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Abstract
Neuromorphic computing, exemplified by breakthroughs in machine vision through concepts like
address-event representation and send-on-delta sampling, has revolutionised sensor technology,
enabling low-latency and high dynamic range perception with minimal bandwidth. While these
advancements are prominent in vision and auditory perception, their potential in machine
olfaction remains under-explored, particularly in the context of fast sensing. Here, we outline the
perspectives for neuromorphic principles in machine olfaction. Considering the physical
characteristics of turbulent odour environments, we argue that event-driven signal processing is
optimally suited to the inherent properties of olfactory signals. We highlight the lack of bandwidth
limitation due to turbulent dispersal processes, the characteristic temporal and chemical sparsity,
as well as the high information density of the odour landscape. Further, we critically review and
discuss the literature on neuromorphic olfaction; particularly focusing on neuromorphic principles
such as event generation algorithms, information encoding mechanisms, event processing schemes
(spiking neural networks), and learning. We discuss that the application of neuromorphic
principles may significantly enhance response time and task performance in robotic olfaction,
enabling autonomous systems to perform complex tasks in turbulent environments—such as
environmental monitoring, odour guided search and rescue operations, and hazard detection.

1. Introduction

The sensory capabilities of animals still surpass the limits of technology in many domains. It is therefore not
surprising that the underlying principles have long inspired devices and algorithms for sensing in machines.
Neuromorphic computing is a prime example of this approach [1–3]. In machine vision, bio-inspiration and
neuromorphic principles have enabled breakthroughs in sensor technology. In particular, the send-on-delta
sampling algorithm [4] and the address-event representation [5] have enabled low-latency and high dynamic
range sensing, requiring little bandwidth to represent sparse signals [6, 7]. Today, the groundbreaking
developments in neuromorphic technology have culminated in commercially available products and various
applications where event-based vision solves problems that are difficult to tackle with conventional
frame-based image sensors [8, 9]. The principle of dynamic sampling has since been extended to other
sensing paradigms, most prominently in the research of neuromorphic auditory perception [10].

Olfaction, or the sense of smell, involves complex signal processing and pattern recognition to identify
and discriminate between a vast array of chemical compounds [11, 12]. Computational models of olfaction
aim to replicate these biological processes, yielding new algorithms [13, 14] and sensor technologies [15, 16]
for mimicking the highly efficient and adaptive nature of animal olfactory systems. Here, we explore what
opportunities event-driven processing may deliver in machine olfaction.
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2. Why neuromorphic olfaction?

To determine whether neuromorphic computing may benefit machine olfaction, we shall examine the
conditions under which such mechanisms have proven effective. A compelling argument by Liu et al [17]
suggests attributing to a signal its degree of bandlimitation. This may indicate the presence of a stable
mapping function between the signal and uniformly spaced samples, or alternatively suggest that dynamically
acquired samples could be superior in representing the signal. In vision, for instance, natural scenes contain
motions at varying velocities, and choosing a constant camera frame rate that matches the fastest observed
motion is inefficient [17]. More fundamentally, high-contrast (Dirac- or step-function-like) scenes are not
bandlimited in space, while any moving object is not bandlimited in time. Here, nonuniform and
data-driven/dynamic sampling may be favourable. Contrary, audio signals (such as speech) are inherently
bandlimited by the transmission medium air: Low frequencies (≈1Hz) require massive sources (e.g.
earthquakes), while high frequencies (ultrasound,>20 kHz) attenuate rapidly [18]. Thus, irrespective of the
recording device, an upper and lower limit of a signal’s bandwidth may be determined in advance, therefore
allowing the selection of a periodic sampling rate that captures the relevant signal with minimal aliasing.

Temporal and spatial sparsity of signals also suggest event-based processing [19, 20]. When imaging
natural scenes, most regions do not change significantly over short periods of time (temporal sparsity) and
contain large areas of similar intensity or colour (spatial sparsity). Both biological and neuromorphic vision
systems tend to encode information efficiently by emphasising changes and discontinuities rather than
uniform areas, which is aligned with the efficient coding hypothesis [21, 22]. Thus, signal sparsity aids in
explaining the effectiveness of event-based processing for visual stimuli, and may indicate applicable regimes
for other sensing modalities [23].

What is the situation in olfaction?

2.1. Olfaction is not bandlimited
Under virtually all relevant natural conditions, odorants are transported by turbulent dispersal. This process
is fundamentally different from smooth and laminar transport, as it creates highly dynamic and
unpredictable concentration fields. Turbulent flows are characterised by eddies, i.e. vortices of variable size.
Large eddies dissipate their power into smaller eddies [24, 25], cascading down to the molecular level, where
energy is dissipated into heat through friction [26]. This process creates odour structures spanning a range of
length scales, producing characteristic temporal odour fluctuations as they are transported across a sensor.

The statistics of these odour fluctuations depend on (a) environmental flow conditions, and (b) the
odour source configuration. Environmental flow conditions set the relative importance of the physical
processes acting on odour structures en route to the sensor. This includes fluid dynamic strain, which locally
enhances concentration gradients, and molecular diffusion, which diminishes them. The source
configuration includes factors like its dimensions, mass flow rate, buoyancy, and proximity to boundaries.
Collectively, these factors produce variance in the odour concentration field, where the size L of an odour
plume relative to the eddies predicts what fluid dynamic processes drive local concentration fluctuations
[27]. If eddies are larger than L—which is often the case very close to the odour source—they contribute
mostly to plume meandering, i.e. the irregular motion of the fluid volume’s centre of mass (see figure 1(a)).
Conversely, if eddies are smaller than L—as encountered at a greater distance from the source—they
contribute to turbulent diffusion characterised by shearing, distortion, and expansion of the plume.

The odour concentration fluctuations in turbulent plumes are distributed as a power law [28, 29] and
span several orders of magnitude. In particular, it has been postulated and empirically shown [29] that for
fully developed turbulence regimes (i.e. far away from the source, where the Reynolds number Re is high),
the frequency energy spectrum nS(n) exhibits a log–log relationship with the frequency n as

nS(n) = aϵ2/3
( n

U

)−2/3
, (1)

where a and ϵ are a universal constant and the rate of turbulent energy dissipation respectively, and U is the
mean wind speed. This implies that for fluctuations in odour concentration, there is a non-vanishing energy
contribution even at very high frequencies. Figure 1(b) displays a collection of power spectral densities,
calculated from data of various studies. All the considered datasets exhibit a pronounced log–log power
law—collectively covering frequencies that span five orders of magnitude—however, variations in turbulence
regime, sensor modality, and post-processing methods may cause deviations from the theoretical f−2/3 slope.
Therefore, unlike other sensory modalities such as auditory perception, signals derived from the odour space
are not subject to narrow bandwidth limitations.
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Figure 1. Physical attributes of olfactory signals. (a) Planar-laser-induced fluorescence (PLIF) recording of a meandering odour
plume in a wind tunnel. Data from [33]. (b) Energy spectra (variance-normalised) versus frequency, for different studies. Sensor
modality, measurement condition, source-to-sensor distance (d), data processing and source as follows:+ photoionisation
detector (PID), outdoor field recording, d= 200 m–300 m, filtered data, [29]; ▲ E-nose, wind tunnel (WT), d= 1.18 m, raw
data, [34]; † PLIF, WT, d= 20 cm, raw data, [33]; ∗ indoor field recording, d= 40 cm, raw data, [35]; ‡ E-nose, WT, d= 20 cm,
raw data, [36]. For all raw data recordings, the highest frequency components where strongly contaminated by instrument noise,
and cropped out for visual clarity. Dashed line indicates theoretical−2/3 slope. (c) Probability density functions of measured
whiff duration and upcrossing time, for different distances between source and sensor. Dashed lines indicate theoretical−3/2
slopes. PID recordings by [32], panel reprinted figure with permission from [31], Copyright (2014) by the American Physical
Society. (d) Number of sensors on portable electronic noses of different sensor modalities, as reported in various studies
(non-exhaustive, see supplementary materials for a table and references). Sensor modalities are abbreviated as follows. CPC:
conducting polymer compound; MOx: metal-oxide; EC: electrochemical; CNT: carbon nanotube. Dashed lines represent total
olfactory receptor neuron counts for different animals.

2.2. Olfaction is temporally sparse
Intermittency is a defining feature of turbulent odour plumes [30, 31]. Single odour packets (also ‘whiffs’ or
‘bouts’) or clusters of odour packets (also ‘clumps’) are separated by periods of no signal (also ‘blanks’). The
timescales of bout durations and inter-bout intervals, as well as bout amplitude (or odour concentration)
and bout-per-clump counts, depend on environmental flow conditions—most notably the structure of the
mean and fluctuating velocity fields—and the vector between the encounter point and odour source.
Relevant statistical characterisations of whiffs, clumps, and blanks have been postulated and tested [31]. In
particular, both the duration of a whiff tw (the time between the concentration signal crossing a threshold cthr
upwards and downwards) and the upcrossing duration tu (the time between the upward crossings
corresponding to two whiffs) are distributed according to power laws:

p(tw) =
1

τ

( tw
τ

)−3/2

gw (tw) , p(tu) =
1

τ

( tu
τ

)−3/2

gu (tu) . (2)

The functions gw and gu describe cut-offs that are exponential for large arguments, while τ is a diffusion time

constant. Figure 1(c) displays field recordings of turbulent odours [32], demonstrating the t−3/2
x power law,

spanning four orders of magnitude for both whiff duration and upcrossing times. While short odour
packages at milliseconds or less [31] are possible and most likely, the probability for extended periods of no
incoming odour packages is non-vanishing. In such terms, olfactory signals are sparse in time.

2.3. The odour space is informative, tangible, and suggesting event-driven sensing
Intuitively, the notion of turbulence may suggest elusiveness, disorder or even chaos. However, the statistics
of odour encounters in turbulent environments encode spatial information of the odour source and its
surroundings. In particular, measured bout concentration variations as well as intermittency are indicators
of the plume dimensions [37]. The degree of temporal correlation between two encountered odours at a
single point can indicate their separating distance [38]. Conversely, analysing the correlation between
same-odour encounters at multiple points in space indicates the relative position of the source [39].
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Additionally, several plume features have been shown to reproducibly vary with distance and direction
between the sensor and odour source, such as the concentration amplitude and first derivative of a bout [40],
the degree of intermittency [41], and the average bout count [42].

While olfaction is temporally sparse, it is not subject to bandlimitations, suggesting that many plume
features can be captured reliably only if the plume is sensed and processed fast enough. In fact, stationary
measurements of odour concentration fluctuations occur at frequencies exceeding 100Hz [43], while
individual odour encounters can last few milliseconds or less [31]. Many animals exhibit remarkable abilities
in rapidly detecting and processing short odour stimuli. For instance, insects olfactory receptor neurons’
(ORNs) response latency is less than 2ms [44, 45], and odour stimuli fluctuations can be resolved at
frequencies of over 100Hz [44]. This enables them to efficiently track dynamics of fast odour signals [46],
eventually leading to solving complex tasks such as odour source localisation in turbulent environments [47,
48], or perceptually segregate mixed odours from different sources [35, 38, 48]. In machine olfaction, the
relatively slow sensor response and recovery times of electronic nose devices have been prohibitive for many
applications. However, recent advances in sensors and processing algorithms have brought their temporal
capabilities closer those of animals. For instance, we reported on a miniaturised electronic nose with an
odour response time in the millisecond regime [36], outperforming mice in their temporal capabilities on
equivalent tasks.

The observed power law in odour concentration extends to small spatial scales, which in turn correspond
to very high frequencies. Accurately extracting information requires high temporal resolution, yet efficiency
considerations must account for the signals’ sparsity in time and sensor activation. We argue that
event-driven processing schemes are optimal in this regime. They allow for efficiently handling the observed
scale-invariance and heavy-tailed distributions of odour encounters, as they inherently represent
information with high temporal precision and the least possible temporal quantisation, while achieving
minimal activity in the frequent periods where no odour is present. For instance, a neuromorphic sensor
could generate events in response to the onset and offset of odour whiffs, accurately capturing its
concentration and duration. During periods of no signal, the system could remain inactive, conserving
energy and focusing computational resources on the next significant event.

2.4. Olfaction is chemically sparse, motivating activation-driven and adaptive sensing
Chemical space is vast. It has been estimated that the number of theoretically synthesisable drug-like
molecules, i.e. that obey certain rules regarding oral bioavailability, approaches 1060 [49, 50]. Projects like
GDB [51] aim at enumerating as much as possible of this space, currently containing close to 165 billion
small molecules. The subset of molecules perceived as odorous is suggested to count around 40 billion [52].
To successfully navigate and interact with this vast chemical space, evolution has equipped the animal
kingdom with a large number of ORNs. For instance, fruit flies (Drosophila) express around 1500 ORNs of
60 different types [53], while honeybees have around 60 000 ORNs of 160 different types [54]. Those
numbers pale in comparison to mammals; humans have around a million ORNs of 300 types [55]
(postulated to be aligned to key food odourants [56]), while certain dogs have up to 300 million ORNs [57].

At high odour concentrations, i.e. parts-per-million (ppm) or higher, the odour representation at the
receptor and glomerular levels is typically combinatorial, relying on broad tuning of the receptors [58–64].
However, naturally occurring odourant levels rarely exceed the parts-per-billion (ppb) range, calling for a
more nuanced treatment of this regime [65]. In fact, recent evidence indicates that at these bio-relevant
concentrations (ppb and lower), mammalian olfactory sensory neurons exhibit sparse activation, with some
responding selectively to a single odourant [66–68]. Further downstream from the sensory neurons, both
mammals and insects exhibit high degrees of sparsity. In the insect olfactory system, the sparse
representation of odours in the mushroom body [69] is maintained via a normalising negative-feedback loop
over a wide range of input conditions [70]. Similarly, the mitral cells of the mammalian olfactory bulb (OB)
respond sparsely to glomeruli inputs [71], which emerges from the excitatory-inhibition balance between
mitral cells and granule cells [72]. While the capacity to distinguish millions of odours likely depends on
broad receptor activation at high concentrations, such scenarios may be ecologically rare. In natural settings,
animals may only need to detect and discriminate a small subset of behaviourally relevant odourants, such as
those associated with food, mates, or predators. Indeed, Dunkel et al [56] proposed that mammalian
olfactory perception is structured around a limited number of key food odourants, suggesting that sparsity at
low concentrations may reflect an evolutionary optimisation towards ecological relevance rather than a
limitation in olfactory coding capacity.

In machine olfaction, the term ‘electronic nose’ refers to an array of individually addressable gas or odour
sensors. The activation across sensors is often interpreted as a combinatorial code, or odour fingerprint,
which ideally correlates with odour identity and concentration [73]. Different sensing elements are used,
such as electrochemical sensors, conducting polymer compound gas sensors, Metal-Oxide (MOx) gas
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sensors, optical gas sensors, and carbon-nanotube gas sensors. They vary in their capabilities (e.g. sensitivity
and response time) and constraints (e.g. power consumption, form factor, and sensor drift), and are typically
selected according to their use cases. In theory, a larger set of sensors with slightly different chemical
selectivity would improve the capability of an electronic nose device to discriminate different odorants and
mixtures. In line with this postulate, the reported numbers of individual sensing elements embedded on
electronic nose devices have been growing steadily (see figure 1(d)), most recently surpassing 10 000 sensors
[74].

Analogous to biological olfaction, it has been demonstrated that the activation across large sensor arrays
is non-uniform, and that it often sufficient to consider a sparse subset of the available sensing elements [74,
75]. In fact, the duality between sparse and broad activation observed in biological systems may be a
desirable feature in artificial olfaction as well. At low concentrations, high specificity is advantageous for
detecting trace compounds in industrial or safety-critical contexts—such as the selective detection of
benzene [76] or methanol [77]. Conversely, broader sensor activation at higher concentrations could
enhance robustness and generalisation when encountering unfamiliar odourants in complex or uncontrolled
environments, much like the adaptability seen in natural olfaction. Neuromorphic implementations of
electronic noses could thus benefit from incorporating dynamic tuning mechanisms that reflect this
biologically inspired balance between selectivity and coverage. This could again motivate event-based sensor
processing: Efficiency increases could be achieved by sampling and processing data from the growing
number of sensors activation-driven, adaptive, and in parallel; which neuromorphic algorithms and
substrates inherently support [1, 2].

3. Neuromorphic odour sampling and signal processing

In neuromorphic vision, a vast majority of studies and applications are based on events that are generated by
adaptive threshold crossing (send-on-delta) of a logarithmically scaled brightness signal, and represented via
their pixel address x and time t. Most prominently, the dynamic vision sensor [6] integrates this in a circuit,
and produces events ek of the shape

ek (xk, tk,pk) , (3)

where pk represents the polarity of change, i.e. p ∈ [−1,1]. For processing, the events are then either
represented as an accumulated image frame, or via particular encoding schemes such as time surfaces or
voxel grids [8], or as individual events to be directly processed via spiking neural networks (SNN). Yet, there
exists a multitude of other methods for generating, representing and processing events.

In the following, we introduce, review, and critically discuss different principles regarding event-based
sampling and signal processing for neuromorphic olfaction.

3.1. Event generation and information encoding
3.1.1. Biological action potentials (AP)
In biological olfaction, similar principles across phyla are observed to generate odour response spikes at the
olfactory receptor level. Insects embed ORN in hair-like structures on their antennae, while in mammals
ORNs are located in the olfactory epithelium that covers internal parts of the nasal cavity [78]. In both cases,
once an odour molecule has bound to its corresponding receptor [79], a signal transduction cascade is
initiated, leading to the opening of ion channels that ultimately cause the neuron to depolarise and initiate an
AP. The AP, which can be understood as a binary event, is transmitted to and further processed in the insect
antennal lobe (OB) and mammalian OB, respectively.

3.1.2. Artificial neurons and current injection
Various methods for converting a continuous gas sensor response into binary events have been introduced.
One approach (see figure 2(a)) involves simulating or emulating the membrane potential Vm of an artificial
spiking neuron, and feeding the sensor response as an input current I(t):

dVm (t)

dt
=−Vm (t)−Vrest

RmCm
+

I(t)

Cm
. (4)

Here, Rm, Cm and V rest are the membrane’s resistance, capacitance, and resting potential, respectively. An
event is generated whenever Vm crosses a fixed threshold, followed by resetting Vm to its resting potential.
Both early and more recent studies in neuromorphic olfaction have leveraged this approach extensively
[80–89] using different neuron models, parameters, and signal conditioning methods. The method is
particularly applicable for hardware SNN implementations, as the computing substrate itself can be used to

5



Neuromorph. Comput. Eng. 5 (2025) 023001 N Dennler et al

generate the spikes. Conversely, the approach is less suitable for FPGA and digital implementations, as the
simulation of differential equations is computationally expensive. Similarly, events can be generated via a
biased Poisson process [90]. This has been utilised to emulate ORN excitations [91] in neuromorphic
olfactory models; however, it could also be used to generate odour response events by biasing the Poisson
process towards an average event rate that is proportional to the odour-specific sensor response. All those
approaches represent a form of rate code, i.e. the event rate being proportional to the sensor response [92],
or—in the case of multiple sensors—a population code. While offering a noise-resilient and robust
encoding, information transmission relies on downstream event integration and tends to be slow.

3.1.3. Latency-representation events
Other information encoding schemes rely on the precise timing of events. For instance, single events may be
generated at latencies∆tij that are proportional to the log-response of sensor j to an odour i, i.e.
∆tij ∝ lnSj(t), which allows considering the relative latency (i.e. the rank) of the different sensors as a
concentration-independent odour mapping [93–96]. Similar methods that use transient features instead of
the raw signal have been proposed [97, 98]. Albeit being potentially fast and highly sparse, this encoding
breaks down at single noise events, and in the reported form is not suited for dynamically changing signals
due to the lack of a reset signal. Similar, yet more sophisticated methods have been proposed, where transient
features are converted into events of different latencies [99, 100], to be further processed by an SNN.

3.1.4. Change detection events
Another approach—as prominently featured in event-based vision—is using the send-on-delta algorithm [4]
to generate events that correspond to positive or negative changes in the sensor response [101–104]. In
particular, if the signal crosses a reference voltage plus or minus a set threshold, a positive or negative change
event is generated and the reference voltage shifted up- or downwards by the threshold (see figure 2(a)). In
vision, the signal is typically preconditioned through logarithmic scaling, which increases the dynamical
range drastically [6]. In olfaction, however, this may not be necessary, as the transfer function of many gas
sensors implicitly scales the encountered odour concentration range [105].

The send-on-delta method is fast, sparse, and robust; yet as it tracks changes only, it does not provide the
absolute signal intensity. In vision, intensity information is often not needed, however is retained in the
Asynchronous Time-based Image Sensor (ATIS) pixel design [7]. Besides generating positive and negative
change detection events, the mechanism employs an extra channel containing pairs of events, with a time
difference inversely proportional to the absolute signal intensity (see figure 2(a)). This concept loosely
resembles the dual-pathway observed in the mammalian OB [106], which has inspired a series of studies
adapting the ATIS circuit for mixed-signal event-based gas concentration measurements [107–109]. A
sparser and more straightforward event representation is achieved by providing separate event channels for
fixed amplitude levels, as demonstrated first for an event-based speech processing audio front end [110].
Whenever an amplitude level is crossed upwards or downwards, an event in the corresponding channel is
generated (see figure 2(a)). This method may be particularly effective whenever the amplitude range of the
signal is known beforehand, which is often the case for gas sensors.

3.1.5. Events encoding turbulent plume features
The intermittent nature of turbulent odour plumes may suggest encoding temporal features of the plume,
such as bouts and blanks, in the event trains. Recent evidence from neuroscience indicates that animals apply
similar principles. For instance, large-scale temporal odour features—specifically plume onset, plume offset,
and whiff encounter—are encoded in the mammalian OB spike output, both at the single-cell and
population levels [111]. These features are critical for odour-guided navigation [112, 113] and source
localisation tasks [114]. Such an approach has been demonstrated by isolating the bout onset from the sensor
response through Kalman filtering, and subsequently generating change events through send-on-delta
sampling [115]. In a stereo sensing setup, this method allowed for estimating bout velocity by considering
the relative event latencies between sensors [115]. Other methods that approximate the plume dynamics
from the sensor response, such as cascaded filtering [42] or blind deconvolution [116], could be combined
with send-on-delta or ATIS mechanisms for generating informative and task-relevant event patterns.

3.2. Event-based signal processing and learning
3.2.1. Biological neural networks
Evolution provides us with effective mechanisms for processing event trains generated by thousands to
millions of ORN) ORNs that express the same type of OR converge onto spatially separated structures called
glomeruli, which are found in both the mammalian OB and the insect AL. Interneurons, such as the
mammalian granule cells and periglomerular cells, modulate glomerular activity through inhibitory and
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Figure 2. Event generation mechanisms (a) and spiking neural network architectures (b). (a) Left: a spiking neuron, described by
differential equation for the membrane potential Vmem (red, see equation (4)), generating events whenever Vmem crosses a
thresholds. Centre: ATIS mechanism, producing positive (CDON) and negative (CDOFF) change detection events whenever an
adaptive threshold is crossed, and an exposure measurement (EM) event pair that encodes the signals’ absolute intensity S(t) in its
time difference∆tEM. The algorithm can be reduced to the familiar send-on-delta mechanism by omitting the EM events. Right:
amplitude crossing mechanism, generating events whenever fixed amplitude levels are crossed, in channel that are specific to
those levels. (b) Bio-inspired spiking neural networks. Top: OB network, bottom: mushroom body network [91]). (c) Artificial
spiking neural networks. Top: feed-forward network, bottom: reservoir network. For all networks, arrows and dots indicate
excitatory and inhibitory connections respectively.

excitatory interactions, which enhances odour separability and noise resilience. Projection neurons, such as
mitral cells, relay the glomerular activity to higher brain centres, which includes the olfactory cortex in
mammals, and the mushroom bodies and lateral horns in insects [78].

3.2.2. SNNs
In artificial olfaction, besides directly considering one of the discussed encoding schemes, such as the average
event rate or the order (rank) of incoming events, the typical approach to processing asynchronous events is
using SNNs. SNNs represent a class of artificial neural networks that mimic biological neural systems more
closely than traditional neural networks (ANNs, such as the multilayer perceptrons), by implementing a
network of artificial spiking neurons as described by equation (4). The key difference to ANNs is that SNNs
typically incorporate the precise timing of events in their operation, and activate subsequent nodes only
when a fixed activation threshold is crossed, allowing for asynchronous and data-driven computing [117].
SNNs build the foundation for (non-von-Neumann) neuromorphic computers, which are characterised by
their highly parallel operation and collocated processing and memory units [2].

3.2.3. Bio-inspired SNNs
Various studies have focused on implementing concepts from biological olfaction systems, either in
simulation or hardware. Many of these studies concentrate on the mammalian OB and glomeruli models,
which perform a form of dimensionality reduction through excitatory and inhibitory dynamics (see
figure 2(b), top for a circuit diagram). Early works implemented OB models on very-large-scale-integration
(VLSI) hardware and trained them either via Hebbian learning [80] or Spike-Timing-Dependent Plasticity
(STDP) [81, 82], or self-organizing models [118]. The STDP approach has since been integrated into
low-power electronic nose systems [83, 100], demonstrating effectiveness in tackling sensor drift [119]. A
noteworthy SNN implementation of an STDP-based glomerulus model that couples its activity with gamma
oscillation promises to perform noise-robust learning from single data instances [120]; however, the
reported evaluation protocols are not conclusive [121]. Recent efforts focus on few-shot class-incremental
learning [98] or on fusing the OB network with an SNN that is driven by visual stimuli [122].

Other biology-inspired studies choose to implement parts of the insect AL [123] (see figure 2(b), bottom
for a circuit diagram). Early works implemented simplified AL models on VLSI hardware [124] and on
neuromorphic computing substrates [125], which have been extended to more complex models that focus
on excitatory-inhibitory dynamics [91]. Further studies implemented AL models and included learning via
STDP [101, 126, 127], supervised soft-winner-take-all mechanisms [84, 128], and combinations of
unsupervised self-organisation processes and supervised synaptic plasticity rules [85]. A noteworthy
contribution has been made by further abstracting the biological networks; implementing a two-layer SNN
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that performs concentration-invariant odour detection through event synchrony [89]. In addition to sensory
processing and learning, multiple studies have demonstrated that motor control behaviour may be
implemented by the insect mushroom body circuitry [129–131], therefore allowing to close the
sensory-motor loop in neuromorphic systems [132].

3.2.4. Feed-forward SNNs
Feed-forward SNNs are more commonly used for neuromorphic vision or auditory perception, as they can
simplify model implementation and training procedures by transmitting information in just one direction,
i.e. with no recurrent connections. See figure 2(c), top for an illustration of the concept. In neuromorphic
olfaction, similar approaches have been demonstrated. For instance, a two-layer SNN was implemented and
trained via STDP on a neuromorphic chip [102], and then used to differentiate between roasted malt
samples [104]. Further, a four-layer SNN was trained from input neuron activation (offline, via
backpropagation), then demonstrated to be of practical use on a food science task [87]. While feed-forward
SNNs offer simple training, they do not support the recurrent dynamics observed in biological olfactory
circuits and hence might be limited in their ability to efficiently deal with olfactory signals.

3.2.5. Reservoir SNNs
A reservoir network, or liquid state machine, is a computing concept that can be implemented using SNNs:
An input layer projects onto a reservoir of neurons, typically consisting of sparse, recurrent, and
excitatory-inhibitory interconnections using randomised and untrained weights. A readout layer connects to
a subset of these neurons, with weights that are trained via supervised learning. See figure 2(c), bottom for an
illustration. This method allows for casting the input to a spatially and temporally higher-dimensional space
[2, 133]. In fact, the projection into a high-dimensional space inherent to the insect mushroom body [134]
can be modelled using reservoir networks, which may be leveraged when designing neuromorphic circuits
[127]. Further, the concept has inspired reservoir SNNs with cubic network connectivity used for
event-based odour data classification [99, 135], as well as implementations based on memristive devices
[136]. A recent review argues that reservoir computing is particularly well suited to match the physics in
photoelectrochemical devices [137], which may make it an intriguing candidate for emerging optical odour
sensing technologies [75].

4. Discussion

Based on the physical characteristics of turbulent odour environments, we reason that neuromorphic
computing is highly beneficial for machine olfaction. Odour signals span a space of billions of different
odourants and are presented to detectors as fluctuations following power law distributions across multiple
orders of magnitude. Event-driven processing schemes offer an optimal solution by capturing salient features
at high temporal precision, while energy consumption and data bandwidth can be preserved during idle
periods or for inactive sensor nodes. This approach aligns well with biological systems’ efficiency in handling
sparse and dynamic signals.

The key benefit of event-driven processing is the viability of exceptionally high temporal resolution while
retaining low data bandwidth; however, none of the reviewed studies in neuromorphic olfaction have
emphasised speed. This comes as little surprise, as machine olfaction has only recently seen timescales that
approach the capabilities of animals [36]. Nevertheless, the neuromorphic methods for asynchronous
sampling and processing presented here are relevant, and could be adapted with little effort to state-of-the-art
odour and gas sensors. In particular, the change-detection method and its variants may provide suitable
candidates for producing efficient encoding of rapidly changing sensor dynamics. Alternatively, events that
explicitly encode temporal features of odour plumes may achieve high information density, as the encoding
would be tailored to the underlying physical processes. For processing the generated events, asynchronously
driven SNNs can be used. Networks with some degrees of recurrency, such as SNN implementations of the
AL or the OB, or the more abstract reservoir SNN, may be particularly well suited for high-speed processing.

Neuromorphic olfaction holds promise for tackling many real-world challenges that require rapid and
efficient odour sensing. A set of particularly promising applications are found in olfactory robotics [138],
where unmanned ground or aerial vehicles (UGV / UAV) perform odour source localisation and navigation
tasks [139, 140]. Examples of such are the use of smoke-sensing drones for wildfire monitoring [141],
swarm-based gas source localisation in indoor environments [142], as well as distributed gas discrimination
and mapping in emergency response scenarios [143]. Those tasks rely heavily on sensing the environment
rapidly and efficiently, under restrictive constraints for form factor and power budget. Equipping robots with
neuromorphic olfactory sensing and processing capabilities may lead to significant improvements in

8



Neuromorph. Comput. Eng. 5 (2025) 023001 N Dennler et al

response time and task performance metrics, enabling operation in complex and turbulent environments, as
well as allowing for highly optimised power management strategies.
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