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Abstract— This paper presents a novel approach to enhance
the social interaction capabilities of the ARI humanoid robot
using reinforcement learning. We focus on enabling ARI to
imitate human attention/gaze behaviour by identifying salient
points in dynamic environments, employing the Zero-Shot
Transfer technique combined with domain randomisation and
generalisation. Our methodology uses the Proximal Policy
Optimisation algorithm, training the reinforcement learning
agent in a simulated environment to maximise robustness in
real-world scenarios. We demonstrated the efficacy of our
approach by deploying the trained agent on the ARI humanoid
and validating its performance in human-robot interaction
scenarios. The results indicated that using the developed model,
ARI can successfully identify and respond to salient points,
exhibiting human-like attention/gaze behaviours, which is an
important step towards acceptability and efficiency in human-
robot interactions. This research contributes to advancing the
capabilities of social robots in dynamic and unpredictable
environments, highlighting the potential of combining Zero-
Shot Transfer with domain randomisation and generalisation
for robust real-world applications.

I. INTRODUCTION

Robotics, unlike other disciplines, is more complex to
optimise due to the dynamic environments in which robots
operate. This requires continuous updates to models, which
is computationally intensive and difficult to maintain [1].
Updating models necessitates collecting data while the robot
is running and performing tasks, and learning from that data
to adapt the robot to new situations is another challenge.
Emerging Reinforcement Learning (RL) techniques offer
capabilities that enable an agent to learn on the fly, modelling
the environment’s behaviour [2]. We anticipate that the
combination of robotics and RL will help to overcome these
challenges. However, in some scenarios, the agent trains in
a simulation, making the transfer from simulation to reality
challenging. The discrepancy between the simulated environ-
ment and the real world complicates the direct transfer of
policies learned in simulation to real-world applications [3].
Unmodelled physical effects and differences in sensor fidelity
between simulated and real-world environments contribute to
this gap [4].

Training Deep Reinforcement Learning (DRL) agents di-
rectly in real-world environments is often impractical due
to safety concerns, time constraints, and costs. Simulated
environments offer a more controlled, safe, and scalable way
to train these agents. Various methods address transferring
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Fig. 1: A triadic social HRI between ARI humanoid robot
and a human participant, photographed at the Robot House,
University of Hertfordshire, UK.

models from simulation to the real world. One such method
is Domain Randomisation [5], which involves training RL
agents in environments with randomised properties to im-
prove their generalisation capabilities. This technique aims
to make agents robust to environmental variations they might
encounter in the real world. Additionally, Replay Across
Experiments [6] is a method where the agent’s training
process incorporates data from multiple past experiments,
improving data efficiency and helping the agent learn from
a broader set of experiences. Moreover, NeRF Rendering
[7] is another approach used to create realistic static scenes.
During training, dynamic objects are rendered over these
static backgrounds, introducing variability in the visual input.
Furthermore, Zero-shot transfer (ZST) [8] refers to the ability
of a model or agent to apply knowledge learned in one
domain (typically a simulated environment) to a different do-
main (the real world) without any additional training or fine-
tuning. ZST is achieved through a combination of sophis-
ticated simulation techniques, realistic rendering, extensive
domain randomisation, and robust training methodologies.
These techniques enable the robotic agents to perform well
in real-world scenarios despite being trained exclusively in
a simulated environment [9].

In this paper, we aim to build an attention model to enable
a humanoid robot to identify salient points in the real world.
To achieve this, we will employ ZST and combine it with
domain randomisation and generalisation, as we believe the
combination of these techniques results in agents that can
perform robustly in real-world scenarios immediately after



being trained in a simulated environment. The agents demon-
strate agility and effective performance in interacting with
the environment, akin to their simulated training, showcasing
successful ZS7T. We implemented the developed method on
a humanoid robot called ARI and tested it in real-world
scenarios, demonstrating that the ARI robot successfully
learned and displayed appropriate behaviour towards its
interaction partners.

II. RELATED WORKS

RL is extensively utilised in robotics due to its remark-
able success in enabling robots to perform effectively in
both real-world and simulated environments. This machine-
learning technique allows robots to autonomously learn from
their interactions with the environment. Recent studies have
demonstrated various applications of RL in robotics, such as
social intelligence in robots, assistive robots, robot control,
and human-robot interaction [10]-[13].

In [14], a framework is proposed to utilise social-human
behaviour to enhance HRI by employing interactive be-
haviours to ensure safety through bi-directional information
transfer between humans and robots. This framework uses
RL to help robots determine safe and unsafe actions to
guarantee safety in shared environments. It states that it
is necessary to ensure the robot learns robust behaviours
despite potential human errors or adversarial actions and
improve data efficiency to make effective use of interac-
tive behaviours without requiring excessive real-world data.
Moreover, adaptability will enhance the model to handle a
variety of environments, including unstable, uncertain, and
unknown scenarios. This study combines RL with human
interactive behaviour to build a robust model because most
of the introduced methods are compatible with simulation,
not the real world, which is a main challenge in the field of
RL and robotics.

In the context of assistive robots, [15] focuses on robot-
assisted pedestrian regulation through the optimisation of
robot motion planning to influence pedestrian flow. The study
involves modelling and utilising the interactions between hu-
mans and robots to achieve desired outcomes in densely pop-
ulated areas. It uses DRL to optimise the robot’s behaviour
in regulating pedestrian movements, thereby enhancing both
safety and efficiency in crowd management scenarios. This
research notes that accurately modelling the complex dynam-
ics of human motion under the effect of HRI is challenging.
Additionally, the robot must adapt its behaviour in response
to changing pedestrian inflows and other dynamic environ-
mental factors to optimise pedestrian outflow consistently.
Indeed, robustness and adaptability are other challenges,
and developing an accurate observation transition model for
pedestrians influenced by HRI is difficult due to the variabil-
ity and unpredictability of human behaviour. In this case, RL
allows the robot to solve this challenge, but ensuring that
the models and policies developed in simulations perform
well in real-world scenarios involves overcoming differences
between simulated and actual environments, which is a new
challenge that comes from RL.

In the context of robot control, developing reliable walking
controllers for bipedal robots is notably challenging. Adapt-
ing robots to dynamic environments is crucial and difficult.
Also, a robust model to improve the ability of robots to
handle unexpected disturbances and uncertainties in their en-
vironment ensures stable and reliable movement. Therefore,
finding innovative ways to teach robots to walk safely and
accurately in unseen environments is essential. Combining
RL with domain randomisation has been proposed to address
this issue. Still, Sim-to-Real is another RL challenge in
robotics. Thus, in [16], by using domain randomisation, it
effectively transfers the policies learned in simulation to the
real world for overcoming the reality gap. Research [17] de-
veloped a method for automatic curriculum learning tailored
to the capabilities of reconfigurable robots, particularly in
challenging environments like search and rescue missions
where the human and robot share the environment. This study
introduced challenges like dynamic and adaptive learning,
which express that the learning framework must adapt to
changing environments and obstacles. The paper overcomes
the challenges of using curriculum to improve learning
efficiency in DRL by systematically organising learning tasks
based on their complexity and the robot’s performance.

To control the robot manipulator, [18] employs the Actor-
Critic (AC) approach to utilise the benefits of two different
RL training methods: direct and indirect learning. This
empowers the robot to learn and adapt to the object during
task operation, enhancing stability.

Despite the capabilities and successes of RL in robotics,
the literature mentioned above highlights several challenges
in integrating RL with robotics. These challenges include
robot adaptation, developing robust models, and transferring
trained agents from simulation to the real world. In fact, in
some projects, running the robot or using online interactions
to train an RL agent is not feasible. In this case, using simu-
lation and using synthetic or collected data can help to train
the model, but providing various situations that the robot
will encounter in the real world is not possible. The replay
across Experiments [6] is a method that allows the RL agent
to reuse data under the off-policy method to build a robust
RL agent. This method aims to improve RL performance
by using experience data from various experiments. This
approach is particularly beneficial in complex tasks where
data collection is expensive or time-consuming. Regarding
transferring the agent from the simulation to the real world,
[19] presents a structured approach to transfer learning in RL.
By categorising transfer methods and analysing their benefits
and trade-offs, the paper addresses the challenge of improv-
ing generalisation and efficiency in RL, promoting more
robust and adaptable learning systems. Regarding providing
all situations that the agent will face, in [7] authors employ
Neural Radiance Fields to generate a photorealistic 3D model
of the environment, integrate it with a physics simulator, and
train a humanoid robot for navigation and object interaction
tasks. The approach demonstrates successful ZST to actual
robots, maintaining high fidelity and performance.

In this work, we integrate an attention model with RL



to identify the saliency point as the initial step towards the
robot adaptation. Additionally, we train our model using
Proximal Policy Optimisation (PPO), which uses general-
isation to approximate a function through a gradient-based
policy method. Additionally, we employ randomisation to
add complexity during training, empowering the agent to
cover a wide range of real-world circumstances. Finally, we
transfer the trained agent from the simulation to the real
world (sim2real) using ZST.

III. MATERIALS AND METHODS

In this section, we explain our model and methodology
to illustrate how we designed and transferred an RL agent
from sim2real. As outlined in previous sections, we opted for
ZST to transition the model and to encompass the majority
of situations the robot might encounter. To achieve this, we
utilise Domain Randomisation. This method enables us to
create a variety of states reflecting different circumstances,
preparing the RL agent with the necessary knowledge during
training for real-world operation. We employ PPO, which
is one of the AC algorithms, to train the model due to
its performance in training and ZS7, which facilitates the
transfer of our trained RL agent from simulation to the real
world. Figure 2 depicts an abstract view of the combination
of these methods. In the following subsections, we will
explain this combination in detail, demonstrating how we use
them to enable a humanoid robot to mimic human behaviour
using an attention model.

A. Generalisation and Randomisation

As discussed in the previous section, a key challenge in
deploying a trained RL agent in the real world is bridging
the gap between the training environment and the dynamic,
open-ended nature of the real world. It is crucial to enable
the agent to function normally when it encounters unseen
states. To achieve this, we must build a robust model during
the training phase, ensuring it can handle variations and
differences in the new states encountered in reality. This
robustness comes from the policy’s ability to generalise
from training experiences to new, unforeseen situations. This
is where Randomisation and Generalisation are crucial, as
they apply various predictable scenarios to known states
to enhance the agent’s behaviour and build a robust policy
during training.

Aligned with our goal of developing an attention model
using RL, the RL agent must identify saliency points based
on environmental factors such as human activities, their
distances from the robot, and their numbers. Randomisation
involves varying different aspects of the training environment
during the training phase, while generalisation involves train-
ing an RL agent to apply the knowledge it has gained to new
and unseen environments. We employ these two approaches
to create more complex states and build a robust model.

We generate new states by permuting each participant’s
activity and proximity. For instance, with two participants
based on their observed activities, if participant 1 performs an
activity like hand waving, we add a new state for participant

2 using this activity, thereby creating a set of users’ activities
to build new states for other users. We also consider sce-
narios where two participants are within the robot’s field of
view, performing different activities simultaneously. Another
parameter we use to create new states is proximity, as this
affects saliency detection according to the attention model.
Figure 2 illustrates how we generate new states from an
observed state. Suppose two participants are present, and
the agent has observed two activities: speaking and entering
(entering the robot’s field of view, such as a human coming
into the room). Initially, participant 1 enters the robot’s field
of view, like a human entering a classroom after the course
has started, and is in the personal space in terms of proximity.
The black line represents this observed state. Based on this
state and the activity of entering, we generate new states
for the two observed participants by permuting proximity,
activities, and participants. The purple line represents one of
these states, where for both participants, we create two new
states using the observed activity (entering) but in different
proximity spaces (intimate space). The pink lines connect
these two participants to the intimate space to show that
the next states will be generated by previously observed
activities (such as speaking) from the activity space. In
essence, we create combinations involving permutations of
their activities and proximity, with the pink line displaying
one of these states. The orange lines represent different states
that include up to six people, with one proximity and activity
as a sample, demonstrating how we add complexity to the
environment. Even though the agent initially observed only
two participants, we generated various states by considering
six people engaging in different activities simultaneously
within the robot’s field of view. In other words, we consider
up to six people, where four of them do not exist, but states
are generated for all of them like the two participants. We
combine all these states to include scenarios involving one to
six people. The idea of creating these states stems from the
generalisation method, adding complexity to build a robust
model. In the next subsection, we will discuss the RL agent.

B. RL and Proximal Policy Optimisation (PPO)

To effectively employ RL, several essential elements are
required, with the reward function being among the most
critical. The reward function guides the agent in distin-
guishing between correct actions and mistakes. To achieve
our objective, we have integrated a controlling gaze system
designed to manage the robot’s gaze in order to identify a
salient point in the environment [20]. This system enables
us to design our reward function to encourage the agent to
locate individuals who are the centre of attention, considering
factors such as activity and proximity. This system, named
Gaze Control System (GCS), introduces a formula to model
human behaviour for a humanoid robot. The formula, known
as elicited attention (EA), utilises five variables to generate
a score for each participant within the robot’s field of view,
with the participant having the highest score becoming the
target as the salient point. Equation (1) demonstrates this
formula, where, F ; represents social features presented by
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Fig. 2: The workflow for building the attention model using a robust RL agent - The Grey dotted lines indicate relationships
between various items. The black line represents an observed state. The purple lines signify randomisation based on observed
participants (1-2) and states. The orange lines demonstrate how new states are generated for unobserved participants (3-6)

using observed data.

participant s with the participant number j, P(r) stands
for the Proxemics area, O(f) pertains to orientation (an-
gle), FAM, ; denotes the memory component, r is dis-
tance/proximity, 6 is orientation angle with respect to the
current robot’s gaze, and ¢ is time.

EAs’j(t) = Eq,j + P(T) + 0(9) + EAMQ,]‘ (1)

The paper introducing this equation also provides a list of
activities prioritised based on human behaviours, asserting
that these actions have different values for humans. TA-
BLE I lists these activities and their values. Additionally,
it states that the distance between people and the robot
affects attention absorption, necessitating different weights
for various degrees of proximity to focus more on closer
people. Moreover, the equation considers the orientation
of participants to the robot as a significant parameter and
incorporates a memory component. However, we decided
to exclude these two parameters. Based on this system,
we designed our reward function. Specifically, a score is
produced for each observed user in the environment based
on their activity in each state. If the agent decides to look
at that person, it can achieve this score. Therefore, since
the participant at the salient point has the highest score, the
agent will receive the maximum reward by looking at that
participant. Over time, the agent will learn to identify the
participant performing a higher-priority activity and who is
closest to the robot.

The agent should select an action from the action space,
which includes:

o Gaze At _Environment

o Gaze At_Object

o Gaze_At_Participant_I

o Gaze At_Participant 2

o Gaze At_Participant 3

e Gaze At_Participant 4

o Gaze At_Participant_5
o Gaze At _Participant_6

For training, we chose PPO, a popular RL algorithm
known for its performance and stability. Various studies have
combined this algorithm with the Randomisation method to
train robust RL agents [21]-[23]. Thus, we are confident
that it is a suitable choice. In general, two approaches to
maximising cumulative rewards in RL are value-function
methods and policy gradient methods, both aiming to find an
optimal policy. However, they differ in their methodologies.
Value-function methods optimise the policy by first estimat-
ing value functions and subsequently deriving the policy
from these estimates. This process involves two main steps:
value function estimation and policy derivation. On the other
hand, policy gradient methods directly optimise the policy by
adjusting its parameters to maximise the expected cumulative
reward. This approach does not explicitly estimate value
functions but focuses instead on finding the optimal policy
directly. Indirect methods (value functions) are simpler to
understand and implement for discrete state and action
spaces but struggle with high-dimensional or continuous
spaces. Conversely, direct methods (policy gradient) are
more complex, suitable for high-dimensional and continuous
action spaces, and often require sophisticated optimisation
techniques. AC is an approach that combines the benefits of
both indirect and direct methods, leading the agent to learn
more stable and efficient policies. PPO is derived from the
AC framework in which the actor selects actions according
to a policy 7(a | s;6), where 0 are the policy parameters that
define how the policy is implemented, s denotes the state,
and a denotes the action. The actor directly maps states to
actions and is optimised to maximise the expected cumulative
reward. Meanwhile, the critic evaluates the actor’s actions
by estimating the value function. There are two approaches
for computing the value function. The first is the state-



value function V'(s;w), where w represents the parameters
of the function approximator used to estimate V'(s). The
second approach is the action-value function Q(s,a;w),
which estimates the expected return starting from state s by
taking action a and following the current policy thereafter.
The critic, parameterised by w, provides feedback to the actor
by estimating the Temporal Difference (TD) error. This error
indicates how much better or worse the action taken was
compared to the expected outcome.

The goal of the AC method is to optimise the policy to
maximise the expected cumulative reward while using the
critic to provide more accurate estimates of the policy’s
value, thereby reducing variance and improving learning
stability. Therefore, the policy gradient is computed using
the equation (2):

VoJ(m9) = Ex, [ve log mo(a | 5)A(s, a) 2)

where J(mg) represents the objective function that the pol-
icy mp aims to maximise, typically the expected cumulative
reward over time. 7y(a | s) denotes the parameterised policy,
specifying the probability of selecting action a in the state s
given parameters 6.

The advantage function A(s, a), used to assess the relative
advantage of taking action a in state s, is often approximated
by the TD error d;, defined as:

0 =1t + YV (sp41;w) — V(sg;w) 3)

Here:

e 0; is the TD error at time ¢.

e 714 is the reward received at time ¢.

e 7y is the discount factor.

e V(sy11;w) is the estimated value of the next state s;y1
with parameters w.

o V(st;w) is the estimated value of the current state s;
with parameters w.

The advantage function helps provide insight into the
training behaviour of the agent. A negative advantage sug-
gests that the action taken was worse than the average action
for that state, indicating exploitation of known actions. A
positive advantage indicates that the action taken was better
than average, suggesting exploration of potentially better
actions. An ideal value of zero for the advantage function
implies that the agent has converged and learned the best
action for each state.

PPO, derived from the policy gradient framework, aims
to maximise the objective function J(my) using the policy
gradient VyJ(mp). However, PPO introduces the Clipped
Surrogate Objective to prevent large policy updates that could
destabilise learning. This objective is represented by the
parameter in Equation (4):

L(0) = E¢ [min(py(0) Ay, clip(pe(0),1 — €, 1 + €)A;)] (4)

where:

o pi(0) = % is the importance sampling ratio at

time step ?;.

TABLE I: The priority of human social attention adopted
from [20].

Priority Social Cue GCS Score
1 (highest priority) Entering 100
2 Speaking 100
3 Hand motion/body gesture 65
4 Leaving 55
5 (lowest priority) Facial expression 45
Average Rewards over Episodes
o
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Fig. 3: This graph shows a consistent rise in the mean reward
demonstrating the agent’s learning and gradual performance.

e A, is the advantage function at time step t.
e € is a small constant used in clipping to stabilize
training.

PPO uses L(6), an approximation of Vg.J(mg), to guide
policy updates, ensuring conservative improvements that
maintain stability and incremental learning progress.

C. Transferring

After training the agent, it is time to transfer it to the real
world and integrate it with the robot. We have selected the
ARI robot to run our model. However, before proceeding,
we must ensure the model’s robustness. To achieve this,
we employ randomisation by creating scenarios involving
two to six people in a scene. Each person is assigned a
random activity, performed simultaneously, and based on
their distance to the robot and the activity, the agent selects
an action. We then evaluate each user’s EA score and
compare it to the agent’s decision to verify its accuracy.

To assess the agent’s performance, we monitored its
behaviour during training. As depicted in Figure 3, the
agent’s performance converges after approximately 60000
episodes. Additionally, the average reward becomes more
stable over time, with reduced variance. The plot shows a
relatively smooth increase in stability, suggesting that the
learning process was effective. Furthermore, the average
reward remains high and consistent across various episodes,
if the agent is robust.

Subsequently, we deployed the agent into the robot and
tested it using the ARI robot. As anticipated, the agent
performed effectively and was able to identify and focus on
the participant with the highest EA score in all states.



D. The Development of Robot Learning Architecture

Our model’s architecture comprises two primary pipelines:
simulation training and real-world applications. This section
elaborates on these two pipelines in detail.

1) Simulation: In the development and training of our
model, we establish an environment and train the agent
using the Gym' and RayRL? libraries. We customise this
environment to initially include a single human participant.
By observing the participant’s activities and proximity, we
employ randomisation to generate new states that encompass
various circumstances. Subsequently, we introduce a second
participant, utilising both participants and the principles of
randomisation to expand the state space. This approach
aims to cover a wide range of scenarios that the agent
may encounter in real-world settings, from single-person
scenarios up to environments involving six individuals.

For training the agent, we utilise the PPO algorithm
and tune its hyperparameters such as learning rate, gamma,
number of epochs, and entropy coefficient using the RayRL
library. RayRL seamlessly integrates with Gym, facilitating
simultaneous tuning and training of the agent.

To design the reward function, we implement this func-
tionality within the environment inherited from the Gym’s
main environment. This function retrieves information neces-
sary for calculating rewards associated with each participant
in every state. These rewards are computed when the agent
selects an action and interacts with the environment.

2) Real World: Following the agent’s training and the
establishment of a robust model, we deploy the agent onto
the ARI robot. To detect participants and their activities, we
utilise the Kinect V2 sensor and its SDK. Each participant
is assigned a unique identifier, and their keypoints and
additional metadata [24] provided by the SDK are utilised.
Using ZeroMQ?*(ZMQ), this data is transmitted to another
workstation for processing and activity recognition.

Given our testing environment on the ARI robot, we utilise
its SDK to control its gaze. Accordingly, we develop a ROS
node to interface the trained agent with the ARI. This node
receives information about each participant’s activities and
proximity, which are then relayed to the RL agent. Based
on this input, the RL agent makes decisions to control the
ARI’s gaze, focusing on participants in salient points.

IV. PROOF OF CONCEPT EVALUATION

To validate our model, given our use of EA in designing
the reward function, we opted to benchmark our results
against those reported in [20] by replicating the same ex-
periment involving two participants.

A. Experiment Scenario

Following the GCS framework [20] incorporating EA for
scenario design, we assess how a robot responds to the
two human participants engaging in various activities to

Uhttps://gymnasium.farama.org
Zhttps://docs.ray.io/en/latest/rllib/index.html
3https://zeromq.org

determine saliency. The scenario is set so that participant
1 enters the robot’s field of view, prompting the robot to
recognise and process the activities. Using EA as a reward
function, RL then controls the robot’s gaze in response to
the activities observed. Later, participant 2 joins, and both
participants engage in different activities. Consequently, the
robot directs its attention towards each participant, while
identifying the saliency point.

B. Results

Our testing involved complex scenarios where two human
participants engaged in social interactions with the ARI robot
and performed various activities such as initiating interaction,
speaking, body gestures and hand motion, and terminating
social interaction. All these social cues were presented to
the robot in different proximities in the Robot House of the
University of Hertfordshire. The primary goal was to test
the developed RL model if it is able to drive the dynamic
attention of the robot and direct it accurately to the right
targets at the right time. The following items summarise the
result according to the attention allocation and gaze direction
developed model, which includes three targets: participant 1,
participant 2, and the environment.

o Attention Allocation: The RL agent’s performance
was evaluated based on its ability to direct the robot’s
gaze across three primary targets: the environment,
participant 1, and participant 2.

o Environment: The RL agent directed ARI’s attention
to look at different points in the environment 16 times
when no participants were in view. This is expected
behaviour, ensuring the robot remains engaged even in
the absence of human activity.

o Participant 1: ARI focused on participant 1 (target
2) 173 times out of 220 states (78.6%). This high
frequency indicates that participant 1 often had higher
priority activities.

o Participant 2: ARI focused on participant 2 (target
3) 35 times (15.9%). This lower frequency suggests
participant 2 had fewer priority activities compared to
participant 1.

Figure 6 displays the distribution of ARI’s focus across
these targets, highlighting the RL agent’s decision-making
effectiveness. The RL agent’s decisions can be considered
effective if they align with the participants’ activities and
priorities. TABLE II summarises key states, illustrating the
RL agent’s decision-making process in challenging circum-
stances where two participants were engaged in various ac-
tivities with different priorities. As displayed in this table, at
time zero, with no participants in view, ARI follows low-level
saliency cues, mimicking human-like scanning behaviour. At
59 seconds, upon participant 1 entering the view, the RL
agent correctly directs ARI’s gaze to the participant. At 1
minute and 6 seconds, participant 1 moves closer and begins
speaking, prompting the RL agent to adjust ARI’s focus
accordingly. At 2 minutes and 43 seconds, with two partic-
ipants in view, participant 2, having a higher EA score due
to entering the view and proximity, becomes the focal point.
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Fig. 4: Some of the targets identified by ARI’s attention model include points A through E. The RL agent, which controls
ART’s gaze, has determined these targets based on EA, participants’ activities and Proxemics of the participants.

TABLE II: Results of the scenario showing five samples of RL-selected actions and ideal actions.

Time Tdeal Action Participant_1 EA score | Participant_2 EA score | RL Reward RL Action State
00:00:00 | Gaze at environment 0 0 Low level saliency No one is in the robot’s field of view
00:00:59 | Gaze at participant_1 75 0 75 Gaze at participant_1 Human pamclpan_l,! entered the robot’s field of view
and is in the personal space
00:01:06 | Gaze at participant_| 200 0 200 Gaze at participant_I Human participant_1 is inside the social space and is speaking
. JU ) . Human participant_1 is waving his hand and participant 2 enters
00:02:43 | Gaze at participant 2 165 200 200 Gaze at participant_2 the robot’s field of view. Both of them are in the social space
N s L Human participant_1 is speaking and participant_2 is waving
00:03:03 | Gaze at participant_1 200 165 200 Gaze at participant_1 his hand. Both of them are in the social space

Finally, when participant 1 is speaking and participant 2 is
waving, the RL agent prioritises participant 1, recognising
speaking as a higher priority activity. These results show
that the RL agent’s attention distribution aligns well with ex-
pected behaviours, prioritising higher EA scores and relevant
activities. The fact that ARI looked at participant 1 173 times
(78.6%) versus participant 2 only 35 times (15.9%) during
the experiment demonstrates the agent’s ability to discern and
prioritise based on the importance of the activities, indicating
that the model works effectively. Figure 4 illustrates various
states of the robot’s view, showcasing ARI’s gaze behaviour
in different circumstances. Also, Figure 5 shows the scaled
reward versus time, highlighting the points where the RL
agent directed attention to different targets during the whole
of the scenario.

Comparing the ARI’s attention behaviour with the refer-
ence behaviour obtained from [20] shows that the developed
model is able to identify the correct target points at the
right times all the time without any error. The RL agent’s
performance, as shown through these observations, validates
its effectiveness in dynamically directing the robot’s attention
in a way that mimics human-like prioritisation, making it a
valuable approach.

V. DISCUSSION AND CONCLUSION

In this work, we developed an attention model for social
robots to identify saliency points in unknown environments.
The proposed model utilises the PPO to train an RL agent in
simulation and implements ZST to deploy the trained agent
in real-world settings. The randomisation method has been
used to cover the diverse situations an agent may encounter
in the real world. This hybrid strategy effectively enabled
the robot to identify salient points and smoothly direct
ARI’s gaze towards participants, exhibiting natural behaviour
which encouraged the participants to accept the robot as an
active participant in the environment. While developing this
learning architecture for the robot we encountered various
challenges, as discussed below:

e Training the agent requires careful tuning of PPO pa-

rameters such as entropy coefficient, value-function clip

parameter, gamma, and learning rate to ensure thorough
exploration and faster convergence, as convergence time
is a significant issue.

o While randomisation helps address the variability of
real-world data, it is insufficient to fully overcome
Sensor noise.

For future work, to address these challenges, we aim
to enhance our model to learn dynamically by combining
model-free and model-based methods. This approach will
improve sensor fidelity and enable the agent to adapt to new
scenarios in real-world environments.

VI. ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of the
Robot House of the University of Hertfordshire in providing
the facility to carry out this study.

REFERENCES

[1] C. Yang, G. Peng, Y. Li, R. Cui, L. Cheng, and Z. Li, “Neural networks
enhanced adaptive admittance control of optimized robot—environment
interaction,” IEEE transactions on cybernetics, vol. 49, no. 7, pp.
2568-2579, 2018.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in 2020 IEEE
symposium series on computational intelligence (SSCI). 1EEE, 2020,
pp. 737-744.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” 2017.

O. S. Ajani, S. ho Hur, and R. Mallipeddi, “Evaluating domain
randomization in deep reinforcement learning locomotion tasks,”
Mathematics, 2023.

D. Tirumala, T. Lampe, J. E. Chen, T. Haarnoja, S. Huang, G. Lever,
B. Moran, T. Hertweck, L. Hasenclever, M. Riedmiller, N. Heess, and
M. Wulfmeier, “Replay across experiments: A natural extension of
off-policy rl,” 2023.

A. Byravan, J. Humplik, L. Hasenclever, A. Brussee, F. Nori,
T. Haarnoja, B. Moran, S. Bohez, F. Sadeghi, B. Vujatovic, and
N. Heess, “Nerf2real: Sim2real transfer of vision-guided bipedal
motion skills using neural radiance fields,” 2022.

1. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel,
M. Botvinick, C. Blundell, and A. Lerchner, “Darla: Improving zero-
shot transfer in reinforcement learning,” in International Conference
on Machine Learning. PMLR, 2017, pp. 1480-1490.

[2]
[3]

[4]

[5]

[7]

[8]



Scaled Reward vs Time (seconds) Step Chart with Colored Points by Target and ideal Points

Scaled Reward

m U1 T

N
L {JJ [T

5 £ 150 50

Time (seconds)

200 250 300

Fig. 5: Scaled Reward vs. Time (seconds). This step chart illustrates the RL agent’s decisions over time, highlighting when
ARI directed its attention to different targets.

Fig.

Target1 (ENVIRONMENT)
Allocated Attention by ARI: 6%
Number of states shown: 12
Max Reward: 16

Min Reward: 0

g
1

ARI: 16% |

6: The two camera views show how the attention of the

ARI humanoid is dynamically allocated to the environment,
participant 1, and participant 2 in a triadic HRI. The larger
image shows ARI’s head camera view, where the smaller
circles represent points that ARI looked at when no partici-
pants were in the environment. Additionally, the larger circles
indicate ARI’s attention based on the participants’ activities
when they were in the environment.

[9]

[10]

(11]

[12]

[13]

D. Tirumala, M. Wulfmeier, B. Moran, S. Huang, J. Humplik,
G. Lever, T. Haarnoja, L. Hasenclever, A. Byravan, N. Batchelor,
N. Sreendra, K. Patel, M. Gwira, F. Nori, M. Riedmiller, and N. Heess,
“Learning robot soccer from egocentric vision with deep reinforcement
learning,” 2024.

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, 2013.

A. Sunilkumar, F. Bahrpeyma, and D. Reichelt, “An overview of
the applications of reinforcement learning to robot programming:
discussion on the literature and the potentials,” 2024.

A. Zaraki, M. Khamassi, L. J. Wood, G. Lakatos, C. Tzafes-
tas, F. Amirabdollahian, B. Robins, and K. Dautenhahn, “A novel
reinforcement-based paradigm for children to teach the humanoid
kaspar robot,” International Journal of Social Robotics, vol. 12, pp.
709-720, 2020.

L. J. Wood, A. Zaraki, B. Robins, and K. Dautenhahn, “Developing

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

kaspar: a humanoid robot for children with autism,” International
Journal of Social Robotics, vol. 13, no. 3, pp. 491-508, 2021.

S. Gu, A. Kshirsagar, Y. Du, G. Chen, J. Peters, and A. Knoll, “A
human-centered safe robot reinforcement learning framework with
interactive behaviors,” Frontiers in Neurorobotics, vol. 17, 2023.

Z. Wan, C. Jiang, M. Fahad, Z. Ni, Y. Guo, and H. He, “Robot-
assisted pedestrian regulation based on deep reinforcement learning,”
IEEE Transactions on Cybernetics, vol. 50, no. 4, pp. 1669-1682,
2020.

Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2021, pp.
2811-2817.

Z. Karni, O. Simhon, D. Zarrouk, and S. Berman, “Automatic curricu-
lum determination for deep reinforcement learning in reconfigurable
robots,” IEEE Access, vol. 12, pp. 7834278 353, 2024.

H. R. Nohooji, A. Zaraki, and H. Voos, “Actor—critic learning based
pid control for robotic manipulators,” Applied Soft Computing, vol.
151, p. 111153, 2024.

M. Wulfmeier, A. Byravan, S. Bechtle, K. Hausman, and N. Heess,
“Foundations for transfer in reinforcement learning: A taxonomy of
knowledge modalities,” 2023.

A. Zaraki, D. Mazzei, M. Giuliani, and D. De Rossi, “Designing and
evaluating a social gaze-control system for a humanoid robot,” IEEE
Transactions on Human-Machine Systems, vol. 44, no. 2, pp. 157-168,
2014.

S. N. Gowda, “Synthetic sample selection for generalized zero-shot
learning,” 2023.

B. Mazoure, A. M. Ahmed, P. MacAlpine, R. D. Hjelm, and
A. Kolobov, “Cross-trajectory representation learning for zero-shot
generalization in rl,” ArXiv, 2021.

A. Guo, L. Song, and X. Chen, “Learning similar tasks based on ppo
by transferring trajectory,” in 2019 ICNSC, 2019, pp. 126-131.

A. Zaraki, M. Pieroni, D. De Rossi, D. Mazzei, R. Garofalo,
L. Cominelli, and M. B. Dehkordi, “Design and evaluation of a
unique social perception system for human-robot interaction,” IEEE
Transactions on Cognitive and Developmental Systems, vol. 9, no. 4,
pp. 341-355, 2016.



