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Abstract

We present fundamental atmospheric parameters (Teff and glog ) and metallicities ([M/H]) for 507,513 M dwarf
stars using low-resolution spectra (R ∼ 1800) from LAMOST DR10. By employing Cycle-StarNet, an innovative
domain adaptation approach, we successfully bridge the gap between theoretical PHOENIX synthetic spectra and
observed LAMOST spectra, enabling parameter measurements even for lower signal-to-noise (S/N) data
(S/N > 5). The fitting residual analysis shows a reduction from 2.0 times to 1.68 times the flux uncertainty.
Comparing with available literature values, we find systematic offsets and precisions of 12 ± 70 K in Teff,
−0.04 ± 0.17 dex in glog , and −0.06 ± 0.20 dex in [M/H]. The precision improves for higher-quality spectra
(S/N > 50) to 47 K, 0.12 dex, and 0.14 dex respectively. The metallicity consistency between wide binaries shows
a scatter of 0.24 dex, improving to 0.15 dex at S/N > 50. We provide a comprehensive catalog including stellar
parameters, spectral classifications, activity indicators, and binary/variability flags, establishing a resource for
studies of the most numerous stellar population. The complete catalog can be accessed at doi:10.5281/
zenodo.14030249.

Unified Astronomy Thesaurus concepts: M dwarf stars (982); Spectroscopy (1558); Fundamental parameters of
stars (555); Catalogs (205)

Materials only available in the online version of record: machine-readable table

1. Introduction

M dwarf stars are the most common stars in our Galaxy. They
make up about 70% of all stars (I. N. Reid & J. E. Gizis 1997;
J. J. Bochanski et al. 2010) and 40% of the stellar mass of the
Milky Way (G. Chabrier 2003). These low-mass stars, found on
the lower main sequence of the Hertzsprung–Russell (H-R)
diagram, have masses below 0.7Me (J. Li et al. 2023). They
have exceptionally long lifespans and evolve very slowly
(I. N. Reid & S. L. Hawley 2000). This slow evolution helps
them preserve the primordial information from their formation
(N. Hejazi et al. 2022). Late-type M dwarf stars include brown
dwarfs, which are important for understanding stellar formation
(K. L. Cruz et al. 2003; K. N. Allers & M. C. Liu 2013;
Y.-F. Wang et al. 2022).

M dwarf stars have become increasingly important in the
search for exoplanets. Several potentially habitable planets have
been discovered orbiting M dwarf stars, including Proxima
Centauri (I. Ribas et al. 2016; J. P. Faria et al. 2022), TRAPPIST-
1 (M. Gillon et al. 2017; S. L. Grimm et al. 2018), and LHS 1140

(J. Lillo-Box et al. 2020). This has created a growing need to
better understand these stars’ characteristics.
Spectroscopic analysis serves as a primary method for

obtaining fundamental stellar atmospheric parameters, chemical
abundance, radial velocity (RV), activity, etc. Despite M dwarf
stars’ faintness, advances in telescopic equipment have enabled
an increasing number of spectral samples to be collected and
analyzed for these parameters. This includes not only high-
resolution spectroscopic observations targeting the optical and
infrared bands of M dwarf stars—often very nearby samples
as highlighted by research from A. W. Mann et al. (2013),
A. S. Rajpurohit et al. (2014, 2018a, 2018b), M. J. Veyette et al.
(2017), V. M. Woolf & G. Wallerstein (2020), and the Calar Alto
high-resolution search for M dwarf stars with exo-Earths with
near-infrared and optical echelle spectrographs (A. Reiners et al.
2018; A. Quirrenbach et al. 2020) series—but also medium- to
low-resolution large samples such as those by S. Lépine et al.
(2013) and N. Hejazi et al. (2020, 2022).
Furthermore, numerous ongoing large-scale survey projects

have provided valuable spectral data for M dwarf stars. High-
resolution surveys include the near-infrared (NIR) spectro-
scopic survey SDSS/APOGEE (R ∼ 22,500; S. R. Majewski
et al. 2017) and Galactic Archaeology with HERMES
(S. Buder et al. 2021). Medium- to low-resolution surveys
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comprise the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST; X.-Q. Cui et al. 2012) with its medium-
resolution survey (MRS; R ∼ 7500) and low-resolution survey
(LRS; R ∼ 1800). Additional contributions come from the
Milky Way Mapper of SDSS-V (J. A. Kollmeier et al. 2017;
A. Almeida et al. 2023; R ∼ 2000) and Gaia Data Release 3
(DR3) extended BP/RP spectroscopic observations (R. Andrae
et al. 2023; F. De Angeli et al. 2023; Gaia Collaboration et al.
2023; P. Montegriffo et al. 2023; R ∼ 15–85), where BP and
RP refer to the Blue Photometer and Red Photometer,
respectively. These extensive data sets have significantly
enhanced our understanding of these low-mass stars.

The urgent need to measure accurate parameters for the rapidly
growing number of M dwarf spectra has led to substantial research
efforts. For instance, using APOGEE spectra, P. Sarmento et al.
(2021) measured spectroscopic parameters (Teff, [M/H], glog ,
vmic) for 313 M dwarf stars. Additionally, D. Souto et al. (2022)
derived individual chemical abundances for 14 elements in a
sample of M dwarf stars, and J. Birky et al. (2020) presented a
catalog of spectroscopic temperatures, metallicity, and spectral
types for 5875 M dwarf stars. Regarding the vast LAMOST data
set of M dwarf spectra, several parameter measurement studies
have been undertaken: J. Li et al. (2021) implemented a data-
driven approach to transfer labels (effective temperature and
metallicity) from APOGEE to LAMOST low-resolution spectra,
whereas B. Du et al. (2021) and M.-Y. Ding et al. (2022)measured
fundamental parameters for M dwarf stars by fitting LAMOST
DR7 low-resolution spectra to the PHOENIX model grid
(F. Allard et al. 2012, 2013) and DR8 spectra to the MILES
empirical spectral library (J. Falcón-Barroso et al. 2011; K. Sharma
et al. 2016).

However, analyzing M dwarf spectra remains challenging.
Their complex spectral lines make modeling difficult and
introduce uncertainties. In the optical range, only half of the
spectral lines have well-determined laboratory properties
(R. L. Kurucz 2014). This problem is more serious for cool
stars where molecular lines dominate (P. Jofré et al. 2019). UV
and IR wavelength data are even less complete. Crowded
molecular features make normalization difficult, and parameter
degeneracy adds further uncertainty.

Domain adaptation methods in transfer learning have
emerged as a promising solution (M.-Y. Liu et al. 2017;

J.-Y. Zhu et al. 2017). These methods can learn from different
but related domains to address the lack of labeled data. Cycle-
StarNet (T. O’Briain et al. 2021) is one such innovation in
astronomy. It calibrates theoretical spectra to match observa-
tions using unsupervised learning. This approach has improved
parameter measurements for both high-resolution APOGEE
data (T. O’Briain et al. 2021) and medium-resolution
LAMOST MRS spectra (R. Wang et al. 2023).
Cycle-StarNet is particularly valuable for low-resolution

M dwarf spectra. The gap between observed and theoretical
spectra is larger for low-mass stars than for solar-type stars. In
this work, we applied Cycle-StarNet to LAMOST DR10 low-
resolution M dwarf spectra. We derived consistent parameters
for over 500,000 M dwarf stars—the first such comprehensive
analysis using full spectral fitting. We present our data and
methods in Sections 2 and 3. Section 4 contains our analysis
and describes the value-added catalog. In Section 5, we
evaluate our parameters through comparison with other data
sets. Finally, Section 6 summarizes our findings.

2. Data

2.1. M Dwarf Stars from LAMOST Data Release 10

LAMOST, located at Xinglong Observatory in Hebei, China,
is a 4 m reflecting Schmidt telescope equipped with active
optics. Its multiobject fiber spectroscopic system enables
simultaneous observations of 4000 celestial targets (X.-Q. Cui
et al. 2012). As of 2022 June, LAMOST has published the 10th
data release with a total of over 22.29 million spectra,
consisting of 11.81 million low-resolution spectra and 10.48
million medium-resolution spectra.13 The low-resolution sur-
vey covers a broad spectral range of 3700–9000Å with a
resolution R ∼ 1800 (A. L. Luo et al. 2015). In this data set,
818,686 low-resolution spectra are classified as M-type dwarfs,
as Figure 1 shows.
In this study, we applied the following filtering criteria to the

original data set:

1. We initially enforced a minimum spectral signal-to-noise
ratio (S/N) threshold of 5 in both r band (SNRr) and i

Figure 1. Galactic coordinate distribution of LAMOST DR10 M dwarf stars on the celestial sphere.

13 https://www.lamost.org/dr10/v1.0/
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band (SNRi), because full-spectrum fitting is employed to
derive parameters from LAMOST low-resolution spectra
covering both r and i bands. Figure 2 shows the average
spectral S/N distributions in the two bands for the
original data set.

2. We removed objects with Gaia DR3 renormalized unit
weight error (RUWE) > 1.4 to eliminate potential binary
contamination. Gaia’s RUWE is a normalized astrometric
noise indicator that equals ∼1 for single stars, indepen-
dent of their color or magnitude (L. Lindegren et al.
2018). While RUWE > 1.4 strongly indicates binarity, it
is sensitive to systems with separations of 100–1000 mas
and magnitude differences ΔG < 3 (M. L. Wood et al.
2021). Therefore, while our criterion helps remove many
binary systems, it should be noted that some binaries,
especially those outside this optimal detection range, may
remain in our sample (see Section 4.5 for further
discussion of binarity effects).

3. We further excluded possible giant stars and other stellar
contaminants by implementing magnitude and color
constraints of 4 < MG < 15 and 1 < BP − RP < 5.

4. To identify and remove low-quality spectra, we imple-
mented an iterative K-means clustering process. This
method groups spectra with similar anomalous patterns
(often resulting from systematic data reduction issues)
and allows for batch inspection and removal. The process
continues until all remaining clusters show typical
M dwarf spectral characteristics.

Ultimately, a total of 538,107 candidate spectra remained
available for measurement.

2.2. PHOENIX Atmospheric Model and Spectral Emulator

Physically modeling the spectra of cool stars is a complex
and time-consuming process. In this work, we adopted The
Payne (Y.-S. Ting et al. 2019) as the spectral interpolator,
which enables users to efficiently generate synthetic spectra for
any specified parameter combination, which is a critical aspect
for constructing training sets within the synthetic domain for
domain adaptation networks.

The Payne is a multilayer perceptron neural network,
designed for precise and accurate interpolation and prediction
of stellar spectra across a high-dimensional label space,
utilizing a moderate number of base models. These models
ensure consistency in atmospheric structure and radiative
transport reflective of stellar labels, thereby avoiding the need
for recalibration. Consequently, even if the domain transfer
process of the spectrum is unsupervised, its results can still be
associated with stellar labels.

This study utilizes the latest precalculated BT-Settl CIFIST
model grid as the training set for Payne. The model
atmospheres (F. Allard et al. 2012, 2013, 2014; I. Baraffe
et al. 2015) are computed with PHOENIX version 15.5
(P. H. Hauschildt et al. 1997; F. Allard et al. 2001). These
models incorporate specialized treatments for cool atmospheres
(T < 3000 K), including the Settl cloud formation model,
E. Caffau et al. (2011) solar abundances, and radiation
hydrodynamic simulations for M, L, and T dwarf atmospheres
(B. Freytag et al. 2010, 2012). The latest models include
updated molecular line lists for water vapor (R. J. Barber et al.
2006), metal hydrides (CaH, FeH, CrH, TiH; P. Bernath 2006),

metal oxides (VO, TiO; B. Plez 1998), and CO2 (S. A. Tashkun
et al. 2004).
The BT-Settl synthetic spectra have been extensively

validated through observational comparisons and atmospheric
parameter determinations (e.g., A. S. Rajpurohit et al.
2013, 2014, 2018a, 2018b; A. W. Mann et al. 2015;
M. J. Veyette et al. 2017; Z. H. Zhang et al. 2017; N. Hejazi
et al. 2020, 2022; S. B. Dieterich et al. 2021; S. Zhang et al.
2021). These studies demonstrate the models’ capability to
reproduce optical-NIR spectral profiles of M and L dwarfs and
subdwarfs.
For this analysis, we employ a newly computed subgrid

(D. Homeier 2025, private communication) previously utilized
in N. Hejazi et al. (2020, 2022) and S. Zhang et al. (2023). This
subgrid extends beyond the classical CIFIST models in its
treatment of α-element enhancement. The parameter space
encompasses Teff of 2500–4000 K in 100 K steps, glog of
4.5–5.5 dex in 0.5 dex increments, and [M/H] from −3.0 to
+0.5 dex, also in 0.5 dex steps. The [α/Fe] values, varying in
0.2 dex increments, are metallicity dependent: ranging from
−0.2 to +0.2 dex for [M/H]� 0.0, 0.0 to +0.4 dex for
[M/H]=−0.5, and +0.2 to +0.6 dex for [M/H]�−1.0.
In the training process, we convolved the synthetic spectra to

a resolution of R ∼ 2000 and randomly allocated all synthetic
spectra within the model grid among the training and validation
sets in an 8:2 ratio. Every synthetic spectrum is convoluted to
the LAMOST resolution and then normalized and masked as
described in Section 2.4.
Figure 3 evaluates the precision of reconstruction of the

validation set; the residuals are calculated as follows:

| | ( )
N

F F

F

1
, 1

i

N
i i

i1

model, recon,

model,
å

-

=

where N represents the number of observation points, and
Fmodel,i and Frecon,i denote the model and emulated values at the
ith observation point, respectively. The results show that
The Payne can achieve a spectral reconstruction accuracy of
higher than 1%. In the parameter space where most of our
observational data set lies, we achieve better reconstruction
accuracies of less than 0.5%. Once trained, it can generate a
synthetic spectrum with a given parameter combination in

Figure 2. Signal-to-noise ratio (S/N) distributions of M dwarf spectra
classified by the LAMOST pipeline. The upper and lower panels show the
distributions for the r band and i band, respectively, with black dashed lines
indicating the sample selection thresholds of S/Nr = 5 and S/Ni = 5.
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1 CPU s, contrasting with the time-consuming nature of direct
spectrum synthesis.

2.3. Radial Velocity Measurement

The first step in processing observed spectra is to measure
RVs and shift the spectra to their rest-frame wavelengths. In
this study, RV of each observed spectrum was derived using
the fitting module of The Payne from the Doppler shift. These
measurements were compared to RVs provided in Gaia DR3
for common sources. The Gaia Radial Velocity Spectrometer
(M. Cropper et al. 2018) is an integral-field spectrograph with a
resolving power of 11,500, covering the infrared wavelength
range of 8450–8720Å. The second release of Gaia DR3
provided precise RV measurements for over 33 million stars
(D. Katz et al. 2023).

We crossmatched our catalog with the Gaia DR3 data set and
identified 100,435 common sources for comparison. The
comparative analysis is presented in Figure 4. The result
demonstrates that our RV measurements are in good agreement
with those from Gaia, showing a bias of 3 km s−1 and a
dispersion of 9 km s−1. This confirms a greater accuracy of our
measurements compared to the results provided by LAMOST
Stellar Parameter pipeline (LASP; Y. Wu et al. 2011, 2014;
A. L. Luo et al. 2015): in a similar analysis, LASP’s RVs
exhibited a bias of −5 km s−1 and a dispersion of 11 km s−1

with comparison to Gaia DR3 results.
The errors of RVs are calculated from two components: the

fitting error and the measurement error induced by spectral
noise, which varies with the S/N. We estimated how
measurement errors change with spectral quality using 29,238
sources that had multiple observations (n� 3). The specific

process was as follows: (1) For all sources with multiple
spectral observations, we calculated the average R̄V of each
source from their spectra observed under all conditions, and
then, the difference between the measured RV of an individual
spectrum and this average value, i.e., ΔRV, was set as the error
of the measurement for the spectrum. (2) We grouped all the
ΔRVs from 29,238 sources into multiple bins based on S/N
and then fitted the relationship between the 1σ values of ΔRVs
in each bin and the corresponding S/N. Finally, using this
empirical relationship, we determined the S/N-dependent RV
error for each spectrum based on its S/N.

Figure 3. Evaluation of the reconstruction accuracy of the spectral emulator across the entire parameter space. Each point represents a synthetic spectrum from the
model grid in the validation set, with points color coded by the reconstruction residuals, as calculated and described in Section 2.2.

Figure 4. Comparison between Gaia RV and RV measurements from this
study for approximately 100,000 homologous samples. The density map
is color coded by the sample count. The red dashed line marks the
reference line.
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The process is similar to the determination of precision of
other parameters (Teff, glog , [M/H]) described in Section 4.1.
The fitted empirical relationship is shown in Figure 10.

2.4. Spectral Preprocessing

The normalization of M-type stellar spectra presents
challenges due to the dense molecular line forests, which
obscure the continuum spectrum at low resolutions. This
complexity often results in what can only be termed a
“pseudocontinuum” even in regions of minimal opacity. In
this study, since normalization was only intended to produce
spectral data suitable for training models, and the subsequent
domain adaptation module can correct errors introduced during
the normalization process, each spectrum was normalized by
dividing by the corresponding smoothed flux F(λ) with F(λ)
defined as

( )
( )

( ( ))
( )F

f w

w
, 2i i i

i i

å
å

l
l

l
=

where fi is the flux at λi, and the weight wi(λ) is a Gaussian
function

( ) ( )
( )

w e . 3i

i
2

2l =
l l
s

- -

σ is set to be 30Å to convolve the entire spectrum.
Additionally, we applied the same normalization process to
the errors associated with each observed spectrum, using the
smoothed spectrum as the normalization reference. In the
training process, the “normalized” errors for synthetic spectra
are fixed to be 0.01.

For our spectroscopic analysis, we adopted spectral data in the
wavelength range of 6000–8900Å, which encompasses most
prominent spectral features of M dwarf stars. The spectra were
resampled at a consistent interval of 1Å into a uniform array.
Additionally, specific wavelength ranges were masked during the

spectral fitting process to mitigate potential contamination from
telluric absorption or chromospheric activity: 6270–6330,
6546–6586, 6700–6725, 6850–6885, 7150–7350, 7587–7687,
and 8100–8240Å. Figure 5 shows an example of our spectral-
processing procedure applied to a typical LAMOST spectrum.

3. Method

Here, we introduce a deep-learning domain adaptation
method Cycle-StarNet (T. O’Briain et al. 2021), which can
bridge the gap between theoretical and observed spectra by
learning hidden aspects of the two domains automatically. The
domain of synthetic data here is referred to as the “synthetic
domain,” and the observed data is referred to as the “observed
domain.”

3.1. Domain Adaptation Network

The domain adaptation network minimizes the synthetic gap,
addressing the discrepancies caused by imperfections in the
stellar atmospheric model, observational effects, and data-
processing errors. Referring to Cycle-StarNet, this goal is
achieved by two primary components:
(1) A hierarchical structure with multiple encoder–decoder

pairs operating at different levels contains two low-level pairs
that handle domain-specific features separately for synthetic
and observed spectra, while a high-level pair of abstracts shared
physical characteristics across domains. The encoders progres-
sively compress data into lower-dimensional representations,
with decoders reconstructing the original form. This design
efficiently separates domain-specific learning at lower levels
from the abstraction of shared physical concepts at higher
levels, with an additional split encoder–decoder for observed
data improving convergence. This process also implicitly
denoises the spectra, making it possible to work directly with
noisy training spectra.
(2) A generative adversarial network (I. J. Goodfellow et al.

2014) ensures that the abstractions in the latent spaces of the
two domains are shared. To accomplish this, the spectra in the
observed domain are dynamically mapped to a “shared latent
space” common to the synthetic domain. This is enforced to
ensure uniformity, along with a separate “split latent space,”
which accounts for discrepancies attributed to the synthetic
gap. The physical meaning is preserved throughout the transfer
by introducing a cycle-consistency constraint, whereas adver-
sarial learning is applied to the latent space to appropriately
allocate shared and split information.
Note that this process is unsupervised; it does not require the

synthetic and observed spectral data sets to have a one-to-one
correspondence, nor do they need to have the same stellar
labels. However, it operates on the basis that their physical
parameter spaces overlap.
Once well trained, the network learns to link two sets of

unlabeled spectra and morph between domains. In other words,
it can transfer spectral models from the synthetic to the
observed domain, or vice versa, correcting systematic dis-
crepancies between the two domains.

3.2. Training Process and Loss Functions

The data from the two domains are spectral fluxes of the
training sets and denoted as synth and obs , respectively. The
training process iteratively adjusts the network’s parameter
weights by minimizing a loss function through gradient

Figure 5. Example of a LAMOST observed spectrum and its processing. From
top to bottom: The original spectrum (black) with its pseudocontinuum fit (red);
the flux uncertainty; the normalized spectrum after continuum division; and the
normalized flux uncertainty. Gray shaded regions indicate masked wavelength
ranges that are excluded from analysis. The wavelength range covers from
6000 to 8900 Å.
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descent. Following the core idea of the domain adaptation
network, the model’s loss function includes components from
two autoencoders, two cross-domain generations, and the
discriminator.

The training consists of three parts:
(1) Ensuring encoding–decoding pairs complete within-

domain reconstruction, i.e., maximizing the consistency
between synth and synth synth , obs and obs obs .

The loss function of within-domain reconstruction is denoted
as rec ,

( )
( ) ( )

d

d

,

, , 4
rec,synth synth synth synth

rec,obs obs obs obs

=
=





  

  

where d is the distance function, specifically a standard mean-
squared error with samples weighted by the spectrum
uncertainties.

(2) Applying generative adversarial networks to achieve
cross-domain transfer, i.e., maximizing the consistency
between obs and synth obs , synth and obs synth . This
network includes generators and discriminators, which train
simultaneously but with different objectives; generators are
responsible for producing counterfeit samples as realistic as
possible, while discriminators are responsible for identifying
whether given samples are counterfeit.

In this work, the cross-domain autoencoders play the role of
generators, while the discriminators are responsible for
accepting a cross-domain transferred spectrum and a within-
domain reconstructed spectrum, and making correct judgments
on them. In addition to discriminating between the spectral
pairs, the discriminators evaluate the latent space representa-
tions that generate these spectra, providing additional con-
straints on the model. The training objective is implemented
using the binary cross-entropy function. The loss function is
denoted as adv ,
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where H represents the cross-entropy function, Csynth and Cobs

represent the discriminators for the theoretical and observa-
tional domains, respectively, and ( sh , sp ) represents the
expression of the observed domain spectrum generated jointly
through the shared latent space and split latent space. When
both the input spectrum and latent space expression are judged
as reconstructed, i.e., real, the discriminator outputs 1, and 0 for
“fake” cross-domain transferred objects. When the discrimina-
tors of each domain can correctly identify reconstructed spectra
and cross-domain transferred spectra, adv takes a value of 0.
Therefore, the objective of the discriminator is to minimize this
loss function, while the objective of the generative network is
the opposite, to maximize it, thereby achieving the adversarial
goal and realizing mutual improvement of the two networks
during the training process.

(3) Cycle reconstruction, i.e., synth obs synth  and
obs synth obs  . This is a cycle-consistency constraint intro-

duced to ensure that the cross-domain generated spectrum for a
given spectrum is the correct corresponding spectrum in the

opposite domain. The loss function is denoted as cr ,

( )
( ) ( )

d

d

,

, , 6
cr,synth synth synth obs synth

cr,obs obs obs syn obs

=
=

 

 

  

  

where the definition of the distance function d is the same as
in rec .
Finally, the total loss is represented as

( )
( )
( ) ( ), 7

1 rec,synth cr,synth

2 rec,obs cr,obs

3 adv,synth adv,obs

l
l
l

= +
+ +
+ +

  

 

 

where λ1, λ2, and λ3 are hyperparameters used to control the
weight of each part.

3.3. Assembly of the Training Sets

The training data include the synthetic spectral data set and
the observed spectral data set; each data set serves as the input
and output of its corresponding autoencoders and also the
verification input of the adversarial generative network. As
described above, this is not a supervised learning method. The
training sets in the two domains do not require one-to-one
correspondence but only cover the same parameter space.

3.3.1. Observed Domain

We randomly selected 110,000 LAMOST low-resolution
spectra from our candidate data set (Section 2.1) as the
observed domain training set, with an 8:2:1 split for training,
validation, and testing.
Data-driven methods commonly rely on high-quality training

spectra, potentially limiting their performance on low-S/N data.
Given our approach’s ability to separate physical components
from noise, we chose to train without S/N constraints.

3.3.2. Synthetic Domain

To construct the training data set for the synthetic domain,
we first built a set of parameter combinations covering a similar
parameter space as the observed domain training set, then
generated corresponding synthetic spectra based on these
parameter combinations via The Payne. The procedure includes
four steps.
(1) We utilized theoretical isochrones generated from the

PAdova and TRieste Stellar Evolution Code (PARSEC;
A. Bressan et al. 2012) with specified criteria (3000 K�
Teff� 4000 K, 4.0 dex glog  6.0 dex,−1.0 dex� [M/H]�
0.5 dex, and age= 5 Gyr) as the foundational data set to
derive initial parameter combinations in the (Teff, glog ,
[M/H]) three-dimensional parameter space. The [α/M]
values were set empirically as 0.0 for [M/H]� 0, 0.2 for
[M/H]=−0.5 dex, and 0.4 for [M/H]=−1.0 dex.
(2) Based on these initial discrete parameter combinations,

we applied a Gaussian mixture model to generate over
1 million continuous parameter combinations distributed across
the four-dimensional parameter space (Teff, glog , [M/H],
[α/M]).
This parameter generation approach ensures physically

meaningful glog values for each combination of temperature
and metallicity while covering the parameter space of
LAMOST M dwarf samples. For low-mass stars like
M dwarfs, whose initial conditions are primarily determined
by mass and metallicity, evolution becomes extremely slow
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after entering the main-sequence phase, with their position on
the Kiel diagram remaining nearly constant. We chose 5 Gyr
isochrones as the baseline because the Teff– glog relations agree
within 0.03 dex in glog for ages between 1 and 10 Gyr in the
temperature range of M dwarf stars up to 4000 K. In practice,
this method of determining glog has been adopted in
spectroscopic parameter measurements to break parameter
degeneracy, as demonstrated in V. M. Passegger et al. (2018,
2019). In their approach, the temperatures and other parameters
of M dwarf stars were first measured by fitting high-resolution
spectra with a model grid, then the glog values were calculated
based on the Teff– glog relations from 5 Gyr evolutionary
models. It should be noted that this method is less accurate for
stellar objects with age estimates younger than 1 Gyr; thus, we
removed these objects from our final catalog, as detailed in
Section 4.

At this step, while our generated parameter combinations
covered the observed parameter space, their distribution
differed from that of the observed domain. To ensure that the
distribution closely matched that of the observed training
sample and to create a final training set that both reflected the
characteristic distribution of the LAMOST data set and avoided
systematic bias from any single source data set, we performed a
secondary sampling in the dimensions of Teff and [M/H] in the
following third step. The reference distribution was derived
from a combined distribution of LAMOST-common samples
from multiple publications.

(3) We achieved further refinement by executing codistrib-
uted sampling on the temperature and metallicity components
of the ensemble derived above. This approach enabled us to
apply precise constraints on the parameter space.

To establish the reference distribution, we selected samples
from multiple publications/survey data sets that share common
sources with LAMOST spectra, combining their temperature
and metallicity measurements. We compiled the samples from
LAMOST DR10 Low Resolution Catalog crossmatched with
data sets from B. Rojas-Ayala et al. (2012), A. S. Rajpurohit
et al. (2014, 2018a), A. W. Mann et al. (2015), S. W. Yee et al.
(2017), V. M. Passegger et al. (2018, 2019, 2020), A. Y. Kes-
seli et al. (2019), M. K. Kuznetsov et al. (2019), J. Birky et al.
(2020), N. Hejazi et al. (2020), P. Sarmento et al. (2021), and
APOGEE DR16 (calibrated). We retained stars classified as
“dM” by LASP and those later than K5 with effective
temperatures in the literature below 4000 K. The final sample
exceeded 10,000 objects.

The top three contributing sources were the following.

1. J. Birky et al. (2020): 5288 objects. The parameters were
derived from the APOGEE spectra using The Cannon
(M. Ness et al. 2015), trained on the parameters from
A. W. Mann et al. (2015). A. W. Mann et al. (2015)
determined temperatures through an empirically cali-
brated spectroscopic method using optical spectra,
validated against interferometric measurements where
available, while metallicities were calibrated using FGK
binaries.

2. APOGEE DR16 (calibrated): 4571 objects. The SDSS
collaboration adjusted APOGEE DR16 Teff values to
match the photometric scale of J. I. González Hernández
& P. Bonifacio (2009), using linear relations as functions
of metallicity and spectroscopic effective temperature
(see H. Jönsson et al. 2020), based on fitting to the
MARCS grid.

3. P. Sarmento et al. (2021): 104 objects. The parameters
were derived by comparing APOGEE observations against
synthetic spectra created with iSpec, Turbospectrum, and
MARCS model atmospheres, using a line list containing
over a million water lines.

(4) Finally, we used this refined ensemble of parameter
combinations to produce synthetic spectra using The Payne
framework, establishing the training data set for the synthetic
domain. The resulting spectra were then partitioned into
training, validation, and test sets, maintaining the same
quantities and ratio as the observed domain to ensure robust
model training and evaluation.

3.4. Training and Testing

The model was trained for a total of 500,000 epochs, taking
about 10 GPU hr using a piece of NVIDIA Tesla V100.
Figure 6 shows the change of training loss and critics during
the training process with epochs. We used 10,000 test samples
to test the domain adaptation performance based on the t-SNE
algorithm (L. van der Maaten & G. Hinton 2008), which can
keep the relative distances of the samples with high dimen-
sional data after mapping into two-dimensional space. The
trained network reduced the gap between the synthetic spectra
and the observed spectra, which was originally quite different,
as shown in Figure 7. Also, the fitting residuals of the observed
spectra compared to their best-fitting synthetic spectra
decreased from over 2 times the flux uncertainties to
1.68 times, as shown in Figure 8.

3.5. Label Derivation

After training the spectral emulator and domain adaptation
network models, we can fit the observed spectra to obtain
stellar parameters. There are two options:

1. Fitting in the synthetic domain. The observed spectrum is
transferred to the synthetic domain through Cycle-
StarNet and fitted by The Payne as

ˆ ( ( ) ( ))y y FCSNarg min Payne ,
y

obs synth obs
2= - 

where y represents stellar parameters, CSNobs synth is
Cycle-StarNet transformer that transfers a spectrum from
the observed domain to the synthetic domain, and Fobs is
observed spectral fluxes.

2. Fitting in the observed domain. Synthetic spectra
generated by The Payne are transferred to the observed
domain through Cycle-StarNet for fitting with the
observed spectra as

ˆ ( ( ( )))y F yCSNarg min
1

Payne ,
y obs

2 obs synth obs
2

s
= - 

where y is stellar parameters, CSNsynth obs is Cycle-
StarNet transformer that transfers a spectrum from the
synthetic domain to the observed domain, Fobs is
observed spectral flux, and σobs is the flux uncertainty.

In this work, we used the parameters derived in the synthetic
domain as the initial parameters, then we applied them by
forward modeling into the observed domain for the final catalog
release. In the second step, the limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm (D. C. N. Liu 1989) is
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applied to each objective. This approach allows inaccuracies to
be accommodated by generating synthetic counterparts for the
observed spectra.

4. Results

Based on the trained network, we extracted the basic
parameters (Teff, glog , [M/H]) for each spectrum with
S/N > 5 in both r and i bands. We applied the following
criteria to refine our catalog:

(1) We removed stellar objects with extreme parameters,
stars with Teff > 4300 K and glog near our fitting boundaries.
We also excluded sources where the uncertainties in the three
parameters and RV exceeded their respective 5σ thresholds.

(2) To ensure the overall quality of the spectral fitting
process, we removed 99 stars with large χ2 values (χ2 > 50).
(3)We predicted ages for each star using Zoomies (S. Sagear

et al. 2024) and excluded stars with median or mean age
estimates below 1 Gyr to focus on more evolved populations.
As noted in Section 3.3.2, while we assumed a mean age of
5 Gyr for the synthetic training sets, stars much younger than
1 Gyr would have much different gravity values from older
populations.
After applying these criteria, the final catalog contains

507,513 objects, corresponding to 426,008 unique stars. All
subsequent analyses and comparisons (unless otherwise
specified) are based on this catalog.

Figure 7. The t-SNE projections of 10,000 pairs of test spectra. The left panel highlights the disparity, referred to as the “synthetic gap,” between PHOENIX models
and LAMOST spectra. The middle panel demonstrates that a shared representation for the latent spaces of the two domains has been achieved after model training.
The right panel illustrates the transfer results in the observed domain, showcasing success in bridging the synthetic and observed domains through domain adaptation.

Figure 6. Training losses of Cycle-StarNet as a function of epochs. The upper panel displays the losses in both the synthetic and observed domains for the within
domain reconstructions ( synth synth , obs obs ), cross-domain transferring ( synth obs , obs synth ), and cycle reconstructions ( synth obs synth  , obs synth obs  ). The
left lower panel shows the evaluation of the adversarial losses on the training set for both the transfer loss ( synth obs , obs synth ) and the adversarial loss
( / /( )Csynth obs real fake . The right lower panel shows the validation scores for the latent spaces ( /shared split ).
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4.1. Atmospheric Parameters and Metallicity

As shown in Figure 9, the Kiel diagram illustrates the
distribution of M dwarf stars in the parameter space. A
comparison with the solid lines representing theoretical
isochrones from the PARSEC evolutionary model indicates
that the surface gravity and metallicity measurements generally
align with the predictions of the isochrones.

The precision of parameter measurement is affected by both
the spectral fitting errors and the quality of the observed
spectra. Multiple LAMOST observations of the same sources
under different conditions allow us to evaluate parameter
measurement precision as a function of spectral S/N. As a
result, the total error for a stellar parameter is calculated as the
square root of the sum of the squares of the repeated
measurement error (Errrepeat) and the fitting error (Errfitting):

( )Err Err Err . 8total repeat
2

fitting
2= +

For stars with more than three observations, we calculated
the standard deviation of repeated measurements to quantify
parameter precision. We then modeled the precision (Errrepeat,x)
of each parameter x using an inverse function of S/N, with
coefficients a and b:

/
( )a

bErr
S N

. 9xrepeat, = +

Figure 10 shows how measurement precision improves with
increasing S/N for RV, Teff, glog , and [M/H]. We model these
relationships using inverse functions of S/N (Equation (9)). At
S/N= 10, the precision is 9.7 km s−1 for RV, 61K for Teff,
0.07 dex for glog , and 0.14 dex for [M/H]. These values improve
to 3.7 km s−1, 22 K, 0.02 dex, and 0.05 dex respectively at
S/N= 100, after which the precision improvements begin to
plateau.

4.2. Hertzsprung–Russell Diagram

With Gaia DR3 photometry available for the majority of our
sample, we employ absolute G magnitudes and BP − RP colors
as luminosity and temperature proxies, respectively. The left
panel of Figure 11 presents the observational H-R diagram of
our M dwarf sample, excluding variable stars and binary
candidates (see “VBFlag” description in Section 4.5). Given
that most sources lie within 1 kpc (lower right panel,
Figure 11), we derived absolute MG magnitudes using Gaia
DR3 parallaxes.

Figure 9. Distribution of ∼500,000 M dwarf stars measured in this study
on the Kiel diagram ( glog vs. Teff). The color represents overall metallicity
([M/H]). The solid lines indicate 5 Gyr PARSEC isochrones for reference.

Figure 8. Comparison of residuals for 10,000 LAMOST spectra in the test set, showing the residuals between the best-fit and PHOENIX spectra both before and after
transfer. After applying the domain adaptation model, the spectral residuals decreased from the mean intrinsic spectral error shown in the upper panel (over 2 times) to
1.68 times, as shown in the lower panel, with the fitting accuracy improved by around 20%.
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LAMOST’s observational constraints restrict our sample to G-
band magnitudes between 12 and 18 (upper right panel, Figure 11).
The absolute magnitude distribution spans MG= 7–13, predomi-
nantly encompassing early to mid-type M dwarf stars.

4.3. Activity Traced by Hα Emission

Hα emission serves as a fundamental indicator of chromo-
spheric magnetic activity in M dwarf stars, first identified by
A. H. Joy (1947) who designated such stars as dMe. The
fraction of Hα active stars increases from early to late M dwarf
stars, as demonstrated by both A. A. West et al. (2008) and
Z.-F. Chen et al. (2019) data sets, although this trend plateaus

around MG ∼ 15 (M7V). The interpretation of Hα activity is
complex, as L. E. Cram & D. J. Mullan (1979) and J. R. Stau-
ffer & L. W. Hartmann (1986) demonstrated that increasing
chromospheric heating initially deepens Hα absorption before
transitioning to emission.
E. R. Newton et al. (2017) showed that M dwarf stars with

masses around 0.30Me typically exhibit Hα activity when their
rotation periods are less than 30 days, while this threshold extends
to 80 days for 0.15Me red dwarfs. E. K. Pass & D. Charbonneau
(2023) further revealed that 74% of active, fully convective
M dwarf stars (0.1–0.3Me) are rapid rotators with periods under
2 days. Regarding variability, A. A. Medina et al. (2020)

Figure 11. Left panel: distribution of the M dwarf stars on the Gaia H-R diagram, color coded by [M/H] measured in this study. Right panels: the upper and the lower
display the distribution of Gaia G magnitude and distance of the M dwarf stars, respectively.

Figure 10. Precision (Errrepeat) of RV, Teff, glog , and [M/H] as a function of S/N, derived from repeated observations. Black dots show the standard deviation of
repeated measurements in each S/N bin (width = 10). The red dashed curves show the best-fit inverse functions, with their expressions given in each panel. These
relationships demonstrate how measurement precision improves with increasing S/N before stabilizing at S/N > 100.
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discovered that stronger Hα emission correlates with more
frequent flaring activity in fully convective M dwarf stars.
W.-C. Jao et al. (2023) identified an Hα deficiency zone at
10.3 < MG < 10.8, linking reduced Hα activity to slower rotation
rates. Notably, E. R. Newton et al. (2017) suggested that, for K and
M dwarf stars, the chromospheric heating mechanism responsible
for Hα emission might operate independently of the underlying
dynamo. Most fully convective M dwarf stars show Hα variability
that is not synchronized with the rotation phase, suggesting that
fixed photospheric features may not directly drive chromospheric
Hα variations. These findings collectively establish Hα emission
as a valuable tracer of magnetic activity in M dwarf stars, reflecting
complex relationships among stellar rotation, internal structure, and
evolutionary state.

To provide an Hα emission indicator for our sample, we
quantified stellar chromospheric activity by measuring the
equivalent width (EW) of the Hα emission line. The EW was
calculated using the following equation:

( )F

F
dEW 1 , 10I

C1

2

ò l= - -
l

l
l

l
⎜ ⎟
⎛
⎝

⎞
⎠

where FCλ represents the local continuum flux in the line
region, and FIλ denotes the spectral flux across the line profile.
Following the standard procedure established by A. A. West
et al. (2004, 2011), we measured the EW within a 14Å window
centered on the Hα line (±7Å from the line center). A star is
considered chromospherically active if its Hα EW exceeds
0.75Å. Then, we defined an “Activity” flag in our catalog,
assigning a value of 1 to stars with EW > 0.75Å and 0 to
those below this threshold.

In Figure 12, the distribution of Hα active M dwarf stars
(33,623 objects) on the H-R diagram reveals that active stars are
notably elevated above the main sequence, which is consistent
with the literature (e.g., W.-C. Jao et al. 2023). These stars show
unusually high metallicities, which could be attributed to several
factors. First, this might reflect the age–metallicity correlation, as
younger stars tend to be both more metal rich and more active.
Second, some of these stars could be tight binary systems, where

the companion affects both the activity levels and spectral
features. Third, a portion of these elevated, high-activity sources
might be pre-main-sequence stars, whose different spectral
characteristics and color–magnitude diagram positions could
lead to apparently higher metallicity estimates. Additionally,
residual activity effects might persist even after Hα masking.
Given these complexities, we suggest that their derived
parameters should be used with caution.

4.4. Subclass and Spectral Subtype

The analysis of the H-R diagram reveals a number of bright
stars with MG < 8, which exceed typical M dwarf luminosities
(T. J. Henry & W.-C. Jao 2024). These are likely misclassified
late-type K dwarf stars, as spectral classification systems
occasionally vary by 1∼2 subtypes. As described in Section 2,
our initial M dwarf candidates were classified using LAMOST
full-spectrum template fitting. Therefore, we implemented an
alternative classification method for comparison. To differ-
entiate between the two, the original LAMOST classification is
referred to as the “spectral subclass,” while the new classifica-
tions are termed “spectral subtype (SpT).”
LAMOST observational constraints limit our sample pri-

marily to stars earlier than M6, as late-type M dwarf stars’
spectral energy distributions peak in the NIR (M dwarf stars
with Teff ∼ 2900 K peak at 1 μm). We adopt the SpT–TiO5
relation, which was originally defined by I. N. Reid et al.
(1995) and applied to SDSS M dwarf stars by J. J. Bochanski
et al. (2007):

( )SpT 10.775 TiO5 8.2, 0.5, 11s= - ´ + = 

where the TiO5 index is defined as

( )F

F
TiO5 , 12W

cont
=

with FW representing the mean flux of the TiO5 band head
(7126–7135Å) and Fcont representing the mean flux of its
pseudocontinuum (7042–7046Å). This relation applies to SpTs
from −2 to 7, where −2 denotes K5, −1 denotes K7, and 0
through 7 correspond to M0 through M7.
As a result, a systematic offset of 0.18 subclass with a

standard deviation of 0.74 subclass was identified between the
two classifications across the sample. Figure 13 illustrates this
comparison, suggesting potential contamination by misclassi-
fied late-K type dwarf stars. We included both classifications in

Figure 12. Similar to the left panel of Figure 11, but displaying only the subset
of the sample identified with Hα emission. The three dashed lines represent
15th, 50th, and 85th percentiles of the full sample shown in Figure 11,
respectively.

Figure 13. This histogram compares the spectral subclass distribution from the
LAMOST pipeline with the spectral subtype (SpT) distribution derived using
the empirical TiO5–SpT relationship, as described in Section 4.4.
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our catalog, with −9999 indicating cases where SpT calcul-
ation was impossible due to spectral quality limitations.

4.5. Candidate Variable Stars and Binaries

Given that our theoretical models are based on single-star
assumptions, parameter predictions for unresolved binary
systems and variable stars would have reduced the accuracy.
Therefore, we initially applied an RUWE < 1.4 criterion to our
sample selection, and additionally, we provided a flag for
variable star candidates and binary candidates in our catalog
through crossmatching with various catalogs.

For variable stars, we primarily used the Gaia DR3 Vari
Summary Catalog, which contains 11,754,237 objects with
VarFlag= “VARIABLE.” This catalog incorporates data from
the Gaia vari_classifier_result table (L. Rimoldini et al. 2023;
9,976,881 sources) and Gaia DR3 × literatures (P. Gavras et al.
2023; 4.9 million objects), yielding 24,276 matches from our
sample.

For binary stars, we crossmatched with the following
catalogs:

(1) Gaia EDR3 200 pc binary candidates catalog (I. Medan
& S. Lépine 2023), 2585 matches from 235,269 pairs
within 2.5;

(2) Gaia DR3 eclipsing binary catalog (N. Mowlavi et al.
2023), 447 matches from 2,184,477 objects, including entries
from the Gaia nonsingle stars' catalog (810,000 objects) and
DR3 DPAC orbital solutions (86,918 objects);

(3) APOGEE double-lined spectroscopic binary (SB2)
catalog (M. Kounkel et al. 2021), 240 matches from 7273
objects;

(4) 2021 final version of the Ninth Catalog of Spectroscopic
Binary orbits (D. Pourbaix et al. 2004), 1 match from 4021
objects;

(5) DEBCat (detached eclipsing binary stars; J. Southwo-
rth 2015), four matches;

(6) LAMOST MRS SB2 catalogs, 336 matches from
Z. Zheng et al. (2023), which contains 36,470 candidates,
and 102 matches from M. Kovalev et al. (2024), which
contains 12,426 candidates.

As a result, we implemented a “VBFlag” in our catalog: 1 for
variable candidates (24,276 objects), 2 for binary candidates
(3455 objects), and 0 for all others, indicating no detected
variability or binarity based on our crossmatching criteria.

4.6. Description of the Catalog

Table 1 presents a comprehensive data description of our
value-added M dwarf catalog, containing 23 columns of stellar
parameters and observational measurements. The catalog
combines data from LAMOST spectroscopic observations
and Gaia DR3 astrometric measurements, along with our
derived parameters. Each star is identified by a unique ID, and
each LAMOST spectrum is indicated by a unique identifier
(observation ID, hereafter ObsID). Positional information
includes J2000 coordinates (R.A. and decl.). The spectral
quality is quantified by S/Ns in both r and i bands (SNRr,
SNRi). Two spectral classification systems are provided: the
original LAMOST pipeline subclass and our derived SpT based
on the TiO5 index.

Photometric data from Gaia DR3 include G-band mean
magnitude (Gmag) and integrated BP and RP magnitudes
(BPmag, RPmag). Astrometric measurements comprise

parallax (“Plx”) and its associated error (“e_Plx”), along with
the Gaia RUWE (“RUWE”). Our derived parameters include
RV with typical uncertainties (“e_RV”), effective temperature
(Teff), surface gravity (Log g), and overall metallicity ([M/H]),
each accompanied by their respective uncertainties. Two
additional flags indicate Hα emission activity (“Activity”)
and potential variability or binarity (“VBFlag”).
Table 2 demonstrates the practical implementation of this

catalog structure through a sample of 10 M dwarf stars. These
examples illustrate the typical parameter ranges and measure-
ment precisions achieved in our survey, showcasing both active
and inactive stars, as well as objects with varying spectral types
and distances. The full catalog is available online.

5. Comparison

In this section, we evaluated the accuracy of the parameters
by comparing our results with established data sets, including
spectral parameters from the literature, the APOGEE survey,
and other studies on LAMOST M dwarf parameterization. To
further validate the results, metallicity measurements were
cross-checked using FGK+M binaries.

5.1. Comparison with Results from Literature

Figure 14 presents a comprehensive comparison of our
derived fundamental parameters (Teff, glog , and [M/H]) with
values from several key literature sources spanning 2015–2021.
The effective temperature comparison in the left panel shows
generally good agreement across the M dwarf temperature
range (3000–4000 K), with a small systematic offset of 12 K
and a scatter of 70 K. When restricting to higher-quality spectra
(S/N > 50), the scatter reduces to 47 K with a similar offset of

Table 1
Data Description of the Value-added Catalog

Column Unit Description

ID L Designation for the stellar object
ObsID L Unique identifier for LAMOST spectrum
R.A. degrees R.A. (J2000)
Decl. degrees Decl. (J2000)
SNRr L Spectral signal-to-noise ratio in r band
SNRi L Spectral signal-to-noise ratio in i band
Subclass L Spectral subclass from LAMOST pipeline
SpT L Spectral subtype from SpT to TiO5 relation
Gmag mag Gaia DR3 G-band mean magnitude
BPmag mag Gaia DR3 integrated BP mean magnitude
RPmag mag Gaia DR3 integrated RP mean magnitude
Plx pc Gaia DR3 parallax
e_Plx pc Gaia DR3 parallax error
RUWE L Gaia renormalized unit weight error
RV km s−1 Radial velocity measured in this study
e_RV km s−1 Typical uncertainty of radial velocity
Teff K Estimated effective temperature
e_Teff K Typical uncertainty of Teff
Log g dex Estimated surface gravity
e_Log g dex Typical uncertainty of glog
[M/H] dex Estimated overall metallicity
e_[M/H] dex Typical uncertainty of [M/H]
Activity L 0 = default, 1 = Hα emission detected
VBFlag L 0 = default, 1(2) = variable (binary) candidate

Note. Description of each column in the value-added catalog provided in this
study.
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Table 2
A Partial Extraction from the Value-added Catalog

ID ObsID R.A. Decl. SNRr SNRi Subclass SpT Gmag BPmag RPmag Plx
e_Plx RUWE RV e_RV Teff e_Teff Logg e_Logg [M/H] e_[M/H] Activity VBFlag

J063628.35+212902.9 431513187 99.11814 21.48414 109.98 167.84 dM0 −1 14.684018 15.544645 13.732701 4.9391
0.0299 1.013 17.10 3.73 3911 24 4.78 0.05 −0.4 0.05 0 0
J063412.78+205740.4 431513234 98.55327 20.96124 43.16 114.84 dM4 3 15.685949 17.036491 14.540619 5.1196
0.0412 1.023 54.43 4.73 3487 29 4.73 0.04 0.22 0.07 1 0
J063411.52+210148.7 431513238 98.54804 21.03020 45.42 106.23 dM2 2 15.759789 17.006866 14.652662 5.3982
0.0410 1.018 9.78 4.65 3521 29 4.75 0.04 −0.00 0.07 0 0
J061824.22+204151.9 431514049 94.60094 20.69777 142.96 271.60 dM1 1 14.013478 15.060897 12.995195 9.711
0.0199 1.089 −12.42 3.58 3712 22 4.77 0.04 −0.18 0.05 0 0
J061834.12+211656.0 431514101 94.64219 21.28223 85.62 158.87 dM0 1 15.083522 16.103584 14.082976 4.5126
0.0290 0.926 123.43 3.90 3787 24 4.69 0.04 −0.15 0.06 0 0
J062832.55+212809.6 431515148 97.13565 21.46936 74.48 153.38 dM1 2 15.429993 16.604053 14.357323 5.2112
0.0322 1.030 37.52 4.04 3644 25 4.77 0.04 0.02 0.06 0 0
J062344.53+221635.1 431516061 95.93557 22.27642 79.01 123.56 dM0 1 15.222661 16.188217 14.240995 3.3625
0.0369 1.290 110.89 3.97 3731 26 4.69 0.04 −0.36 0.06 0 0
J062133.92+215910.5 431516183 95.39134 21.98626 221.09 299.00 dM0 1 13.312594 14.354561 12.292203 11.8295
0.0208 1.315 5.85 3.43 3730 21 4.75 0.04 −0.05 0.05 0 2
J062833.39+192615.9 431605128 97.139142 19.437767 110.20 203.64 dM1 1 13.320173 14.416961 12.278325 12.1422
0.0147 1.136 34.97 3.73 3665 23 4.75 0.04 −0.07 0.05 0 0
J084644.32+162307.7 431701002 131.684675 16.385499 12.97 21.60 dM0 −1 16.362572 17.270937 15.427746 2.1371
0.0669 1.021 30.99 9.86 4011 64 4.79 0.22 −0.34 0.16 0 0

Note. A sample catalog of M dwarf parameters. The full catalog can be accessed online and via doi:10.5281/zenodo.14030249.

(This table is available in its entirety in machine-readable form in the online article.)
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16 K. This level of consistency is noteworthy given the diverse
methodologies employed by different studies. Surface gravity
measurements exhibit a tight correlation with literature values,
showing a bias of −0.04 dex and a scatter of 0.17 dex, which
improves to −0.08 and 0.12 dex respectively for high S/N
spectra, although the comparison sample is smaller and
primarily concentrated around glog 5.0~ . The metallicity
comparison reveals broader scatter (0.20 dex) and a slight
systematic offset of −0.06 dex, with the largest discrepancies
appearing at the metallicity extremes. For high S/N spectra, the
scatter improves to 0.14 dex, while maintaining a similar
metallicity range in the comparison sample.

The J. Birky et al. (2020) sample provides the most extensive
overlap with our measurements. Their study employed The
Cannon on a data set of 5875 APOGEE M dwarf stars, using a
training set with optically derived and bolometric-calibrated
temperatures. Specialized studies like P. Sarmento et al. (2021)
offer valuable benchmark comparisons for surface gravity

determinations through their comparison of APOGEE observa-
tions with a new set of synthetic spectra. These results
demonstrate that our parameter determinations achieve com-
parable precision to previous studies while substantially
expanding the sample size of characterized M dwarf stars.

5.2. Comparison with APOGEE DR17

Figure 15 presents a detailed comparison between our
derived parameters and those from APOGEE DR17, with
density plots showing the distribution of parameter differences.
For effective temperature, the comparison of 6805 common

objects shows excellent agreement, with no systematic bias and
a scatter of only 67 K across the entire temperature range
(3000–4200 K). The glog comparison reveals a systematic
offset of 0.13 dex and a scatter of 0.09 dex, with our
measurements consistently yielding higher values than APO-
GEE DR17 (calibrated) surface gravities. This offset is
pronounced around glog 4.7~ , although the tight scatter

Figure 14. Comparison of three basic parameters between this work and the available results from the literature, including A. W. Mann et al. (2015), V. M. Passegger
et al. (2018, 2019), A. S. Rajpurohit et al. (2018a), J. Birky et al. (2020), and P. Sarmento et al. (2021). The total sample size available for comparison, along with the
bias and scatter for each parameter, is indicated in the upper left corner of each panel. The dashed lines represent the 1:1 reference lines.

Figure 15. Comparison of three basic parameters derived in this work with results from APOGEE DR17. The diagrams are color coded by number density. For this
comparison, DR17 spectroscopic temperatures and calibrated glog values are employed. The total sample size available for comparison, as well as the bias and scatter
of the differences for each parameter, are shown in the upper left corner of each panel. The dashed lines represent the 1:1 reference lines. As APOGEE DR17 only
provides [M/H] values for samples with Teff > 3500 K, the sample size used in the right panel for metallicity comparison is smaller than those used in the other two
panels.
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suggests a systematic rather than random difference between
the two surveys’ calibration scales. The metallicity comparison,
limited to 4522 stars with Teff > 3500 K in APOGEE DR17,
shows good agreement with a small bias of 0.04 dex and a
scatter of 0.17 dex. The bottom panels demonstrate that these
parameter differences remain stable across their respective
ranges, with no significant trends that might indicate systematic
biases in specific parameter regimes. This comparison with
APOGEE’s high-resolution spectroscopic measurements vali-
dates the reliability of our parameter determinations.

5.3. Comparison with Other LAMOST M Dwarf
Parameterization Works

In Figures 16 and 17, we compared our parameter
determinations with three other LAMOST M dwarf studies
that employed different methodological approaches: J. Li et al.
(2021) employed Stellar LAbel Machine (SLAM), a data-
driven model based on support vector regression, trained on
both APOGEE DR16 labels (for Teff and [M/H]) and BT-Settl
synthetic spectra (for Teff only) to estimate stellar parameters of
M dwarf stars in LAMOST DR6; M.-Y. Ding et al. (2022) used
the ULySS package to perform χ2 minimization between
LAMOST DR8 M-type observed spectra and model spectra
generated from the MILES (K. Sharma et al. 2016)
interpolator; LASPM (B. Du et al. 2021, 2024) estimated
stellar atmospheric parameters using χ2 minimization to find
the five best-matching templates and combines them linearly,
initially using PHOENIX BT-Settl theoretical spectra as
references (2021, applied to LAMOST DR6 and DR7), and
later evolving to use empirical LAMOST spectral templates

derived through a label transfer from Gaia EDR3 (2024,
applied to DR10 and DR11).
As these studies utilized different data sets for parameter

estimation, we performed crossmatching to obtain common
sources for comparison. Both ULySS and LASPM provided
predictions for three parameters (Teff, glog , [M/H]), with
LASPM results from DR11 being used in our comparison. For
SLAM, we compared with their Teff and [M/H] results derived
from APOGEE DR16 labels. The H-R diagrams in the upper
panels of Figure 16 show that our Cycle-StarNet-based
approach yields a broader metallicity distribution than ULySS
and SLAM, particularly for cooler stars (Teff < 3500 K), while
showing similar patterns to LASPM’s results. The Kiel
diagrams in the lower panels further illustrate these methodo-
logical differences through the varied distributions in the three-
dimensional parameter space.
The quantitative comparisons in Figure 17 highlight

systematic differences arising from these methodological
choices. Our effective temperatures are systematically cooler
than ULySS (bias= 68.43 K) but warmer than SLAM
(bias=−169.06 K), reflecting the different temperature scales
of theoretical models versus empirical calibrations. The closest
temperature agreement is with LASPM (bias= 8.97 K). The
surface gravity shows distinct patterns: a tight correlation with
ULySS (scatter= 0.10 dex) but more dispersed relationships
with LASPM (scatter= 0.13 dex), highlighting the challenges
in gravity determination from spectra. The metallicity scales
show notable systematic offsets (ULySS, 0.22 dex; SLAM,
0.18 dex) except with LASPM (0.04 dex). These systematic
differences highlight the complexity in determining atmo-
spheric parameters of M-type stars, as different methodological

Figure 16. H-R diagrams and Kiel diagrams of LAMOST M dwarf parameters derived from four different works: this study, ULySS (M.-Y. Ding et al. 2022),
LASPM (B. Du et al. 2021), and SLAM (J. Li et al. 2021). The parameters from LASPM are the latest DR11 version (B. Du et al. 2024). Note that, in the figures, we
uniformly labeled both the [Fe/H] derived from empirical templates and the overall metallicity [M/H] obtained from theoretical models as [M/H]. Each diagram is
color coded by the metallicity derived in each work, using a consistent color map across all diagrams.
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choices—theoretical models, empirical libraries, or machine
learning—lead to varying parameter scales while maintaining
similar relative stellar parameter rankings.

5.4. Comparison of Metallicity in FGK+M Binaries

Wide binary systems, where component stars form from the
same molecular cloud, provide excellent test beds for
metallicity calibration. The well-determined metallicities of
FGK primaries serve as benchmarks for validating M dwarf
metallicity measurements.

We analyzed M dwarf metallicities using their FGK binary
companions as calibrators. Our sample derives from the

K. El-Badry et al. (2021) catalog, which contains 1,871,594 wide
binary candidates within 1 kpc from Gaia EDR3. We crossmatch
this catalog with LAMOST data and apply three selection criteria:

1. R_chance_align < 0.01 (99% binding probability),
2. pairdistance > 3″ (avoiding fiber contamination),
3. |ΔRV| < 10 km s−1.

These criteria yield 868 binary pairs. We compared LASP
measurements for FGK primaries with our M dwarf measure-
ments under different S/N threshold limitations, as Figure 18
shows. Note that LASP provides [Fe/H] rather than [M/H],
based on the library of standard observed spectra. For the full

Figure 17. Comparison of three basic parameters derived in this work with results from ULySS (M.-Y. Ding et al. 2022), LASPM (B. Du et al. 2021, 2024), and
SLAM (J. Li et al. 2021) respectively. The bias and scatter for each parameter are indicated in each panel. The diagrams are color coded by number density.
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sample (S/N > 5), we find a small systematic offset
(bias= 0.04 dex) and a scatter of 0.24 dex between FGK
primaries and M dwarf secondaries, with the metallicity
distribution spanning [−1.2, 0.5] dex (5th to 95th percentiles).
At S/N > 20, the bias reduces to 0.02 dex with a scatter of
0.21 dex, while maintaining a similar metallicity range of
[−0.9, 0.5] dex. For the highest-quality spectra (S/N > 50), we
achieve a scatter of 0.15 dex with a bias of −0.04 dex. While
this subsample of 100 pairs shows a somewhat narrower
metallicity range of [−0.7, 0.2] dex, the systematic reduction in
scatter with increasing S/N, together with the maintained
coverage of metallicity space at intermediate S/N, suggests that
the improved consistency primarily reflects an enhanced
measurement precision rather than sample selection effects.

6. Summary

The traditional spectroscopic analysis of M dwarf stars faces
significant challenges due to imperfect theoretical models,
parameter degeneracy, and difficulties in normalizing molecular
band-dominated spectra. These challenges are particularly acute for
low-resolution surveys like LAMOST, where 60% of spectra have
S/N < 20 in the r band. To address these limitations, we
implemented Cycle-StarNet, an unsupervised domain adaptation
method that learns to transform between synthetic and observed
spectral domains while preserving physical stellar properties.

Our methodology incorporated stellar evolution constraints
and parameter ranges from high-resolution studies to ensure
physically meaningful results. The training process reduced the
synthetic gap, as evidenced by a residual analysis showing
improvement from over 2 times the flux uncertainty to
1.68 times. Comparison with literature values demonstrates
good agreement across the M dwarf temperature range
(3000–4000 K), with a small systematic offset of 12 K and a
scatter of 70 K, improving to 47 K for high S/N spectra.
Surface gravity measurements show a minimal bias of

−0.04 dex and a scatter of 0.17 dex, which improves to
0.12 dex for high-quality data. The metallicity comparison
reveals a slight systematic offset of −0.06 dex and scatter of
0.20 dex, improving to 0.14 dex for S/N > 50 spectra. These
results are further supported by comparison with APOGEE
DR17, showing consistent precision levels (temperature scatter
of 67 K and metallicity scatter of 0.17 dex). Further validation
using FGK+M wide binaries shows metallicity differences
with a scatter of 0.24 dex for the full sample (S/N > 5),
improving to 0.21 dex at S/N > 20, and reaching 0.15 dex for
high S/N spectra while maintaining broad metallicity coverage.
The resulting catalog provides a comprehensive character-

ization of 507,513 M dwarf stars, including fundamental
parameters, RVs, and activity indicators. We employed multi-
ple classification methods and included flags for variability and
binarity through crossmatching with various catalogs. This
represents one of the largest uniformly analyzed samples of
M dwarf stars, offering valuable insights into the Galaxy’s
most numerous stellar population. The complete data set is
publicly available, providing a rich resource for future studies
of stellar and Galactic evolution.
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