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ABSTRACT

Aims. Quasar strong gravitational lenses are important tools for putting constraints on the dark matter distribution, dark energy con-
tribution, and the Hubble-Lemaître parameter. We aim to present a new supervised machine learning-based method to identify these
lenses in large astrometric surveys. The Gaia Focused Product Release (FPR) GravLens catalogue is designed for the identification
of multiply imaged quasars, as it provides astrometry and photometry of all sources in the field of 4.7 million quasars.
Methods. Our new approach for automatically identifying four-image lens configurations in large catalogues is based on the eXtreme
Gradient Boosting classification algorithm. To train this supervised algorithm, we performed realistic simulations of lenses with four
images that account for the statistical distribution of the morphology of the deflecting halos as measured in the EAGLE simulation. We
identified the parameters discriminant for the classification and performed two different trainings, namely, with and without distance
information.
Results. The performances of this method on the simulated data are quite good, with a true positive rate and a true negative rate
of about 99.99% and 99.84%, respectively. Our validation of the method on a small set of known quasar lenses demonstrates its
efficiency, with 75% of known lenses being correctly identified. We applied our algorithm (both trainings) to more than 0.9 million
quadruplets selected from the Gaia FPR GravLens catalogue. We derived a list of 1127 candidates with at least one score larger than
0.75, where each candidate has two scores–one from the model trained with distance information and one from the model trained
without distance information–and including 201 very good candidates with both high scores.

Key words. gravitational lensing: strong – methods: data analysis – Galaxy: halo

1. Introduction

An accurate and unbiased value of the Hubble-Lemaître con-
stant (H0) is key in observational cosmology for characterising

? Corresponding author; quentin.petit.1@u-bordeaux.fr

the Universe’s present-day rate of expansion. Several methods
can be used to determine it, and there is currently a tension at
a 5σ level (e.g. Wang et al. 2024) between local measurements
involving, for instance, the distances of Cepheids and high red-
shift ones obtained by fitting the cosmological model to observa-
tions of the cosmological microwave background. Unaccounted
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for biases in the data sets and/or possible inadequacies in the
standard ΛCDM model may explain this tension. Within this
context, succeeding in getting more H0 estimates from quasar
strong gravitational lenses is of great interest. This approach,
first discussed in Refsdal (1964), relies on the observed time
delay for propagating changes in the source brightness between
lensed images. It is indeed independent from both cosmic dis-
tance ladder determinations and type Ia supernovae, gravita-
tional source detections, and cosmological microwave back-
ground analyses, with a final accuracy depending mainly on the
ability to model the projected mass distribution of the lenses and
the number statistics of the sample. Today, the Hubble-Lemaître
constant can be determined this way with a precision of up to
2.4%, assuming a spatially flat cosmology and accounting for
systematic errors (Wong et al. 2020).

The main limiting factor to reach the desirable 1% level is
the small number of quasar gravitational lenses suitable for such
studies (only six gravitationally lensed quasars are involved in
the above H0LICOW paper). Even before being able to mon-
itor the confirmed lenses on a decade-long term and obtain-
ing the required richly sampled light curves (e.g. the COSMO-
GRAIL program Courbin et al. 2005; Millon et al. 2020), it is
first mandatory to identify systems with two or more lensed
images among millions of sources, with the even rarer quadru-
ply imaged quasars (quads) benefiting from finer modelling of
the deflector.

The landscape has evolved in recent years with the
discovery of dozens of new lensed quasars in large-scale
optical surveys such as the Sloan Digital Sky Survey
(SDSS; Abazajian et al. 2009) and the Dark Energy Survey
(Dark Energy Survey Collaboration 2016) thanks to the devel-
opment and automation of lens identification algorithms. In that
respect, the ESA Gaia mission currently plays a considerable
role by accelerating the discovery of quads (Ducourant et al.
2018; Stern et al. 2021).

The common factor in all of these blind searches in large data
sets is the use of powerful methods to sift through the images
and automatically select lens candidates. This research has espe-
cially motivated the use of artificial intelligence-based strate-
gies, such artificial neural networks (ANNs; Rosenblatt 1957)
and convolutional neural networks (CNNs; LeCun et al. 1989),
to analyse first more or less complex simulations of strongly
lensed systems for various surveys (e.g. Hezaveh et al. 2017;
Schaefer et al. 2018; Lanusse et al. 2018; Pearson et al. 2019;
Euclid Collaboration 2024) and to then look in parallel for such
events in wide-field imaging surveys such as the Canada-France-
Hawaii Telescope Legacy Survey (CFHTLS; Jacobs et al.
2017), the COSMOS field (Pourrahmani et al. 2018), the Kilo
Degree Survey (KiDS; Petrillo et al. 2017, 2019a,b; He et al.
2020; Li et al. 2021), the Dark Energy Survey (Jacobs et al.
2019a,b; Rojas et al. 2022; Zaborowski et al. 2023), the Dark
Energy Spectroscopic Instrument (DESI) Legacy Imaging Sur-
veys (Huang et al. 2020, 2021), the Panoramic Survey Tele-
scope and Rapid Response System (Pan-STARRS) survey
(Cañameras et al. 2020), the VST Optical Imaging of the CDFS
and ES1 fields (VOICE survey; Gentile et al. 2022), and the
Hyper-Suprime Cam Subaru Strategic Program (HSC-SSP;
Moskowitz et al. 2024).

It is important to note that the aforementioned large-scale
surveys and studies are predominantly ground-based. Con-
sequently, only gravitational lenses with angular separations
between lensed images larger than about 1.5 arcsec have been
detected in practice. Overcoming this limitation to also detect
compact gravitational lenses with angular separations smaller

than 1 arcsec requires a high angular resolution that is easier
for space observations to reach, which also have the benefit of
a very stable instrumental response. The ESA Gaia space obser-
vatory with its all-sky data releases is without equivalent for such
a purpose, with an unparalleled theoretical angular resolution of
0.18′′.

This paper presents a new machine learning-based approach,
namely, the use of the eXtreme Gradient Boosting (XGBoost)
algorithm, to search for gravitational lenses of quasars in the
Gaia data releases, especially quads. Since Gaia provides cat-
alogues of positions rather than images, it is essential to work at
the catalogue level, making supervised machine learning algo-
rithms particularly well suited for this task. Our method is rooted
in improved simulations of gravitational lenses and a careful
selection of the relevant information for this goal to make sig-
nificant progress in the blind identification of such systems in
very large catalogues.

This paper is structured as follows. Section 2 presents the
Gaia Focused Product Release (FPR) GravLens catalogue, high-
lighting its relevance and potential for our study. Section 3 intro-
duces the XGBoost algorithm. In Sect. 4, we outline the con-
struction of our training set, focusing on the creation of a real-
istic catalogue of simulated lenses. Section 5 details the cru-
cial discriminant parameters for the classification task. Section 6
describes the XGBoost training process, offering insights into its
performance metrics and efficacy in the given context. Section 7
presents the application of our trained model to the GravLens
dataset. Section 8 summarises our findings and indicates poten-
tial improvements for future work.

2. The Gaia Focused Product Release GravLens
catalogue

Current releases of Gaia data remain incomplete for the lenses
of quasars with the smallest angular separations (Arenou et al.
2017; Fabricius et al. 2021; Torra et al. 2021). One or more
lensed images of some known systems have indeed no coun-
terpart in Gaia DR3 (Ducourant et al. 2018), although they are
detected by the satellite. This situation has slowed the identifi-
cation of new lenses in Gaia data because most of the as yet
undiscovered gravitational lenses of quasars are characterised
by small angular separations. To address this, the Gaia Data
Processing and Analysis Consortium (Gaia DPAC) has devel-
oped a dedicated processing chain aimed at analysing the envi-
ronment around quasar candidates and producing a catalogue of
sources near these candidates. This catalogue is more complete
at smaller separations compared to Gaia DR3.

This chain uses an unsupervised clustering algorithm widely
used in machine learning and data analytics to cluster raw
Gaia measurements around quasars within 6 arcsec. This so-
called density-based spatial clustering of Applications with noise
(DBSCAN) algorithm (Ester et al. 1996) groups the individual
epoch detections in right ascension and declination coordinates
with angular separations smaller than a given threshold, allowing
new sources not previously published in current Gaia catalogues
to be identified. The whole set of sources found in the neigh-
bourhood of a quasar is called hereafter a multiplet.

This chain works with raw data so that the astrometry and
the photometry that it produces are less accurate than those of
the Gaia DR3. The related GravLens catalogue with the astrom-
etry and the photometry of all detected sources is presented in the
FPR publication of Gaia (Gaia Collaboration 2024). It includes
3 760 032 investigated quasars and a total of 4 760 920 sources
detected in their vicinity (including the quasars themselves).
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Fig. 1. Distribution of the number of sources contained in the 501 380
GravLens multiplets with more than one component.

This catalogue is enriched by ∼103 000 new sources not present
in Gaia DR3.

In the GravLens catalogue, 87% of the quasars are sin-
gle sources, and neighbouring sources are detected around the
quasar in 501 380 cases. The number of sources found in these
multiplets is illustrated in Fig. 1. Most (70%) of the multiplets
are composed of two sources. The three-source multiplets and
the four-or-more source multiplets concern 15% and 14% of the
cases, respectively.

We used this catalogue to search for quads and focused the
application of the algorithm we developed on multiplets consist-
ing of four sources or more. Of course, lenses can also be found
in multiplets with three sources (one of the images of a quad
may not be detected by Gaia because it is too faint given Gaia’s
magnitude limit of approximately G = 21). Analysing the lenses
was the next step in our study.

3. The XGBoost algorithm to search for lenses

The search for quads in very large data sets such as the GravLens
catalogue imposes the use of machine learning techniques. We
chose a method based on supervised learning leveraging ensem-
ble machine learning techniques in order to improve prediction
accuracy compared to a single model. This type of algorithm is
less prone to produce results excessively influenced by specific
training data or minor variations in input data, and its predictions
are therefore more stable and reliable in different conditions or
when encountering variations in these data. This approach also
helps reduce overfitting and provides robust results.

To explore the extensive data sets released by Gaia, we relied
on the machine learning method XGBoost (Chen & Guestrin
2016) for the lens recognition process. XGBoost is an algo-
rithm that combines ensemble learning with decision trees to
create a robust predictive model. Thanks to its capacity to cap-
ture intricate relationships between input variables, XGBoost
excels in data classification and is especially well suited for
high-dimensional problems. It operates by training a sequence
of successive decision trees. Each tree is added to the ensemble
iteratively with the aim of enhancing the prediction accuracy of
the model under construction. At each iteration, the model pre-
dicts the residuals (the disparity between the current predictions

and the true values) rather than the raw values themselves. This
approach diminishes the residual error at each step, enhancing
the model’s accuracy over time. Decision trees are constructed
to minimise the loss function and integrate regularisation tech-
niques to prevent overfitting.

The XGBoost model performs better than extremely ran-
domised trees (ERT; Geurts et al. 2006) when dealing with class
imbalance, which is the case in our application since only one
over 1000 quasars is expected to be lensed, and one-fifth of
them are expected to be a quad. The boosting algorithm learns
iteratively from the errors of the previous tree. Therefore, if
a tree fails to predict a particular class (often the imbalanced
one), the subsequent tree will assign more weight to this sample.
Essentially, this process aims to balance the model by prioritiz-
ing underrepresented categories. In contrast, the ERT algorithm
lacks a mechanism to address data imbalance.

4. A realistic training set

To construct the training dataset for XGBoost, we set up two
classes of objects. The first class contains gravitational lenses,
while the second class consists of groups of stars. We intended
to produce a realistic training set for our algorithm essentially by
improving the simulations of lenses representing the first class of
sources. For the second class of sources, we used the star clus-
ters derived by Delchambre et al. (2019), as they are a good rep-
resentative of Gaia’s stellar populations.

4.1. First class: Simulations of realistic gravitational lenses

There are less than 90 spectroscopically confirmed quads,
and this severely limits the creation of a comprehensive
labelled catalogue encompassing all potential configurations
(Ducourant et al. 2018). To address the scarcity of known grav-
itational lenses of quasars, one can instead use simulations to
train the classification algorithms, as done by Delchambre et al.
(2019) who trained a model based on ERT with simulations.
However, these simulations were produced using a uniform dis-
tribution of parameters describing the morphology and velocity
dispersion of the deflecting galaxies due to the unavailability,
at that time, of more precise data. As a result, the produced
simulations contained a significant proportion of non-realistic
configurations, leading to a classification with an excessively
high rate of false positives. This emphasises the importance of
having a highly realistic training set, as it directly impacts the
effectiveness and reliability of the model to identify gravita-
tional lenses. To explore the extensive data sets of GravLens with
XGBoost, we created numerous gravitational lens simulations
using non-uniform distributions of the lens parameters as mea-
sured by Petit et al. (2023) on the cosmological EAGLE simula-
tions (Schaye et al. 2015) and including a realistic population of
quasars.

4.1.1. Background sources: Quasars

We used the Million Quasars Catalog (Milliquas; Flesch 2021)
for the simulation of a realistic population of quasars. In this
catalogue, 864 000 quasars have a redshift measurement and an
entry in the GravLens catalogue. Figure 2 shows the distribution
of their redshifts and G magnitude. The distribution of redshifts
peaks around z = 1.5 and extends up to z = 6. The median G-
band magnitude of the sample is 20.
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Fig. 2. Distribution of redshifts and Gaia G magnitudes for the quasars
in common between Milliquas and GravLens.

4.1.2. Lenses: Galaxies from the EAGLE simulation

In a recent paper (Petit et al. 2023), we analysed the proper-
ties of galaxies from the hydrodynamic EAGLE simulations
(Schaye et al. 2015). Specifically, we measured the ellipticity
of galaxies projected onto the plane of the sky, their half-mass
radius, and their velocity dispersion (σv), and we collected red-
shifts and masses. This provided us with statistical distributions
of parameters characterising the deflecting galaxies. Our aim
was to generate realistic lens simulations by utilising these sta-
tistical distributions as priors.

4.1.3. The lens model

We simulated gravitational lensing phenomena using a singu-
lar isothermal ellipsoid (SIE) model (Kormann et al. 1994). The
SIE model expands upon the singular isothermal sphere (SIS)
model by incorporating ellipticity, thus providing a more versa-
tile representation of elliptical galaxies as gravitational lenses.
The lensing potential of the SIE model is expressed as Φ(x, y) =

θE
√

q2x2 + x2/q, where θE denotes the Einstein radius defining
the strength of the lensing effect, x and y represent coordinates
of the background source in the lens plane, and q is the axis ratio
of the deflecting galaxy.

Figure 3 illustrates a typical gravitational lens system
obtained with an SIE model featuring a quasar at z = 1.0 and a
lens at z = 0.5 with q = 0.6. The plot is centreed at the galaxy’s
centre. The green curve (diamond shape) represents the caus-
tic line in the quasar plane, delineating the boundary between
regions where light rays converge to form multiple images and
regions where they do not. When the quasar lies on this green
line, gravitational lensing magnification formally becomes infi-
nite, resulting in highly distorted and amplified images. The
red dotted line represents the critical line in the lens plane,
which marks the boundary between areas where light is deflected
inward to form multiple images and areas where it is deflected
outward without forming multiple images.

4.1.4. Calculation of the Einstein radius

One of the quantities that characterises a gravitational lens is its
Einstein radius, a physical measure of the angular scale of the
phenomenon. The Einstein radius of the quasar plus lens pair is
calculated for an SIE model using the relation

θE = 4π
(
σv

c

)2 DLS

DS
, (1)

Fig. 3. Projected sky coordinates of a typical gravitational lens system
obtained with an SIE model with a quasar placed at z = 1.0 and a lens at
z = 0.5 with q = 0.6. The background quasar is placed inside the green
curve so that the lens produces four distinct images of the quasar.

where σv is the velocity dispersion of the deflector, DLS is the
angular diameter distance between the deflector and the source,
and DS is the angular diameter distance from the observer to the
source.

The virial theorem states that the time-averaged kinetic
energy of a system is equal to half the time-averaged potential
energy. By applying this theorem to a relaxed gravitational sys-
tem, we can express the velocity dispersion (σ) as a function of
the system’s mass (M) and a characteristic radius (R):

σ =

√
3
5

G
R

M. (2)

The choice of the characteristic radius is critical and should
be representative of the size or extent of the system’s projected
mass distribution. One common choice is the half-mass radius
(Rhm), which corresponds to the radius within which half of
the total mass of the system is included. Utilising the half-mass
radius (Rhm), we can estimate the velocity dispersion (σ) of the
halos in the simulation based on the mass (Mhm) within that
radius:

σ =

√
3
5

G
Rhm

Mhm. (3)

Given the vast number of possible combinations between
the 340 719 EAGLE halos analysed and the 864 000 Milliquas
quasars with redshift measurement, it is impractical to calcu-
late all Einstein radii. To obtain a realistic distribution of Ein-
stein radii (θE), we adopted an approach in which we randomly
selected 500 quasars from our list to be placed behind each
EAGLE halo. These 500 quasars were chosen to match the red-
shift and magnitude distributions of the initial sample from the
distribution of redshift in EAGLE simulation snapshots. This
method allowed us to calculate 170 359 500 θE radii. The dis-
tribution of these Einstein radii is presented in Fig. 4.

We observed that many radii are extremely small and thus
correspond to configurations that the Gaia satellite will not
resolve. For our training set, we selected the simulations with
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Fig. 4. Distribution of Einstein angular radii in logarithmic scale
obtained by combining the distribution of quasars from Milliquas with
the EAGLE galaxies. Dotted line corresponds to the limit of Gaia’s
GravLens resolving separation (0.3′′).

an Einstein angular radius larger than 0.3′′, corresponding to
Gaia’s resolving power, since closer sources are merged into
single sources in the GravLens catalogue (Gaia Collaboration
2024).

4.1.5. Solving the lens equation

In gravitational lensing, the Einstein radius is typically nor-
malised to unity, which means it is scaled to a standard ref-
erence size. This normalisation simplifies the lens equation by
reducing the complex geometric relationships to a standardised
configuration. However, in the present work, we wanted to keep
full track of the astrometry of the quads and did not want to
work with these normalised configurations. The Einstein radius
allowed us to denormalise the configurations and ascertain the
actual sizes of the lenses. To generate a set of simulations, we
simulated various lensing configurations by randomly selecting
the position of the quasar within the diamond caustic structure
that is typical of an elliptical potential (SIE), Φ, as defined in
Sect. 4.1.3.

4.1.6. Shear

An important aspect of our simulations is the inclusion of exter-
nal shear to account for the superposition of masses along the
line of sight as well as for the presence of other masses nearby at
the same redshift as the main lens. The shear utilised in this work
is based on the distribution estimated by Holder & Schechter
(2003) derived from the public simulations of the Semi-Analytic
Galaxy Formation – GIF project (Kauffmann et al. 1999).
Figure 5 illustrates the shear distribution adopted for our study.
Taking a shear into account has a major impact on the astrom-
etry and photometry of the images produced by the lens and is
essential for carrying out realistic simulations of gravitational
lenses.

4.1.7. Accounting for astrometric errors

The astrometric errors in the positions of quasars have a sig-
nificant impact on the astrometry and photometry of the image
configurations generated when solving the lens equation. There-

Fig. 5. Distribution of shear from the study by Holder & Schechter
(2003, dotted line) and the random selection of N = 10 000 shear values
respecting this distribution (blue histogram).

fore, we introduced a Gaussian noise representative of GravLens
errors (60 mas on positions and 0.15 mag on magnitudes) on
the positions and magnitudes of the quasar images. This step
enabled us to produce configurations that better reflect actual
observational conditions and capture the fluctuations and inac-
curacies inherent in genuine astronomical observations. Adding
these uncertainties also allowed the method to take into account
part of the effects induced on the luminosity of the images by
microlensing.

4.2. Second class: Stellar multiplets

Gaia primarily observes stars, so most of the multiplets in the
GravLens catalogue consist of groups of stars. Therefore, it was
essential to include a large number of stellar multiplets in our
training set so that XGBoost could learn to distinguish them
from images of multiply imaged quasars.

We utilised the stellar multiplets isolated in Gaia data
by Delchambre et al. (2019). From these, we extracted 65 693
multiplets, each comprising four stars. Each source is char-
acterised by its equatorial coordinates, Gaia G magni-
tude, and errors. We converted the celestial coordinates
(RA, Dec) to Cartesian coordinates (x, y) using gnomonic
projection.

4.3. The training catalogue

To train the XGBoost algorithm for an optimal classification of
gravitational lens configurations in various situations, we set up a
training catalogue that includes 44 339 realistic lens simulations
with external shear and characteristic images with a separation
larger than 0.3′′ and 65 332 stellar multiplets. The two classes of
objects are balanced in number.

This training catalogue could be improved in future stud-
ies. Our simulations are based on halos from the EAGLE sim-
ulations. The analysis was performed on the ‘small’ EAGLE
simulation, which contains only a few massive halos with
masses greater than 1012 M�, which are the ones likely
to produce large configurations of lensed quasars. Conse-
quently, our resulting set of lens simulations contains a
small number of large configurations. To overcome this
limitation, one could artificially add more massive halos
to our list of lensing galaxies or analyse larger EAGLE
simulations.
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Fig. 6. Distribution of images A, B, C and D of the set of simulations of
gravitational lenses in the (X1, X2) plane. Red central dot corresponds to
images A, vertical blue line to images B, green zones to images C and
pink zones to images D.

5. Discriminant parameters for classification

5.1. Basic parameters

We needed to define the parameters that the algorithm would use
for classification. The choice of these parameters is crucial for
optimising the performance of the model. Ideally, the parameters
should be concentrated in a low-dimensional subspace distinct
from the others. The GravLens catalogue only provides equato-
rial coordinates and Gaia G band magnitudes for each source
of the multiplets. Our objective in this section is to find an effi-
cient parameter space that facilitates the discrimination between
quadruplets of lensed quasars and random configurations of four
stars.

First, we computed the luminosity ratio between each pair of
sources in the quadruplets and ranked the four sources according
to their respective amplification (or relative flux) with labels A
to D in descending order. Then, we calculated the Euclidean dis-
tances d1 to d6 between the four sources in the projected plane
and recorded the minimum (MinDist) and maximum (MaxDist)
values. We also calculated all the angles for each trio of images.
Thus, we obtained twelve distinct angles: ÂBC, B̂AD, ÂDC,
B̂CD, ÂBD, ĈBD, B̂AC, D̂AC, B̂DA, B̂DC, B̂CD, ÂCB, D̂CA.

Finally, to achieve uniform scaling across the configurations,
we normalised the distances to the maximum distance found.
This preserves the relative spatial relationships within each con-
figuration while allowing for comparison between multiplets.

5.2. A new reference plane

The multiplets of stars are random configurations, whereas the
images of a lens follow a certain order. This is why we are
looking at lens simulations and searching for the combination of
parameters that will allow us to distinguish them from random
configurations. To ensure uniformity and facilitate the compari-
son of multiplets, we systematically centred each configuration
on its brightest source (A component) and rotated it so that the

Fig. 7. Left panel: Distribution of images of the typical cusp config-
uration of J014710+463040 in the (X1, X2) plane. Right panel: Pan-
STARRS image of the gravitational lens J014710+463040.

second brightest source (B) is aligned along the vertical axis,
thus creating a new reference plane (X1, X2).

We present in Fig. 6 the distribution in the (X1, X2) plane of
images A, B, C, and D of the set of simulations of gravitational
lenses that we performed after the normalisation and reorienta-
tion steps. We observed that the images of gravitational lenses
fall into specific and well-separated regions coloured respec-
tively in red (A), blue (B), green (C), and pink (D). In the figure,
we label the zones containing C and D from 1 to 6 (for example,
when C is in the green zone 2, D is in pink zone 2). The pink and
green zones 3 and 4 (and inversely) overlap.

In this complex figure, we observed three types of config-
urations. The first one corresponds to the cases where the B
component is at coordinates (0, 1), blue point, and the C and
D images are both located in zones 3 or 4 and correspond to
‘Einstein cross’ type configurations. In the two other configura-
tions, B is closer to A (lying along the vertical blue line) and C
and D are on the same side of the plot concerning the vertical
axis, in the external pink and green regions (1, 2, 5, or 6). This
type of configuration is illustrated in Fig. 7, which presents the
J014710+463040 gravitational lens configuration in the (X1, X2)
plane (red dots) over-plotted on top of the different zones identi-
fied. In that case, the C and D images both lie on the left part of
the plot in zone 2.

As one can see, the organisation of the images into specific
zones and at specific angles in the (X1, X2) plane is crucial infor-
mation for proper separation between lenses and groups of stars.
Indeed quadruplets of stars do not show any specific pattern in
the (X1, X2) plane, as seen in Fig. 8, which presents the distribu-
tion of groups of four stars from Gaia in the (X1, X2) plane.

6. XGBoost training

6.1. Parameters

Table 1 presents the list of parameters we collected to train
XGBoost. We trained XGBoost with this list of parameters and
examined the feature’s importance. This measure helped deter-
mine which features impact the predictions the most and can
therefore be considered the most informative for the model. Fea-
ture importance is calculated by XGBoost using different meth-
ods, such as how often a feature is used when building decision
trees and the average split score improvement achieved from that
feature.

We carried out two separate training sessions, one using
the distance parameters, training(dist), and the other not using
them, training(basic). The first session, training(dist), used all
the parameters listed in Table 1, while the second session,
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Fig. 8. Distribution of images of star clusters from Gaia in the (X1, X2)
plane.

training(basic), used only the (X1, X2)i (i = 1, 4) positions of
each image, the angles (ÂBC, . . . , D̂AC), and the flux ratios rel-
ative to image A (Nmu1, . . . , Nmu4).

Figure 9 presents the importance of the features (F score)
for the two training sessions of the XGBoost model. The fea-
ture importance analysis revealed that the most crucial param-
eters in training(dist) are the distances. These parameters are
important in the classification because many of our gravitational
lens simulations are compact configurations, due to the lack of
abundant massive halos in the EAGLE simulation we analysed
and because there are relatively few compact configurations of
stars in our training set as a result of the selection made by
Delchambre et al. (2019). When these distances are removed,
training(basic) session, the parameters that become important for
classification are the angles and positions of sources C and D. To
address the issue of the predominance of distance in the classifi-
cation, we decided to conduct two separate training sessions and
compare their results.

6.2. Performances

The optimisation phase of the XGBoost hyperparameters was
carried out through an iterative process applied to 80% of the
multiplets in our training catalogue using the GridSearchCross-
Validation method. The hyperparameter grid used in this search
is detailed in Table 2, which encompasses a comprehensive
range of values for key parameters such as learning rate, max
depth, number of estimators, subsample, and colsample by tree.
Based on the results of the GridSearchCrossValidation process,
the selected hyperparameters for the XGBoost model were:
learning_rate= 0.1, max_depth= 15, n_estimators= 50,
subsample= 1.0, and colsample_bytree= 0.8, which pro-
vided optimal performance on the training set. Once these hyper-
parameters were determined for both training sessions, the per-
formance of the two models was tested on the remaining 20% of
the multiplets not used in the training.

We present in Table 3 the true positive rate (TPR), the true
negative rate (TPN), the false positive rate (FPR), and the false

negative rate (FNR) regarding the prediction of ‘lens’ and ‘group
of stars’ classes for the two trainings. These quantities are impor-
tant metrics to qualify the performance of the trainings. TPR =

TP
TP+FN , TNR = TN

TN+FP , FPR = FP
FP+TN , FNR = FN

FN+TN .
Here, TP (true positives) is the number of correctly identi-

fied positive instances, TN (true negatives) is the number of cor-
rectly identified negative instances, FP is the number of negative
instances incorrectly identified as positive, and FN is the number
of positive instances incorrectly identified as negative. The TPR
measures the proportion of actual ‘lenses’ that are correctly iden-
tified by the model. The TNR measures the proportion of actual
‘groups of stars’ that are correctly identified by the model. The
FPR measures the proportion of actual ‘groups of stars’ that are
incorrectly identified as ‘lenses’ by the model. The FNR mea-
sures the proportion of actual ‘lenses’ that are incorrectly identi-
fied as ‘groups of stars’ by the model.

Both training sessions managed to classify lenses very well.
Only a moderate number of lenses were placed in the ‘star group’
class, and a very low number of stars were classified as ‘lens’.
Training(basic) performed less well than training(dist), placing
0.24% of lenses in the ‘star group’ class. The FPR and FNR rates
(misclassified objects) for real cases are expected to be higher
since micro-lensing, which affects both the geometry and the
fluxes in lens simulations, is not accounted for in our simula-
tions. Based on these results, we leaned towards adopting train-
ing(dist) as the preferred model. However, as mentioned earlier,
our simulations in the training catalogue under-represent large
lenses, leading to a classification that is dependent on distance
(compact configurations are more likely to be interpreted as
lenses, while larger configurations are rejected more as compat-
ible with groups of stars). Therefore, we maintained both train-
ing models when moving forward and compared their scores to
select the best lens candidates.

6.3. Validation

As our aim is to assess the efficiency of our two models
in classifying lenses under real conditions, we used our two
models to classify 24 spectroscopically confirmed quads from
Ducourant et al. (2018) with Gaia measurements for their four
images. Some known lenses unfortunately have only three
images and are therefore not included in the analysis. Figure 10
compares the two probability scores obtained by XGBoost for
these 24 quads.

We first observed that 11 quads (46%) –
2MASXJ01471020+4630433 (Berghea et al. 2017),
GraL024848742+191330571 (Delchambre et al. 2019),
WISE025942.9−163543 (Schechter et al. 2018), HE0435−1223
(Wisotzki et al. 2002), GRAL080357714+390823333
(Jalan et al. 2024), RXJ0911+0551 (Bade et al. 1997),
PG1115+080 (Weymann et al. 1980), SDSS1138+0314
(Eigenbrod et al. 2006), H1413+117 (Magain et al. 1988),
GraL1537−3010 (Delchambre et al. 2019; Lemon et al. 2019),
WFI2033−4723 (Morgan et al. 2004) – are accurately identified
by both models with scores greater than 0.75 (quadrant 1).
The quads tend to be compact configurations with separations
smaller than 3′′. Five quads – WG0214−2105 (Spiniello et al.
2019), RXJ1131−1231 (Sluse et al. 2003), B1422+231
(Patnaik et al. 1992), J1606−2333 (Lemon et al. 2018), and
J2145+6345 (Lemon et al. 2019) – are identified by model(dist)
but rejected by model(basic), quadrant 2.

In quadrant 3, both models reject six quads (includ-
ing the emblematic Einstein cross G2237+0305)
with very low scores (<0.1): GraL065904.1+162909
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Table 1. Training parameters selected for the XGBoost classification algorithm.

Parameters Description

(X1, X2)i, (i = A, . . .D) Coordinates of images in the (X1, X2) plane
ÂBC, . . . , D̂AC Set of 12 angles between the four images in the (X1, X2) plane
Nmu1, . . . , Nmu4 Flux ratios to flux (A)
d1, . . . , d6 Distances between the four images
Nd1, . . . , Nd6 Normalised distances by MaxDist
MaxDist Maximum distance between images
MinDist Minimum distance between images

Notes. The first set of parameters was used in training(basic), and the entire set of parameters was used in training(dist).

Fig. 9. Feature importance of the XGBoost model trained on the first set of parameters from Table 1 (left) and on all parameters (right). The
training hyperparameters are 10, 0.1, and 50, respectively, for the maximum depth of trees, the learning rate, and the maximum number of trees.
Features are ordered from top to bottom in order of decreasing importance.

Table 2. Hyperparameters optimised through grid search.

Hyperparameter Values

Learning Rate 0.01, 0.1, 0.3
Max Depth 7, 10, 15, 20
Number of Estimators 5, 10, 25, 50, 100
Subsample 0.5, 0.8, 1.0
Colsample by Tree 0.5, 0.8, 1.0

Notes. (1) Learning Rate: Controls step size during boosting, thus deter-
mining the contribution of each tree; smaller values require more trees
but can improve model generalisation. (2) Max Depth: Maximum tree
depth limiting model complexity and preventing overfitting; deeper
trees capture more intricate patterns but risk memorisation. (3) Num-
ber of Estimators: Total number of trees constructed in the ensemble;
more trees can improve predictive performance but also increase com-
putational complexity. (4) Subsample: Fraction of training data used in
each tree; this introduces randomness and potentially reduces overfit-
ting; values <1.0 create stochastic gradient boosting. (5) Colsample by
Tree: Proportion of features randomly selected when constructing each
tree; this promotes feature diversity and reduces the correlation between
trees.

(Stern et al. 2021), 2MASSJ11344050−2103230 (Lucey et al.
2018), 2MASSJ13102005−1714579 (Lucey et al. 2018),

Table 3. Performance parameters.

Actual class Predicted class rates (%)

Training(dist)
Lens Group of stars

Lens TPR = 99.99 FNR = 0.04
Group of stars FPR = 0.007 TNR = 99.96

Training(basic)
Lens Group of stars

Lens TPR = 99.99 FNR = 0.16
Group of stars FPR = 0.004 TNR = 99.84

Notes. The TPR, TNR, FNR, and FPR in the prediction of ‘Lens’ and
‘group of stars’ classes for training(dist) and training(basic).

J1606−2333 (Lemon et al. 2018), GraL203802−400815
(Krone-Martins et al. 2018), and G2237+0305 (Huchra et al.
1985). Several factors contribute to these configurations being
poorly recognised. Three of them lack compactness, with the
maximum angular separations generally being higher than 4′′.
They exhibit significant elongation, thus deviating from the
configurations produced by our SIE plus shear gravitational
lens simulation model. For the Einstein cross Q2237, the impact
of dust in image D was estimated by Eigenbrod et al. (2008),
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highlighting a critical consideration in the analysis of gravita-
tional lenses. While dust is not typically a critical factor for most
gravitational lens systems, Q2237 presents a notable exception
due to its specific galactic structure. GravLens likely encoun-
tered challenges in accurately measuring lens components
and their luminosities, partly due to the preponderance of the
surrounding deflecting galaxy and the complex dust distribution,
which significantly impacts microlensing phenomena.

The two quads – GraL081828.3−26132 (Stern et al. 2021)
and J1721+8842 (Lemon et al. 2018) – in quadrant 4 that
the model(basic) identified securely (Pbasic > 0.75) and that
model(dist) classes as a group of stars (Pdist < 0.10) are large
configurations with a MaxDist greater than 4′′. This is a typical
consequence of the under-representation of large quad configu-
rations in our training set.

We observed that both models perform quite well on typical
compact configurations but diverge when both the complexity
and the size of the configurations increase. Model(dist) success-
fully classifies 67% of the quads (quadrant 1 plus quadrant 2),
and model(basic) is successful in 54% of the cases (quadrant 1
plus quadrant 4). It is clear that model(dist) performs better than
model(basic), but model(basic) slightly outperforms when iden-
tifying large configurations.

If we consider the two scores above 0.75 together, it is pos-
sible to identify 18 of the 24 quads analysed (75%; quadrants
1, 2, and 4), which is a very good performance when consid-
ering that the model used to produce lens simulations for the
training set does not account for micro-lensing effects or multi-
ple deflectors. The limitation of our current methodology is pri-
marily linked to the simplicity of the SIE model plus shear for
a certain proportion of known quads, and it is also due to the
under-representation of large lenses in our training set.

7. Application to the GravLens catalogue

7.1. Selection of quadruplets

We applied our algorithm to the 81 576 multiplets of the
GravLens catalogue, each of which contain four or more sources.
When there were more than four sources, all combinations of the
sources within the multiplet were considered. We ended up with
1 128 000 quadruplets to analyse. The sources in the quadruplets
were then ranked with respect to their magnitude so that the
brightest was identified as A and the faintest as D.

Before applying XGBoost to the multiplets, we filtered out
configurations that are obviously non-lens. Indeed, in a four-
image lensed quasar, it is impossible for one of the images to be
contained within the triangle formed by the other three images.
Among the Gaia quadruplets, we rejected 225 761 such cases.
This constraint enabled us to eliminate 20% of the multiplets that
do not meet this criterion and left us with 902 239 quadruplets to
analyse, corresponding to 65 996 multiplets from GravLens.

7.2. Classification

We applied our classification algorithm (both training models) to
the remaining 902 239 quadruplets and obtained two scores for
each: Pdist (training with distances) and Pbasic (training without
distances). Figure 11 presents the distribution of both scores for
all quadruplets analysed. We observed that most multiplets have
low scores with both models, consistent with GravLens contain-
ing a majority of non-lens objects. Model(dist) is more selective
than model(basic), which assigns high scores to a smaller popu-
lation of multiplets.

Fig. 10. Probability score Pbasic to be a lens along with the probability
score Pdist for known gravitational lenses. Dotted lines separate four
quadrants.

Fig. 11. Scores for the 902 239 GravLens quadruplets analysed.

We present a comparison of Pdist and Pbasic in Fig. 12, and
the counts of quadruplets in the various quadrants are shown in
Table 4. In this table, we also indicate the number of multiplets
involved (multiplets with more than four sources correspond to
more than one quadruplet).

As expected, most quadruplets fall into quadrant 3, where
both models reject them because they are identified as being
stars. We note that we expected at most a few hundred quads
in the Gaia catalogue (Finet & Surdej 2016). A moderate num-
ber of quadruplets lie in quadrants 2 and 4 (these are interest-
ing sources to investigate further). Finally, 226 quadruplets lie
in quadrant 1, where both models identify them as lenses. These
are the best candidates.
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Fig. 12. Probability score Pbasic for being a lens plotted against proba-
bility score Pdist for 902 239 quadruplets from the GravLens catalogue.
The plot is divided into four quadrants with a threshold of 0.75 for both
axes, creating regions defined by their probability score combinations.

Table 4. Number of GravLens quadruplets (configurations with all pos-
sible combinations of four sources in the field of view) and multiplets
(locations with at least four sources) with Pdist and Pbasic placing them
in the various quadrants of Fig. 12.

Quadrant No of quadruplets No of multiplets

1 226 201
2 1847 798
3 897 369 62 662
4 3141 2221

To further analyse the quadruplets in each quadrant, we
examined their sky distribution in galactic coordinates (Fig. 13).
We note that the spatial distribution of sources from quadrants 3
and 4 is heterogeneous and has a very high density in the galac-
tic plane (|galactic_lat|< 10◦), suggesting that these sources are
most likely quadruplets of stars that correctly replicate a lens
configuration. In contrast, sources from quadrants 1 and 2 exhibit
a more homogeneous sky coverage.

To compile a list of candidates for the spectroscopic follow-
ups we are planning, we selected the 201 multiplets from quad-
rant 1 with good probability scores (Pbasic and Pdist > 0.8).
Among them, we further refined our selection based on galactic
latitude (|b|> 15◦) and performed a visual inspection, identify-
ing the 48 most promising candidates. The final list of these top
candidates is presented in Appendix A.

However, we are completely aware that some sources of
GravLens are issued from the fragmentation of single galaxies
by GravLens into multiple sources that can mimic lens configu-
rations. Further filtering and visual inspection are mandatory to
reject this type of contaminant.

Gaia’s limiting magnitude (approximately G = 21 mag)
severely limits the number of quads for which the space observa-
tory can detect all four images. For pragmatic reasons, we lim-
ited our study to multiplets of four images. This is why future

Fig. 13. Sky distribution in galactic coordinates of the quadruplets of
each quadrant of Fig. 12. Dotted lines correspond to |b| = 10.

development of the work presented here must include analysis
of triplets of sources since one source of the quads may not be
detected.

8. Conclusion

We have presented a new method based on the XGBoost algo-
rithm for the supervised classification of quadruply imaged
quasars in large catalogues. We applied our method to the Gaia
FPR GravLens catalogue (Gaia Collaboration 2024), which pro-
vides the celestial coordinates and G magnitudes of all sources
detected by the satellite within a radius of 6′′ around approxi-
mately three million known quasars.

To train the XGBoost algorithm, we considered two classes
of sources: lensed quasars and groups of stars. For the first class,
we developed a set of realistic simulations of gravitational lenses
by placing a sample of quasars drawn from the Milliquas cata-
logue behind galaxy halos measured in the EAGLE set of cos-
mological simulations. We used SIE plus shear to model these
deflectors. The second class of the training set comprises quadru-
plets of stars selected from the Gaia catalogue. We carried out
two XGBoost training sessions: one considering all parameters
available, including distances, and a second without the dis-
tances between sources. This training approach resulted in two
separate scores.

We succeeded in building a parameter space that appears
to be efficient for quasar lens classification. The discriminant
parameters describe aligned and normalised configurations. This
parameter space exhibits distinct regions corresponding to spe-
cific gravitational lens configurations.

Analysis of the feature importance shows that besides the
distances that are preponderant in training using distance param-
eters, the three angles of the BCD triangle defined by the three
faintest sources of the multiples are important and so is the loca-
tion of image D in this parameter space. The flux ratios of images
C and D relative to image A are also important for the classifi-
cation. The performances, as measured by the rate of correctly
classified lenses and group of stars, are above 99.99 and 99.84,
respectively. These results are satisfactory in terms of complete-
ness but less so in terms of purity.

We applied our trained algorithm to the 902 239 selected
quadruplets of sources in the Gaia FPR GravLens catalogue
and calculated the two scores for each multiplet. By compar-
ing the scores obtained, we selected a pool of 1127 multiplets
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with at least one score larger than 0.75. From these, 201 have
both scores above 0.75 and are excellent candidates. We are cur-
rently examining these candidates one by one to further assess
their nature.

The work presented here is focused on setting up the method
and selecting the discriminating training parameters to produce
a tool that robustly classifies multiplets of sources. To go further,
one can improve the training set and the parameters used for the
classification. For the training set, we can improve the lens simu-
lations by incorporating micro-lensing effects. Other parameters
could also be used during the training, such as colours, galactic
coordinates, star density in the region, and astrometric parame-
ters (e.g. parallax, proper motion, etc.). These parameters are not
available in the Gaia FPR catalogue but can be extracted from
other catalogues for a large set of our sources.

The GravLens catalogue also contains more than 234 000
multiplets with three sources. These sources certainly include
quads where one of the images was not detected by the satel-
lite (e.g. eight known quads are present among these triplets). In
order to be able to analyse them, simulations of triply imaged
quasars should be added to the training set by removing the
faintest image of the multiples and the classifier adapted to this
case.

We find the current results all the more encouraging given
that microlensing is not accounted for per se. Nevertheless, the
ground-based spectroscopic monitoring campaigns we are con-
tinuing will enable us to determine the real performance of this
new tool.
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Appendix A: Lens candidates

This section presents mosaic cutouts and a list of our most promising lens candidates using imaging data from the DESI Legacy
Imaging Surveys (Dey et al. 2019) and Pan-STARRS1 (Chambers & Pan-STARRS Team 2018). The selected cutouts (Fig. A.1)
showcase the spatial configuration of the components, allowing for visual inspection of their morphology and relative positions.

The list of candidates (Table A.1) only shows the most promising candidates. These candidates have been selected by keeping
only those candidates whose galactic latitude is greater than 15 degrees and whose Pbasic and Pdist scores are greater than 0.8. In
addition, a visual inspection allowed us to retain only the most promising candidates.

Fig. A.1. Mosaic of cutouts from the DESI Legacy Imaging Surveys (Dey et al. 2019) and Pan-STARRS1 (Chambers & Pan-STARRS Team 2018)
imaging showing promising gravitational lens candidates. Each panel displays the system identifier and includes the two probability scores (Pbasic,
Pdist). The FPR GravLens sources are superimposed on each image.
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Table A.1. Most promising gravitational lens candidates.

GravLensName Pbasic Pdist

DR3Gaia002250.874-341602.72 0.906 0.996
DR3Gaia003612.327-464300.50 0.971 0.996
DR3Gaia005936.699-134725.04 0.828 0.993
DR3Gaia021838.362-450442.80 0.957 0.996
DR3Gaia022632.876-514803.92 0.925 0.994
DR3Gaia033647.500-344422.73 0.976 0.991
DR3Gaia034555.352-571147.71 0.990 0.996
DR3Gaia035400.850-720801.70 0.839 0.972
DR3Gaia040106.637-160639.01 0.885 0.992
DR3Gaia045106.893-395138.51 0.988 0.996
DR3Gaia045711.543-360819.61 0.968 0.995
DR3Gaia050209.047+033149.93 0.842 0.995
DR3Gaia053204.686-201534.13 0.844 0.990
DR3Gaia060236.534-535600.05 0.841 0.996
DR3Gaia060712.719+683319.44 0.901 0.995
DR3Gaia064713.748-530756.10 0.888 0.994
DR3Gaia074738.332-732553.15 0.959 0.995
DR3Gaia082940.765-713749.77 0.870 0.991
DR3Gaia085431.184+173730.62 0.822 0.996
DR3Gaia094632.029+351949.40 0.887 0.996
DR3Gaia101329.086+383711.40 0.891 0.990
DR3Gaia104114.659-830859.87 0.917 0.994
DR3Gaia110057.151+103028.69 0.973 0.994
DR3Gaia110504.207+505949.94 0.893 0.993
DR3Gaia111441.792+574931.32 0.817 0.991
DR3Gaia111832.300+534852.24 0.903 0.991
DR3Gaia114338.825-013845.08 0.931 0.993
DR3Gaia122731.244+411501.37 0.900 0.899
DR3Gaia124127.947-162922.05 0.985 0.995
DR3Gaia130550.130+401700.44 0.951 0.996
DR3Gaia131131.004+462030.32 0.969 0.996
DR3Gaia133815.871+043233.53 0.984 0.990
DR3Gaia134244.428+350346.45 0.927 0.995
DR3Gaia135444.575+363412.74 0.953 0.988
DR3Gaia135534.320+594434.03 0.986 0.995
DR3Gaia143208.703-270432.18 0.805 0.990
DR3Gaia150720.640+301529.74 0.835 0.995
DR3Gaia151638.719+410148.75 0.940 0.988
DR3Gaia152940.583+302909.33 0.961 0.988
DR3Gaia153016.153+270551.01 0.978 0.996
DR3Gaia155719.490+281354.48 0.874 0.873
DR3Gaia160653.603+034736.58 0.992 0.995
DR3Gaia180416.050+644414.80 0.880 0.993
DR3Gaia205440.111-420426.30 0.970 0.993
DR3Gaia210909.970-094014.75 0.848 0.995
DR3Gaia212554.239-400037.32 0.846 0.995
DR3Gaia233029.711-631831.17 0.850 0.996
DR3Gaia233836.717+364439.69 0.927 0.965

Notes. All candidates have a galactic latitude |b|> 15◦ and probability scores Pbasic and Pdist > 0.8. For each candidate, we provide: the Gaia FPR
GravLensName (DR3GaiaHHMMSS.sss+DDMMSS.ss) and the probability scores from our selection pipeline.

A51, page 13 of 13


	Introduction
	The Gaia Focused Product Release GravLens catalogue
	The XGBoost algorithm to search for lenses
	A realistic training set
	First class: Simulations of realistic gravitational lenses
	Background sources: Quasars
	Lenses: Galaxies from the EAGLE simulation
	The lens model
	Calculation of the Einstein radius
	Solving the lens equation
	Shear
	Accounting for astrometric errors

	Second class: Stellar multiplets
	The training catalogue

	Discriminant parameters for classification
	Basic parameters
	A new reference plane

	XGBoost training
	Parameters
	Performances
	Validation

	Application to the GravLens catalogue
	Selection of quadruplets
	Classification

	Conclusion
	References
	Lens candidates

