Al-related risks, limitations, and attacks; explores evaluation
techniques; and recommends a safe and successful adoption of Al

The rest of this paper is structured as follows. Section 2 reviews related work on
Al and cybersecurity. In Section 3, the security objectives and Al foundational concepts
are presented. Section 4 discusses how Al can be leveraged to solve security problems.
The utilisation of ML algorithms is presented in Section 6. Section 5 presents a case study
of a predictive Al model, MADS, and its evaluation. The risks and limitations of Al are
discussed in Section 7. This paper is concluded with remarks and a discussion of future
works in Section 8.

2. Background

Security breaches and loss of confidential data are still big challenges for organisations.
With the increased sophistication of modern attacks, there is a need to detect malicious
activities and also to predict the steps that will be taken by an adversary. This can be
achieved through the utilisation of Al by applying it to use cases such as traffic monitoring,
authentication, and anomalous behaviour [8].

Current Al research involves search algorithms, knowledge graphs, Natural Lan-
guages Processing (NLP), expert systems, ML, and Deep Learning (DL), while the develop-
ment process includes perceptual, cognitive, and decision-making intelligence. The inte-
gration of cybersecurity with Al has huge benefits, such as improving the efficiency and
performance of security systems and providing better protection from cyber-threats. It can
improve an organisation’s security maturity by adopting a holistic view, combining Al
with human insight. Thus, the socially responsible use of Al is essential to further mitigate
related concerns [9].
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The speed of processes and the amount of data used in defending cyberspace cannot
be handled without automation. Al techniques are being introduced to construct smart
models for malware classification, intrusion detection, and threat intelligence gathering [10].
Nowadays, it is difficult to develop software with conventional fixed algorithms to defend
against dynamically evolving cyberattacks [11]. Al can provide flexibility and learning
capability to software development. However, TAs have also figured out how to exploit Al
and use it to carry out new attacks.

Moreover, ML and neural network (NN) policies in Reinforcement Learning (RL)
methods are vulnerable to adversarial learning attacks, which aim at decreasing the effec-
tiveness of threat detection [12-14]. AI models face threats that disturb their data, learning,
and decision-making. Deep Reinforcement Learning (DRL) can be utilised to optimise
security defence against adversaries using proactive and adaptive countermeasures [15].
The use of a recursive algorithm, DL, and inference in NNs have enabled inherent advan-
tages over existing computing frameworks [16]. Al-enabled applications can be combined
with human emotions, cognitions, social norms, and behavioural responses [17] to improve
societal issues. However, the use of Al can lead to ethical and legal issues, which are
already big problems in cybersecurity. There are significant concerns about data privacy
and applications’ transparency. It is also important to address the criminal justice issues
related to Al usage, liability, and damage compensation.

Recent advancements introduced DL techniques, such as Convolutional Neural Net-
works (CNNs) and Long Short-Term Memory (LSTM) networks, which have demonstrated
improved detection capabilities in temporal and structured data streams [18,19]. Despite
their accuracy, DL models are often considered “black-box” in nature, providing little
transparency or control to cybersecurity analysts [20]. Moreover, these models typically
classify individual events in isolation, lacking the contextual correlation necessary for
understanding attack campaigns or incidents. Studies show that Al-based detectors can be
deceived through carefully crafted inputs [21]. This vulnerability underscores the need for
robust and interpretable detection architectures that not only predict threats but also do so
with resilience to adversarial manipulation.

In light of these limitations, MADS distinguishes itself by integrating ML prediction,
k-nearest neighbours (k-NN)-based voting [22], and incident-level correlation within a
sliding window framework. Unlike conventional ML classifiers that operate in a stateless
manner, it retains a temporal alert history, allowing for contextual decisions based on
cumulative patterns [23]. Its hybrid decision-making process reduces susceptibility to
isolated misclassifications and enhances trust through interpretable thresholds and voting
confidence. Furthermore, MADS is explicitly designed to handle multisource alert streams
from distributed machines, a capability often overlooked in single-node systems.

The existing Al-based solutions focus on enhancing detection accuracy or reducing
false alarms [24], but few address holistic incident formation and operational scalability
across networked devices. This paper bridges this gap by introducing a multistage detection
and aggregation pipeline that is both adaptive and transparent, making it well suited for
modern threat environments. It introduces a novel integration of DL and neighbourhood-
based voting within a multimachine alert stream processing framework.

2.1. Artificial Intelligence

For a system to be considered to have Al capability, it must have at least one of the
six foundational capabilities to pass the Turing Test [25] and the Total Turing Test [26].
These give Al the ability to understand the natural language of a human being, store and
process information, reason, learn from new information, see and perceive objects in the
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environment, and manipulate and move physical objects. Some advanced Al agents may
possess all six capabilities.

The advancements of Al will accelerate, making it more complex and ubiquitous,
leading to the creation of a new level of Al There are three levels of Al [27]:

1. Artificial Narrow Intelligence (ANI): The first level of Al that specialises in one area
but cannot solve problems in other areas autonomously.

2. Artificial General Intelligence (AGI): Al that reaches the intelligence level of a human,
having the ability to reason, plan, solve problems, think abstractly, comprehend
complex ideas, learn quickly, and learn from experience.

3. Artificial Super Intelligence (ASI): Al that is far superior to the best human brain in all
cognitive domains, such as creativity, knowledge, and social abilities.

Even ANI models have been able to disrupt technology unexpectedly, such as genera-
tive and agentic Al, chatbots, and predictive models. Al enables security systems such as
Endpoint Detection and Response (EDR) and IDS to store, process, and learn from huge
amounts of data [28,29]. These data are ingested from network devices, workstations,
and the Application Programming Interface (API), which is used to identify patterns such
as sign-in logs, locations, time-zone, connection types, and abnormal behaviours. These
applications can take actions using the associated sign-in risk score and security policies to
automatically block login attempts or enforce strong authentication requirements [30].

2.1.1. Learning and Decision-Making

The discipline of learning is the foundation of Al The ability to learn from input
data moves systems away from the rule-based programming approach. An Al-enabled
malware detection system operates differently from a traditional signature-based system.
Rather than relying on a predefined list of virus signatures, the system is trained using data
to identify abnormal program execution patterns known as behaviour-based or anomaly
detection, which is a foundational technique used in malware and intrusion detection
systems [31].

In the traditional approach, a software engineer identifies all possible inputs and
conditions that software will be subjected to, but if the program receives an input that it is
not designed to handle, it fails [32]. For instance, when searching for a Structured Query
Language (SQL) injection in server logs, in the programming approach, the vulnerability
scanner will continuously look for parameters that are not within limits [33]. Addition-
ally, it is complicated to manage multiple vulnerabilities with traditional vulnerability
management methods. However, an intelligent vulnerability scanner foresees the possible
combinations and ranges, using a learning-based approach. The training data, like source
codes or program execution contexts, are fed to the model to learn and act on new data
following the ML pipeline in Figure 1 [34].
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Figure 1. ML pipeline.
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2.1.2. Artificial Intelligence and Cybersecurity

An intelligent agent is used to maximise the probability of goal completion. It is fed
huge amounts of data, learns patterns, analyses new data, and presents it with recom-
mendations for analysts to make decisions, as shown in Figure 2 [35]. Al can be used to
complement traditional tools together with policies, processes, personnel, and methods to
minimise security breaches.
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Figure 2. Al agent.

Utilising Al can improve the efficiency of vulnerability assessment with better accuracy
and make sense of statistical errors [36]. Threat modelling in software development is still
a manual process that requires security engineers” input [37,38]. Applying Al to threat
modelling still needs more research [39], but Al has already made a great impact on threat
detection [6,35]. Moreover, it is being utilised in IR, providing information about attack
behaviour, the TA’s Tactics, Techniques, and Procedures (TTPs), and the threat context [40].

3. Objectives and Approaches

This Section explores foundational concepts in, objectives of, and approaches
to cybersecurity.

3.1. Systems and Data Security

The main security objective of an organisation is to protect its systems and data from
threats by providing Confidentiality, Integrity, and Availability (CIA). Security is enforced
by orchestrating frameworks of defensive techniques [41,42] embedded in the organisa-
tion’s security functions to align with business objectives. This includes applying controls
that protect the organisation’s assets using traditional and Al-enabled security tools.

This enables security teams to identify, contain, and remediate any threats with lessons
learned for feedback to fine-tune the security controls. The feedback loop is also used for
retraining ML models with new threat intelligence, newly discovered behaviour patterns,
and attack vectors, as shown in Figure 3. In addition, orchestrating security frameworks
needs a skilled team, but there is a shortage of such professionals [43]. Therefore, a strategic
approach to employment, training, and education of the workforce is required. More-
over, investment in secure design, automation, and Al can augment security teams and
improve efficiency.
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Figure 3. Orchestrated security operation framework.

3.2. Security Controls

A security incident is prevented by applying overlapping administrative, technical,
and physical controls complemented with training and awareness across the organisation
as shared responsibility. The security policies should be clearly defined, enforced, and com-
municated throughout the organisation [44] and championed by the leadership. Threat
modelling, secure designing, and coding best practices must be followed, together with
vulnerability scanning of applications and systems [45]. Defence in-depth controls must be
applied to detect suspicious activities and monitor TAs” TTPs, unwarranted requests, file
integrity, system configurations, malware, unauthorised access, social engineering, unusual
patterns, user behaviours, and inside threats [46].

When a potential threat is observed, the detection tool should alert in real time so that
the team can investigate and correlate events to assist in decision-making and response to
the threat [47], utilising tools like EDR, Security Information and Event Management (SIEM),
and Security Orchestration, Automation, and Response (SOAR). These tools provide a
meaningful context about the security events for accurate analysis. If it is a real threat,
the impacted resource can be isolated and contained to stop the attack from spreading to
unaffected assets following the IR plan [48].

4. Cybersecurity Problems

This section discusses security problems and how Al can improve cybersecurity by
solving pattern problems.

4.1. Improving Cybersecurity

Traditional network security was based on creating security policies, understanding
the network topography, identifying legitimate activity, investigating malicious activities
and enforcing a zero-trust model. Large networks may find this tough, but enterprises can
use Al to enhance network security by observing network traffic patterns and advising
functional groupings of workloads and policies. The traditional techniques use signatures
or Indicators of Compromise (IOC) to identify threats, but this is not effective against
unknown threats. Al can increase detection rates but can also increase False Positives
(FPs) [49]. The best approach is combining both traditional and Al techniques, which can
result in a better detection rate and minimising FPs. Integrating Al with threat hunting can
improve behavioural analytics and visibility, and it can be used to develop applications
and users’ profiles [50].

Al-based techniques like User and Event Behavioural Analytics (UEBA) can analyse
the baseline behaviour of user accounts and endpoints, and they can identify anomalous
behaviour such as a zero-day attack [51]. Al can optimise and continuously monitor
processes like cooling filters, power consumption, internal temperatures, and bandwidth
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usage to alert for any failures and provide insights into valuable improvements to the
effectiveness and security of the infrastructure [52].

4.2. Scale Problem and Capability Limitation

TAs are likely to leave a trail of their actions. Security teams use the context from
data logs to investigate any intrusion, but this is very challenging. They also rely on tools
like Intrusion Detection Systems (IDSs), anti-malware, and firewalls to expose suspicious
activities, but these tools have limitations, as some are rule-based and do not scale well in
handling massive amounts of data.

An IDS constantly scans for signatures by matching known patterns in the malicious
packet flow or binary code. If it fails to find a signature in the database, it will not detect the
intrusion, and the impending attack will stay undetected. Similarly, to identify attacks, such
as brute force or Denial of Service (DoS), it has to go through large amounts of data over a
period of time [53] and analyse attributes such as source Internet Protocol (IP) addresses,
ports, timestamps, protocols, and resources. This may lead to a slow response or incorrect
correlation by the IDS algorithm.

The use of ML models improves detection and analysis in IDSs. They can identify and
model the real capabilities and circumstances required by attackers to carry out successful
attacks. This can harden defensive systems actively and create new risk profiles [29].
A predictive model can be created by training on data features that are necessary to detect
an anomaly and determine if a new event is an intrusion or benign activity [54].

4.3. Problem of Contextualisation

Organisations must ensure that employees do not share confidential information with
undesired recipients. Data Loss Prevention (DLP) solutions are deployed to detect, block,
and alert if any confidential data cross the trusted parameter of the network [55]. Traditional
DLP uses a text-matching technique to look for patterns against a set of predetermined
words or phrases [56]. However, if the threshold is set too high, it can restrict genuine mes-
sages, while if it is set too low, confidential data such as personal health records might end
up in users’ personal cloud storage, violating user acceptability and data privacy policies.

An Al-enabled DLP can be trained to identify sensitive data based on a certain con-
text [57]. The model is fed words and phrases to protect, such as intellectual property,
personal information [58], and unprotected data that must be ignored. Additionally, it is fed
information about semantic relationships among the words using embedding techniques
and then trained using algorithms such as Naive Bayes. The model will be able to recognise
the spatial distance between words, assign a sensitivity level to a document, and make a
decision to block the transmission and generate a notification [59].

4.4. Process Duplication

TAs change their TTPs often [42], but most security practices remain the same,
with repetitive tasks that lead to complacency and the missing of tasks [60]. An Al-based
approach can check duplicative processes, threats, and blind spots in the network that
could be missed by an analyst. Al self-adaptive access control can prevent duplication of
medical data with smart, transparent, accountable secure duplication methods [61].

To identify the timestamp of an attack payload delivery, the user’s device log data are
analysed for attack prediction by preprocessing the dataset and creating a DL classification
to remove duplicate and missing values [62].

4.5. Observation Error Measurement

There is a need for accuracy and precision when analysing potential threats, as a TA
has to be right only once to cause significant damage, while a security team has to be right
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every time [60]. Similarly, if a security team discovers events in the log files that point
to a potential breach, validation is required to confirm if it is a True Positive (TP) or FP.
But validating false alerts is inefficient and a waste of resources, and it distracts the security
team from real attacks [63].

An attacker can trick a user into clicking on a Uniform Resource Locator (URL)
that leads to a phishing site that asks for a username and password [64]. Traditional
controls are blind to phishing attacks, and phishing emails look more credible nowadays.
These websites are found by comparing their URL against block lists [65], which become
outdated quickly, leading to statistical errors, as shown in Figure 4. Moreover, a genuine
website might be blocked due to wrong classification, or a new fraud website might not be
detected. This requires an intelligent solution to analyse a website in different dimensions
and characterise it correctly based on its reputation, certificate provider, domain records,
network characteristics, and site content. A training model can use these features to learn
and accurately categorise, detect, block, and report new phishing patterns [66].

No Rule Matched &
No Attack Present

Rule Matched
& Attack Present

True
Positive

True
Negative

False False
Negative :  Positive

No Rule Matche f t Rule Matche
& Attack Present & No Attack Present

Figure 4. Statistical errors.

4.6. Time to Act

A security team should go through the logs quickly and accurately, otherwise a TA
could get into the system and exfiltrate data without being detected. Today’s adver-
saries take advantage of the noisy network environment, and they are patient, persistent,
and stealthy [67]. The Al-based approach can help to predict future incidents and act before
they occur with reasonable accuracy by analysing users’ behaviour and security events
whether a pattern is an impending attack or not.

A predictive model uses events and data collected, processed, and validated with
new data to ensure high prediction accuracy, as shown in Figure 5. It learns from previous
logins about users’ behaviour, connection attributes, device location, time, and an attacker’s
specific behaviour to build a pattern and predict malicious events. For each authentication
attempt, the model estimates the probability of it being a suspicious and risky login [51].
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Figure 5. Security monitoring predictive model.
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5. Machine Learning Applications

This section explores ML algorithms that power the Al sphere. The collected data
can be labelled or unlabelled depending on the method used, such as supervised, semi-
supervised, unsupervised, and RL [68], and pattern representation can be solved using
classification, regression, clustering, and generative techniques.

The discipline of learning is one of the capabilities that is exhibited by an Al sys-
tem. ML uses statistical techniques and modelling to perform a task without program-
ming [69], whereas DL uses a layering of many algorithms and tries to mimic neural
networks (NNs) [70], as shown in Figure 6. When building an Al solution, the algorithm
used depends on the training data available and the type of problem to be solved. Different
data samples are collected, and data whose characteristics are fully understood and known
to be legitimate or suspicious behaviour are known as labelled data, whereas data that are
not known to be good or bad and are not labelled are known as unlabelled data.

Input Hidden Hidden Qutput
layer layer 1 layer 2 layer
| ___.n‘]“._.__ -

Figure 6. Learn by training.

When training an ML model using labelled data, knowing the relationship between
the data and the desired outcome is called supervised learning, whereas when a model
discovers new patterns within unlabelled data, this is called unsupervised learning [71].
In RL, an intelligent agent is rewarded for desired behaviours or punished for undesired
ones. The agent has the capacity to perceive and understand its surroundings, act, and learn
through mistakes [72].

Since an algorithm is chosen based on the type of problem being solved and for
cybersecurity, ML is commonly applied to predict future security events based on the
information available from past events; categories the data into known categories, such as
normal versus malicious; and find interesting and useful patterns in the data that could not
otherwise be found, like zero-day threats. The generation of adversarial synthetic data that
are indistinguishable from the real data is achieved by defining the problem to solve and is
based on data availability and choosing a subset of algorithms for the experiment [73].

5.1. Classification of Events

Classification segregates new data into known categories, and its modelling approxi-
mates a mapping function (f) from input variables (X) to discrete output variables (Y);
its output variables are called labels or categories [74]. The mapping function predicts the
category for a given observation. Events should be segregated into known categories, such
as whether the failed login attempt is from an expected user or an attacker, and this falls
under the classification problem [69]. This can be solved with supervised learning and
logistic regression or k-NN, and it requires labelled data. Equation (1) is a logistic function
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that can be utilised for probability prediction. It takes in a set of features x and outputs a
probability P(X).
g(ﬁ0+/31x>
- (1)
e(Botprx)+1

where By and 31 are the parameters of the logistic regression model. The parameters S
and B, are learned from the training data.

5.2. Prediction by Regression

Regression predictive modelling approximates a mapping function (f) from input
variables (X) to a continuous output variable (Y), which is a real value [75], and the output
of the model is a numeric variable. Regression algorithms can be used to predict the number
of user accounts that are likely to be compromised [76], the number of devices that may be
tampered with, or the short-term intensity and impact of a Distributed DoS (DDoS) attack
on the network [77]. A simple model can be generated using linear regression with a linear
equation between output variable (Y) and input variable (X) to predict a score for a newly
identified vulnerability in an application. To predict the value of (Y), we put in a new value
of (X) using Equation (2) for simple linear regression.

y=PBo+pix+e 2)

where y is the predicted value, B is the intercept, and the value of y when x is 0. ; is the
slope and x is the independent variable, where §; is the change in y for a unit change in
x. € is the error term, the difference between the predicted value and the actual value. In
contrast, algorithms like support vector regression are used to build more complex models
around a curve rather than a straight line, while Regression Artificial Neural Networks
(ANNSs) are applicable to intrusion detection and prevention, zombie detection, malware
classification, and forensic investigations [11].

5.3. Clustering Problem

Clustering is considered where there are no labelled data, and useful insights need to
be drawn from untrained data using clustering algorithms, such as Gaussian distributions.
It groups data with similar characteristics that were not known before. For instance, finding
interesting patterns in logs would benefit a security task with a clustering problem [29].
Clusters are generated using cluster analysis [78], where instances in the same cluster
must be as similar as possible and instances in the different clusters must be as different
as possible. Measurement for similarity and dissimilarity must be clear, with a practical
meaning [79]. This is achieved with distance (3) and similarity (4) functions.

d ; 1/n
<Z xil—xﬂ ) (3)

=1

where x;; is the ith element of the [th vector, x;; is the jth element of the Ith vector, d is the
dimension of the vectors, and 7 is the power to which the absolute values are raised.

IAB = 505 @

where A N B is the intersection of sets A and B, A U B is the union of the sets A and B,
and |x| is the size of set x.

For a clustering pattern recognition problem, the goal is to discover groups with
similar characteristics by using algorithms such as K-means [35]. In contrast, in an anomaly
detection problem, the goal is to identify the natural pattern inherent in data and then
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discover the deviation from the natural [80]. For instance, to detect suspicious program
execution, an unsupervised anomaly detection model is built using a file access and
process map as input data based on algorithms like Density-based Spatial Clustering of
Applications with Noise (DBSCAN).

5.4. Synthetic Data Generation

The generation of synthetic data has become accessible due to advances in rendering
pipelines, generative adversarial models, fusion models, and domain adaptation meth-
ods [81]. Generating new data to follow the same probability distribution function and
same pattern as the existing data can increase data quality, scalability, and simplicity. It
can be applied to steganography, data privacy, fuzz, and vulnerability testing of applica-
tions [82]. Some of the algorithms used are Markov chains and Generative Adversarial
Networks (GANSs) [83].

The GAN model is trained iteratively by a generator and discriminator network.
The generator takes random sample data and generates a synthetic dataset, while the
discriminator compares synthetically generated data with a real dataset based on set
conditions [84], as shown in Figure 7. The generative model estimates the conditional
probability P(X|Y = y) for a given target y. It uses Naive Bayes classifier models P(x, y)
and then transforms the probabilities into conditional probabilities P(Y|X) by applying
the Bayes rule. GAN has been used for synthesising deep fakes [85]. To obtain an accurate
value, Bayes’s theorem’s Equation (5) is used.

prior x likelihood
evidence

= p(|x) = PO 6)

posterior =

where the posterior is the probability that the hypothesis Y is true given the evidence X.
The prior probability is the probability that the hypothesis Y is true before we see the
evidence X. The likelihood is the probability of the evidence X given that the hypothesis Y
is true. The evidence is the data that we have observed.
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log(D(x)) + log(1-D(G(z)))
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D(G(z)) & D(x)

Discriminator Decision

Real data

x

Figure 7. GAN model.

6. Malicious Alerts Detection System (MADS)

This section presents the proposed Al predictive model for the Malicious Alert Detec-
tion System (MADS).

6.1. Methodology

A predictive model goes through training, testing, and feedback loops using ML
techniques. The workflow for security problems consists of planning, data collection, and
preprocessing; model training and validation; event prediction; performance monitoring;
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and feedback. The main object is to design, implement, and evaluate an Al-based malicious
alert detection system that performs the following tasks:

Processes real-time event streams from multiple machines.

Uses NNis to classify events as malicious or benign.

Applies a k-NN-based voting mechanism to determine incident escalation.
Automatically aggregates and raises incidents based on a threshold of malicious events.
Measures system performance using different metrics.

AN

Visualises detection effectiveness across multiple machines and evaluates how inci-
dent thresholds affect sensitivity.

Experimental Setup

The experiment was conducted on a Windows machine with Python 3.11+ and es-
sential libraries like NumPy, pandas, scikit-learn, and SHapley Additive exPlanations
(SHAP). A synthetic dataset was generated for events distributed across multiple machines
to reflect realistic endpoint variability. A threshold-based prediction model was used,
and SHAP was applied for interpretability. Additionally, adversarial perturbations were
introduced to assess model robustness and visualisations to examine decision logic and
model performance.

6.2. Detection and Incident Creation

Detecting threats on a machine depends on rules developed to detect anomalies in
the data being collected and analysed. It requires understanding the data, keeping track of
events, and correlating and creating incidents on affected machines, as shown in Table 1
and Figure 5, where machine (i) represents the endpoint {ry, ..., ms}, (¢) is an event, and (S)
is a stream of events {ey, ..., 619} of an attack or possible multistage attack, shown in Table 2.
All machines generate alerts, but not all alerts turn into incidents, as shown in Figure 8.

Events and Incidents per Machine

I Events
250 4 B Incidents

200 A

100 4

50 4

5’» 5’1’ 0”) 5& 0"
o o & o &
& & C & C
& & & & &

Figure 8. Alerts and incidents.

Table 1. Security events on the machines.

Machine Events

ml e5 e21 e63 ed4 e3 e46 e7 e88 €9 el0
m2 e4 e20 e2 e32 e6 €9 e46 €10 e71 e88
m3 e99 el e2 el4 el8 eb e3 €9 50 el0
m4 e41 e33 e29 e4 e46 e6 e43 e§ el9 e2

mb el €20 e99 e3 eb6 €77 e7 el18 ed el0
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Table 2. Attack types.

Event Attack

el

Phishing credential stealer

e2 Privilege escalation

e3 Exploit CVE

e4 Failed login attempts

eb Suspicious file download

eb Lateral movement

e7 Execution suspicious process

e8 Download from suspicious domain
€9 Command-and-control connection
el0 Data exfiltration

6.3. Multistage Attack

The multistage attack illustrated in Figure 9 utilises a popular type of malware, legiti-

mate infrastructure, URLs, and emails to bypass detection and deliver IcedID malware to

the victim’s machine [86] in the following stages:

Stage 1: Reconnaissance: The TA identifies a website with contact forms to use for the
campaign.

Stage 2: Delivery: The TA uses automated techniques to fill in a web-based form
with a query which sends a malicious email to the user containing the attacker-
generated message, instructing the user to download a form with a link to a website.
The recipient receives an email sent from a trusted email marketing system by clicking
on the URL link.

Stage 3: Execution: The TA redirects to a malicious, top-level domain. A Google user
content page launches. The TA downloads a malicious ZIP file, unzips a malicious JS
file, and executes it via WS script. It then downloads the IcelD payload and executes
the payload.

Stage 4: Persistence: IcedID connects to a command-and-control server and down-
loads modules and runs scheduled tasks to capture and exfiltrate data. It downloads
implants like Cobalt Strike for remote access, collecting additional credentials, per-
forming lateral movement, and delivering secondary payloads.

Different machines might have similar events with the same TTPs but with different

IOCs and could be facing multistage attacks with different patterns [42]. There is no obvious

pattern observed in which a certain event e; would follow another event e, given stream S;.

A predictive model is utilised to identify errors, recognise multiple events with different

contexts, correlate, and accurately predict a potential threat with an attack story, detailed

evidence, and a remediation recommendation.

site
i B -6 B0 p-e- P 9

Reconnaisance Delivery Execution Persistence

DAT file loads,
Attacker Contact form Redirect to Downloads Downloads download

identifies and email malicious malicious IcedID malicious
H generation ZIP file payload payloads

- - Unzips to DLL Load
et Recipient. Usencontent malcious 15 soc
opens email page launches il t
clicks on the lle, executes beacon
link with Wscript

Figure 9. Multistage attack flow.
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6.4. Detection Algorithm

The security event prediction problem is formalised as security event e, € S at
timestamp y, where S is the set of all events. A security event sequence observed on an
endpoint m; is a sequence of events observed at a certain time. The detection of security
alerts and the creation of incidents are based on the provided event streams and algorithm
parameters. Algorithm 1 takes machine (M) and stream (S) consisting of multiple events
as input. It uses AlertList to store detected security alerts and IncidentList for created
security incidents. The algorithm uses k-NN parameter (k) to determine the number of
nearest neighbours to consider and a threshold value (IncidentThreshold) to determine
when to create a security incident. The (IncidentID) is used to assign unique IDs to
created incidents, and (MaliciousSamples) is used to keep track of the number of detected
malicious samples.

Algorithm 1 MADS algorithm.

Require: Machine M, Event Stream S

1: Output: Initialise AlertList =[], IncidentList = [], k-NN Parameter: k, IncidentThreshold,

IncidentID = 1, MaliciousSamples = 0

2: for each incoming event e in Event Stream S do

3 AlertList.append(e)

4 if length(AlertList) >= k then

5 maliciousSamples = detectMaliciousSamples(AlertList, k)
6: MaliciousSamples += maliciousSamples
7
8
9

if MaliciousSamples >= IncidentThreshold then
incident = createIncident(AlertList, IncidentID)
: IncidentList.append(incident)
10: IncidentID++

11: MaliciousSamples = 0

12: AlertList.clear()

13: else

14: AlertList.removeFirstEvent()
15: end if

16: end if

17: end for

18: Output: IncidentList

19: Function: detectMaliciousSamples(alertList, k)
20: maliciousSamples =0

21: fori=1 to length(alertList) do

22: Di = k-NN(alertList[i], alertList)

23 vote = label_voting(Di)

24: confidence = vote_confidence(Di, vote)

25: if confidence > % and vote != alertList[i] then
26: maliciousSamples++

27: end if

28: end for

29: return maliciousSamples
30: Function: createIncident(alertList, incidentID)

It iterates over each incoming event (e) in stream (S) and appends the event (e) to
the AlertList; checks if the length of the AlertList is equal to or greater than k (the number
of events needed for k-NN); uses the detectMaliciousSamples function to identify potential
malicious samples in the AlertList using k-NN and obtains the count of malicious samples;
and increments the MaliciousSamples counter by the count of detected malicious samples
and checks if they exceeded the IncidentThreshold. If the threshold is reached, it calls the
createlncident function to create an incident object using the alerts in the AlertList and the
IncidentID. It appends the incident object to the IncidentList, increments the IncidentID for
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the next incident, resets the MaliciousSamples counter to 0, and clears the AlertList. But if
the threshold is not reached, it removes the first event from the AlertList to maintain a
sliding window and continues to the next event. It also gives the output of the IncidentList
containing the created security incidents.

For each alert in the AlertList, the k-NN (Di) is calculated using the k-NN algorithm.
It performs label voting to determine the most frequent label (vote) among the neighbours.
It calculates the confidence of the vote (confidence). If the confidence is greater than 0.60
and the vote is not the same as the original alert, it counts it as potentially malicious and
returns the count of malicious samples. The incident object includes the incident ID, alerts
timestamps, severity, and affected machines.

The event to be predicted is defined as the next event E,, and each E; is associated
with already observed events E,. The problem to solve is to learn a sequence prediction
based on (S) and to predict E, for a given machine M;. A predictive system should be
capable of understanding the context and making predictions given the (S) sequence in the
algorithm and model output.

The algorithm combines real-time alert evaluation with ML-based classification and a
k-NN-based sliding window strategy, and it improves detection accuracy, precision, recall,
and F1-score in multimachine environments while reducing errors and missed incidents.
It includes the following:

¢  Multistage logic: This combines an NN classifier with a k-NN-based voting layer to
improve detection robustness.

¢ Sliding window decisioning: This maintains temporal memory of recent alerts to
avoid one-off misclassification influencing system decisions.

*  Incident-level correlation: This classifies and group alerts into high-confidence incidents.

*  Multimachine scalability: This handles alerts from multiple machines and maps
incidents to their originating sources.

Formal Specification for k-NN Voting Mechanism

Let D = {(x;,y;)})\, be the set of past alerts, where each feature vector x; € R and
label y; € {0,1}. For a new alert x, compute its k nearest neighbours by sorting dist(x, x;)
in ascending order. Denote their labels by y (1), ..., y(x). The unweighted vote score is

k
V() = Yy
=1

If V(x) > [k/2], predict §(x) = 1 (malicious); otherwise (x) = 0 (normal).
Maintain a sliding window of the last k predictions §(ej ), ..., 7(ex). Declare an incident
whenever

k
Y 9(e) =T,
i=1

where T is the incident threshold, then reset the window.

This specification explicitly defines the distance metric, neighbour selection, voting
rule, and the sliding window criterion for incident generation in the MADS framework.

DL-based and neighbourhood-based voting within a dynamic processing framework
is shown in Table 3. In the context of adversaries increasingly using Al to bypass traditional
defences, systems must not only detect anomalies but do so in real time, at scale, and with
contextual reasoning, adaptability to evolving threats, transparency in decision-making,
and resilience against isolated misclassification.
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Table 3. Comparison to MADS.

Method

Limitation

MADS Advantage

Signature-based IDSs

Ineffective against zero-day or
novel attacks

Adapt to unknown patterns

Rule-based systems

Rigid; manual updating of rules

Adaptive and automatically learn
from real-time data

Statistical anomaly detec-
tors

High false-positive rates

Incorporate k-NN-based voting
to reduce false alarms

ML-only classifiers

Lack contextual correlation;
prone to misclassify outliers

ML prediction and voting across
recent alerts

DL models
CNN)

(LSTM,

Typically black-box and lack inci-
dent correlation logic

Interpretable thresholds and inci-
dent creation strategy

6.5. Evaluation of the MADS Model

A well-defined evaluation requires clear documentation of the dataset, especially in

cybersecurity where class imbalance, realism, and event diversity affect model performance.

6.5.1. Dataset Generation and Structure

A synthetic dataset of 1000 security events across five machines (machinel to machine5)
is generated. Each event is assigned one of eleven types, as shown in Table 2. Features
(feature_1 to feature_5) are sampled from normal distributions with event-specific means
and variances. Example of event features are as follows:

*  Malicious events have higher feature means [0.7, 0.9, 1.0, 1.1, 1.5] and larger variances.
e Normal events have low means [0.1,0.2,0.3,0.4,0.5] and minimal noise (0.05).

The machines are assigned using a Dirichlet distribution, creating an uneven distri-

bution of event types across machines. This simulates real-world scenarios where certain
machines are more prone to specific alert types, and their distribution is shown in Figure 10
and alert types heatmap in Figure 11.

Uneven Event Type Distribution Across Machines (Including Zero Alerts)
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Figure 10. Uneven alert types across machines.
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Figure 11. Heatmap of alert types on multiple machines.

6.5.2. Dataset Description and Evaluation Integrity

The evaluation of MADS was conducted using a multisource event stream composed
of labelled alert data. The dataset originated from simulated environments. It includes
timestamped events collected from multiple machines, each emitting a stream of alert
data points with associated metadata and ground-truth labels. The alert events are cate-
gorised into classes. Malicious events are labelled based on predefined attack scenarios.
Benign alerts are drawn for normal system operations. One limitation observed during
preprocessing was the class imbalance in some machines, where there was only one class
or where the machine failed to generate incidents under the defined thresholds. However,
it introduces a selection bias, as only machines with clearer signal-to-noise ratios were
retained. The dataset summary statistics are illustrated in Table 4. The dataset may not
cover the full diversity of real-world threat scenarios. There is limited information on
adversarial noise and obfuscation strategies within the alert data, which are critical in
evaluating system robustness.

Table 4. Enhanced dataset summary statistics for MADS.

Feature Value

Total events 1000

Machines evaluated 5 (from initial {‘'machine 1’ - “‘machine 5’})

Incident types phishing_credential_stealer, privilege_escalation,
exploit_cve, failed_login_attempts, suspi-
cious_file_download, lateral_movement, execu-

tion_suspicious_process, download_suspicious_domain,
c2_connection, data_exfiltration
Malicious vs. benign ratio ~ 900:100 or 90% Malicious, 10% Benign

Features used feature_1, feature_2, feature_3, feature_4, feature_5

Label distribution malicious: 90%, benign: 10%

Time span covered Not applicable (synthetic, not time series)

Timestamp Simulated timestamps generated at runtime (2025-04-13
12:00:00)

IP address Simulated IP addresses (192.168.1.X) assigned randomly

User ID Simulated user IDs (U1001, U1002, ...)

Process Simulated processes (proc_A, proc_B)
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6.5.3. Model Evaluation and Analysis of Security Event Detection

These are some of the evaluation techniques used when solving ML problems [6,13,83,87].
Some machines are excluded because their actual malicious labels have one class or no
incidents are created based on the data frame summary in Figure 12.

Feature Summary (Mean/Std/Min/Max) Feature Non-Null Count & Percentage
1000 4 Count Percent 1 100
2.54
204 800 + 80
154
. 600 reo g
E g -
g 104 8 g
G
&
400 t a0
0.5 I I
0.0 I
B mean 2004 r2o
std
—0.5 q . min
N max
0 [

feature_1
feature_2
feature_3
feature_4
feature_5
feature 1
feature 2
feature_3
feature 4
feature 5

Figure 12. Data description.

For the classification problem, the model is evaluated on TPs, True Negatives (TNs),
FPs, False Negatives (FNs), and the elements of the confusion matrix, with N X N matrix,
where N is the total number of target classes. They are used for accuracy, precision, recall,
and f1. The accuracy is the proportion of the total number of predictions that are considered
accurate and determined with Equation (6), shown in Figure 13.

Confusion Matrix - Machine machine 1 Confusion Matrix - Machine machine 2

Normal - Normal -

True Label
True Label

Malicious Malicious

Normal Malicious

Normal Malicious

Predicted Label Predicted Label
(a) (b)
Figure 13. Confusion matrix. ((a) Machine 1. (b) Machine 2.)
TP+ TN
A = 6
Y = TP+ FP+ TN+ EN ©)

The recall is the proportion of the total number of TPs, where FNs are higher than
FPs, and is calculated with Equation (7). Precision is the proportion of the predicted TPs
that was determined as correct if the concern is FPs, using Equation (8), both shown in

Figure 14.

TP
Recall = INLTP (7)

TP

Precision = TP TP (8)
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Figure 14. Precision and recall. ((a) Machine 1. (b) Machine 2.)

In cases where precision or recall need to be adjusted, the F-measure of the F1-score
(F) is used as the harmonic mean of precision and recall with Equation (9). The iteration of
dataset epochs is shown in Figure 15.

2 x Precision x Recall
"~ Precision + Recall

F1 )

F1 Score per Machine

1.0 1

0.8 1

0.6

F1 Score

0.4 4

0.2

0.0

T T T T T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Machine

Figure 15. Fl-score.

A receiver operating characteristic (ROC) curve shows the diagnostic ability of the
model as its discrimination threshold is varied using the TP rate (TPR) and FP rate (FPR),
shown in Figure 16, using Formulas (10) and (11).

TP
TPR = ——— 1
TP+ FN (19
FP

FPR= 577N

(11)
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Figure 16. ROC. ((a) Machine 1. (b) Machine 2.)

SHAP is used to interpret model decisions. It provides interpretability for the model
and shows the impact of each feature on the model’s predictions. This transparency
adds another layer of trustworthiness and aids in diagnosing potential weaknesses under
adversarial conditions. The Shapley value Formula (12) is as follows:

Given a model f, an instance x, and a set of input features F = {1,2,..., M}, the Shap-
ley value ¢;(f, x) for a feature i € F is defined as

afry= y SEMESIZD ) f)] 12)

SCR\{i)

The definitions are as follows:

e M: Total number of features.

*  5: A subset of the feature set F not containing i.

*  fs(x): The model’s output when using only the features in subset S.

*  ¢;: The Shapley value or the contribution of feature i to the prediction.

The Shapley value represents the average marginal contribution of a feature across all
possible combinations of features.

In clustering, Mutual Information is a measure of similarity between two labels of
the same data, where |U;| is the number of samples in cluster U; and |V;| is the number
of samples in cluster V;. To measure loss in regression, Mean Absolute Error (MAE) can
be used to determine the sum of the absolute mean and Mean Squared Error (MSE) to
determine the mean or normal difference to provide a gross idea of the magnitude of the
error with the equation. Furthermore, Entropy determines the measure of uncertainty
about the source of data, where a = proportion of positive examples and b = proportion of
negative examples. For GAN, to capture the difference between two distributions in loss
functions, the Minimax loss function [84] and Wasserstein loss function [87] are used.

6.5.4. Overview of the Dataset and Event Distribution

The synthetic dataset contains 1000 events (900 malicious, 100 benign) across five

AR

machines (“machine machine 5”), with events unevenly distributed using a Dirichlet-

weighted assignment. Visualisations reveal stark disparities:

*  Machine 1 was dominated by privilege_escalation (14%) and exploit_cve (14%),
with high malicious activity.
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®  Machine 3 focused on lateral_movement (8%) and execution_suspicious_process
(8%).

*  Machine 4 showed sparse activity, with fewer events overall (c2_connection at 6%).

*  Machine 5 showed primarily normal events (10% of total data), leading to severe class
imbalance (90% benign).

These imbalances directly affect label distributions. For example, machine 5 has a
100:0 benign-to-malicious ratio, while machine 1 has 120 malicious vs. 30 benign events.

6.5.5. Model Evaluation Metrics

The threshold-based predictor (k = 2, sum of features > 2) yielded the following
results, shown in Tables 5 and 6 :

1. F1-scores per machine.

Table 5. Machine performance.

Machine F1-Score Event Count Incident Count
Machine 1 0.82 150 120
Machine 2 0.76 130 100
Machine 3 0.79 110 85
Machine 4 0.55 70 40
Machine 5 0.00 50 0

Mean F1: 0.65 + 0.25 (95% CI:0.58-0.72). Baseline Random Predictor: F1 = 0.18,
underscoring the model’s relative effectiveness.

Table 6. Correlation matrix.

F1-Score Event Count Incident Count
Fl-score 1.000000 —0.276546 —0.112856
Event count —0.276546 1.000000 0.976357
Incident count —0.112856 0.976357 1.000000

2. Confusion matrices.
. Machine 1:

- TP =120, FP = 15. Precision = 88%, Recall = 75%.
—  There was high precision but moderate recall due to misclassified be-
nign events.

e Machine 5:
- All 50 benign events were misclassified as malicious (FP = 100%).
3.  ROC.

*  Machine 1: AUC = 0.92 (near-perfect discrimination).
*  Machine 2: AUC = 0.85 (strong performance).
*  Machine 5: AUC = 0.50 (no better than random guessing).

4. Precision-recall: The machine with balanced data (machine 1) maintained high preci-
sion (>80%), while the imbalanced machine (machine 5) collapsed to 0.

6.5.6. Performance Differences Across Machines
Key drivers of performance variability were as follows:

1. Class imbalance:
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*  Machine 5 (100% benign) had F1 = 0 due to universal misclassification.
*  Machine 4 (low malicious count) suffered from high FP rates.
2. Feature signal strength:
. SHAP analysis revealed feature_5 as the most influential (mean | SHAP | =0.45),
with malicious events having significantly higher values ( data_exfiltration:
mean = 1.5), shown in Figure 17.
*  Weakly signalled events (normal with feature_5 ~(0.5) were harder to distinguish.
3. Sample size:

¢ The machine with >100 events (machine 1) showed stable metrics (F1 CI: £0.05).
*  The low-volume machine (machine 4)had high variance (F1 CI: +0.15).

High
feature_5 . . &3 0
feature_4 . . g
©
=
feature_2 . . +¥ w
3
feature_3 . . 2= i
feature_1 . » b'
Low

_0.35 —0.30 —0.25 -0.20 —0.15 —0.10 —0.05 0.00
SHAP value (impact on model output)

Figure 17. SHAP analysis of features/events.

6.5.7. Repeatability and Statistical Benchmarks
*  The correlation analysis is as follows:
—  There was a strong positive correlation between incident count and F1 (r = 0.89):
machines with more malicious events performed better.
—  There was a negative correlation between event count and F1 (r = —0.32): busier
machines had noisier feature distributions.

e The error margins were as follows:

- Fl-scores spanned 0.00-0.82, with a wide confidence interval for the low-volume
machine (machine 4: F1 =0.55 4 0.15).

6.5.8. Model Effectiveness Assessment
e  Strengths were as follows:

—  There was a high AUC (>0.85) on balanced machines (machine 1,2, 3).
—  There was robust precision (>80%) for common attack types (privilege_escalation).

*  Weaknesses were as follows:
—  There was catastrophic failure on the imbalanced machine (machine 5).

—  There was an overreliance on feature_5, making the model vulnerable to adver-
sarial perturbations (tested via perturb_data with e = 0.05).

The model performed well on the machine with a balanced event distribution and
strong feature signals (machine 1), achieving F1 > 0.8 and AUC > 0.9. However, its ef-
fectiveness collapsed under class imbalance (machine 5) and weak feature separability.
The SHAP-driven interpretability highlights critical dependencies (feature_5 dominance),
while statistical benchmarks (correlation analysis, confidence intervals) quantify perfor-
mance variability. The relationship between these activities is shown in Figure 18.
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Incident Count

Figure 18. Relationship between machines activities and their performances.

This analysis provides a repeatable framework for evaluating security models, empha-
sizing the need for machine-specific adaptations in real-world deployments.

7. Risks and Limitations of Artificial Intelligence

As the utilisation of Al continues to accelerate across industries, the formulation of
Al-specific frameworks and regulations has become essential to uphold security, privacy,
and ethical integrity. Prominent standards include the NIST Al Risk Management Frame-
work and ISO/IEC 42001:2023 [88,89]. MADS demonstrates strong alignment with these
frameworks. In accordance with the NIST Al RMF, MADS improves explainability and in-
terpretability through SHAP integration, offering insights into model decisions at both local
(per-machine) and global levels. For trustworthiness and risk management, MADS detects
high-risk cyber-events using an ensemble of deep learning thresholds and k-NN voting.
To ensure validity and robustness, the system combines neural networks and SHAP values
for model validation. Additionally, accountability is maintained through machine-level
incident logging, enabling traceability via prediction histories and visual outputs.

Under the ISO/IEC 42001:2023 AI Management Systems standard, MADS aligns
with lifecycle control through its modular pipeline, encompassing data generation, model
training, alert detection, explainability, and performance evaluation. The model promotes
transparency and traceability via detailed per-machine visualisations and rule-based inci-
dent tracking. Furthermore, for monitoring and continual improvement, MADS evaluates
performance over time, benchmarks against random baselines, and supports retraining
using both synthetic and adversarial data to bolster resilience and adaptability. Through sys-
tematic performance evaluation, statistical transparency, and lifecycle integration, MADS
adheres effectively to the principles of these frameworks.

While ML requires high-quality training data, the high cost of data acquisition often
necessitates the use of third-party datasets or pretrained models. This introduces potential
security vulnerabilities [90]. For instance, if malicious data are injected through backdoor
attacks, the Al system may produce false predictions. Mislabelled data can lead to mis-
classification, such as misidentifying stop signs in autonomous vehicles [5,25] or wrongly
quarantining files in intrusion detection systems. A notable recent example includes Mi-
crosoft’s EDR falsely tagging Zoom URLs as malicious, resulting in numerous false-positive
alerts, resource waste, and cancelled meetings.
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7.1. Limitations and Poor Implementation

Al systems come with inherent limitations and dependencies. If poorly implemented,
they may lead to flawed decisions by security teams. ML algorithms are inherently proba-
bilistic, and DL models lack domain expertise and do not understand network topologies
or business logic [68]. This may result in outputs that contradict organisational constraints
unless explicit rules are embedded into the system.

Additionally, Al models typically fail to intuitively explain their rationale in identi-
fying patterns or anomalies [7]. Explainable AI (XAI) can bridge this gap by elucidating
model decisions, their potential biases, and their expected impact [91]. XAI contributes
to model transparency, correctness, and fairness, which are essential for gaining trust in
operational deployments.

Due to the probabilistic nature of ML, errors such as statistical deviations, bias—variance
imbalance, and autocorrelation are inevitable [92]. Moreover, ML systems are highly data-
dependent, often requiring large volumes of labelled training data. When data are limited,
the following strategies may be adopted:

*  Model complexity: Employ simpler models with fewer parameters to reduce the risk
of overfitting. Ensemble learning techniques can combine multiple learners to improve
predictive performance [93], as illustrated in Figure 19.

*  Transfer learning: Adapt pretrained models to new tasks with smaller datasets
by fine-tuning existing neural networks and reusing learned weights, as shown in
Figure 20 [94].

¢ Data augmentation: Increase training set size by modifying existing samples through
scaling, rotation, and affine transformations [95].

*  Synthetic data generation: Create artificial samples that emulate real-world data,
assuming the underlying distribution is well understood. However, this may introduce
or amplify existing biases [81].
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7.2. Ethical and Safety Considerations in Adversarial Contexts

MADS, while effective in many respects, remains vulnerable to both traditional cyber-

threats (such as buffer overflow and Denial-of-Service attacks) and contemporary adver-

sarial machine learning techniques. These include poisoning, evasion, jailbreaks, prompt

injection, and model inversion—each of which compromises the CIA of Al systems and

challenges existing safety protocols [13,14,29,39,96-98].

1.

Relevance of attack types to MADS: Although adversarial ML threats are increasingly
prevalent, the current MADS model primarily relies on threshold-based detection and
lacks dedicated adversarial defence mechanisms. As such, its behaviour under adver-
sarial conditions remains untested. Deploying such a system in live environments
without evaluating its vulnerability could be ethically problematic, risking failure or
undetected compromise.

Behaviour of MADS against adversarial attacks: The MADS system in its current form
does not incorporate adversarial training or robustness optimisation techniques. It is
therefore likely to be susceptible to the following:

*  Data poisoning: Adversaries may inject crafted false alerts that closely resemble
legitimate events, exploiting the limitations of synthetic training data.

*  Evasion techniques: Minor feature perturbations may allow adversarial inputs to
bypass the model’s simple thresholding logic.

*  Model inversion: The absence of explainability enables adversaries to probe system
outputs and infer internal decision logic.

Adversarial attacks can target the CIA triad during model training, testing, and de-
ployment. Some examples follow:

¢  Confidentiality can be compromised by extracting training data or algorithmic
behaviours [99].

¢ Integrity may be undermined by altering classification rules, requiring retraining
with verified datasets [100].

*  Availability can be disrupted through adversarial reprogramming, resulting in
unauthorised actions or system shutdowns [101].

Robustification of MADS: To mitigate these vulnerabilities, MADS should incorporate
the following:

*  Adversarial training: This can be achieved through the use of the Fast Gradient
Sign Method (FGSM) and Projected Gradient Descent (PGD) to strengthen k-NN
decision boundaries [102].

*  Robust statistics: The is includes the application of methods like the Elliptic
Envelope to identify anomalies in the feature space [103].

*  Differential privacy: This includes output perturbation strategies to resist inversion
and membership inference attacks [104].

*  Rate-limiting and monitoring: These provide control to detect and prevent abuse
through excessive queries or prompt injections [105].

Robustness testing against adversarial noise and real-world distortions should follow

a structured methodology:

1.

Generate adversarial examples using FGSM and PGD with varying perturbation
strengths; simulate poisoning via mislabelled data.

Introduce operational noise (such as Gaussian distortions, packet loss) to mimic sensor
faults or logging issues [106].

Measure robustness using metrics such as accuracy degradation, FP/EN rates, detec-
tion delays, and area under robustness curve (AURC) [107].
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4. Benchmark MADS against baseline detectors and apply statistical tests to confirm
significant performance deviations.

Continuous monitoring, well-defined break thresholds, and iterative robustness testing
should be integrated into the development pipeline. Regular red-team simulations and
postmortem analyses using production logs are essential to sustaining resilience in dynamic
threat landscapes.

7.2.1. Misuse

While Al significantly enhances industrial and cybersecurity capabilities, it equally
empowers malicious actors. TAs now utilise Al to conduct attacks with greater speed,
precision, and stealth. By exploiting publicly available APIs and legitimate tools, they can
test malware, automate reconnaissance, and identify high-value targets [108]. Generative
Al enables the automated crafting of phishing emails, SMS messages, and social engineering
content tailored to individual recipients.

These Al-driven campaigns are often fully autonomous and context-aware [109].
In one case, a synthetic voice was used to impersonate an energy company executive,
deceiving an employee into transferring approximately USD 250,000 to a fraudulent ac-
count [110]. Such misuse underscores the dual-use dilemma of Al technologies.

7.2.2. Limitations

Developing robust Al systems entails significant investment in compute power, mem-
ory, and annotated datasets. Many organisations lack the resources to access high-quality
data, particularly for rare or sophisticated attack types. Meanwhile, adversaries are ac-
celerating their attack methods by applying neural fuzzing, leveraging neural networks
to test vast input combinations and uncover system vulnerabilities [111]. This increas-
ing asymmetry between defence and offence necessitates a more resilient and adaptive
Al framework.

7.3. Deployment

The limited knowledge of Al has led to deployment problems, leaving organisations
more vulnerable to threats. Certain guiding principles should be applied while deploy-
ing Al to ensure support, security, and capabilities availability [112]. This improves the
effectiveness, efficiency, and competitiveness, and it should go through a responsible Al
framework and planning process together with the current organisational framework to set
realistic expectations for Al projects. Some of the guiding principles are as follows [113]:

¢ Competency: An organisation must have the willingness, resources, and skill set to
build home-grown custom Al applications, or a vendor with proven experience in
implementing Al-based solutions must be used.

*  Datareadiness: Al models rely on the quantity and quality of data. But they might be
in multiple formats, in different places, or managed by different custodians. Therefore,
the use of the data inventory to assess the availability and difficulty of ingesting,
cleaning, and harmonising the data is required.

*  Experimentation: Implementation is complex and challenging, it requires adoption,
fine-tuning and maintenance even with already-built solutions. Experimenting is
expected using use cases, learning, and iterating until a successful model is developed
and deployed.

*  Measurement: An Al system has to be evaluated for its performance and security
using a measurement framework. Data must be collected to measure performance
and confidence and for metrics.
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¢  Feedback loops: Systems are retrained and evaluated with new data. It is a best
practice to plan and build a feedback loop cycle for the model to relearn and to fine-
tune it to improve accuracy and efficiency. Workflow should be developed and data
pipelines automated to constantly obtain feedback on how the Al system is performing
using RL [72].

¢  Education: Educating the team on the technology’s operability is instrumental in
having a successful Al deployment, and it will improve efficiency and confidence.
The use of Al can help the team grow, develop new skills, and accelerate productivity.

7.4. Product Evaluation

Evaluation is fundamental when acquiring or developing an Al system. Different
products are being advertised as Al-enabled with capabilities to detect and prevent attacks,
automate tasks, and predict patterns. However, these claims have to be evaluated and
identified for scoping and tailoring purposes to fit the organisation’s objectives [114]. It is
vital to validate processes for model training, applicability, integration, proof of concept,
acquisition, support model, reputation, affordability, and security to support practical and
reasoned decisions [115].

The documentation of the product’s trained model’s process, data, duration, account-
ability, and measures for labelled data unavailability should be provided. It should state
if the model has other capabilities, the source of training data, and who will be training
the model and managing feedback loops, and a time frame from installation to actionable
insights should be provided. A good demonstration of an Al product does not guarantee
a successful integration in the environment, and a proof of concept should be developed
with enterprise data and in its environment. Any anticipated challenges should be ac-
knowledged and supported. A measurement framework should be developed to obtain
meaningful metrics in the ML pipeline. An automated workflow should be developed to
orchestrate the testing and deploying of models using a standardised process.

It is important to understand whether Al capabilities were in-built or acquired, that
is whether they are an add-on module or part of the underlying product, as well as the
level of integration. The security capabilities and features of the product must be evaluated,
including data privacy preservation. There should be a clear agreement on the ownership
of the data to align with privacy compliance and evaluate vendors” approach and measures
to protect the Al system.

8. Conclusions

The fields of Al and cybersecurity are evolving rapidly and can be utilised symbiot-
ically to improve global security. Leveraging Al can yield benefits in defensive security
but also empower TAs. This paper discussed the discipline of Al, security objectives, and
the applicability of Al in the field of cybersecurity. It presented use cases of ML to solve
specific problems and developed a predictive MADS model to demonstrate an Al-enabled
detection approach. With proper consideration and preparation, Al can be beneficial to
organisations in enhancing security and increasing efficiency and productivity. Overall,
Al can improve security operations, vulnerability management, and security posture, ac-
celerate detection and response, and reduce duplication of processes and human fatigue.
However, it can also increase vulnerabilities, attacks, violation of privacy, and bias. Al
can also be utilised by TAs to initiate sophisticated and stealth attacks. This paper rec-
ommended best practices, deployment operation principles, and evaluation processes to
enable visibility, explainability, attack surface reduction, and responsible Al. Future work
will focus on improving MADS, developing the model’s other use cases such as adversarial
ML, using real-world samples, and developing a responsible Al evaluation framework for
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better accountability, transparency, fairness, and interpretability. This includes testing and
quantitatively evaluating the model’s robustness against specific adversarial attack vectors.
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