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Abstract  

Creating safe paths in unknown and uncertain environments is a challenging aspect of leader-

follower formation control. In this architecture, the leader moves toward the target by taking 

optimal actions, and followers should also avoid obstacles while maintaining their desired 

formation shape. Most of the studies in this field have inspected formation control and obstacle 

avoidance separately. The present study proposes a new approach based on deep reinforcement 

learning (DRL) for end-to-end motion planning and control of under-actuated autonomous 

underwater vehicles (AUVs). The aim is to design optimal adaptive distributed controllers based 

on actor-critic structure for AUVs formation motion planning. This is accomplished by controlling 

the speed and heading of AUVs. In obstacle avoidance, two approaches have been deployed. In 

the first approach, the goal is to design control policies for the leader and followers such that each 

learns its own collision-free path. Moreover, the followers adhere to an overall formation 

maintenance policy. In the second approach, the leader solely learns the control policy, and safely 

leads the whole group towards the target. Here, the control policy of the followers is to maintain 

the predetermined distance and angle. In the presence of ocean currents, communication delays, 

and sensing errors, the robustness of the proposed method under realistically perturbed 

circumstances is shown. The efficiency of the algorithms has been evaluated and approved using 

a number of computer-based simulations.  

Keywords: Multiple autonomous underwater vehicles, Formation control, Motion planning Obstacle 

avoidance, Deep reinforcement learning (DRL), Actor-critic network  

1. Introduction  

One of the important topics studied in the field of multiple underwater robots is formation control. 

Collaborative performance of complex tasks improves performance, reduces the cost and mission 

time, guarantees desired results, and increases the mission success rate compared to deploying 
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individual vehicles [1, 2]. AUVs are unmanned autonomous vehicles that perform specific tasks 

in underwater environments for several hours to days using their control and navigation systems. 

AUVs can be deployed for investigating and mapping the seabed, exploration, identifying, and 

search and rescue missions, investigating geological threats and examining petroleum and gas 

pipelines, determining the water’s biological parameters, research for navigation and control 

systems, performing hydrodynamic calculations, and so on [3-5]. The developments in 

applications of autonomous underwater vehicles indicate the significance of research in the field 

of improving their group movement control. A perfect, intelligent, and decision-making 

autonomous underwater vehicle is the aim of research in several studies in the field of underwater 

robots.  

Formation structure is a combination in which agents maintain the desired form and at the same 

time execute the assigned commands. Formation control has three main architectures: leader-

follower, virtual structure, and behavioral, and each has its advantages and disadvantages. In the 

leader-follower approach, one or several AUVs are taken as leaders, and the other AUVs are 

designed as followers. The leaders will follow the trajectory or the designed reference path, but 

the followers will pursue the leader’s status by maintaining the pre-determined desired values of 

distance and angle in order to generate and retain the shape of the formation. In the virtual 

structure, all agents hold a rigid geometric relationship based on a virtual point in order to generate 

the desired formation. In the behavioral architecture, a proper behavior is defined as a weighted 

combination of various control goals [6, 7]. Formation control has various applications, e.g., 

mobile robots [8], unmanned surface vehicles (USVs) [9], autonomous underwater vehicles 

(AUVs) [10], unmanned aerial vehicles (UAVs) [11], satellites [12], and spacecraft [13]. Among 

these mentioned fields, the formation control of AUVs is the most challenging due to uncertain 

and coupled system dynamics, environmental disturbances coming from ocean waves and currents, 

and underwater communications [14]. Among the methods that have been widely used in this field 

are adaptive control [15], sliding mode control [16, 17], predictive control [18], neural network-

based control [19], graph theory [10], and so on. In [20], dynamic surface control along with a 

disturbance observer were used for time-variant formation control of AUVs. [21] used a lagrangian 

approach to control the formation of marine surface craft. The formation was accomplished 

through the application of constraint functions. Leader-follower formation control of under-

actuated AUVs based on a combination of the Lyapunov theory and backstepping was presented 

in [22]. Bono et al. have reported formation control and obstacle avoidance of a group of AUVs 

using the distributed predictive control model [18]. A leader-follower architecture for multiple 

underwater vehicle manipulator systems (UVMS) was proposed by Heshmati et al. [23] to address 

the cooperative object transportation task, with a trajectory estimation scheme with the prescribed 

performance suggested for the followers. Evaluation of the majority of AUVs formation control 

techniques is presented in [6].  

Despite the desirable control performance of classic control approaches, assumptions such as 

linearization of the system’s dynamic model and precise identification of the model or the system’s 

parameters are required, and most of these approaches demand complex analytical calculations, 

which make implementing them for actual applications on AUV systems challenging due to their 

highly nonlinear and uncertain coefficients in environments with unknown disturbances.  

As one of the branches of machine learning, Reinforcement Learning (RL) has spread significantly 

in designing a class of optimal adaptive controllers with the actor-critic structure for non-linear 

and uncertain dynamic systems in both continuous and discrete times, which leads to an 
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improvement in the AUV’s level of autonomy [24]. In RL, one or more agents interact in real time 

with an environment that may be unknown to them, and based on the experiences they obtain, they 

learn to pick optimized strategies for achieving specific goals. Using just one efficiency scalar 

criterion, which is called the reinforcement or reward signal, this approach is able to train the 

agents in complex environments in an uncertain and stochastic manner without supervision [25]. 

A combination of RL and deep learning methods, called DRL, has become a powerful tool in 

solving complex problems of autonomous systems and adapting with unpredictable and uncertain 

conditions, which reduce the complexity of designing control systems while improving their 

efficiency [26].  

Not much research has been done so far on using RL in AUVs formation control. The majority of 

the literature related to AUVs currently concentrates on using RL to control AUVs, path planning, 

and path following by single vehicles. In [27], DRL has been used to design an adaptive low-level 

controller for AUV. A combination of RL and imitation learning has been used in [28] to control 

a unmanned underwater vehicle (UUV). Sun et al. proposed using the RL method for the motion 

planning of an AUV. The proximal policy optimization (PPO) algorithm has been used to design 

surge and yaw control signals  [29]. In [30], corrected Q-learning has been used to avoid obstacles 

in AUVs. As the AUV enters the pre-defined dangerous zone, the exploring process stops, and 

exploitation of control commands is performed until leaving the unsafe region. In [31], RL 

strategies have been used to control the docking of AUVs, and then the method is compared with 

classic control techniques. Zhang et al. have used interactive DRL in AUVs path-following. In this 

method, the deep Q-network (DQN) approach is combined with interactive RL, and the reward 

function includes both environmental and human rewards [32].  

Due to the popularity of DRL, research has been done in the fields of cooperative and formation 

control for USVs, UAVs, mobile robots, and so on. Zhang et al. have proposed a circular formation 

control for fish-like robots [33]. In [34], formation control and obstacle avoidance based on RL 

and imitation learning have only been proposed for a couple of leader-follower with holonomic 

second-level dynamics. Decentralized asynchronous formation control and generalizable 

distributed formation for USVs based on the leader-follower architecture with the DRL approach 

have been performed in [35] and [36], respectively. Lin et al. have utilized a combination of DRL 

and a long short-term memory (LSTM) network to solve the problem of dynamic spectrum 

interaction regarding the formation of UAVs [37]. In [38], the formation control of a group of 

fixed-wing drones based on multi-objective RL is presented. In [39], the cooperative motion 

control of a flock of mobile robots is presented based on DRL with a prioritized experience replay 

buffer mechanism.  

 Motivated by the preceding discussion, a DRL-based distributed adaptive formation controller 

with obstacle avoidance and self-collision avoidance for under-actuated AUVs has been presented. 

Optimal adaptive controllers based on actor-critic architecture identify the performance of the 

current control policy and update the controller using such data to reduce formation motion 

planning errors. The model for the Markov decision process (MDP) process for end-to-end motion 

planning of the multi-AUVs formation has been presented. The system directly maps the state 

information of AUVs and the environment to control their heading and speed, realizing the end-

to-end processing of the information. Obstacle avoidance throughout the exploration process is 

considered a challenging task for AUVs. Since the proposed approach is a model-free method, the 

dependence on the mathematical model has been eliminated, and an intelligent controller based on 

the behavior of the plant in an unknown environment is developed. Obstacle avoidance is done 
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using two approaches. In the first approach, all the AUVs are equipped with obstacle avoidance 

modules. When the obstacles are within the detection range of each AUV, they are entered into its 

MDP model, and the change of direction and speed required to avoid the obstacles is done. In the 

second approach, only the leader is responsible for ensuring safety. When the obstacle appears and 

enters the leader’s MDP model, considering the leader’s awareness of the formation size, the path 

is chosen so that the whole group stays away from the obstacles.  

The present paper is organized as follows. In Section 2, the fundamentals and formulation of the 

problem included: AUVs motion model, fundamentals of DRL, and formation control architecture 

are presented. The structure of DRL, including a definition of the state space, action space, and 

reward schemes, is introduced in Section 3. In Section 4, the details of the DRL algorithm for 

formation control and obstacle avoidance of multiple AUVs are presented. Simulations and 

experiments of various scenarios are presented in Section 5. Section 6 is devoted to conclusions. 

2. Fundamentals and Formulation of the Problem 

2.1. AUV Motion Model 

This section aims to describe the kinematic and dynamic models of AUVs. To describe the motion 

of AUVs, two coordination systems are defined according to Fig. 1: the body-fixed frame {B}, 

and the earth-fixed frame {E}. The AUVs formation on a horizontal surface is dedicated to 

constant depth applications, such as investigating the seabed. The 3-DOF REMUS AUVs’ 

dynamics and kinematics model with the nomenclature indicated in Table 1 can be described as 

follows [40]: 
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where [ , , ]
T

x y   is the position vector of the AUV in the earth-fixed frame, which includes the ( ),x y  

coordinate and the yaw angle  )0,2  . The velocity vector of the AUV in the body-fixed frame 

is [ , , ]
T

u v r , where u  is the surge velocity,   is sway velocity, and r  is the yaw rate.  [ , ]
prop

X
r

  is 

the input vector, including the propeller thrust (
prop

X ) and deflection of the rudder angle (
r

 ).  
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Fig. 1. AUV motion model 

Table 1. Definition of AUV coefficients 

 

 

2.2 DRL method 

Reinforcement learning (RL) is a decision-making framework in which an agent learns the desired 

behavior or policy by interacting directly with the environment (Fig. 2). At every time step, the 

agent performs action a in the state of s. Hence, it is now in the new state of s’ and receives the 

reward r from the environment. A Markov decision-making chain is employed for modeling the 

reinforcement environment, which is expressed in a 4-element tuple [ , , , ]s a r p . Here, s is the 

dynamic behavior of the environment, a is the action performed by the agent, r is the reward from 

the environment, and p is the transition probability function. After a long interaction with the 

environment, the agent learns an optimal policy that maximizes the overall expected return. The 

expected return is defined as the discounted sum of future rewards as follows:  
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where [0  1]   is the discount factor that determines the current value of future rewards. The 

discounted expected state-value function defined as following, starting from the state s and 

following the π policy: 
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Similarly, the action-value function, which expresses the value of the action a in the state of s 

under the π policy is defined as following: 

(4)  
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0
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t t t t k t t
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The optimal state-value function yields the maximum discount reward when an agent starts from 

the state s and executes the optimal policy. 

(5)  * *

1 1( ) max [ ( ) | , ]t t t t
a

V s E r V s s s a a+ += + = =  

The equation mentioned is called the Bellman Optimality Equation, which states the value of a 

state under an optimal policy should be equal to the expected return for the best action in that state. 

Similarly, Bellman’s equation for the action-value function is as follows: 

(6)  * *

1 1( , ) [ max ( , ) | , ]t t t t
a

Q s a E r Q s a s s a a+ +
= + = =  

where * *( ) max ( , )
a

V s Q s a=  is for all s. When 
*Q  is identified through interactions, the optimal 

policy can be obtained directly from the following equation: 

(7)  * *( ) arg max ( , ) =
a

s Q s a  

 

Fig. 2. Interaction of the deep agent with the environment in the Markov decision-making process 

The standard RL approaches are based on discrete state and action spaces. Thus, the amounts of 

state value or action value are recorded in tables. One major advantage of these approaches is that 

the precise optimized value function and the optimized policy can always be found [25]. The RL 

algorithms based on tables suffer from the curse of dimensionality in problems with large or 

continuous spaces. To solve this problem, a combination of function approximators like deep 
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neural networks is used. Deep neural networks are structures of sequential layers that transform a 

high-dimensional input into a reduced output feature, and the parameters of the network are trained 

using a supervised approach that utilizes training algorithms such as the gradient descend method 

in backpropagation algorithms. Therefore, there is no need to keep a table containing the data for 

the state-action value function, and consequently, vast memory and precise information on the 

environment will not be necessary. Despite solving problems with high-dimensional observation 

space by the DQN algorithm can work with small and discrete action spaces [41]. Since most of 

the physical control tasks have continuous action spaces and high dimensions, the deep 

deterministic policy gradient (DDPG) with the actor-critic structure was introduced, which can 

learn the policies in high-dimensional continuous action spaces [42]. The DDPG algorithm uses 

two deep neural networks to approximate the state-action value function and policy, along with 

replay buffer ideas and target networks. The replay buffer is used to break the nature of the Markov 

among the sampled data, and two target networks are used to guarantee the stability of the training 

process. Despite the desirable performance of the DDPG algorithm, it doesn’t have acceptable 

performance in complex environments due to overfitting of the current policy, hyper-parameters, 

and other settings. That’s why the twin delayed deep deterministic policy (TD3) algorithm was 

presented, which enhances the learning speed and improves the performance through the use of 

double-critic networks, smoothing the target policy, and policy update delay [43].   

 

2.2.1 The TD3 Algorithm 

The TD3 algorithm is an online RL algorithm which is expressed based on the DDPG algorithm. 

This approach executes a method similar to the double-DQN, which reduces over fittings in 

function approximation and causes a delay in the update frequency of the actor network, and 

eliminates sensitivity and instability in the DDPG network by adding noise to the target actor 

network [43]. The block diagram of the algorithm’s structure is depicted in Fig.3.  

 

 

Fig. 3. The TD3 framework based on actor-critic structure 
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 According to this figure, the algorithm is based on an actor-critic architecture and has double-

critic networks. The state transitions required for updating the networks are stored in the buffer by 

selecting an action and applying it to the environment. When a certain number of transitions are 

stored in the buffer, a mini-batch of the buffered transition states is sampled to find the policy. The 

critic network calculates the state-action value function of the online critic network using these 

buffer samples and by minimizing the mean squares of the Bellman error based on the target value 

function of the smaller critic using the gradient descent method, and hence the networks’ 

parameters are updated. Then, the actor network updates the policy network’s parameters with a 

delay using the calculated value function based on the deterministic gradient theorem for the 

expected return optimization. This procedure is repeated until achieving the optimal policy for the 

environment.  

2.3 Formation Control and Obstacle Avoidance Architecture of Multi-AUVs 

According to Fig. 4, AUVs in the leader-follower formation introduced in the present paper can 

be divided into three groups, which include: the leader AUV, which does not follow any other 

AUV and tries to learn a policy that helps them reach their destination in the shortest probable 

distance and avoid possible obstacles on the way or other AUVs; and the followers on the left or 

right of the leader, which are supposed to find an optimal policy that helps them reach a 

predetermined distance and angle with the leader and maintain these values throughout the 

mission; if obstacles show up on their path, they avoid them, and they also avoid colliding with 

each other. Each follower can act as the leader for the other AUVs that are added to the formation 

to increase their number. AUVs could be outfitted with a variety of onboard sensors. A depth 

sensor, an Inertial Measurement Unit (IMU), compasses, a Doppler velocity log (DVL), a sonar 

sensor, a communication module, and a Global Positioning System (GPS) for on-surface 

corrections could be considered. The IMU can measure azimuth, triaxial angular velocity, and 

triaxial acceleration. A compass indicates directions to the cardinal geographic directions. A DVL 

is used to determine underwater speeds. The sonar sensor utilizes acoustics to detect obstacles. To 

establish formation control, AUVs should exchange essential information via wireless 

communication. The follower needs to track the leader. As a result, they do not require the leader's 

sophisticated sensors. This article discusses the challenges of controlling the leader-follower 

formation of multiple AUVs. We proposed a novel formation control algorithm with both a 

unidirectional flow of information for the first motion planning method and a bidirectional flow 

for the second one. In the first method, followers obtain information from the leader's AUV but 

not vice versa. To avoid obstacles, all AUVs are outfitted with forward-looking sonar. The leader 

AUV will continuously transmit its real-time states to the two follower AUVs to maintain the 

desired distances and orientations to the leader. In the second method, the leader and follower 

AUVs exchange information with each other. Only the leader has sonar sensors to detect obstacles, 

and the followers must only follow the leader. 
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Fig. 4. Leader-Follower architecture for the multi-AUVs formation control 

 

3. The Structure of DRL for Formation motion Planning of multi-AUVs 

Fig. 5 illustrates the distributed formation model based on TD3 for the formation control of under-

actuated AUVs. The training model of formation control is a repeated process of interacting with 

the environment. Based on observing the state of the environment ( )is , each AUV can make 

reasonable decisions. By combining task objectives and state observation, the action selection can 

be evaluated. According to the assessed value, formation motion planning of multiple AUVs can 

be trained. Eventually, the model executes the selected action in the corresponding updated 

environment and recaptures the observation state. The mentioned procedure is repeated until the 

formation motion planning model selects the expected action. This way, the model can learn how 

to make ideal control decisions for the formation control of multiple AUVs. According to Fig. 5, 

the outputs of the decision-making network ( )ia are the actions of individual AUVs. Each AUV is 

transferred into a new state after executing the action. Then a reward ( )ir is generated by measuring 

the behavior of the AUV. Finally, the data for any AUV is stored in the corresponding experience 

pool, and then the experience data can be picked for shaping the training data collection. The 

experience pool is used for storing the records of the navigation experience of each AUV. The 

state data in a single execution, the actions of the decision-making network, and the corresponding 

rewards form an experience record altogether. Every AUV can be trained to plan formation paths 

and avoid obstacles in the decision-making network. 
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Fig. 5. Distributed DRL structure for formation control and obstacle avoidance multi-AUVs 

In obstacle avoidance, two approaches are applied. In the first approach, obstacle avoidance 

decisions are made by each AUV present in the formation. According to the designed reward 

function, the follower AUVs learn to avoid obstacles while maintaining the formation. When 

facing an obstacle, avoiding a collision with it has a higher priority than formation maintenance. 

In the second approach, making decisions regarding obstacles is solely the leader’s responsibility. 

The leader identifies the obstacle, and, being aware of the size of the formation, learns a policy 

appropriate for keeping the whole group away from it. According to the two mentioned 

approaches, various MDPs are considered when facing obstacles.   

 

3.1 Setting the State Space and the Action Space 

To execute the formation control and obstacle avoidance of under-actuated AUVs based on the 

leader-follower architecture, first the state space and the action space should be introduced. A 

MDP based on the leader-follower architecture is defined for each AUV. According to the role of 

each AUV in the formation architecture, the corresponding state space is designed. The obstacles 

are identified using the AUVs’ onboard sensors. According to the range of the AUVs’ sensors, the 

distance from the identified obstacles is added to the MDP of each agent.  

3.1.1 Designing the State Space for the Leader 

The aim of the leader is to reach the destination safely by using the shortest possible path. Thus, 

the state space is based on the leader’s direction error from the target, the distance from the 

identified obstacles, and the velocity vector.  
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where = −A LG Le    is the direction error of the leader toward the target, and LG  is the target 

angle relative to the x-axis (Fig. 4). L  is the heading angle of the leader AUV. The AUV’s 

velocity vector is  
1 3

, ,T u v r


= . LOd  is the 1N  vector of the distance from identified obstacles, 

and N  is the number of the obstacles. detr is the maximum detection range of the AUV’s sensor. 

The state space for both obstacle avoidance approaches is identical for the leader.  

 

3.1.2 Designing the State Space for the followers 

The followers intend to learn a policy that helps them maintain a predetermined distance and angle 

towards the leader while avoiding obstacles when facing them. For this purpose, the follower state 

space is defined as follows: 

(9)  
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where de
−

= FL desired

desired

d d

d
 is the distance scaled error, FLd and desiredd  are the distance between the 

leader and follower and the desired distance respectively.  e  = −A FL desired  is the formation’s 

angle error, where FL  is the angle between the leader-follower’s connecting line and the leader’s 

movement direction, and desired  is the formation desired angle.  L and  F  are the heading angles 

of leader and follower respectively. 
2 2 ,   ,= + =iV u v i L F  is resultant velocity and dV  is a 

desired formation velocity. LOd is the 1N vector of the distance from identified obstacles, and N  

is the number of obstacles. detr  is the maximum detection range of the AUV’s sensor. In the second 

approach to obstacle avoidance in the state space the element of obstacle is eliminated from the 

MDP, since obstacle identification is exclusively performed by the leader.  
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3.1.4 The Action Space of the Leader and Followers 

As mentioned earlier, the leader intends to arrive at the destination safely and for the followers to 

maintain their formation according to the leader and avoid obstacles throughout navigation, which 

requires velocity and direction control. Controlling the propeller thrust propX  and rudder angle r

are used to accomplish this.   

(10)  
propA= , rX  

    

 

3.2 Shaping the Rewards of AUVs’ Formation  

Reward functions for the AUVs’ formation and obstacle avoidance are designed based on two 

different approaches. The rewards’ function is basically to encourage expected behaviors and 

punish unexpected ones. Three categories of reward functions are defined for the leader and 

followers. The leader's reward functions are considered independently to find an optimal path 

towards the target while avoiding obstacles and collisions with other AUVs. For followers, rewards 

are defined to shape and maintain formation, avoid obstacles, and collide with the other AUVs. 

The part about obstacle avoidance is removed from the followers' reward function in the second 

obstacle avoidance approach. 

3.2.1 Designing the Leader’s Reward 

1) target reward:  

This reward guarantees that the leader is able to reach the destination.  

(11)  = − −A LG Lr    

 

where LG  is the line of sight angle target with the leader, and  L  is the leader’s heading angle.  

2) Obstacle avoidance reward: 

Approach 1: In this approach, each AUV learns a policy to avoid obstacles. According to Fig. 6a, 

first, a circular shell is made for the AUV model. A shell overlapping with an obstacle indicates a 

collision. The scaled distance of all obstacles inside sensors’ detection range is entered into the 

corresponding AUV’s MDP model in Section 3.1.1, and thus, the reward function is defined as 

follows: 

(12)  
1

1

0                                         if  
,        

                    otherwise=

 
= = 

− −


AO avoid

OA i i
i avoid AO

d d
r r r

d d
 

 

where denotes the number of obstacles sensed within the detection range of the AUV's sensors. 

AOd  is the distance between AUV and obstacle and = + +avoid A safe obd r d r  , which Ar  is AUV’s 

shell radius,  
safed is the safe distance width from the shell of AUV, and obr is the obstacle radius. 
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If the distance of the AUV from the obstacles is more than the avoidd , it receives zero. Otherwise, 

it is punished.  

Approach 2: In this approach, formation motion planning is exclusively performed by the leader. 

The followers’ duty is to maintain the desired distance and angle from the leader. According to 

Fig. 6b, a triangle whose vertices are the positions of the leader and left and right followers is 

considered. When an obstacle enters the leader’s detection range, the center of the triangle's 

circumscribed circle is calculated based on the location of the leader and followers. Using the 

distance from the center of the circumscribed circle to the obstacle, the reward function is defined 

as follows:  

(13)  
C

2
1

0                                         if  
,        

                   otherwise=

 
= = 

− −


O avoid

OA i i
i avoid CO

d d
r r r

d d
 

 

where COd  is the distance from the center of the circumscribed circle to the obstacle, and 

cir= + +avoid safe obd r d r , which cirr is the radius of the circumscribed circle, 
safed is the safe distance 

width from center of gravity of AUV, and obr is the obstacle radius.  

Remark: In the first approach, all AUVs are equipped with sonar detection sensors to assist them 

in making the correct decision if they come into contact with something. In addition to maintaining 

the desired distance and direction, the followers must avoid obstacles and return to the desired 

formation after traversing the danger zone. Each AUV is equipped with an obstacle avoidance 

module. Thus, it can be a safer strategy. But in the second method, only the AUV leader is equipped 

with obstacle-detecting sensors, while the followers maintain the desired distance and orientation. 

When the leader detects an obstacle, if there is a chance of the group colliding with it based on the 

position of the followers, the leader alters the group's movement path and attempts to move the 

entire group out of the danger zone. In both methods, the followers require the leader's state to 

produce the proper formation. The necessary data is communicated to the followers using low-

cost wireless modems mounted aboard the AUVs. In the first method, the leader does not need to 

be aware of the follower's state. Thus, information is transmitted in a unidirectional way. In the 

second strategy, the leader additionally requires information about the position of the followers. 

They are exchanging data in this bidirectional way. This method is also a better choice for the 

centralized formation framework. Overall, those two methods are similar, but they take different 

approaches to implementation, and one could be chosen based on the system design. The 

simulation section demonstrates that both proposed obstacle avoidance methods work properly. 
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Fig. 6. Two obstacle avoidance approaches: (a) Approach1: Each AUV senses the obstacles in the range 

of sensors detection, it can obtain the relative distance to the obstacle. (b) Approach2: Only leader senses 

the obstacles 

 

3) Self-collision avoidance reward: 

(14)  0                                         if  

                   otherwise

 
= 

− −

AA avoid

CA

avoid AA

d d
r

d d
 

 

where, AAd is the distance between two AUVs (Fig. 7). This reward is considered for the AUVs not colliding with 

each other. 2( )avoid A safed r d= + .  

 

Fig. 7. Collision avoidance: If the distance between the two AUVs is less than the safe distance, they receive a 

negative reward 

 

4) Reducing control effort: 

One of the practical challenges in the design of autonomous vehicle controllers is the saturation of 

actuators [44]. Thus, to account for practical constraints, the following term is used to reduce 

overall control effort:  

(15)  [ ,  ]E prop rr X = − −  
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where propX  and r  are the propeller thrust and rudder angle, respectively.  

5) Total reward: 

The total reward function is defined as the weighted sum of all the mentioned reward functions: 

(16)  
1 2[ ,  ]= + + + T

L A A OA OA CA CA E E Er w r w r w r w w r  

 

where Aw , OAw , CAw , 1Ew  and 2Ew  are positive constants. Each of the above gains indicate the 

importance of each section in the control policy.  

3.2.2 Designing the Follower’s Reward function 

In followers, the aim is to learn a policy that can maintain the desired distance and angle towards 

the leader while tracking it and avoiding obstacles and other AUVs. The rewards for avoiding 

obstacles, avoiding collisions with other AUVs, and limiting the amplitude of the control signals 

are calculated using the Eq. (13), Eq. (15) and Eq. (16) in Section 3.2.1. As a result, the formation 

reward functions are as follows: 

1) Formation distance reward:  

(17)  −
= − FL desired

Fd

desired

d d
r

d
 

FLd is the distance between the follower and the corresponding leader. The desired formation 

distance is expressed as desiredd .  

2) Formation angle reward: 

(18)  = − −FA FL desiredr    

 

FL is the formation angle (the angle between the line connecting the leader and the follower and 

the leader’s direction) (Fig. 5) and desired is the desired formation angle.  

3) Total reward:  

The total reward function, is defined as the weighted sum of all the reward functions: 

(19)  
1 2[ ,  ]= + + + + T

F Fd Fd FA FA OA OA CA CA E E Er w r w r w r w r w w r  

 

where Fdw , FAw , OAw , CAw , 1Ew and 2Ew are positive constants. Each of the above weights indicate 

the importance of each section in the control policy. In the second approach of obstacle avoidance, 

the term OAr is removed. 

The observations are collected according to the 3.1.1 and 3.1.2 sections. Then, the action selected 

based on the suggested formation control model for generating control commands for the AUVs’ 
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actuators is executed. Accordingly, target reaching error of the leader and the formation error for 

the followers towards achieving desired control targets are evaluated. These steps are repeated 

until the AUVs safely reach their destination in the desired formation. In the control cycle, AUVs 

perform the environmental awareness, decision-making, and execution processes in that order. 

With environmental awareness, the status of AUVs in the formation can be observed, and the 

situation of the AUVs in the formation is then updated accordingly.  

4. DRL Algorithm for Formation Control and Obstacle Avoidance of Multiple AUVs 

The proposed formation control and obstacle avoidance model seeks an optimal policy for each 

agent using the TD3 algorithm. Before the start of the episodes, all the settings and formation 

configuration are done, including determining the leader and follower AUVs, desired angles and 

distances, the dimensions of the training area, the training rate, the exploration noise for the actor 

network, the smoothing noise for the target network, etc. In each episode, the variables of the 

velocity vector and the AUVs’ position are reset. A random target zone is selected, and the 

obstacles are distributed in the training zone randomly. In the algorithm, the critic has four 

networks, of which two have similar structures, i.e., online networks with 1  and 2  parameters, 

and target networks with 1

 and 2

 parameters. The actor has two online and target networks with 

similar structures, with   and 
 parameters, respectively. In order to have proper exploration in 

state and action spaces while choosing the policy, the noise t  is added as follows:  

(20)  ( )= + t t ta s  

 

In each time step, by applying action to AUV, new states t 1s +  based on Eq. (9) are obtained, and 

the instant reward tr  based on the reward function designed for control purposes is received and 

stored in the experience buffer (D) along with the applied action and the system’s current status. 

The training process of the online actor network is updated according to the random data sampled 

from the buffer, ( )i i i i 1M* s ,a , r ,s +  according to the following equation based on a deterministic 

policy gradient with a lower frequency than the critic networks. By doing so, the critic network 

becomes more stable before being used for training the target network, and the errors are reduced.  

(21)  
( )( )

1

1
( ) ,



 = 
s M

J Q s s
M

      

 

where M is the size of the mini-batch. 
1

Q
is the value function of the online critic network with 

the parameter of 1 . The 1  parameter is updated through minimizing the mean square of Bellman 

error which is based on the smaller target value function.  

(22)  
( )( )

2

1

1
( ) , |   , 1,2

=

= − =
M

k i i i k
i

L y Q s a k
M

   
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where iy  is the value of the target state-action with the smaller value generated by the target deep 

networks 
1Q and 

2Q , which are parametrized by 1
and  2

including: 

(23)  
1 1

1,2
min ( , ( )) + +

=

= +
j

i i i
j

y r Q s a s


  

Applying the smoothing regularization strategy to the target policy and adding clipped noise to the 

deterministic output of the target actor network a
for the state i 1s + , prevent high variance when 

updating the critic network. The online critic network’s parameters 
1  and 

2
 are updated using the 

stochastic gradient descent approach. With a frequency equal to the update frequency of the actor’s 

policy function, the parameters of the target actor network   and the target critic networks 1
 

and 
2


are soft updated with the aim of enhancing the stability of the learning process. This 

procedure is repeated in every episode until the leader AUV reaches the destination or the length 

of the episode’s step is over. Consequently, by using the TD3 algorithm, the formation motion 

planning of multi-AUVs is presented in Algorithm 1. In order to estimate the value function (state-

action) and the policy for actor and critic networks of the DRL algorithm, an architecture with two 

hidden layers has been utilized.  

5.  Simulation results 

To verify the efficiency of the proposed method, the motion planning and formation control of 

under-actuated AUVs are assessed in various elaborated scenarios. To this end, formation keeping 

in waypoint tracking and in the presence of obstacles are considered. Furthermore, the performance 

and robustness of the algorithms are evaluated in the presence of ocean currents, variable 

communication delay and navigation errors. The obtained results are discussed in this Section.  

5.1. Simulation Setting 

5.1.1. Simulation environment setting 

An AMD Ryzen 7 3800XT 8-Core, 3.89 GHz CPU processor and an NVIDIA GeForce RTX 2060 

GPU were used to run algorithm 1 for the 3-DOF REMUS model AUV in MATLAB. The values 

of the model's parameters are shown in Table 2. The training zone is a 500 × 500 m2 square. The 

AUVs are placed in the central area of this square. The target is a circle with a radius of 3 meters 

at the boundary of the training zone. Each AUV with a length of 1-meter is inscribed in a circle 

with a 0.5-meter radius. The parameters of the dynamic model used in simulations 
iAUV ( i 1,2,3=

) are adapted from [40]. The authorized area of control signals is in the range of  3,13propX   

(N) and  20,  20r  −  (deg). The desired formation velocity is 1.5 m/s. The obstacles are 

distributed randomly in a 14-meter radius inside the training zone. 

5.1.2. ML algorithm training and parameter setting  

The structure of the actor-critic networks is similar, which means that double-layer, fully 

connected networks of 400 and 300 neurons with a RELU activator function have been used. These 

values have been utilized based on the dimensions of state and action spaces, which is satisfactory  
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Table 2. The values of the REMUS AUV coefficients [40] 

to approximate the state-action and policy functions in this research. Using the Ornstein-

Uhlenbeck process noise, action is chosen to fully exploit the state and action spaces. The noise 

process is defined as follows: 

(24)  
1 ( ) (0,1)+ =  + −  + k k OU OU k OU G    

where k  and 1+k are the values of the Ornstein-Uhlenbeck process at times k and k+1, 

respectively.  (0,1)G  is a Gaussian noise with a zero mean and a 1 standard deviation. OU , OU

, and OU  are the parameters of the Ornstein-Uhlenbeck process. OU is a constant that determines 

how quickly the noise output is attracted to the mean. OU  and OU  are the mean and variance of 

the noise model, respectively. The values of the TD3 parameters based on formation motion 

planning and AUV control are listed in Table 3. 

The AUV can move 300 steps in each episode. The AUV's action is the surge force and the moment 

of yaw, so the heading and position of AUVs are updated by Eq. (1) and Eq. (2). Termination 

occurs when the leader AUV reaches the target area or the entire time step of each episode has 

passed.  

Table 3: networks’ parameters 

Value Parameters 

0.001 Actor network learning rate 

0.0001 Critic network learning rate 

0.99 Discount factor 

1e6 Memory size 

0.005 Smooth update  

2 Policy and target delay update 

0.2 Target policy noise variance 

0.1 Exploration variance 

0.1 Sample time 

0 
OU 

0.15 
OU 

Parameters Values Unit Parameters Values Unit 

u u
X  -1.62e+000 /kg m  

rrX
 

-1.93e+000
 

. /kg m rad  

v v
N

 
-3.18e+000 kg

 urY
 5.22e+000 /kg rad

 

v v
Y  -1.31e+000 /kg m  urN  -2.00e+000

 . /kg m rad  

r r
Y  6.32e-001 2. /kg m rad  uvN  -2.40e+001 kg  

r r
N

 
-9.40e+001 2 2. /kg m rad

 uvY
 -2.86e+001

 
/kg m  

uX  -9.40e-001 kg  
ruuY   9.64e+000

 / ( . )kg m rad  

vY
 

-3.55e+001 kg
 ruuN   -6.15e+000

 
/kg rad  

vN
 

1.93e+000 .kg m
 

m
 30.51e+000 kg  

rN
 

-4.88e+000 
2. /kg m rad

 z
I

 3.45e+000 
2.kg m  

vrX
 

3.55e+001 /kg rad
 

,g gx y  0.0e+000   M  
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Algorithm 1: Adaptive formation control and obstacle avoidance based on DRL 

1. Configure desired formation, initial poses 0 0 0[ , , ]x y  , number of episodes T, number of steps in each 

episode N, reply buffer size D , mini-batch size M, the learning rate for decision-making networks   

2. Initialization online critic networks 
1

Q , 
2

Q  and the online actor    

3. Initialization target critic networks 
1

Q
 , 

2

Q
 and target actor network 

  

4. For episode = 1, T do 

5. Initialize a random process ( )tN for action exploration 

6. Receive initial observation states (Eq. (8) and Eq. (9)) 

7. For t = 1, N do 

8. Selecting the action t ta (s | ) N=   +  according to the current policy and the explored noise 

9. Executing the action ta  on AUV and observing the new state st+1 (Eq. (1)) and obtaining the reward rt (Eq. 

(16) and Eq. (19)) 

10. Storing the transfer ( )t t t t 1s ,a , r ,s +  in the experience reply buffer D  

11. Sampling a random mini-batch ( ( )i i i i 1M* s ,a , r ,s + ) from the experience reply buffer D  

12. For i =1, M do 

13. Calculation ( )i 1 i 1a s | clipped noise+ +

  =   +   

14. Calculating the value of target state-action using the equation ( )1 1
1,2

min , |


  + +
=

 = +
j

i i i i j
j

y r Q s a  

15. End for 

16. Updating the critic networks by minimizing the cost function of Bellman equation errors 

( )( )

( )( )

1
1

1
2

1 1
1

2 2
1

1
arg min , |

1
arg min , |







 

 

=

=

= + −

= + −





M

i i i i
i

M

i i i i
i

r y Q s a
M

r y Q s a
M

 

17. If t mod d then 

18. Updating the online actor policy (θ) with a frequency lower than updating the critic networks, using the 

sampled deterministic policy gradient ( ) ( )( )
1

1
,



 = 
s M

J Q s s
M

      ,  

     soft updating the target networks 

( )1 ,    1,2  = + − =i i i for i     

( )1  = + −     

19. End if 

20. End for 

21. End for 

5.2. Motion planning and formation control: Approach 1 

Three AUVs are considered for a triangular formation. The leader’s initial position (
LAUV ) is in 

coordination (250,250), whereas the follower AUVs (
F1AUV ) and (

F2AUV ) are in coordination 

(220,220) and (280,220), respectively, and the heading angle of the AUVs is considered zero. 

Obstacles are distributed in random positions in the training area. The aim is to train AUVs in such 

a way that they form a formation with a desired distance of 25 meters and a desired angle of 150 

degrees (2.618 rad) and reach the target point safely. Each AUV is equipped with an obstacle 
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avoidance module. The ( L ) subtitle in all figures denotes the leader, while the (
1F ) and (

2F ) 

subtitles denote the left and right follower, respectively. The training diagrams of all three agents 

are presented in Fig. 8. The learning curves represent the cumulative reward in each episode as 

well as the averaged values over all episodes. According to the figure, the average reward gradually 

increases with training episodes, and the reward value becomes stable. 

 
Fig. 8. Training result: the first approach rewards and the average reward per episode  

 

5.2.1. Obstacle-free formation motion planning results 

The leading AUV is responsible for achieving the target, and the following AUVs try to create a 

predefined formation structure by attaining a specific distance and angle to the leader. Various 

scenarios for reaching different targets without obstacles have been illustrated in Figs. 9 and 10. 

For scenario 1, the distance and angle error signals are shown. According to the figures, the desired 

formation is achieved in different movement scenarios.  

5.2.2. Motion planning and formation control in the presence of obstacles 

In this section, the formation motion planning in the presence of obstacles is evaluated. 

Trajectories of AUVs formation and obstacle avoidance for different scenarios have been 

illustrated in Fig. 11. In Scenario 1, depending on the position of the target and the obstacles, there 

is a possibility of colliding with the leader and the left follower. Obstacles are detected by them, 

and by changing the direction of movement, they prevent the collision with the obstacles, and after 

passing through the danger zone, they return to the desired formation pattern. In the second 

scenario, based on the target positions and the obstacles and dimensions of the formation, the 

followers of AUV reach the target with a slight change in direction. In the third scenario, the 

obstacle is positioned inside the intended configuration. When the obstacle is revealed to both the 

leader and the left follower, the left follower bypasses it, and the leader avoids colliding with it by 

changing direction and then returning to the desired form. Scenario 4 is when the formation faces 



21 

 

two obstacles with a distance less than the size of the formation. As can be seen here, both 

followers have changed direction and returned to the formation path while passing the danger zone. 

Figures 12 and 13, for instance, show the control signals as well as the system’s state variables for 

scenarios 1 and 2, respectively.  

 
Fig. 9. Trajectories of AUVs, distance, and angle formation errors for all obstacle -free scenarios in 5.2.1 (target in 

the first and second quadrants) 
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Fig. 10. Trajectories of AUVs, distance, and angle formation errors for all obstacle -free scenarios in 5.2.1 (target in 

the third and fourth quadrants) 
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Fig. 11. Trajectories of AUV formation and obstacle avoidance for the first approach  
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Fig. 12. State variables and control signals of AUVs in scenario 1 

 
Fig. 13. State variables and control signals of AUVs in scenario 2 
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5.3. Motion planning and formation control: Approach 2 

This section presents obstacle avoidance training with the approach of Section 3.2.1. Here, the 

settings of the environment are the same as in previous sections, and only the leader is equipped 

with an obstacle avoidance module. In this approach, effective obstacle avoidance is based on the 

size of the desired formation. Therefore, the training phase begins with the creation of the desired 

formation, and then obstacles are added to the training phase. The diagrams of network training 

are presented in Fig. 14. As can be seen in Fig.15, the leader chooses a path by which it can lead 

the whole group safely towards the destination. Control signals and state spaces for the systems 

are presented in Fig. 16.  

 
Fig. 14. Training result: the second approach rewards and the average reward per episode 
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Fig. 15. Trajectories of AUV formation and obstacle avoidance for the second approach  

 

 

Based on simulations, each obstacle avoidance method performs well in the presence of the 

obstacle. Both proposed approaches utilize the distributed control architecture. They can be 

employed, depending on the application.  

5.4. Simulation in the presence of ocean currents 

Ocean currents are horizontal and vertical circulation systems of ocean waters that are generated 

in various parts of the ocean due to various factors, such as wind friction and gravity. To include 

ocean currents and how they affect AUV movement, the equations of motion can be written in 

terms of relative velocity [45]: 

(25)  = −v v vr c  
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Fig. 16. Error signals, state variables and control signals 

 

where ,0[ ,υ ]= Tv uc c c  denotes the ocean current in a body-fixed frame, [ , , ]= Tv u v r  represents the 

linear and angular velocities of AUV in a body-fixed frame. To implement ocean currents, Eq. (1) 

can be represented in terms of relative velocity as follows [45]: 

(26)  2
( ) ( )

2
( ) ( ) ( )

2
                                                                        

− − − + = + + +

− + − + − = + + +

+
r

m X u my r m v r x r X u u X v r X rr Xg g vr rru uu r r r r r prop

m Y v mx Y r m u r y r Y v v Y r r Y u rg urv v r rv rg r r r r r

Y u v Y u δuv r r ruuδ

( ) ( ) ( )

2
                                                                                               

− + − − + + = + +

+ +
r

r

I N r mx N v my u m x u r y v r N v v N r rz g g g g v v r rr v r r r r

N u r N u v N u δur uv rr r r ruuδ

 

 
where βc  and Vc  are the direction and speed of the ocean current. To evaluate the effect of the 

ocean current and the system's response to it, different movement directions of AUVs and 

stochastic ocean current variation are considered. Both formation approaches perform similarly; 

we just added Approach 1. Accordingly, two distinct scenarios were presented in accordance with 

Fig. 17, which presents formations designed to reach the destination with and without ocean 

current. For modeling stochastic ocean currents, a Markov moving average technique is used. The 

speed and direction of the ocean current change randomly in both scenarios, ranging from 0 to 0.3 
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m/s and 80 to 140 degrees, respectively. The results indicate that the group can safely reach its 

destination in formation despite a slight deviation in the AUV's path and formation errors. 

Consequently, the DRL-based formation motion planning system has satisfactory adaptability and 

robustness.  

 

 
Fig. 17. The trajectories of AUVs in the ocean current for two distinct scenarios, dashed line: AUVs' trajectories 

without ocean current, solid line: AUVs' trajectories with ocean current 

 

 

5.5. Motion planning and formation control in the presence of communication delay and 

navigation error 

There are other practical challenges like communication delays and navigation (sensing) errors in 

any AUV formation control systems. Although this paper mainly deals with motion planning and 

control techniques, those navigation and control errors should be considered somewhere in 
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algorithm design. For this purpose, in this section, the resiliency of the proposed technique is 

evaluated in the presence of unknown communication delays and navigation errors.   

Underwater communication is usually established by acoustic modems which could be a source of 

errors, mainly variable communication delay [46, 47]. To model underwater communication 

behavior, a time-varying delay with Rayleigh distribution is considered. The variable delay peak 

value is considered at 0.1s and it decays after 1.2 s which can be quite challenging to overcome 

for any control and planning system. AUV navigation is also carried out using a combination of 

transducers like DVL (Doppler Velocity Log), AHRS (Attitude and heading reference system), 

depth sensor, etc. which could encounter unknown errors after data fusion. A Markov moving 

average process is utilized for the modeling of stochastic navigation errors.  The navigation error 

signals that are added to the position and heading states of AUVs are shown in Fig. 18:   

 
Fig. 18. An example of considered navigation errors for x-y position and   angle of AUVs  

It should be noted, those communication delays and navigation errors are not considered in the 

ML training process, therefore they could properly challenge the proposed technique for a 

perturbed condition. Figure 19 depicts the suggested system's performance in the face of random 

time-varying delay and random navigation error in the intended scenario. As can be observed from 

this figure, the proposed algorithm maintains its performance and bounded error in the presence 

of those perturbations. These results are repeatable for similar scenarios. The obtained 

performance shows the robustness and generalizability of the proposed intelligent system.  
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Fig. 19. AUVs’ formation paths with navigation and communication errors are shown in dashed lines, while those without these 

issues are shown in solid lines. 

Implementation Remarks: Real-time implementation of DRL algorithms is a vibrant and 

emerging topic. Recent breakthroughs in this field have been led by NVIDIA and other leading AI 

hardware companies [48-53]. Since the proposed approach deploys two actor and four critic 

networks (with two hidden layers) for each agent, the implementation can be achieved using 

comparatively low-cost COTS (commercially off-the-shelf) products like NVIDIA Jetson Nano 

and TX2 [49, 54, 55]. While successful implementation examples are available in the literature, 

an exponential surge is likely in the upcoming years [49-52]. For instance, in [51], DRL is 

employed to control the motion and self-rescue of the x-rudder AUV. Python 2.7 and TensorFlow 

1.8.0 are utilized for the training process on a Linux system with 64GB of memory and an Intel i7 

7800X processor. The Nvidia Jetson Nano board is employed for implementation purposes. In 

[49], a hardware and software framework for autonomous, agile quadrotor flight is presented. This 

platform uses the powerful Nvidia Jetson TX2 board. Zhu et al. [52] have presented a deep 

reinforcement learning-based end-to-end control and obstacle avoidance framework for visual 

underwater vehicles. Underwater visual perception and automatic control decision-making are 

integrated. The model is built with PyTorch and trained on a GeForce GTX 2080 Ti. The 

BlueROV2 model and Jetson TX2 controller were used for practical testing. One can refer to [49] 

for a comparison of the available solutions in this area. Hence, the real-time implementation of the 

proposed algorithms is feasible and envisaged as the next step to complement this research. 

6. Conclusion 

This paper introduces a novel formation control and obstacle avoidance scheme based on deep 

reinforcement learning. In the suggested system, two solutions for obstacle avoidance are provided 

through the design of distinct reward functions. In the first approach, safe formation path planning 
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is conducted with all group members equipped with obstacle avoidance sensors. In the second 

strategy, the leader merely identifies obstacles and guides the entire group toward the target in a 

safe manner. By designing distinct reward functions for the leader and the follower, given tasks 

are carried out. The role of the leader is to devise the optimal strategy for moving and guiding the 

group toward the goal while avoiding potential obstacles. The responsibility for maintaining the 

desired formation lies with the followers. The performance of the proposed end-to-end motion 

planning and control approaches is verified through various simulation scenarios. It is shown that 

the leader and followers are able to maintain their topology during following waypoints and 

steering clear of obstacles. Moreover, the performance in the presence of ocean currents, 

communication delays, and sensing errors demonstrates the robustness of the proposed scheme in 

perturbed realistic conditions. The obtained results verify the merits of the proposed algorithm to 

be considered for implementation purposes. 
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