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Studies with sensitive questions should include a sufficient number of respondents to adequately
address the research interest. While studies with an inadequate number of respondents may not yield
significant conclusions, studies with an excess of respondents become wasteful of investigators’ budget.
Therefore, it is an important step in survey sampling to determine the required number of participants.
In this article, we derive sample size formulas based on confidence interval estimation of prevalence for
four randomized response models, namely, the Warner’s randomized response model, unrelated question
model, item count technique model and cheater detection model. Specifically, our sample size formulas
control, with a given assurance probability, the width of a confidence interval within the planned range.
Simulation results demonstrate that all formulas are accurate in terms of empirical coverage probabilities
and empirical assurance probabilities. All formulas are illustrated using a real-life application about the
use of unethical tactics in negotiation.

Key words: assurance probability, confidence interval, randomized response models, sample size deter-
mination, sensitive attribute.

Traditional direct questioning methods face limitations when socially sensitive topics are
studied. Usually, respondents may refuse to answer, may conceal their true preferences, opinions
or behaviors if the attribute in question is illegal, or may temper their responses to appear to be
more socially acceptable (social desirability bias), especially if their responses can be observed by
the third parties. These make data collection using surveys with sensitive questions challenging,
as refusal to answer will result in nonresponse bias and offering untruthful answers will lead to
response bias. Both sources of bias can negatively influence data quality and produce severely
biased prevalence estimates (i.e., over- or under-estimation of the behavior under study) and
inflated standard error estimates (i.e., probably wrong conclusion), which in turn jeopardize the
usefulness of the data for both research and policymaking (Chaudhuri&Mukerjee, 1988;Rasinski
et al., 1999; Tourangeau & Yan, 2007).

Randomized response techniques (RRTs), originally proposed by Warner (1965), aim to
eliminate or at least minimize both response and nonresponse biases from survey respondents.
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By introducing random noise via employing a randomizing device, the RRT conceals individual
responses and thus protects respondents’ privacy. Therefore, respondents may be more willing
to answer truthfully. In Warner’s model, a respondent is presented with two mutually exclusive
statements about the sensitive attributes, for example, (A): Have you ever made promises without
an intention to deliver in a negotiation? and (Ac): Have you never made promises without an
intention to deliver in a negotiation? The respondent is then instructed to provide an answer
to statement A or Ac, depending on the outcome from a randomizing device provided by the
interviewer (e.g., spinning arrow, dice or coin), with the probability p of being assigned to answer
A and 1− p of being assigned to answer Ac (with p �= 0.5). It should be noted that the interviewer
does not know which question to be answered by the respondent, but he or she knows only the
probability p. As a result, the privacy of the interviewee is protected (for details, see Fox & Tracy,
1986; Horvitz, Greenberg, & Abernathy, 1976). It is noteworthy that statements A and Ac are two
related but mutually exclusive and complimentary questions. Most importantly, both questions
are related to the sensitive attribute. Several revisions and modifications of Warner’s model have
been proposed over the years (e.g., Greenberg et al., 1969; Mangat, 1994). One of these is the
well-established unrelated question model (UQM) proposed by Greenberg et al. (1969). Briefly,
UQM simply replaces statement Ac in Warner’s model by a neutral question, for example, "Were
you born in the first quarter of a year?". Dowling and Shachtman (1975) proved that UQM
usually yields a more reliable sensitive prevalence estimate than Warner’s estimate. Even though
an unrelated question is introduced in the UQM, some respondents ("cheaters") will choose to
answer a self-protective "No" to either of the two alternative questions in the survey. To take this
behavior into consideration, another modification of the RRT known as cheater detection model
(CDM) was proposed by Clark and Desharnais (1998). CDM is considered as an improvement
over the forced-response procedure, which modifies Warner’s model by replacing the neutral
question in the UQM by the forced instruction to say "yes" for the inverted sensitive question.
In particular, it considers not only those carriers of the sensitive attribute who answer honestly
and noncarriers who answer honestly but also a third class of respondents, namely cheaters who
respond "No" regardless of the outcome of the randomization procedure. Clark and Desharnais
(1998) referred to the latter class as cheaters. To provide a greater degree of privacy to respondents,
Miller (1984) developed another indirect questioning technique, namely the item count technique
(ICT), in which the respondents are randomly assigned to either the experiment group or control
group. Respondents in the control group are presented with a list of k neutral questions with
answers "Yes" or "No", those in the experiment group are given the same k neutral questions
together with the sensitive item. In both groups, all respondents are asked to report only their total
number of "Yes" answers but not the replies to the individual items. Note that the response to
each question is a binary variable. The difference between the observed means in the experiment
and control groups provides an estimate of the proportion of the sensitive attribute. The privacy
of respondents is protected to a greater extent, because this approach allows respondents to mask
their answers to the sensitive question. Therefore, a potentially less biased prevalence estimate of
the sensitive attribute may be obtained using the item count procedure.

Sample size determination becomes a crucial step in every study design, since studies with
an inadequate number of respondents may not yield significant conclusions, while those with an
excess of respondents become a waste of investigators’ resources. Ulrich et al. (2012) derived
the statistical powers for the aforementioned models (i.e., Warner’s RRT model, UQM, ICT and
CDM) based on the Wald test statistic. As a result, their corresponding sample size requirements
that can achieve a desired power for the Wald test with a predetermined Type I error rate can be
readily obtained. However, it is well documented that confidence intervals are more informative
than simple hypothesis tests (which simply yield a direct accept-or-reject conclusion) in terms
of description of location and precision of the statistic, and confidence intervals should be the
best reporting strategy, based on the recommendations of Wilkinson and the American Psycho-
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logical Association Task Force on Statistical Inference (1999) and the Publication Manual of the
American Psychological Association (2009). Indeed, several prominent educational and psycho-
logical journals stressed in their editorial guidelines and methodological recommendations that
it is necessary to include some measures of effect size and confidence intervals for all primary
outcomes (see, Alhija and Levy, 2009; Dunst and Hamby, 2012; Fritz, Morris and Richler, 2012;
Odgaard and Fowler, 2010; and Sun, Pan and Wang, 2010). In this paper, we thus consider the
sample size formulas that can control the width of a confidence interval for the prevalence of sen-
sitive attributes with a pre-specified confidence level. Most importantly, our formulas explicitly
incorporate an assurance probability of achieving pre-specified precision.

This article is organized as follows. Sample size formulas that control thewidth of a confidence
interval with a pre-specified confidence level for the prevalence of a sensitive attribute for the
aforementioned models (i.e., Warner’s RRT model, UQM, ICT and CDM) are derived in Sect. 1.
Most importantly, our formulas explicitly incorporate a pre-specified probability of achieving the
pre-specified width. We evaluate their performance in Sect. 2. In Sect. 3, a real example of how
Kern and Chugh (2009) examined negotiators’ unethical behavior is used to illustrate the accuracy
of the estimated sample size formulas. In this example, the sensitive question is: Have you ever
made promises without an intention to deliver in a negotiation? In one of Kern and Chugh’s
(2009) experiments, 16.5% of participants, on average, made false promises to their advantage.
Suppose that an applied psychologist collects survey data and examines whether negotiators use
this unethical tactic in order to increase the likelihood of reaching an agreement. We calculate
the required sample size for a new study that can control the width of a confidence interval at a
specified confidence level, with the assurance probability of achieving the pre-specified precision,
for the various RRT models considered in this article. A brief conclusion and discussion will be
given in Sect. 4.

1. Sample Size Determination

1.1. Sample Size Estimation Under Warner’s RRT Model

1.1.1. Confidence Intervals Under Warner’s RRT Model UnderWarner’smodel, a randomizing
device is used to determine if a respondent will answer the sensitive question Awith probability p
or the complement questionAc with probability 1− p with p �= 0.5. The parameter of interest is the
proportionof subjects in the populationwhopossess the sensitive attribute and is denotedbyπs . Let
λ = πs p + (1− πs)(1− p) (i.e., the probability of a respondent answering "Yes"), n the number
of respondents participating in the survey and x the number of respondents answering "Yes."
Obviously, x follows the binomial distribution B(n, λ) and the maximum likelihood estimate
(MLE) of λ is given by λ̂ = x/n with expectation being E(λ̂) = λ and variance being Var(λ̂) =
λ(1 − λ)/n. Since πs = (λ + p − 1)/(2p − 1) (p �= 0.5), the MLE of πs is given by π̂s,W M =
(λ̂ + p − 1)/(2p − 1). Therefore, the variance of π̂s is given by

Var(π̂s,W M ) = λ(1 − λ)

n(2p − 1)2
. (1)

As a result, the (1 − α)100% Wald confidence interval (CI) for πs is given by

CIW M,W =
⎡
⎣π̂s,W M − zα/2

√
λ̂(1 − λ̂)

n(2p − 1)2
, π̂s,W M + zα/2

√
λ̂(1 − λ̂)

n(2p − 1)2

⎤
⎦ , (2)
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where zα/2 is the 1 − α/2 quantile of the standard normal distribution. As shown in Newcombe
(1998) and Agresti and Coull (1998), a confidence interval based on Wilson method performs
very well compared to the Wald interval, when sample size is not large. Therefore, we also apply
the Wilson (1927) method to construct a (1 − α)100% confidence interval for πs as

CIW M,Wi = [πl,W M,Wi , πu,W M,Wi ], (3)

where

πl,W M,Wi =
nλ̂ + z2α/2/2 + (p − 1)(n + z2α/2) − zα/2

√
nλ̂(1 − λ̂) + z2α/2/4

|2p − 1|(n + z2α/2)
and

πu,W M,Wi =
nλ̂ + z2α/2/2 + (p − 1)(n + z2α/2) + zα/2

√
nλ̂(1 − λ̂) + z2α/2/4

|2p − 1|(n + z2α/2)
.

1.1.2. Sample Size Formula Based on Wald Confidence Interval [nWM,W , nWM,W,0.5] The
half width of the (1 − α)100% Wald CI for πs is given by

zα/2

√
λ̂(1 − λ̂)

n(2p − 1)2
.

Here, we control the half width no larger than ω with probability 1 − β. That is,

Pr(zα/2

√
λ̂(1 − λ̂)

n(2p − 1)2
≤ ω) ≥ 1 − β,

or equivalently

Pr(

√
λ̂(1 − λ̂) ≤ ω|2p − 1|√n

zα/2
) ≥ 1 − β.

According to the delta method, it is easily shown that

√
λ̂(1 − λ̂) ∼ N (

√
λ(1 − λ),

(1 − 2λ)2

4n
).

If we let Z =
√

λ̂(1−λ̂)−√
λ(1−λ)

|1−2λ|/(2√n)
, then we have

Pr(Z ≤
ω|2p−1|√n

zα/2
− √

λ(1 − λ)

|1 − 2λ|/(2√n)
)≥1 − β.

Therefore, the desired sample size n satisfies the following equation:

ω|2p − 1|√n

zα/2
− √

λ(1 − λ) = zβ |1 − 2λ|/(2√n),
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where zβ is the 1 − β quantile of a standard normal distribution.
Solving the above equation yields

nWM,W =
[ [λ(1 − λ)]1/2 + [λ(1 − λ) + 2ω|2p − 1||1 − 2λ|zβ/zα/2]1/2

2ω|2p − 1|/zα/2

]2
. (4)

In particular, when β = 0.5 the conventional sample size is given by

nWM,W,0.5 = λ(1 − λ)

[ω(2p − 1)/zα/2]2 . (5)

Given the values of n, p and πs , the assurance probability can be obtained by

�

⎛
⎝

ω|2p−1|√n
zα/2

− √
λ(1 − λ)

|1 − 2λ|/(2√n)

⎞
⎠ ,

where �(·) is the distribution function of the standard normal random variable.

1.1.3. Sample Size Formula Based on Wilson Confidence Interval [nWM,Wi , nWM,Wi,0.5]
Similarly, in order to control the half width of theWilson CI to be no larger thanωwith probability
1 − β, the sample size estimate needs to satisfy

Pr

⎛
⎝ zα/2

√
nλ̂(1 − λ̂) + z2α/2/4

|2p − 1|(n + z2α/2)
≤ ω

⎞
⎠ ≥ 1 − β,

i.e.,

Pr

(
λ̂(1 − λ̂) ≤ 4(2p − 1)2(n + z2α/2)

2ω2 − z4α/2

4nz2α/2

)
≥ 1 − β.

According to the delta method, the asymptotic distribution of λ̂(1 − λ̂) is

λ̂(1 − λ̂) ∼ N (λ(1 − λ), λ(1 − λ)(1 − 2λ)2/n).

Therefore,

4(2p − 1)2(n + z2α/2)
2ω2 − z4α/2

4nz2α/2

− λ(1 − λ) = zβ

√
λ(1 − λ)(1 − 2λ)2/n,

i.e., the approximate sample size (denoted as nWM,Wi ) can be obtained by solving the following
equation:

a(n + z2α/2)
4 + b(n + z2α/2)

3 + c(n + z2α/2)
2 + d(n + z2α/2) + e = 0, (6)
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where

a = 16ω4(2p − 1)4,

b = −32z2α/2ω
2(2p − 1)2λ(1 − λ),

c = 8z4α/2[2λ2(1 − λ)2 + 4ω2(2p − 1)2λ(1 − λ) − ω2(2p − 1)2],
d = 8z4α/2[z2α/2λ(1 − λ) − 4z2α/2λ

2(1 − λ)2 − 2z2βλ(1 − λ)(1 − 2λ)2], and

e = z6α/2[16z2α/2λ
2(1 − λ)2 + 16z2βλ(1 − λ)(1 − 2λ)2 − 8z2α/2λ(1 − λ) + z2α/2].

The eigenvalue methods for finding roots of polynomials can be used to obtain the sample size
estimate, based on Wilson method by solving Eq. (6) with respect to n + z2α/2. If mmax is the
maximum real root of Eq. (6), then the desired sample size nWM,Wi is the minimum integer that
is not smaller than mmax − z2α/2.

In particular, when β = 0.5, the approximate sample size n is given by

nWM,Wi,0.5 = z2α/2[λ(1 − λ) + √
λ2(1 − λ)2 + ω2(2p − 1)2(1 − 4λ(1 − λ))]

2ω2(2p − 1)2
− z2α/2. (7)

Given the values of n, p and πs , the assurance probability can be obtained by

�

⎛
⎜⎜⎝

4(2p−1)2(n+z2α/2)
2ω2−z4α/2

4nz2α/2
− λ(1 − λ)

√
λ(1 − λ)(1 − 2λ)2/n

⎞
⎟⎟⎠ .

1.2. Sample Size Estimation Under Unrelated Question Model

1.2.1. Confidence Intervals Under Unrelated Question Model It should be noted that the
unrelated question model (UQM) simply replaces question Ac in Warner’s model with a neutral
question N (see, Greenberg et al., 1969). Similar to Warner’s model, a randomizing device is
used to impel a respondent to answer A with a probability of p or the neutral question N with
a probability of 1 − p. Let the probability of responding "yes" to statement N be πN . If λ =
pπs + (1 − p)πN , then x follows binomial distribution B(n,λ). Again, the MLE of λ is given
by λ̂ = x/n, and the expectation and variance of λ̂ are, respectively, E(λ̂) = λ and Var(λ̂) =
λ(1− λ)/n. Therefore, the MLE of πs,U QM is π̂s,U QM = (λ̂ − (1− p)πN )/p, E(π̂s,U QM ) = πs

and Var(π̂s,U QM ) = λ(1 − λ)/(np2).
The (1 − α)100% confidence interval for πs based on Wald method is given by

CIU QM,W = [π̂U QM,W − zα/2

√
λ̂(1 − λ̂)/(np2), π̂U QM,W + zα/2

√
λ̂(1 − λ̂)/(np2)]. (8)

Alternatively, a (1 − α)100% Wilson confidence interval for λ is given by

2nλ̂ + z2α/2 ∓
√

z4α/2 + 4nz2α/2λ̂(1 − λ̂)

2(n + z2α/2)
.



SHI-FANG QIU ET AL.

Hence, the (1 − α)100% Wilson confidence interval for πs can be obtained as

CIU QM,Wi = [πl,U QM,Wi , πu,U QM,Wi ], (9)

where

πl,U QM,Wi

=
nλ̂ + z2α/2/2 − (1 − p)(n + z2α/2)πN − zα/2

√
z2α/2/4 + nλ̂(1 − λ̂)

p(n + z2α/2)

and

πu,U QM,Wi

=
nλ̂ + z2α/2/2 − (1 − p)(n + z2α/2)πN + zα/2

√
z2α/2/4 + nλ̂(1 − λ̂)

p(n + z2α/2)
.

1.2.2. Sample Size Formula Based on Wald Confidence Interval [nU QM,W , nU QM,W,0.5]
Again, we control the half width of the Wald CI to be no larger than ω with probability 1 − β.
That is,

Pr(zα/2

√
λ̂(1 − λ̂)/(np2) ≤ ω) ≥ 1 − β,

or,

Pr(

√
λ̂(1 − λ̂) ≤ ωp

√
n/zα/2) ≥ 1 − β. (10)

It is shown that

√
λ̂(1 − λ̂) ∼ N (

√
λ(1 − λ), (1 − 2λ)2/(4n)).

Equation (10) becomes

Pr

⎛
⎝

√
λ̂(1 − λ̂) − √

λ(1 − λ)

|1 − 2λ|/(2√n)
≤ ωp

√
n/zα/2 − √

λ(1 − λ)

|1 − 2λ|/(2√n)

⎞
⎠ ≥ 1 − β.

Therefore,

ωp
√

n/zα/2 − √
λ(1 − λ)

|1 − 2λ|/(2√n)
= zβ,

i.e.,

2ωp

zα/2
(
√

n)2 − 2
√

λ(1 − λ) · √n − zβ |1 − 2λ| = 0.
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By solving the above equation, we have

nU QM,W =
[ zα/2

√
λ(1 − λ) +

√
z2α/2λ(1 − λ) + 2zα/2ωpzβ |1 − 2λ|

2ωp

]2
. (11)

When β = 0.5, the approximate sample size is given by

nU QM,W,0.5 = λ(1 − λ)/(ωp/zα/2)
2. (12)

1.2.3. Sample Size Formula Based on Wilson Confidence Interval [nU QM,Wi , nU QM,Wi,0.5]
To control the half width of the Wilson CI that is no larger than ω with probability 1 − β, the
desired sample size should satisfy

Pr

(
zα/2

√
nλ̂(1 − λ̂) + z2α/2/4/

[
p(n + z2α/2)

]
≤ ω

)
≥ 1 − β,

i.e.,

Pr

(
λ̂(1 − λ̂) ≤ 4ω2 p2(n + z2α/2) − z4α/2

4nz2α/2

)
≥ 1 − β. (13)

It is thus shown that the sample size is the solution to the following equation:

a(n + z2α/2)
4 + b(n + z2α/2)

3 + c(n + z2α/2)
2 + d(n + z2α/2) + e = 0, (14)

where

a = 16p4ω4,

b = −32p2ω2z2α/2λ(1 − λ),

c = 8z4α/2

[
2λ2(1 − λ)2 + 4p2ω2λ(1 − λ) − p2ω2

]
,

d = 8z4α/2

[
z2α/2λ(1 − λ) − 4z2α/2λ

2(1 − λ)2 − 2z2βλ(1 − λ)(1 − 2λ)2
]
, and

e = z6α/2

[
16z2α/2λ

2(1 − λ)2 + 16z2βλ(1 − λ)(1 − 2λ)2 + z2α/2 − 8z2α/2λ(1 − λ)
]
.

Similarly, the eigenvalue methods can be used to find the solutions of the above equation with
respect to n + z2α/2, and the approximate sample size n is denoted as nU QM,Wi .

When β = 0.5, the formula reduces to

nU QM,Wi,0.5 =
z2α/2

[
λ(1 − λ) + √

λ2(1 − λ)2 + ω2 p2[1 − 4λ(1 − λ)] − 2ω2 p2
]

2ω2 p2
. (15)
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1.3. Sample Size Estimation Under Item Count Technique

1.3.1. Confidence Intervals Under Item Count Technique Under the item count technique (ICT)
model developed by Miller (1984), it was designed that the nc respondents randomly assigned to
the control group would receive a list of k neutral questions, while the ne respondents randomly
assigned to the experiment group would receive the same set of neutral questions as the control
group together with the sensitive question. The probability of answering the i th neutral question
with "yes" would be πi (i = 1, 2, . . . , k). Let the expected numbers of total "yes" response of
the control and experiment groups are Tc = ∑k

i=1 πi and Te = ∑k
i=1 πi + πs , respectively. Let

tc be the total number of answering "Yes" in the control group and te be the total number of
answering "Yes" in the experiment group, respectively. Therefore, T̂c = tc/nc and T̂e = te/ne,
and the estimation of πs is given by π̂s = T̂e − T̂c = te/ne − tc/nc.

Given that all items are statistically unrelated, it is shown that the sample variance of π̂s is
given by

Var(π̂s) = πs(1 − πs)

ne
+

(
1

ne
+ 1

nc

) k∑
i=1

πi (1 − πi ).

Therefore, the (1 − α)100% Wald confidence interval for πs is given by

CII CT,W = [πl,I CT,W , πu,I CT,W ], (16)

where

πl,I CT,W = π̂s − zα/2

[
π̂s(1 − π̂s)

ne
+

(
1

nc
+ 1

ne

) k∑
i=1

πi (1 − πi )

]1/2

and

πu,I CT,W = π̂s + zα/2

[
π̂s(1 − π̂s)

ne
+

(
1

nc
+ 1

ne

) k∑
i=1

πi (1 − πi )

]1/2

,

while the (1 − α)100% Wilson confidence interval for πs is given by

CII CT,Wi = [πl,I CT,Wi , πu,I CT,Wi ], (17)

where

πl,I CT,Wi

=
neπ̂s + z2α/2/2 − zα/2

[
neπ̂s(1 − π̂s) +

(
1 + ne

nc

) (
ne + z2α/2

) ∑k
i=1 πi (1 − πi ) + z2α/2/4

]1/2

ne + z2α/2

and

πu,I CT,Wi

=
neπ̂s + z2α/2/2 + zα/2

[
neπ̂s(1 − π̂s) +

(
1 + ne

nc

) (
ne + z2α/2

) ∑k
i=1 πi (1 − πi ) + z2α/2/4

]1/2

ne + z2α/2

.
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1.3.2. Sample Size Formula Based on Wald Confidence Interval [nICT,W , nICT,W,0.5] It is
noted that the half width of the (1 − α)100% Wald CI is given by

zα/2

[
π̂s(1 − π̂s)

ne
+

(
1

ne
+ 1

nc

) k∑
i=1

πi (1 − πi )

]1/2

.

To control the half width of the Wald CI that is no larger than ω with a probability of 1 − β, the
desired sample size should satisfy

Pr

⎛
⎝zα/2

[
π̂s(1 − π̂s)

ne
+

(
1

ne
+ 1

nc

) k∑
i=1

πi (1 − πi )

]1/2

≤ ω

⎞
⎠ ≥ 1 − β,

i.e.,

Pr

(
π̂s(1 − π̂s) ≤ neω

2

z2α/2

−
(
1 + ne

nc

) k∑
i=1

πi (1 − πi )

)
≥ 1 − β.

It is clear that

π̂s(1 − π̂s) ∼ N

(
πs(1 − πs), (1 − 2πs)

2

(
πs(1 − πs)

ne
+

(
1

ne
+ 1

nc

) k∑
i=1

πi (1 − πi )

))
.

Hence, we have

neω
2

z2α/2
− (1 + ne

nc
)

k∑
i=1

πi (1 − πi ) − πs(1 − πs)

|1 − 2πs |[πs (1−πs )
ne

+ ( 1
ne

+ 1
nc

)
k∑

i=1
πi (1 − πi )]1/2

= zβ.

When nc = ne = 1
2n and let c = 2

∑k
i=1 πi (1 − πi ) + πs(1 − πs), the above equation can be

simplified to
n3

e − b1n2
e + b2ne − b3 = 0, (18)

where

b1 = 2cz2α/2

ω2 , b2 = c2z4α/2

ω4 , and b3 = (1 − 2πs)
2cz2β z4α/2

ω4 .

According to Cardans formula for solving the cubic equation, the desired sample size ne (= 1
2n)

can be estimated to be the unique real root or the maximum root of three real roots. Therefore,
the estimated sample size is given by nICT,W = 2ne.

When β = 0.5, the estimated sample size n is given by

nICT,W,0.5 = 2cz2α/2/ω
2. (19)
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1.3.3. Sample Size Formula Based on Wilson Confidence Interval [nICT,Wi , nICT,Wi,0.5] The
half width of the (1 − α)100% Wilson CI is given by

zα/2

[
z2α/2/4 + neπ̂s(1 − π̂s) + (1 + ne

nc
)(ne + z2α/2)

∑k
i=1 πi (1 − πi )

]1/2

ne + z2α/2

.

To control the half width of the Wilson CI to be no larger than ω with probability 1− β, we have

Pr

⎛
⎜⎝

zα/2

[
z2α/2/4 + neπ̂s(1 − π̂s) + (1 + ne

nc
)(ne + z2α/2)

∑k
i=1 πi (1 − πi )

]1/2

ne + z2α/2

≤ ω

⎞
⎟⎠ ≥ 1 − β,

i.e.,

Pr(π̂s(1 − π̂s)

≤ ω2(ne + z2α/2)
2/z2α/2 − z2α/2/4 − (1 + ne

nc
)(ne + z2α/2)

∑k
i=1 πi (1 − πi )

ne
) ≥ 1 − β.

Similarly, it is clear that

π̂s(1 − π̂s) ∼ N (πs(1 − πs), (1 − 2πs)
2

[
πs(1 − πs)

ne
+

(
1

ne
+ 1

nc

) k∑
i=1

πi (1 − πi )

]
)

Therefore, we have

ω2(ne+z2α/2)
2/z2α/2−z2α/2/4−(1+ ne

nc
)(ne+z2α/2)

k∑
i=1

πi (1−πi )

ne
− πs(1 − πs)

|1 − 2πs |[πs (1−πs )
ne

+ ( 1
ne

+ 1
nc

)
k∑

i=1
πi (1 − πi )]1/2

= zβ.

If nc = ne, then

a(ne + z2α/2)
4 + b(ne + z2α/2)

3 + c(ne + z2α/2)
2 + d(ne + z2α/2) + e = 0, (20)

where

a = ω4/z4α/2,

b = −2ω2/z2α/2

(
2

k∑
i=1

πi (1 − πi ) + πs(1 − πs)

)
,

c = 2ω2 [−1/4 + πs(1 − πs)] +
[
2

k∑
i=1

πi (1 − πi ) + πs(1 − πs)

]2
,

d = −
[
z2α/2(−1/2 + 2πs(1 − πs)) + z2β(1 − 2πs)

2
] [

2
k∑

i=1
πi (1 − πi ) + πs(1 − πs)

]
, and

e = z4α/2 [−1/4 + πs(1 − πs)]2 + z2β(1 − 2πs)
2z2α/2

(
2

k∑
i=1

πi (1 − πi ) + πs(1 − πs)

)
.
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Similarly, the eigenvaluemethods can be employed to find the solutions of the above equationwith
respect to ne + z2α/2, and the desired sample size is denoted as nICT,Wi (i.e., nICT,Wi = 2ne).

When β = 0.5, the estimated sample size n is given by

nICT,Wi,0.5 = z2α/2( f + √
f 2 − g − ω2)

ω2 , (21)

where f = 2
∑k

i=1 πi (1 − πi ) + πs(1 − πs) and g = ω2[4πs(1 − πs) − 1].

1.4. Sample Size Estimation Under Cheater Detection Model

1.4.1. Confidence intervals Under Cheater Detection Model Assume that the true proportions
of honest-yes respondents, honest-no respondents, and cheaters areπs , βs and γ , respectively (i.e.,
πs+βs+γ=1), and a total of n individuals participates in the interview under Cheater Detection
Model (CDM). Following Clark & Desharnais (1998), the whole sample n is divided into two
subsamples of sizes n1 and n2 to estimate parameters πs , βs and γ . The probabilities of a respon-
dent being assigned by the randomizing device to answer the sensitive question are, respectively,
p1 and p2 (p1 �= p2) for subsamples 1 and 2. Let λ1 and λ2 denote the true proportions of "yes"
responses, and y1 and y2 the number of "Yes" answers for subsamples 1 and 2. Obviously, yi

follows B(ni , λi ) (i =1, 2). Then, we have λ̂i = yi/ni (i =1, 2), π̂s = (p2λ̂1 − p1λ̂2)/(p2 − p1),
β̂s = (λ̂2 − λ̂1)/(p2 − p1) and γ̂ = 1 − π̂s − β̂s . Therefore, the variance of π̂s is given by

p22
(p2−p1)2

· λ1(1−λ1)
n1

+
p21

(p2−p1)2
· λ2(1−λ2)

n2
. As a result, the (1 − α)100% Wald confidence interval

for πs is given by
CIC DM,W = [πl,C DM,W , πu,C DM,W ], (22)

where

πl,C DM,W = π̂s − zα/2

[
p22

(p2 − p1)2
· λ̂1(1 − λ̂1)

n1
+ p21

(p2 − p1)2
· λ̂2(1 − λ̂2)

n2

]1/2

and

πu,C DM,W = π̂s + zα/2

[
p22

(p2 − p1)2
· λ̂1(1 − λ̂1)

n1
+ p21

(p2 − p1)2
· λ̂2(1 − λ̂2)

n2

]1/2

.

Alternately, sinceπs = (p2λ1− p1λ2)/(p2− p1), we can first construct theWilson confidence
intervals for λ1 and λ2 and subsequently obtain the confidence interval for πs via the method of
variance estimates recovery (MOVER) proposed by Zou & Donner (2008). It is shown that the
(1 − α)100% Wilson confidence lower and upper limits for λi can be obtained by

li =
ni λ̂i + z2α/2/2 − zα/2

√
ni λ̂i (1 − λ̂i ) + z2α/2/4

ni + z2α/2

, and (23)

ui =
ni λ̂i + z2α/2/2 + zα/2

√
ni λ̂i (1 − λ̂i ) + z2α/2/4

ni + z2α/2

(24)

for i = 1,2.
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By using MOVER proposed by Zou & Donner (2008), the (1− α)100% confidence interval
for πs is given by

CIC DM,Wi = [πl,C DM,Wi , πu,C DM,Wi ], (25)

where

πl,C DM,Wi = π̂s − 1

|p2 − p1|
[

p22(λ̂1 − l1)
2 + p21(u2 − λ̂2)

2
]1/2

and

πu,C DM,Wi = π̂s + 1

|p2 − p1|
[

p22(u1 − λ̂1)
2 + p21(λ̂2 − l2)

2
]1/2

.

1.4.2. Sample Size Formula Based on Wald Confidence Interval [nCDM,W , nCDM,W,0.5] The
half width of the (1 − α)100% Wald CI is given by

zα/2

[
p22

(p2 − p1)2
· λ̂1(1 − λ̂1)

n1
+ p21

(p2 − p1)2
· λ̂2(1 − λ̂2)

n2

]1/2

.

To control the half width of the Wald CI to be no larger than ω with probability 1 − β, we have

Pr

⎛
⎝zα/2

[
p22

(p2 − p1)2
· λ̂1(1 − λ̂1)

n1
+ p21

(p2 − p1)2
· λ̂2(1 − λ̂2)

n2

]1/2

≤ ω

⎞
⎠ ≥ 1 − β.

Let A = p22/n1, B = p21/n2 and C = ω|p2 − p1|/zα/2, then we have

Pr(Aλ̂1(1 − λ̂1) + Bλ̂2(1 − λ̂2) ≤ C2) ≥ 1 − β.

Similarly, it is clear that

Aλ̂1(1 − λ̂1) + Bλ̂2(1 − λ̂2)

∼ N (Aλ1(1 − λ1) + Bλ2(1 − λ2),
A2λ1(1−λ1)(1−2λ1)2

n1
+ B2λ2(1−λ2)(1−2λ2)2

n2
).

Therefore, we have

C2 − Aλ1(1 − λ1) − Bλ2(1 − λ2)[
A2λ1(1−λ1)(1−2λ1)2

n1
. + B2λ2(1−λ2)(1−2λ2)2

n2

]1/2 = zβ.

If n1 = n2 = 1
2n, the above equation can be simplified as

C4n3 − 4C2Dn2 + 4D2n − 8z2β E = 0, (26)
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where D = p22λ1(1 − λ1) + p21λ2(1 − λ2) and E = p42λ1(1 − λ1)(1 − 2λ1)2 + p41λ2(1 − λ2)

(1− 2λ2)2. By using Cardans formula for solving the cubic equation, we can obtain the solutions
and the desired sample size is the minimum integer that is not smaller than the unique real root
or the maximum root of three real roots. The estimated sample size is denoted as nCDM,W .

When β = 0.5, the formula reduces to be

nCDM,W,0.5 = 2z2α/2[p22λ1(1 − λ1) + p21λ2(1 − λ2)]
ω2(p2 − p1)2

. (27)

1.4.3. Sample Size Formula Based on Wilson Confidence Interval [nCDM,Wi , nCDM,Wi,0.5]
The width of the (1 − α)100% Wilson CI is given by

1

|p2 − p1|
(√

p22(u1 − λ̂1)2 + p21(λ̂2 − l2)2 +
√

p22(λ̂1 − l1)2 + p21(u2 − λ̂2)2
)
.

To control the width of the Wilson CI to be no larger than 2ω with probability 1 − β, we have

Pr

(
1

|p2 − p1|
[√

p22(u1 − λ̂1)
2 + p21(λ̂2 − l2)2 +

√
p22(λ̂1 − l1)2 + p21(u2 − λ̂2)

2
]

≤ 2ω

)
≥ 1 − β.

(28)
Let a = p22(ū1 − λ1)

2 + p21(λ2 − l̄2)2, b = p22(λ1 − l̄1)2 + p21(ū2 − λ2)
2 with

l̄i =
niλi + z2α/2/2 − zα/2

√
niλi (1 − λi ) + z2α/2/4

ni + z2α/2

,

ūi =
niλi + z2α/2/2 + zα/2

√
niλi (1 − λi ) + z2α/2/4

ni + z2α/2

,

and c = n1λ1(1−λ1)+z2α/2/4, d = n2λ2(1−λ2)+z2α/2/4, e =[p22(u1−λ̂1)
2+p21(λ̂2−l2)2]1/2

+ [p22(λ̂1 − l1)2 + p21(u2 − λ̂2)
2]1/2. It is shown that the variance of e is given by

σ 2
e =

[
(u1−λ1)(

n1(1−2λ1)

2
√

c
−zα/2)√

a
+ (λ1−l1)(

n1(1−2λ1)

2
√

c
+zα/2))√

b

]2

· z2α/2 p42
(n1+z2α/2)

2 · λ1(1−λ1)
n1

+
[

(λ2−l2)(
n2(1−2λ2)

2
√

d
+zα/2)√

a
+ (u2−λ2)(

n2(1−2λ2)

2
√

d
−zα/2))√

b

]2

· z2α/2 p41
(n2+z2α/2)

2 · λ2(1−λ2)
n2

,

i.e.,

e ∼ N (
√

a + √
b, σ 2

e ).

Equation (28) can be re-written as

Pr(
e − (

√
a + √

b)

σe
≤ 2ω|p2 − p1| − √

a + √
b)

σe
) ≥ 1 − β.
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Therefore, we have

2ω|p2 − p1| − (
√

a + √
b) = zβσe. (29)

When β = 0.5, the equation is given as

a + b + 2
√

ab = 4ω2(p2 − p1)
2. (30)

If n1 = n2 = 1
2n, the desired sample sizes can be obtained by solvingEqs. (29) or (30) via the secant

method. The desired sample sizes are estimated to be the minimum integer that is not smaller than
the maximum real root of Eqs. (29) or (30), respectively. The corresponding estimated sample
sizes (i.e., the values of n) are denoted as nCDM,Wi and nCDM,Wi,0.5, respectively.

2. Evaluation

To evaluate the formulas proposed in this article, we consider the following parameter settings
for different models:
(a) Warner model: (1) p = 0.3, 0.6, 0.8; (2) πs = 0.04(0.04)0.16; (3) ω = 25% or 50% of πs ;
i.e., a total of 3 × 4 × 2 = 24 parameter combinations.
(b) Unrelated question model: p = 0.75 and (1) πN = 0.2(0.3)0.8; (2) πs = 0.04(0.04)0.16; (3)
ω = 25% or 50% of πs ; i.e., a total of 3 × 4 × 2 = 24 parameter combinations.
(c) Item count technique: (2) k = 4(2)8; (2)πs = 0.04(0.04)0.16; (3)πi = 0.5 for i = 1, 2, . . . , k;
(4) ω = 25% or 50% of πs ; i.e., a total of 3 × 4 × 2 = 24 parameter combinations.
(d) Cheater detection model: (1) p1 = 1/3, p2 = 2/3 or p1 = 1/4, p2 = 3/4; (2) βs =
0.04(0.04)0.16; (3) πs = 0.04(0.04)0.16; (4) ω = 25% or 50% of πs ; i.e., a total of 3 × 4
× 2 = 64 parameter combinations.

According to the formulas developed in Sect. 1, the desired sample sizes can be estimated
for different RRT models. Given the estimated sample sizes, we can then consider their empir-
ical coverage probabilities (ECPs), empirical assurance probabilities (EAPs), left noncoverage
probabilities (LNCPs) and right noncoverage probabilities (RNCPs) of the (1 − α)100% Wald
and Wilson CIs for evaluating the accuracy of various sample size formulas. For all models, the
confidence level 1 − α is set to be 0.95, and the number of replications is set to be K = 10000
when calculating the following evaluation indices:
(i) Empirical Assurance Probability (EAP)

EAP = 1

K

K∑
k=1

I (π(k)
u − π

(k)
l ≤ 2ω),

where (π
(k)
l , π

(k)
u ) is the CI for πs at the kth replication, and I (·) is the indicator function of the

event that π(k)
u − π

(k)
l ≤ 2ω.

(ii) Empirical Coverage Probability (ECP)

ECP = 1

K

K∑
k=1

I (πs ∈ (π
(k)
l , π(k)

u )).
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(iii) Left and Right Noncoverage Probability (LNCP and RNCP)

LNCP = 1
K

K∑
k=1

I (πs ≤ π
(k)
l ), and

RNCP = 1
K

K∑
k=1

I (πs ≥ π
(k)
u ).

Simulation results for assessing the accuracy of various sample size formulas under Warner’s
model, unrelated question model, item count technique and cheater detection model are reported
in Tables 1, 2, 3, 4 and 5.

When the assurance probability is 95%, results in Tables 1, 2, 3, 4 and 5 consistently show
that all the empirical assurance probabilities (EAPs) are generally close to the pre-determined
nominal level for bothWald andWilsonmethods under the fourRRTmodels.Onlywhen assurance
probability is 50%, EAPs of Wald method are slightly lower than the nominal in some cases (e.g.,

Table 1.
Performance of the sample size formula with 1− β assurance probability for Warner’s RRT model under (i) β = 0.5 and
(ii) β = 0.05 with p = 0.3, 0.6, 0.8

Wald Wilson

πs ω
 n† ECP(L,R)%‡ EAP n ECP(L,R)% EAP

(i) β = 0.5
p = 0.3
0.04 25 51896 94.64(2.75,2.61) 49.66 51893 94.82(2.57,2.61) 48.76

50 12974 94.96(2.62,2.42) 50.19 12971 94.87(2.73,2.40) 50.36
0.08 25 13312 95.03(2.43,2.54) 50.27 13309 94.48(2.82,2.70) 50.45

50 3328 94.63(2.49,2.88) 50.16 3325 94.92(2.37,2.71) 50.93
0.12 25 6053 94.69(2.49,2.82) 50.98 6050 95.01(2.42,2.57) 51.35

50 1513 95.48(2.31,2.21) 50.46 1510 95.14(2.81,2.05) 50.58
0.16 25 3474 94.82(2.55,2.63) 50.61 3471 94.70(2.77,2.53) 50.19

50 868 94.93(2.39,2.68) 48.72 865 95.08(2.45,2.47) 48.24
p = 0.6
0.04 25 231971 94.83(2.41,2.76) 49.55 231968 94.83(2.52,2.65) 49.49

50 57992 95.35(2.23,2.42) 50.30 57990 95.03(2.54,2.43) 50.91
0.08 25 58330 95.07(2.62,2.31) 49.55 58328 95.05(2.42,2.53) 49.66

50 14582 95.12(2.60,2.28) 50.08 14579 94.88(2.74,2.38) 49.52
0.12 25 26061 95.10(2.64,2.26) 50.21 26058 95.20(2.52,2.28) 50.59

50 6515 94.88(2.65,2.47) 49.68 6512 95.05(2.51,2.44) 50.52
0.16 25 14728 94.83(2.40,2.77) 49.28 14725 95.21(2.41,2.38) 49.91

50 3682 95.06(2.22,2.72) 49.69 3679 95.13(2.35,2.52) 51.51
p = 0.8
0.04 25 18548 94.90(2.60,2.50) 49.74 18547 95.04(2.65,2.31) 49.97

50 4637 95.29(2.16,2.55) 50.37 4636 95.22(2.41,2.37) 51.12
0.08 25 4975 95.06(2.30,2.64) 49.95 4973 94.93(2.58,2.49) 50.77

50 1243 95.24(2.14,2.62) 47.83 1242 94.79(2.82,2.39) 51.88
0.12 25 2347 94.88(2.31,2.81) 50.49 2346 95.25(2.44,2.31) 51.59

50 586 95.02(1.89,3.09) 47.15 585 95.12(2.24,2.64) 51.70
0.16 25 1389 94.79(2.35,2.86) 49.35 1387 94.73(2.88,2.39) 49.95

50 347 95.31(1.91,2.78) 49.66 345 95.08(2.60,2.32) 53.50
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Table 1.
continued

Wald Wilson

πs ω
 n† ECP(L,R)%‡ EAP n ECP(L,R)% EAP

(ii) β = 0.05
p = 0.3
0.04 25 52192 95.00(2.53,2.47) 95.03 52188 94.78(2.66,2.56) 94.39

50 13121 94.78(2.64,2.58) 95.10 13118 94.85(2.62,2.53) 95.19
0.08 25 13447 94.80(2.55,2.65) 95.16 13443 94.93(2.66,2.41) 94.98

50 3395 95.20(2.04,2.76) 95.90 3391 95.00(2.44,2.56) 95.63
0.12 25 6134 95.04(2.34,2.62) 95.61 6130 95.07(2.35,2.58) 95.51

50 1553 94.85(2.35,2.80) 96.20 1550 95.61(2.17,2.22) 96.33
0.16 25 3528 94.73(2.65,2.62) 95.45 3524 94.89(2.70,2.41) 95.32

50 895 95.26(2.22,2.52) 96.46 891 95.18(2.37,2.45) 96.23
p = 0.6
0.04 25 232267 95.07(2.60,2.33) 95.01 232263 94.71(2.55,2.74) 94.99

50 58141 95.02(2.34,2.64) 95.40 58137 94.94(2.47,2.59) 95.45
0.08 25 58466 95.03(2.56,2.41) 95.09 58462 94.80(2.69,2.51) 95.02

50 14650 95.31(2.55,2.14) 95.42 14646 95.10(2.69,2.21) 95.38
0.12 25 26143 95.46(2.28,2.26) 95.69 26139 95.06(2.50,2.44) 95.35

50 6556 94.81(2.60,2.59) 95.99 6552 95.01(2.57,2.42) 95.80
0.16 25 14783 95.19(2.33,2.48) 95.51 14779 95.11(2.22,2.67) 95.91

50 3709 95.00(2.38,2.62) 96.40 3705 95.18(2.44,2.38) 96.29
p = 0.8
0.04 25 18844 95.16(2.40,2.44) 94.87 18841 94.46(2.85,2.69) 94.93

50 4784 94.93(2.11,2.96) 95.72 4780 95.46(2.22,2.32) 95.43
0.08 25 5109 95.17(2.21,2.62) 95.48 5106 95.54(2.19,2.27) 95.47

50 1310 95.17(2.11,2.72) 95.65 1307 95.09(2.67,2.24) 95.38
0.12 25 2428 95.18(1.91,2.91) 95.77 2425 95.28(2.35,2.37) 95.55

50 627 95.02(1.96,3.02) 96.36 623 95.20(2.57,2.23) 95.77
0.16 25 1444 94.89(2.15,2.96) 95.83 1440 94.94(2.55,2.51) 95.94

50 374 94.77(2.30,2.93) 97.04 370 94.69(3.04,2.27) 96.24


 Half width (i.e., ω) of a CI as given by the value of πs , i.e., 25% and 50% of πs .
† n denotes the estimated sample size; ‡ (L,R) denotes (LNCP, RNCP).

πs = 0.08, 0.12 with p = 0.8 and πs = 0.12 with πN = 0.2, 0.8 for Warner’s RRT model).
Based on the estimated sample sizes, all CIs perform well in the regard that their ECPs are pretty
close to the pre-specified nominal level (i.e., 95%) and have satisfactory balance between left- and
right-tailed errors. The results also show that the sample size estimates, using Wilson approach,
are slightly smaller than those based on Wald approach. And, the estimates are more accurate
in terms of actual assurance probabilities, coverage probabilities and balances between left- and
right-tailed errors.

The above simulation studies are based on the assumption that the expected prevalence
equals the true prevalence. We also conduct simulation studies to investigate the performance of
the proposed methods in situations where this assumption does not hold true. For this purpose,
we let α = 0.05, β = 0.05, and assume the true prevalence πs = 0.165, the expected prevalence
πes = rπs with r = 0.5, 0.7, 0.95, 1.2, and the half-widths of CI ω = 0.05, 0.10. In addition,
for cheater detection model, we set the true prevalence πs = 0.165 and the expected prevalence
πes = r1πs with r1 = 0.6, 0.95, 1.2. We also consider that the expected cheating parameter γ is



PSYCHOMETRIKA

Table 2.
Performance of the sample size formula with 1 − β assurance probability for UQM under (i) β = 0.5 and (ii) β = 0.05
with πN = 0.2, 0.5, 0.8

Wald Wilson
πs ω n ECP(L,R)% EAP n ECP(L,R)% EAP

(i) β = 0.5
πN = 0.2
0.04 25 5026 94.84(2.12,3.04) 51.47 5032 94.75(2.71,2.54) 50.10

50 1256 94.12(2.19,3.69) 50.09 1262 94.38(3.11,2.51) 48.65
0.08 25 1671 94.80(1.85,3.35) 49.57 1674 95.12(2.35,2.53) 51.59

50 417 94.99(1.91,3.10) 48.74 420 95.06(3.00,1.94) 53.04
0.12 25 913 94.70(2.07,3.23) 49.13 914 94.96(2.64,2.40) 48.46

50 228 93.43(1.62,4.95) 47.88 229 95.57(2.53,1.90) 53.86
0.16 25 602 94.75(2.30,2.95) 51.60 602 95.30(2.54,2.16) 51.32

50 150 94.85(1.80,3.35) 50.23 150 95.13(3.00,1.87) 50.54
πN = 0.5
0.04 25 8944 94.97(2.54,2.49) 50.21 8945 94.92(2.64,2.44) 49.79

50 2236 94.56(2.32,3.12) 49.96 2236 95.01(2.51,2.48) 50.35
0.08 25 2574 95.17(2.15,2.68) 51.16 2573 94.73(2.67,2.60) 51.46

50 643 95.17(1.90,2.93) 48.96 643 95.28(2.47,2.25) 52.76
0.12 25 1280 95.12(1.99,2.89) 48.48 1279 94.91(2.75,2.34) 52.18

50 320 94.78(1.82,3.40) 48.95 319 94.38(3.03,2.59) 50.15
0.16 25 789 94.97(2.21,2.82) 50.61 788 95.06(2.53,2.41) 51.37

50 197 94.09(2.52,3.39) 51.85 195 94.16(2.81,3.03) 48.07
πN = 0.8
0.04 25 12095 94.92(2.49,2.59) 50.50 12093 95.16(2.59,2.25) 51.06

50 3023 94.77(2.38,2.85) 50.65 3022 95.13(2.36,2.51) 51.24
0.08 25 3284 94.97(2.23,2.80) 49.06 3283 95.02(2.52,2.46) 49.48

50 821 94.85(2.40,2.75) 50.76 819 94.65(2.59,2.76) 52.99
0.12 25 1562 94.62(2.62,2.76) 49.64 1560 94.83(2.66,2.51) 50.85

50 390 94.53(2.22,3.25) 47.84 388 95.04(2.39,2.57) 50.30
0.16 25 928 95.17(2.41,2.42) 49.34 926 95.44(2.44,2.12) 51.10

50 232 94.55(2.14,3.31) 52.07 229 95.32(2.32,2.36) 52.01
(ii) β = 0.05
πN = 0.2
0.04 25 5381 94.47(2.38,3.15) 94.70 5380 94.77(2.63,2.60) 95.02

50 1431 95.30(1.77,2.93) 95.58 1429 95.05(2.57,2.38) 95.17
0.08 25 1835 94.46(2.20,3.34) 95.12 1832 94.40(2.92,2.68) 94.78

50 498 94.42(2.12,3.46) 96.17 495 95.65(2.53,1.82) 95.54
0.12 25 1014 94.83(2.15,3.02) 95.79 1011 95.48(2.29,2.23) 95.54

50 277 95.19(1.43,3.38) 96.88 274 94.89(2.78,2.33) 95.87
0.16 25 671 94.77(2.00,3.23) 96.03 668 95.27(2.66,2.07) 95.74

50 184 94.70(1.62,3.68) 96.29 180 95.58(2.59,1.83) 95.79
πN = 0.5
0.04 25 9239 95.19(2.19,2.62) 95.38 9236 95.10(2.52,2.38) 95.02

50 2382 95.43(2.00,2.57) 95.45 2379 95.14(2.40,2.46) 95.47
0.08 25 2708 94.85(2.42,2.73) 95.43 2704 94.54(2.92,2.54) 94.48

50 709 94.75(1.89,3.36) 96.09 706 95.29(2.70,2.01) 95.85
0.12 25 1361 94.76(2.02,3.22) 95.50 1357 95.00(2.38,2.62) 95.59

50 359 94.67(1.98,3.35) 96.70 356 94.52(2.92,2.56) 96.23
0.16 25 843 94.68(2.26,3.06) 96.34 839 94.47(3.03,2.50) 95.20

50 223 94.68(1.63,3.69) 96.81 220 95.11(2.67,2.22) 96.51
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Table 2.
continued

Wald Wilson
πs ω n ECP(L,R)% EAP n ECP(L,R)% EAP

πN = 0.8
0.04 25 12326 95.22(2.38,2.40) 95.21 12322 94.85(2.59,2.56) 95.18

50 3138 94.76(2.39,2.85) 95.48 3135 94.99(2.45,2.56) 95.09
0.08 25 3387 95.22(2.12,2.66) 95.80 3383 95.05(2.46,2.49) 95.64

50 872 94.32(2.46,3.22) 95.93 868 94.81(2.52,2.67) 95.38
0.12 25 1622 94.94(2.47,2.59) 96.29 1618 95.01(2.77,2.22) 95.58

50 420 94.73(2.25,3.02) 96.26 416 94.65(3.01,2.34) 96.24
0.16 25 967 94.84(2.64,2.52) 95.94 963 95.33(2.60,2.07) 95.85

50 251 95.04(1.97,2.99) 97.20 247 95.41(2.49,2.10) 97.51

Table 3.
Performance of the sample size formula with 1 − β assurance probability for ICT model under (i) β = 0.5 and (ii)
β = 0.05 with k = 4, 6, 8

Wald Wilson

πs ω n ECP(L,R)% EAP n ECP(L,R)% EAP

(i) β = 0.5
k = 4
0.04 25 156614 95.25(2.41,2.34) 49.16 156608 95.04(2.33,2.63) 50.43

50 39152 94.99(2.43,2.58) 49.88 39148 94.99(2.51,2.50) 50.53
0.08 25 39828 94.65(2.79,2.56) 49.23 39824 94.83(2.83,2.34) 50.04

50 9956 94.66(2.53,2.81) 49.98 9952 94.77(2.47,2.76) 51.49
0.12 25 17974 95.03(2.32,2.65) 50.84 17970 94.98(2.23,2.79) 50.47

50 4492 94.71(2.56,2.73) 49.25 4488 94.76(2.58,2.66) 50.75
0.16 25 10248 94.83(2.53,2.64) 48.80 10244 95.26(2.47,2.27) 51.64

50 2562 95.34(2.11,2.55) 48.85 2556 95.40(2.04,2.56) 50.67
k = 6
0.04 25 233446 94.78(2.78,2.44) 49.30 233440 95.06(2.53,2.41) 50.47

50 58360 94.70(2.56,2.74) 49.58 58356 94.94(2.42,2.64) 50.54
0.08 25 59036 94.77(2.49,2.74) 49.48 59032 94.89(2.52,2.59) 50.40

50 14758 94.99(2.35,2.66) 48.72 14754 94.94(2.63,2.43) 50.82
0.12 25 26512 95.03(2.56,2.41) 50.48 26506 94.84(2.48,2.68) 50.54

50 6628 94.81(2.49,2.70) 50.33 6622 94.89(2.45,2.66) 50.83
0.16 25 15050 94.77(2.54,2.69) 49.94 15044 95.12(2.44,2.44) 49.81

50 3762 94.96(2.33,2.71) 49.48 3756 95.08(2.33,2.59) 50.71
k = 8
0.04 25 310278 95.36(1.99,2.65) 50.76 310272 94.97(2.49,2.54) 50.35

50 77568 95.33(2.42,2.25) 49.78 77564 95.11(2.40,2.49) 49.76
0.08 25 78244 95.02(2.66,2.32) 49.49 78240 95.35(2.30,2.35) 50.72

50 19560 95.09(2.52,2.39) 49.44 19556 94.90(2.48,2.62) 51.27
0.12 25 35048 95.11(2.24,2.65) 49.71 35042 95.08(2.30,2.62) 50.08

50 8762 95.32(2.15,2.53) 50.24 8756 94.84(2.59,2.57) 50.87
0.16 25 19852 95.02(2.69,2.29) 48.45 19846 94.93(2.58,2.49) 49.08

50 4962 95.11(2.41,2.48) 47.55 4956 95.11(2.54,2.35) 50.80
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Table 3.
continued

Wald Wilson
πs ω n ECP(L,R)% EAP n ECP(L,R)% EAP

(ii) β = 0.05
k = 4
0.04 25 157206 94.83(2.66,2.51) 95.16 157198 95.20(2.38,2.42) 95.29

50 39448 94.99(2.46,2.55) 95.15 39442 94.98(2.70,2.32) 95.11
0.08 25 40098 94.78(2.52,2.70) 95.06 40092 94.46(2.88,2.66) 94.97

50 10090 94.93(2.38,2.69) 95.61 10084 94.68(2.38,2.94) 95.58
0.12 25 18136 95.06(2.36,2.58) 95.58 18130 94.55(2.59,2.86) 95.43

50 4574 95.30(2.41,2.29) 95.93 4566 95.14(2.42,2.44) 96.08
0.16 25 10358 94.85(2.49,2.66) 95.87 10350 95.06(2.56,2.38) 95.80

50 2616 95.15(2.13,2.72) 96.61 2608 95.28(2.23,2.49) 96.45
k = 6
0.04 25 234038 94.88(2.66,2.46) 94.87 234030 95.25(2.45,2.30) 95.06

50 58656 95.19(2.42,2.39) 95.35 58650 94.99(2.50,2.51) 95.22
0.08 25 59306 95.04(2.49,2.47) 95.02 59300 94.80(2.59,2.61) 95.11

50 14894 94.76(2.51,2.73) 95.58 14886 94.87(2.61,2.52) 95.75
0.12 25 26674 94.98(2.55,2.47) 95.13 26666 95.02(2.60,2.38) 95.41

50 6708 94.84(2.54,2.62) 96.05 6700 95.36(2.25,2.39) 96.11
0.16 25 15160 94.72(2.72,2.56) 95.37 15152 94.78(2.69,2.53) 95.35

50 3816 94.59(2.50,2.91) 96.28 3808 94.82(2.60,2.58) 95.97
k = 8
0.04 25 310870 94.99(2.47,2.54) 94.99 310862 95.11(2.46,2.43) 95.13

50 77864 95.08(2.53,2.39) 95.04 77858 94.96(2.54,2.50) 95.21
0.08 25 78516 95.07(2.45,2.48) 95.43 78508 95.15(2.46,2.39) 95.39

50 19696 94.88(2.72,2.40) 95.29 19688 94.96(2.46,2.58) 95.42
0.12 25 35212 94.98(2.47,2.55) 95.55 35204 94.84(2.42,2.74) 95.51

50 8842 94.85(2.37,2.78) 95.69 8836 94.60(2.80,2.60) 95.65
0.16 25 19962 94.48(2.74,2.78) 95.68 19954 95.05(2.46,2.49) 95.40

50 5016 95.06(2.49,2.45) 96.19 5010 95.00(2.63,2.37) 96.52

different from the true parameter. Since πs +βs +γ = 1.0 (i.e., γ = 1.0−πs −βs), we consider
the following expected proportion of honest-no respondent (i.e.,βes), which differs from the true
proportion (i.e., βs): the true proportion βs = 0.7 and the expected proportion βes = r2βs with
r2 = 0.6, 0.95, 1.1. As shown in Tables 1, 2, 3, 4 and 5, the performances of the estimated sample
sizes under various models are not affected by the settings of the other parameters (i.e., p, πN , k,
p1, p2). Therefore, we consider other settings of the parameters for eachmodel: (i)Warner model:
p = 0.3; (ii) unrelated question model: p = 0.7 and πN = 0.5; (iii) item count technique: k = 4
and πi = 0.5 for i = 1, 2, · · · , k; (iv) cheater detection model: p1 = 0.2, p2 = 0.8. We conduct
the simulation study as follows. First, given the expected prevalence πes , the expected proportion
βes and other parameters from each model, the estimated sample size for each model is obtained
via the formulas illustrated in Sect. 1. Second, based on the estimated sample size for each model,
10000 random samples are generated under the true parameter values, and consequently 10000
confidence intervals for πs are obtained. Third, based on the 10000 confidence intervals for each
model, we calculate the proportion of these intervals that include the true prevalence πs to obtain
the ECP, and we calculate the proportion of the widths of the intervals being controlled within
the pre-given value (i.e., ω) to obtain the ACP. Simulation results are reported in Table 6.
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According to Table 6, when the expected prevalence differs from the true prevalence, we
have the following observations: (i) ECPs of all CIs are still very close to the nominal confidence
level for each RRT model; (ii) most CIs have satisfactory balance between left- and right-tailed
errors; (iii) the closer the expected prevalence rate (i.e., πes) to the true prevalence rate (i.e., πs),
the closer the actual assurance probability to the pre-specified assurance probability; (iv) similar
observations can be found when the expected cheating parameter differs from the true parameter
for the cheater detection model.

Table 4.
Performance of the sample size formula with 1 − β assurance probability for CDM for (p1, p2) = (1/3, 2/3) under (i)
β = 0.5 and (ii) β = 0.05 with βs = 0.04, 0.08, 0.12, 0.16

Wald Wilson
πs ω n ECP(L,R)% EAP n ECP(L,R)% EAP

(i) β = 0.5
βs = 0.04
0.04 25 20296 95.20(2.36,2.44) 49.89 20336 94.83(2.43,2.74) 51.00

50 5074 94.90(1.90,3.20) 50.31 5114 95.29(2.45,2.26) 50.82
0.08 25 8332 94.86(2.22,2.92) 50.32 8348 95.13(2.43,2.44) 50.09

50 2082 94.78(2.21,3.01) 50.87 2098 94.51(3.04,2.45) 50.11
0.12 25 5014 95.26(2.16,2.58) 50.80 5020 95.00(2.67,2.33) 49.91

50 1252 94.91(2.15,2.94) 50.18 1258 95.33(2.66,2.01) 50.41
0.16 25 3480 95.09(2.28,2.63) 50.08 3482 95.07(2.52,2.41) 50.05

50 870 95.18(1.93,2.89) 51.17 870 95.24(2.50,2.26) 49.18
βs = 0.08
0.04 25 25624 95.04(2.11,2.85) 50.28 25652 94.79(2.45,2.76) 50.44

50 6406 94.96(2.38,2.66) 49.40 6432 94.90(2.76,2.34) 49.79
0.08 25 9540 94.90(2.42,2.68) 50.05 9552 94.96(2.65,2.39) 50.92

50 2384 94.91(2.09,3.00) 49.93 2396 94.95(2.82,2.23) 49.99
0.12 25 5496 95.17(2.11,2.72) 50.48 5500 94.93(2.75,2.32) 50.02

50 1374 95.27(2.07,2.66) 49.98 1378 95.12(2.55,2.33) 50.84
0.16 25 3722 94.82(2.39,2.79) 50.79 3722 95.43(2.38,2.19) 50.93

50 930 94.67(2.21,3.12) 49.78 930 94.52(2.80,2.68) 50.72
βs = 0.12
0.04 25 30732 94.68(2.38,2.94) 51.28 30752 94.74(2.72,2.54) 50.16

50 7682 95.02(2.39,2.59) 49.50 7702 94.92(2.75,2.33) 49.89
0.08 25 10694 94.63(2.50,2.87) 49.34 10702 94.89(2.56,2.55) 49.83

50 2672 95.13(2.17,2.70) 50.11 2680 95.16(2.38,2.46) 50.74
0.12 25 5954 94.81(2.50,2.69) 49.59 5956 95.00(2.47,2.53) 49.67

50 1488 95.26(2.02,2.72) 50.25 1490 95.30(2.37,2.33) 50.80
0.16 25 3948 94.99(2.25,2.76) 49.82 3946 95.16(2.44,2.40) 49.51

50 986 94.71(2.21,3.08) 50.16 986 95.59(2.42,1.99) 51.10
βs = 0.16
0.04 25 35622 94.87(2.44,2.69) 50.22 35636 94.60(2.57,2.83) 50.43

50 8904 94.70(2.65,2.65) 50.59 8918 94.76(2.84,2.40) 49.50
0.08 25 11794 94.99(2.39,2.62) 49.94 11798 95.25(2.36,2.39) 49.18

50 2948 95.31(2.09,2.60) 49.72 2952 94.93(2.51,2.56) 49.97
0.12 25 6388 95.28(2.19,2.53) 50.02 6390 94.97(2.71,2.32) 50.05

50 1596 95.18(2.01,2.81) 50.03 1596 94.71(2.66,2.63) 49.89
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Table 4.
continued

Wald Wilson
πs ω n ECP(L,R)% EAP n ECP(L,R)% EAP

0.16 25 4162 94.98(2.23,2.79) 50.03 4160 94.86(2.79,2.35) 50.27
50 1040 94.73(2.26,3.01) 50.24 1038 94.70(2.41,2.89) 50.57

β = 0.05
(ii) βs = 0.04
0.04 25 21314 94.87(2.43,2.70) 95.11 21362 94.69(2.63,2.68) 95.29

50 5572 95.43(1.93,2.64) 94.91 5616 94.78(2.83,2.39) 95.44
0.08 25 8796 95.29(2.21,2.50) 95.18 8816 94.92(2.62,2.46) 95.33

50 2310 94.61(1.79,3.60) 95.24 2326 95.14(2.38,2.48) 95.30
0.12 25 5294 94.87(2.48,2.65) 95.35 5302 95.01(2.55,2.44) 95.40

50 1390 95.17(2.02,2.81) 95.29 1396 95.18(2.63,2.19) 95.24
0.16 25 3668 94.88(2.31,2.81) 95.06 3670 94.63(2.72,2.65) 95.29

50 962 94.42(2.27,3.31) 95.37 962 94.98(2.55,2.47) 95.68
βs = 0.08
0.04 25 26606 95.13(2.32,2.55) 94.92 26640 95.25(2.44,2.31) 95.24

50 6888 95.31(2.27,2.42) 94.85 6920 95.18(2.61,2.21) 94.89
0.08 25 9988 95.09(2.38,2.53) 95.16 10004 94.84(2.76,2.40) 94.85

50 2604 94.63(2.26,3.11) 95.11 2616 94.84(2.43,2.73) 95.58
0.12 25 5766 95.26(2.20,2.54) 95.34 5772 94.75(2.41,2.84) 95.28

50 1506 95.06(2.01,2.93) 95.30 1510 94.83(2.62,2.55) 95.58
0.16 25 3900 94.83(2.32,2.85) 95.32 3902 95.02(2.44,2.54) 95.70

50 1018 94.98(1.96,3.06) 95.35 1018 94.99(2.56,2.45) 96.15
βs = 0.12
0.04 25 31680 94.74(2.66,2.60) 94.92 31706 94.86(2.49,2.65) 95.64

50 8150 94.89(2.13,2.98) 94.91 8174 95.12(2.56,2.32) 95.34
0.08 25 11126 95.21(2.28,2.51) 95.31 11136 94.82(2.65,2.53) 95.19

50 2884 94.75(2.24,3.01) 95.21 2894 94.89(2.67,2.44) 95.68
0.12 25 6212 94.90(2.35,2.75) 94.93 6216 94.48(3.00,2.52) 94.93

50 1614 94.66(2.22,3.12) 95.26 1618 95.25(2.39,2.36) 95.90
0.16 25 4120 94.54(2.63,2.83) 94.96 4120 95.04(2.63,2.33) 95.01

50 1070 95.03(2.25,2.72) 95.57 1070 94.87(2.51,2.62) 96.00
βs = 0.16
0.04 25 36536 95.28(2.21,2.51) 95.03 36556 95.35(2.32,2.33) 95.54

50 9356 94.78(2.44,2.78) 94.93 9374 95.02(2.53,2.45) 95.23
0.08 25 12208 95.17(2.23,2.60) 95.09 12216 95.26(2.50,2.24) 95.05

50 3152 94.78(2.44,2.78) 95.12 3158 95.09(2.63,2.28) 95.28
0.12 25 6636 94.78(2.75,2.47) 95.12 6638 94.66(2.90,2.44) 95.48

50 1718 94.81(2.29,2.90) 95.24 1720 95.03(2.69,2.28) 95.74
0.16 25 4324 95.18(2.16,2.66) 94.97 4324 95.18(2.40,2.42) 95.44

50 1120 95.00(2.18,2.82) 95.44 1118 94.54(2.77,2.69) 95.59

3. Numerical Examples

To demonstrate the practicability and applicability of the proposed methods, we apply them
to the study on unethical behavior in negotiation as discussed in Sect. 1. Suppose that an applied
psychologist collects survey data and examines whether negotiators use this unethical tactic to
increase the likelihood of reaching an agreement. He or she believes that approximately 16.5%
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of negotiators make false promises in negotiations (i.e., πs = 0.165). We calculate the required
sample size for a new study in which we have 95% chance (i.e., β = 0.05) that the half width of
the 95% (i.e., 1− α = 0.95) confidence interval is no greater than 25% of the point estimate (i.e.,
ω = 0.25πs), for the various RRT models considered in this article.

3.1. Warner’s RRT Model

Within Warner’s RRT model, two mutually exclusive questions about the sensitive attributes
are: (A) Have you ever made promises without an intention to deliver in a negotiation? (Ac) Have

Table 5.
Performance of the sample size formula with 1 − β assurance probability for CDM for (p1, p2) = (1/4, 3/4) under (i)
β = 0.5 and (ii) β = 0.05 with βs=0.04, 0.08, 0.12, 0.16

Wald Wilson
πs ω n ECP(L,R)% EAP n ECP(L,R)% EAP

(i) β = 0.5
βs = 0.04
0.04 25 9460 94.79(1.96,3.25) 51.11 9496 94.91(2.74,2.35) 50.57

50 2364 94.69(1.80,3.51) 51.19 2400 95.12(2.72,2.16) 51.40
0.08 25 4008 95.39(2.05,2.56) 50.17 4022 94.99(2.92,2.09) 49.58

50 1002 94.92(1.62,3.46) 50.56 1014 94.74(3.12,2.14) 49.33
0.12 25 2444 95.33(1.97,2.70) 50.20 2448 95.21(2.76,2.03) 50.29

50 610 94.38(1.89,3.73) 49.94 614 94.97(2.92,2.11) 49.51
0.16 25 1708 94.87(2.24,2.89) 49.69 1708 95.07(2.61,2.32) 50.47

50 426 94.43(1.92,3.65) 49.96 426 95.66(2.53,1.81) 50.09
βs = 0.08
0.04 25 11478 95.27(2.02,2.71) 50.05 11504 95.19(2.74,2.07) 49.55

50 2868 94.88(1.70,3.42) 51.20 2896 95.06(2.63,2.31) 51.02
0.08 25 4466 94.80(2.17,3.03) 50.07 4476 95.06(2.50,2.44) 50.01

50 1116 94.36(1.99,3.65) 50.83 1126 94.98(2.70,2.32) 51.08
0.12 25 2626 95.19(2.01,2.80) 50.07 2630 95.21(2.56,2.23) 49.88

50 656 94.93(1.63,3.44) 50.55 658 95.50(2.51,1.99) 50.15
0.16 25 1800 94.74(2.29,2.97) 49.89 1798 94.83(2.55,2.62) 49.78

50 450 94.47(1.99,3.54) 50.09 448 94.98(2.59,2.43) 49.01
βs = 0.12
0.04 25 13426 95.32(2.05,2.63) 50.51 13446 95.01(2.46,2.53) 50.00

50 3356 94.95(2.02,3.03) 50.29 3376 95.44(2.42,2.14) 50.01
0.08 25 4908 95.10(2.06,2.84) 50.23 4916 94.90(2.64,2.46) 50.23

50 1226 94.60(2.10,3.30) 49.68 1234 95.04(2.73,2.23) 50.54
0.12 25 2802 95.36(2.07,2.57) 50.00 2804 95.04(2.51,2.45) 49.85

50 700 94.89(1.70,3.41) 50.98 702 94.81(2.86,2.33) 50.84
0.16 25 1886 95.19(2.27,2.54) 50.00 1886 95.02(2.73,2.25) 50.18

50 470 94.83(1.93,3.24) 48.93 470 95.30(2.55,2.15) 51.08
βs = 0.16
0.04 25 15304 94.98(2.30,2.72) 51.29 15320 95.20(2.46,2.34) 50.54

50 3826 95.11(2.04,2.85) 51.35 3840 94.89(2.56,2.55) 50.69
0.08 25 5332 94.98(2.16,2.86) 50.49 5336 95.09(2.51,2.40) 50.46

50 1332 94.92(1.94,3.14) 50.16 1338 94.84(2.82,2.34) 50.44
0.12 25 2970 94.93(2.19,2.88) 50.39 2970 94.89(2.52,2.59) 50.09

50 742 94.55(2.22,3.23) 49.76 742 94.98(2.83,2.19) 50.45
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Table 5.
continued

Wald Wilson
πs ω n ECP(L,R)% EAP n ECP(L,R)% EAP

0.16 25 1970 95.02(2.19,2.79) 50.76 1968 94.84(2.62,2.54) 50.57
50 492 94.80(1.66,3.54) 50.41 490 94.97(2.80,2.23) 50.33

(ii) β = 0.05
βs = 0.04
0.04 25 10246 94.96(2.24,2.80) 95.05 10292 94.87(2.58,2.55) 95.39

50 2744 94.73(1.86,3.41) 94.59 2784 94.72(3.11,2.17) 95.03
0.08 25 4368 94.93(2.09,2.98) 94.86 4386 95.03(2.81,2.16) 95.33

50 1174 95.09(1.74,3.17) 95.17 1188 95.36(2.57,2.07) 95.51
0.12 25 2660 95.10(2.18,2.72) 94.89 2668 95.01(2.58,2.41) 95.67

50 714 94.44(2.09,3.47) 95.42 720 94.85(2.66,2.49) 95.88
0.16 25 1854 94.86(2.13,3.01) 95.55 1856 95.01(2.45,2.54) 95.78

50 496 94.89(1.85,3.26) 95.31 496 94.67(2.85,2.48) 95.59
βs = 0.08
0.04 25 12244 95.45(1.84,2.71) 95.38 12278 95.05(2.80,2.15) 95.15

50 3240 94.03(2.25,3.72) 94.75 3272 94.74(2.72,2.54) 95.62
0.08 25 4816 94.78(2.10,3.12) 95.23 4830 94.97(2.70,2.33) 95.28

50 1286 95.21(1.77,3.02) 95.33 1296 95.18(2.57,2.25) 95.57
0.12 25 2838 94.96(2.29,2.75) 95.09 2842 94.78(2.64,2.58) 95.08

50 758 94.98(1.76,3.26) 95.31 762 95.07(2.63,2.30) 95.81
0.16 25 1940 94.64(2.41,2.95) 95.27 1942 94.96(2.51,2.53) 95.81

50 518 94.82(1.91,3.27) 95.79 516 95.06(2.70,2.24) 95.82
βs = 0.12
0.04 25 14172 94.94(2.25,2.81) 94.99 14200 94.84(2.48,2.68) 95.77

50 3720 95.29(1.82,2.89) 94.91 3744 94.90(2.72,2.38) 95.43
0.08 25 5248 94.68(2.39,2.93) 94.84 5260 94.89(2.54,2.57) 95.58

50 1392 94.93(1.76,3.31) 95.16 1400 95.41(2.47,2.12) 95.65
0.12 25 3006 95.05(2.17,2.78) 95.06 3010 94.90(2.61,2.49) 95.44

50 800 94.67(1.77,3.56) 95.31 802 94.80(2.67,2.53) 95.93
0.16 25 2024 95.00(2.05,2.95) 95.68 2024 94.83(2.69,2.48) 95.55

50 538 94.70(1.95,3.35) 96.08 536 94.91(2.94,2.15) 95.89
βs = 0.16
0.04 25 16032 95.13(2.07,2.80) 95.30 16054 94.99(2.44,2.57) 95.31

50 4182 94.37(2.30,3.33) 94.63 4202 95.00(2.65,2.35) 95.23
0.08 25 5662 94.94(2.18,2.88) 94.85 5672 94.94(2.67,2.39) 95.35

50 1494 94.75(1.95,3.30) 95.46 1500 95.25(2.50,2.25) 95.79
0.12 25 3168 94.74(2.13,3.13) 94.97 3172 94.68(2.84,2.48) 95.35

50 838 94.78(1.98,3.24) 95.42 840 94.71(2.75,2.54) 96.03
0.16 25 2102 94.77(2.35,2.88) 95.42 2100 94.96(2.52,2.52) 95.80

50 556 94.51(2.14,3.35) 96.08 554 94.85(2.80,2.35) 96.11

you never made promises without an intention to deliver in a negotiation? These two questions
are presented with probability p = 0.3 and 1 − p = 0.7, respectively. With πs = 0.165, the
approximate sample size n = 3326 is calculated from Eq. (4) based on Wald CI and n = 3322 is
calculated from Eq. (6) based on Wilson CI, respectively. The corresponding ECPs (EAPs) are
94.93% (95.89%) and 95.03% (95.73%) for Wald and Wilson methods, respectively. In contrast,
the conventional sample sizes (i.e., the assurance probability 1 − β = 50%) required for a
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Table 6.
Performance of the sample size formula with 95% assurance probability for various models when the expected prevalence
or proportion (i.e., πes or βes ) differs from the true prevalence or proportion (i.e., πs or βs )

Wald Wilson
ω πc

es βd
es n ECP(L,R)% EAP n ECP(L,R)% EAP

Warner’s RRT
0.05 0.50 – 2187 95.23(2.41,2.36) 7.00 2183 95.35(2.42,2.23) 6.75

0.70 – 2224 94.87(2.47,2.66) 44.00 2220 95.08(2.41,2.51) 43.60
0.95 – 2265 94.83(2.52,2.65) 92.71 2261 95.00(2.62,2.38) 92.99
1.20 – 2300 94.86(2.53,2.61) 99.94 2296 94.92(2.44,2.64) 99.81

0.10 0.50 – 560 94.69(2.51,2.80) 59.75 557 95.31(2.34,2.35) 59.08
0.70 – 568 95.14(2.25,2.61) 82.65 565 95.03(2.39,2.58) 82.40
0.95 – 577 94.56(2.37,3.07) 96.08 574 95.03(2.56,2.41) 96.99
1.20 – 585 95.12(2.20,2.68) 99.59 581 95.39(2.41,2.20) 99.62

UQM
0.05 0.50 – 569 94.77(2.16,3.07) 6.90 566 94.70(2.93,2.37) 6.27

0.70 – 606 94.97(2.13,2.90) 42.19 602 95.35(2.44,2.21) 41.72
0.95 – 647 94.62(2.47,2.91) 92.72 643 94.78(2.84,2.38) 92.14
1.20 – 683 94.75(2.47,2.78) 99.85 679 95.10(2.51,2.39) 99.93

0.10 0.50 – 155 94.14(2.24,3.62) 60.04 152 95.30(2.37,2.33) 58.57
0.70 – 164 94.56(2.05,3.09) 80.79 160 94.93(2.61,2.46) 81.45
0.95 – 173 94.70(1.71,3.59) 96.52 169 95.43(2.54,2.03) 96.24
1.20 – 180 94.07(1.73,4.20) 99.69 177 95.10(2.74,2.16) 99.55

ICT
0.05 0.50 – 3243 94.77(2.47,2.76) 7.24 3239 95.00(2.69,2.31) 6.22

0.70 – 3280 94.86(2.38,2.76) 43.03 3275 94.90(2.36,2.74) 41.02
0.95 – 3321 94.93(2.43,2.64) 92.88 3316 95.19(2.38,2.43) 92.24
1.20 – 3357 95.06(2.48,2.46) 99.93 3352 94.59(2.69,2.72) 99.87

0.10 0.50 – 824 94.71(2.54,2.75) 57.42 820 94.85(2.45,2.70) 58.74
0.70 – 832 94.62(2.34,3.04) 80.84 828 95.27(2.36,2.37) 79.93
0.95 – 841 94.85(2.26,2.89) 96.09 837 94.52(2.72,2.76) 95.25
1.20 – 849 95.12(2.40,2.48) 99.71 844 94.78(2.58,2.64) 99.44

CDM
0.05 0.60 0.60 500 94.89(2.20,2.91) 0.00 500 94.72(2.66,2.62) 0.00

0.95 570 94.54(2.68,2.78) 2.65 568 95.07(2.49,2.44) 2.99
1.10 591 95.02(2.23,2.75) 14.66 589 95.05(2.64,2.31) 15.32

0.95 0.60 584 94.81(2.42,2.77) 9.16 582 95.07(2.57,2.36) 9.82
0.95 633 94.96(2.13,2.91) 85.66 631 95.18(2.52,2.30) 87.08
1.10 647 94.90(2.44,2.66) 97.03 644 95.00(2.53,2.47) 97.40

1.20 0.60 631 94.95(2.18,2.87) 84.05 629 94.83(2.66,2.51) 84.59
0.95 667 95.02(2.32,2.66) 99.92 664 94.98(2.48,2.54) 99.98
1.10 674 94.90(2.20,2.90) 99.99 671 95.01(2.65,2.34) 100.0

0.10 0.60 0.60 137 94.53(2.19,3.28) 8.55 135 95.04(2.78,2.18) 9.98
0.95 153 94.56(2.06,3.38) 49.53 151 95.10(2.57,2.33) 53.73
1.10 158 94.12(2.14,3.74) 69.77 155 95.00(2.86,2.14) 69.85

0.95 0.60 156 94.35(2.17,3.48) 61.50 154 94.97(2.66,2.37) 67.06
0.95 167 94.99(2.06,2.95) 95.45 164 95.00(2.66,2.34) 96.32
1.10 169 94.70(2.04,3.26) 97.86 166 94.48(3.07,2.45) 97.75

1.20 0.60 167 94.92(2.25,2.83) 95.40 164 94.86(2.78,2.36) 95.89
0.95 174 94.47(2.29,3.24) 99.86 171 95.05(2.66,2.29) 99.91
1.10 175 94.43(2.25,3.32) 99.92 172 94.84(2.81,2.35) 99.97

c Expected prevalence (πes) as given by the values of πs , i.e., πes = (0.50, 0.70, 0.95, 1.20) or
(0.60, 0.95, 1.20)πs .
d Expected proportion (βes) as given by the values of βs , i.e., βes = (0.60, 0.95, 1.10)βs .
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two-sided 95% confidence interval with expected width ω = 0.25πs are n = 3274 and 3271,
respectively. The corresponding ECPs (EAPs) are 94.87% (50.95%) and 95.15% (51.16%) for
the Wald and Wilson methods, respectively.

3.2. Unrelated Question Model

Within the unrelated question model, a neutral question N, for example, “Were you born in
odd months?” is required in addition to the sensitive question (A): Have you ever made promises
without an intention to deliver in a negotiation? Hence, πN = 0.5. Assume that the sensitive
question and the neutral question are presented with probabilities p = 0.7 and 1 − p = 0.3,
respectively. With πs = 0.165, the approximate sample size n = 950 is calculated from Equation
(11) based on Wald CI and n = 946 is calculated from Equation (14) based on Wilson CI,
respectively. The corresponding ECPs (EAPs) are 94.77% (96.13%) and 94.97% (95.62%) for
Wald and Wilson methods, respectively. In contrast, when the conventional sample sizes (i.e., the
assurance probability 1 − β = 50%) required for a two-sided 95% confidence interval with an
expected width ω = 0.25πs are n = 898 and 896, the corresponding ECPs (EAPs) are 94.67%
(50.68%) and 94.94% (49.17%) for the Wald and Wilson methods, respectively.

3.3. Item Count Technique

Within the model of item count technique, assume that k = 4 neutral questions are used
by a researcher and that the probability of answering each of these neutral question with “yes”
is 0.5, i.e., πi = 0.5 for i = 1, 2, 3, 4, the number of respondents in control group is the same
as that in experiment group, i.e., nc = ne = 1

2n. With πs = 0.165, the approximate sample size
n = 9756 is calculated from Equation (18) based on Wald CI and n = 9748 is calculated from
Equation (20) based on Wilson CI, respectively. The corresponding ECPs (EAPs) are 95.04%
(95.83%) and 95.05% (95.56%) for Wald and Wilson methods, respectively. In contrast, when
the conventional sample sizes (i.e., the assurance probability 1 − β = 50%) required for a two-
sided 95% confidence interval only with an expected width ω = 0.25πs are n = 9652 and 9646,
the corresponding ECPs (EAPs) are 94.78% (49.03%) and 95.03% (50.54%) for the Wald and
Wilson methods, respectively.

3.4. Cheater Detection Model

Within the cheater detection model, assume that participants in the experiment and control
groups receive the sensitive question with probability p1 = 0.2 and p2 = 0.8, respectively. The
numbers of participants in two groups are equal, i.e., n1 = n2 = 1

2n. With βs = 0.7 and πs =
0.165, the approximate sample size of n = 1878 is calculated from Equation (26) based on Wald
CI and the approximate sample size of n = 1872 is calculated from Equation (29) based onWilson
CI, respectively. The corresponding ECPs (EAPs) are 95.04% (95.92%) and 94.78% (95.95%)
for the Wald and Wilson methods, respectively. In contrast, when the conventional sample sizes
(i.e., the assurance probability 1 − β = 50%) required for a two-sided 95% confidence interval
with an expected width ω = 0.25πs are n = 1800 and 1794, the corresponding ECPs (EAPs) are
94.75% (49.41%) and 95.00% (49.07%) for the Wald and Wilson methods, respectively.

It should be noted that the recommended sample sizes for all models are greater than the
number of participants (i.e., 240) recruited to Kern and Chugh’s (2009) studies. In fact, with the
sample size 240, the actual ECPs, ECWs and EAPs of CIs for πs under the parameter settings
being considered in the above studies for each model are reported in Table 7.

According to the results, the ECPs of CIs for πs under all models are very close to the pre-
assigned nominal confidence level (i.e., 95%). However, the probabilities of controlling the half
width of the CI that are not larger than ω = 0.25πs = 0.04125 are 0.0 for all models. In fact, the
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Table 7.
ECPs(%), ECWs and EAPs(%) of CIs for πs under various RRT models with the actual sample size (i.e.,240 participants)
and parameter settings same as those in Sect. 3 for the studies conducted in Kern and Chugh (2009)

Wald Wilson

Model ECP(ECW) EAP ECP(ECW) EAP

Warner 94.70(0.304) 0.0 94.78(0.302) 0.0
UQM 94.34(0.159) 0.0 95.08(0.158) 0.0
CDM 94.75(0.159) 0.0 95.26(0.158) 0.0
ICT 94.60(0.369) 0.0 95.16(0.366) 0.0

actual half widths of all CIs with sample size 240 are much greater than ω = 0.25πs = 0.04125,
as indicated in Table 7. Specifically, our findings suggest that when the assurance probability is
not incorporated into the sample size estimation, the widths of CIs cannot be controlled even
though the coverage probability is close to the nominal confidence level.

4. Conclusion and Discussion

For studying the prevalence of a sensitive attribute, determining the number of participants
to be recruited to the survey is an important research aspect. In the context of survey sampling,
sample size determination based on interval estimation is key objective. Therefore, the current
research considers sample size determination using interval width control based on two CI types
(i.e., Wald and Wilson CIs) for four different randomized response models (i.e., Warner’s model,
UQM, ICT and CDM). The derived sample size formulas can control the width of a confidence
interval at a specified confidence levelwith the assurance probability of achieving the pre-specified
precision. Our simulation results demonstrate that all formulas derived fromWald andWilson CIs
are accurate in terms of empirical coverage probability (ECP) and empirical assurance probability
(EAP). An important note is that sample size formulas based on Wilson CIs outperform those
based onWald CIs for various RRT models in the sense that the ECPs and EAPs of the former are
closer to the pre-specified levels than those of the latter. Therefore, sample size formulas derived in
this article may help researchers determine a sample size that can achieve pre-specified precision
with an assurance probability in a survey study for detecting meaningful prevalence rates. As
shown in Ulrich et al. (2012), the parameters of the four RRT models cannot be matched with
each other; therefore, it is not realistic to compare the sample size formulas of the different RRT
models in order to determine the most accurate one. Finally, the numerical examples regarding
detecting negotiators’ use of unethical tactics in Sect. 3 clearly demonstrate how to better estimate
the required sample size by using interval width control and carrying out a survey instead of
conducting a full-scale experiment.

Generally, the two approaches that are employed to determine the desired sample size are,
namely hypothesis testing and confidence interval estimation. It iswell documented that the former
involves both the type I error rate and power, while the latter does not explicitly involve power.
In order that the sample size estimation based on expected confidence interval width can provide
high assurance in achieving the desired precision, we incorporate an assurance probability for
sample size determination to control the width of a confidence interval, i.e., sample size can be
estimated by controlling the width of a confidence interval at a specified assurance probability.
Ulrich et al. (2012) considered the sample size determination, in terms of hypothesis testing under
four randomized response models. However, sample size formulas based on confidence interval
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width are not available in the extant literature. In this article, we derived such formulas for survey
sampling of sensitive attributes. Note that most sample size estimates can be obtained by solving
polynomial equation of degree not greater than four. Thus, no complicated computations are
required in this article. We also developed program codes to compute the estimated sample sizes,
and these program codes are available to readers as the supplementary material.

A restriction of our proposed sample size formulas relies on the specifications of relative
accurate values of the prevalence rate (i.e., πs) and other model parameters (e.g., βs in CDM
model). Researchers, who consider applying our proposed sample size formulas, should be aware
that the actual confidence intervals could be wider than required if they cannot come up with
accurate approximations of the true prevalence and other model parameters beforehand.

Recently, many variants of the RRT technique have been proposed. For example, Yu, Tian, &
Tang (2008) developed a RRT variant (i.e., the crosswise model (CWM) with simple instructions.
Specifically, the interviewee received a sensitive question (denoted as "S") and a neutral question
(denoted as "N") simultaneously and was then asked to indicate whether the two answers given in
"S" and "N" were the same or different. This model can be applied to both face-to-face personal
interviews andmail questionnaire, because no randomization device is required. This also enables
the interviewee to mask his or her answer to the sensitive question. Therefore, it has received
considerable attention in the scientific community (e.g., Sagoe et al., 2021; Schnell & Thomas,
2021). It is clear that the crosswise model is mathematically equivalent as Warner’s model. As
a result, the reported formulas and the results of the Warner model are equally valid for CWM.
Ostapczuk et al. (2009) proposed a symmetric variant of CDM, but an iterative algorithm (e.g.,
expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977)) is needed to obtain
the maximum likelihood estimations (MLEs) of parameters πs , βs and γ . Therefore, we do not
consider the sample size determination under the symmetric CDM in this article.
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