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A B S T R A C T 

We present CAPIVARA , a fast and scalable spectral-based segmentation package designed to study astrophysical properties within 

distinct structural components of galaxies. This spectro-segmentation code for integral field unit (IFU) data provides a holistic 
view of galactic structure, moving beyond conventional radial gradients and the bulge-plus-disc dichotomy. It enables detailed 

comparisons of stellar ages and metallicities across components, and naturally identifies outliers by grouping spaxels according 

to dominant spectral features. The algorithm leverages Torch’s scalability and GPU acceleration, outputting a masked FITS file 
that assigns each pixel to its respective group and generates the corresponding one-dimensional spectrum per group, without 
relying on Voronoi binning. We demonstrate the capabilities of the method using a sample of MaNGA galaxies, combining 

CAPIVARA segmentation with the STARLIGHT spectral fitting code to derive stellar population and ionized gas properties. The 
method ef fecti v ely identifies re gions with similar spectral properties across both continuum and emission lines. By aggregating 

the spectra of these regions, we enhance the signal-to-noise ratio of the analysis while preserving the spectral coherence within 

each group. CAPIVARA is released under an MIT license and is available at . 

Key words: methods: data analysis – galaxies: evolution – galaxies: structure. 
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 I N T RO D U C T I O N  

alaxies, the fundamental building blocks of the cosmos, comprise
 rich diversity of stellar components, including bulges, discs, bars,
piral arms, and nuclear star clusters. Each of these structures exhibits
istinct signatures in age, metallicity, and kinematics, shaped by the
nterplay of galactic formation and evolution o v er cosmic time (e.g.
ubble 1926 ; Cappellari 2016 ; Tabor et al. 2017 ; Coccato et al. 2018 ;
 ́anchez 2020 ; H ̈außler et al. 2022 ; Johnston, H ̈außler & Jegatheesan
022 ; Jegatheesan et al. 2024 ; Lima-Dias et al. 2024 ; Nedkova et al.
024 ; Zanatta et al. 2024 ). The bulge of the Milky Way primarily
onsists of an ancient population o v er 10 billion years old and rich
n metals, but it also contains intermediate-age, thick-disc-like stars
nd a relatively young nuclear disc. This contrasts with its thin disc,
hich exhibits metallicity closer to that of the Sun and a considerably
ounger average age (Hayden et al. 2015 ; Howes et al. 2015 ; Ness &
reeman 2016 ; Chiti et al. 2021 ). 
Upon detailed analysis, the Milky Way reveals thick and thin

iscs, a bar, spiral arms, a nuclear disc, and a complex halo (e.g.
nders et al. 2014 ; Helmi 2020 ; Queiroz et al. 2021 ; Ardern-
rentsen et al. 2024 ). Other models have been suggested to explain
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he formation of the Galactic disc, involving processes such as star
ormation, gas accretion, galaxy mergers, and stellar migration (Di

atteo 2016 ; Imig et al. 2023 ). Unlike our Galaxy, such detailed
crutiny of structural components in galaxies beyond the Local
roup is not possible, often leading to crude divisions between
isc and bulge components (Buitrago et al. 2008 ; Nedkova et al.
024 ), although advances have been achieved for nearby galaxies
ith newer instrumentation (Gadotti et al. 2019 ; van de Sande et al.
024 ). Yet, the distinction between bulge and disc populations is
ivotal for understanding the processes behind galaxy formation
nd evolution. It is generally accepted that massive galaxies form
ierarchically in a simplified two-phase process: a rapid dissipative
hase (which includes a starburst phase), followed by multiple
ergers (Whitney et al. 2021 ). The JWST is showing that massive

alaxies are already in place at z ∼ 3 (Carnall et al. 2023 ). Bulges are
ypically older and more metal-rich relative to discs (Lah et al. 2023 ).
he influence of bulges and discs on galaxy evolution depends on
 actors lik e galaxy/halo mass, environment, and redshift (Conselice
014 ; Cimatti, Fraternali & Nipoti 2019 ). 
A galaxy’s environment (Peng et al. 2010b ) also influences its

roperties (Lani et al. 2013 ; Lima-Dias et al. 2021 ), with central
assive galaxies typically growing inside-out due to mechanisms

ike gas accretion and Active Galactic Nucleus (AGN) feedback,
hich predominantly impact central regions (e.g. Croton et al.
006 ; Kim et al. 2011 ; Goddard et al. 2017 ; Krumholz et al.
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018 ; Baker et al. 2023 ). Conversely, satellite galaxies often exhibit
utside-in profiles due to external quenching forces that suppress 
tar formation from the edges inward, a phenomenon underscored 
y mechanisms such as major mergers (Lin et al. 2019 ; Cortese,
atinella & Smith 2021 ; Samuel et al. 2022 ). Recent findings of
utside-in radial gradients in distant low-mass satellites (Sandles 
t al. 2023 ) emphasize environmental quenching’s role from as early 
s z = 2. Alongside stellar histories, gas distribution and properties 
ffer insights into quenching processes, with internal mechanisms 
eading to central outflows and environmental quenching leaving 
xtended shocked gas distributions, identifiable by specific emission 
ine ratios (Carniani et al. 2023 ). 

The use of Integral Field Units (IFUs) has enabled more detailed 
tudies of galaxy properties by providing simultaneous spectral 
nd spatial information, allowing for the examination of chemical 
bundances, kinematics, and star formation histories in a spatially 
esolved manner. These observations are an integral part of numerous 
ow- and high-redshift surv e ys, including SAURON (Bacon et al. 
001 ), the Spectroscopic Imaging Surv e y in the Near-infrared with
INFONI (SINS; F ̈orster Schreiber et al. 2009 ), Mapping Nearby 
alaxies at Apache Point Observatory (MaNGA; Bundy et al. 
015 ), Calar Alto Le gac y Inte gral Field Area (CALIFA; S ́anchez
t al. 2012 ), the Sydney Australian Astronomical Observatory Multi- 
bject Integral Field Spectrograph (SAMI; Croom et al. 2012 , 2021 ),
alaxy Surv e y, the Gemini Near-Infrared Field Spectrograph (NIFS; 
iffel et al. 2018 ), Time Inference with MUSE in Extragalactic Rings

TIMER; Gadotti et al. 2019 ), and the Middle Ages Galaxy Properties 
ith Integral Field Spectroscopy (MAGPI; Foster et al. 2021 ). 
IFU data have been used in morphological decomposition to 

dentify spaxels belonging to bulge- or disc-dominated regions (and 
ther structures), enabling the examination of the properties of the 
tellar populations in these re gions. F or e xample, Wisotzki et al.
 2003 ) used 2D modelling techniques on IFU data to deblend the
uadruple QSO and gravitational lens HE 0435–1223. A similar 
pproach was used to separate the nuclear and host galaxy of the
entral region of 3C 120 (S ́anchez et al. 2004 ) and to extract the
eblended spectra of the galaxies in the core of Abell 2218 (S ́anchez
t al. 2007 ). A noteworthy package is the Bulge-Disc Decomposition 
f IFU data (BUDDI; Johnston et al. 2017 ), which utilizes GALFITM

H ̈außler et al. 2013 ), a modified version of GALFIT (Peng et al.
002 , 2010a ), to model the light profile of multiwavelength images
f a galaxy. M ́endez-Abreu, S ́anchez & de Lorenzo-C ́aceres ( 2019 )
mployed C2D, a multicomponent decomposition, which consists of 
tting a galaxy’s surface-brightness distribution at each wavelength 
quasi-monochromatic image) via a 2D photometric decomposition 
ode. Bittner et al. ( 2021 ) studies the kinematic and stellar population
f inner bars in three disc galaxies, based on the multicomponent 
hotometric decompositions from de Lorenzo-C ́aceres et al. ( 2019 ). 
One shortcoming of current image decomposition methods is 

heir reliance on preset categories – such as haloes, bulges, discs, 
ars, and rings – which exclude structures that do not fit, like 
symmetric features. Additionally, when working with IFUs, these 
ethods typically treat each wavelength independently rather than as 

art of a high-dimensional tensor, potentially o v erlooking important 
orrelations – such as those between bluer wavelengths and H II 

mission. This results in the loss of useful information that could 
rovide insights into the physical mechanisms behind these features. 
This work explores an alternative approach for spectral catego- 

ization of different physical regions in galaxies. Instead of using 
reconceived two-dimensional profile models, our method employs a 
pectral-based segmentation approach solely relying on spectral sim- 
larity. This allows for greater flexibility in characterizing complex 
tructures, such as those found in mergers and irregular galaxies. By
tilizing unsupervised hierarchical clustering, our approach directly 
argets the wavelength space instead of treating the data cube as a
tack of images at each wavelength. This methodology leverages 
orch (Paszke et al. 2019 ), a deep learning library designed

or tensor computations and GPU acceleration, enabling fast and 
fficient matrix calculations. Its capabilities make it particularly 
uitable for the segmentation of large datasets, offering a powerful 
ool for the analysis of IFU data cubes. 

This paper is organized as follows: In Section 2 , we provide a
etailed description of our method. Section 3 briefly describes the 
ata used in our study. In Section 4 , we demonstrate the practical
pplication of our code on five MaNGA galaxies. We compare our
pproach with existing methods from the literature and present our 
onclusions in Section 5 . 

 M E T H O D :  SPECTRO-SEGMENTATI ON  

ur model classifies each IFU pixel φ = 

{
φi ∈ R 

x ×y ×w 
}N 

i= 1 
into C 

lusters, ensuring that spectra within a cluster are similar, while those
n different clusters are dissimilar. Here, N denotes the total number
f pixels ( x × y ) , and w is the number of spectral wavelengths. We
easure similarity using the � 2 distance metric, given by: 

 p ( u, v) = 

( 

d ∑ 

i= 1 

| u i − v i | p 
) 

1 
p 

, (1) 

here p = 2 represents the Euclidean distance. Here, u and v 

epresent two independent vectors of features, i is the index of the
eature, and d is the number of features. 

In our case, the features are the flux values at each wavelength bin
f a spaxel in the IFU. While other possible choices exist, such as
he K ullback–Leibler div ergence (K ullback & Leibler 1951 ), mutual
nformation (Li 1990 ), and so forth, we opt for the � 2 norm due
o its simplicity and its relation to χ2 statistics, a standard method
or spectral fitting and template matching. This approach preserves 
he common underlying assumption that spectra can be compared 
ia their respective Euclidean distances. The properties of the 
pectra include their o v erall shape, the strength of particular spectral
ines, and other distinguishing characteristics that can influence the 
imilarity measure. 

Once the similarity measure, in the form of a distance matrix, is
stablished, the algorithm begins by assigning each spectrum from 

 given spaxel to its own group. This initial step ensures that each
pectrum is considered a unique entity, facilitating a more granular 
nalysis. The algorithm then proceeds iteratively, merging the two 
ost similar clusters in each iteration until a predetermined number 

f groups is achieved. This process of successive merging can be
isualized as the construction of a hierarchical tree, where groups 
ormed by merging similar spectra are placed lower on the tree, and
hose that are less similar are positioned higher. 

One of the significant advantages of hierarchical clustering is its 
bility to detect associations at various levels of granularity (e.g. 
urtagh & Legendre 2014 ; de Souza et al. 2023 ). F or e xample,

o identify broad categories of galaxy spectra like star-forming and 
assive galaxies, the algorithm can cut the tree at a higher level
n the hierarchy, leading to fewer, broader groups. Conversely, for 

ore specific distinctions within a category of galaxy spectra, we 
an cut the tree at a lower level, resulting in finer-grained groups.
his approach allows for a hierarchical tree with broad categories at

he higher levels and more specific subcategories at the lower levels.
e note that during the writing of our work, independent groups
MNRAS 539, 3166–3179 (2025) 
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Figure 1. Workflow illustration of our spectro-based segmentation method. The model reads an IFU data cube composed of multiple wavelength channels, 
each represented by a slice in the left image. Hierarchical clustering is then performed on the dissimilarity matrix computed from pairwise distances between all 
spectra within the cube. Once the groups are assigned, the data are back-transformed into a 2D matrix where each group represents spectra with similar features. 
This process identifies galactic structures through spectral characteristics, enabling a refined structural decomposition. 
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ave also pursued the idea of an unsupervised approach to cluster
egions of similar spectra, but using a different methodology based on
he Fisher Expectation-Maximization algorithm (Chambon & Fraix-
urnet 2024 ). 
The general workflow of our approach is depicted in Fig. 1 .

onsider a hypothetical data cube with dimensions 64 × 64 × 1 , 000,
here the first two dimensions represent the spatial resolution in
ixels, and the last dimension represents the number of sampled
avelengths in the spectra. The 64 × 64 spectra are transformed

nto a matrix with 1000 columns and 64 × 64 rows, where each
ow represents a particular spaxel and each column represents a
avelength. On this matrix, we perform a pairwise distance estimate,
hich yields a dissimilarity matrix of size 4096 × 4096, where

ach cell represents the dissimilarity between pairs of spaxels. We
hen apply the hierarchical clustering model on the dissimilarity

atrix, assigning each set of spectra to a particular group. Once
his procedure is completed, we back-transform the list of spectral-
ased groups into their respective original spatial positions. The
utput will then be a 64 × 64 FITS file with an assigned group for
ach matrix element, which is depicted by the rightmost panel of
ig. 1 . 
NRAS 539, 3166–3179 (2025) 
To decide the number of groups, we suggest a heuristic approach.
f the goal is to separate the galaxy into bulge and disc components,
wo groups are often sufficient, assuming we disregard the group
orresponding to the sky background. Ho we ver, if the aim is to
etect regions with different star-formation histories or ionization
echanisms, an increasing number of components should be used.

f the objective is to increase the signal-to-noise ratio without losing
nformation, the number of components must account for the spatial
esolution, bin size, and field of view of the data. Therefore, we
ecommend using a sufficiently large number of groups that remain
anageable for running a spectral fitting code of choice. 

 M A N G A  IFU  DATA  

o showcase our approach, we use data from the MaNGA IFU
urv e y – a major observational campaign of the Sloan Digital Sky
urv e y IV (SDSS-IV; Blanton et al. 2017 ) that aimed to study the

nternal kinematics and chemical properties of a large sample of
earby galaxies. It is the largest IFU surv e y of nearby galaxies
o date, using the BOSS spectrograph to obtain spatially resolved
pectroscopic data for approximately 10 000 galaxies in the redshift
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Table 1. Basic properties of our galaxy sample. 

MaNGA ID Name RA Dec. z Type Diameter (kpc) 

7443–12703 VV 705 (IRAS F15163 + 4255) 229 .525 42 .745 0 .0403 Merger 47 .91 
8135–12701 UGC 3907 113 .472 37 .025 0 .0618 SABc 111 .32 
8443–6102 UGC 8730 207 .061 24 .777 0 .0274 (R)SB0 45 .49 
10224–6104 MCG + 00-07-007 35 .624 0 .383 0 .0248 Spiral 17 .85 
11749–12701 MCG + 05-22-014 138 .318 31 .358 0 .0417 Sc 59 .80 

Figure 2. Top row : SDSS images of five galaxies in our sample, with the MaNGA plate numbers indicated in the upper-right corner of each image. The field of 
view of the IFU (Integral Field Unit) is overlaid in purple. Middle row : Spatial distribution maps of 20 components detected by CAPIVARA in the same galaxies. 
Bottom row : Spatial distribution maps for 20 components detected by the VORBIN package. 
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ange 0 . 01 < z < 0 . 15 (typical z ∼ 0 . 03). The surv e y uses custom
ber bundles with a core diameter of 2 . ′′ 0 and IFUs ranging from
9 to 127 fibers, providing a field of view from 12 . ′′ 0 to 32 . ′′ 0. The
pectra have a wav elength co v erage of 3622–10 354 Å and a spectral
esolution of R ∼ 2000. MaNGA obtains three dithered exposures 
or each target galaxy. The data cube has a spatial scale of 0.5
rcseconds per pixel and varies in the number of wavelength channels 
ased on the sampling method used. The MaNGA data cube contains 
573 channels for logarithmic sampling and 6732 channels for linear 
ampling (Law et al. 2016 ). 

 ANA LY SIS  O F  FIVE  M A N G A  G A L A X I E S  

e demonstrate the feasibility of our method for identifying regions 
ith different spectral properties within an extended object by 

electing a sample of five morphologically diverse galaxies from 

aNGA. The main properties of each galaxy, as listed in Table 1 ,
ere obtained from NED 

1 and Marvin 2 (Aguado et al. 2019 ). Our
 http:// ned.ipac.caltech.edu/ 
 https:// dr17.sdss.org/ marvin/ 

s  

3

T

ample includes spiral, elliptical, and merger galaxies, as well as 
arious features such as bars, rings, and individual stars in the field. 

After applying the CAPIVARA algorithm to the MaNGA data cubes, 
e obtained segmentation matrices assigning each pixel of the galaxy 

mages to their respective component groups. Fig. 2 presents SDSS 

ri composite images of five selected galaxies from our sample 
n the top row, with their MaNGA plate numbers indicated in the
pper-right corner and the corresponding IFU fields of view outlined 
n purple. The middle row displays the spatial distributions of the 20
omponents detected by CAPIVARA , while the bottom row shows 
he spatial distributions obtained using the VORBIN package for 
he same galaxies. Comparing the segmentation maps from both 
pproaches provides insight into their sensitivity in capturing distinct 
orphological and structural features. The colour schemes employed 

re qualitative, as the components represent discrete groups without 
n implied continuous ordering. 3 

A visual inspection of these figures reveals several interesting 
eatures. F or e xample, our method ef fecti vely identifies the merger
tructure directly from the data cubes for the galaxy 7443–12703 (VV
MNRAS 539, 3166–3179 (2025) 

 The colour palette employed was inspired by Vincent van Gogh’s painting 
he Starry Night (Gonz ́alez-Gait ́an et al. 2019 ). 

http://ned.ipac.caltech.edu/
https://dr17.sdss.org/marvin/
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Figure 3. Top row : CAPIVARA segmentation maps for varying target SNR levels, which correspond to different numbers of components. From left to right, 
the typical SNR values are approximately 50, 100, 150, and 200. Bottom row : The Voronoi binning output for the same target SNR levels. In both rows, the 
rightmost panel displays the MaNGA galaxy 7443–12703 for visual comparison. 
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05), a binary merger system in the constellation of Bo ̈otes (Rupke &
eilleux 2013 ; Larson et al. 2016 ), with a nuclear separation of
pproximately 6–7 kpc and featuring long tidal tails ( ∼40 arcsec). 

In the case of the spiral galaxies UGC 3907 (8135-12701) and
CG + 05-22-014 (11749-12701), located in the constellations of

ynx and Cancer, respectively, our approach isolates what is most
ikely a foreground star, eliminating the need to mask the cube
efore further analysis, as is standard procedure in the Data Analysis
ipeline for MaNGA (Westfall et al. 2019 ). For the spiral galaxy
CG + 00-07-007 (10224-6104), located in the constellation Cetus,

he model detects at least three distinct spots, which we will further
iscuss as representing different stellar populations. These results
llustrate the method’s efficiency in isolating foreground elements
nd detecting key structural components of the galaxy with minimal
re-processing. 
In Fig. 3 , we compare our results with Voronoi tessellation at

arious granularity levels. We run VORBIN across a range of target
ignal-to-noise (S/N) ratios: 50, 100, 150, 200, 250. Each target
/N corresponds inversely to the number of resulting regions – the
igher the target S/N, the fewer the regions generated. Subsequently,
e run capi v ara with a comparable number of regions to facilitate
 meaningful comparison between the two segmentation methods.
APIVARA preserves an aesthetically pleasing visual resemblance to

he composite SDSS image. This visual coherence is desirable, as
ur objective extends beyond mere S/N enhancement – we aim to
roup pixels into physically meaningful regions reflective of intrinsic
alactic structures. 

Finally, to provide both a qualitative and quantitative impression
f our model compared to standard Voronoi binning, we conducted
n illustrativ e e xperiment with six groups. This choice, made without
oss of generality, serves merely to conv e y the intuitiv e qualitativ e
ifferences between the tw o strategies. A k ey desideratum for
ny clustering approach is to enhance the SNR while preserving
pectral similarity. Increasing the SNR by combining highly dis-
imilar spectra may indeed impro v e noise characteristics; ho we ver,
his also dilutes the intrinsic physical properties of the region 4 .
NRAS 539, 3166–3179 (2025) 

 F or e xample, reaching the target SNR may require summing a large number 
f spaxels, but this predominantly accumulates noise, thereby merging regions 
hat are not physically connected. 

m  

l  

d  

t  

–  
ig. 4 illustrates this point. In both the top and bottom maps, each
olour-coded region corresponds to a cluster of pixels found by
APIVARA and VORBIN , respectively. On the right, we show all spectra
ssociated with a given region, annotated with two key metrics: n , the
umber of pixels in the cluster, and the average pairwise correlation
mong all spectra within that cluster ( AvgCorr ). Higher values of
vgCorr indicate more homogeneous spectral shapes, reflecting

he internal consistency of each cluster. By comparing the left and
ight panels, one can observe both the spatial distribution of each
luster and the degree to which those pixels share a common spectral
ignature—highlighting CAPIVARA ’s ability to preserve shape infor-
ation throughout the data. 
We note that this initial analysis should be taken as a proof of

oncept since we are using the entire wavelength range of the spectra
or clustering. For case-specific applications, we advise selecting
pecific ranges of the spectra to achieve a more domain-specific
egmentation. Belo w, we sho w a continuum and emission line
nalyses to compare the results before and after decomposition. 

.1 Stellar continuum classification 

xamining galaxies beyond the Local Group presents the challenge
f not resolving individual stars, which necessitates modelling a
alaxy’s integrated light (e.g. colours or full spectrum) as a combi-
ation of simple stellar populations (SSPs; see e.g. Coelho & Gadotti
011 ; L ́opez-Corredoira et al. 2017 ; Bittner et al. 2020 ; Pernet,
 ̈ocker & Mart ́ın-Navarro 2024 ). These combinations are compared
ith the galaxy’s observed emission, and inversion techniques are

mployed to infer its physical properties. In many cases, this process
egins with photometric decomposition applied to broad-band galaxy
mages. 

Spectral fitting, on the other hand, involves matching observed
pectra with SSP models while accounting for physical effects
uch as dust attenuation and Doppler shifts. A common approach
s the inversion technique, in which a linear combination of SSP
odels is fitted to the observed spectrum, incorporating processes

ike reddening and stellar velocity dispersion. The best fit is typically
etermined by minimizing the χ2 statistic (Walcher et al. 2011 ). Once
he best-fitting template is identified, the galaxy’s physical properties
such as age, metallicity, and star formation history – can be inferred.
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Figure 4. Comparison of segmentation approaches: the top panel shows results from CAPIVARA , while the bottom panel displays Voronoi binning via the 
VORBIN package. In both cases, the left panels illustrate the spatial distribution of six distinct regions, and the right panels show all individual spectra within each 
group (rather than a single median spectrum). Each group is annotated with the number of spaxels ( n ) and the average pairwise correlation ( AvgCorr ), which 
quantifies the internal spectral similarity. This comparison highlights how CAPIVARA preserves spectral-shape diversity within clusters, in contrast to Voronoi 
binning, which aggregates spaxels to achieve a target S/N, potentially mixing different spectral shapes. 
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he star formation history can be deduced from the light contribution 
f stellar population models in each age bin to the best-fit template.
y averaging the contributions of the different SSPs, we can also 

nfer integrated properties such as light- and mass-weighted ages 
nd metallicities. Prior to the fitting, spurious features and emission 
ines are often masked to ensure a more accurate study on the stellar
ontinuum. 

We employed the STARLIGHT code (Cid Fernandes et al. 2004 , 
005 ), which fits observed spectra using a model library that accounts 
or kinematics and dust reddening. We utilized the E-MILES library 
f SSP models (Vazdekis et al. 2016 ), based on a revised Kroupa
 2001 ) initial mass function and BaSTI isochrones (Pietrinferni et al.
004 , 2006 ). This library spans from 1680 to 50 000 Å, with an
ptical resolution of FWHM = 2.5 Å. STARLIGHT has been rigorously 
ested across multiple IFS galaxy surv e ys; for an application to

aNGA data, see Mallmann et al. ( 2018 ). Since CAPIVARA outputs
re in FITS format, any spectral fitting method can easily be applied to 
xtract stellar and ionized-gas properties from our galaxy structures. 

To expedite our analysis, we restricted our library to 10 represen- 
ative ages 5 and 3 representative metallicities 6 . We also included a 
 0.03, 0.06, 0.1, 0.3, 0.6, 1.0, 3.0, 6.0, 10.0, and 13.0 Gyrs 
 Z = 0.2, 1, and 2 Z �

7

s
o
i

eatureless continuum (FC) with F ν ∝ ν−1 . 5 to account for potential 
GN emission, as well as very young ( < 5 Myr) SSPs, which are

ndistinguishable from AGN-type continua (Koski 1978 ; Storchi- 
ergmann et al. 2000 ; Riffel et al. 2009 ). Caution is therefore advised
hen interpreting this component. Fig. 5 shows the integrated 
bserved spectra of each galaxy in black, with the corresponding 
TARLIGHT model spectra in red. 7 

Since small differences in stellar population composition are often 
bscured by noise in real data (Cid Fernandes et al. 2004 , 2005 ; Riffel
t al. 2009 ), we grouped the SSP models into three age bins: young
xy: ≤ 100 Myr), intermediate-age (xi: 0.1–2.0 Gyr), and old (xo: 2–
3 Gyr). This categorization reflects the dominant contributors to the 
ntegrated light in each bin: blue, hot stars in the young population;
volved giants, particularly TP-AGB stars, in the intermediate-age 
ange; and cooler, red stars in the old population. 

In Figs 6 to 7 , we present FC and condensed stellar population
ectors in light fraction. The top row shows the results before
ecomposition, while the bottom row displays the results after 
MNRAS 539, 3166–3179 (2025) 

 For galaxy 10224–6104, the adopted SSP base may not fully capture its 
tellar populations. Incorporating younger populations reveals clear signs 
f recent star formation. See https:// manga.if.ufrgs.br/ explorer/ 215 for an 
nteractive visualization 

https://manga.if.ufrgs.br/explorer/215
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M

Figure 5. Observed (black) and modelled (red) integrated spectra of our 
sample galaxies are shown. Grey-shaded regions correspond to the areas 
integrated to construct the BPT diagram. For better visualization, we present 
these spectra in order of inclination. From top to bottom: 10224–6104, 7443–
12703, 11749–12701, 9039–9102, 8443–6102, and 8135–12701. 
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ecomposition. Our method ef fecti vely identifies the main regions in
ach galaxy, preserving their distinct features. For the galaxy 7443–
2703, our code successfully identified two regions with younger
tellar populations and stronger FC contributions: one concentrated
n the nucleus and another located 4 . ′′ 0 East and 8 . ′′ 0 North of the
ucleus. Additionally, it accurately grouped the semi-ring structure
bserved in the xy age bin panel. In the galaxy 8135–12701,
ur method identified the bulge and disc regions, with the bulge
ominated by an old stellar population (SP) and the disc primarily
y intermediate-age SPs. Additionally, our method identified a
piral arm with ele v ated FC contributions compared to the rest of
he galaxy, clearly visible in the upper left region of the 8135–
NRAS 539, 3166–3179 (2025) 
2701 FC panel. This apparent FC excess is likely a consequence
f fitting degeneracies, where STARLIGHT is driven to compensate
or limitations in the base set’s representation of the youngest
opulations. The fitting process is influenced by reddening and flux
alibration effects, which often force unphysical ne gativ e values that
rtificially shift the fits toward bluer solutions (see e.g. Riffel et al.
022 , for a more detailed discussion). 
Galaxy 8443–6102, the only early-type galaxy in our sample, ex-

ibits the simplest stellar population structure. It consists of an older
entral region and outer areas within our Field of View (FoV), where
 small FC contribution ( ∼10 per cent) was detected. Additionally, a
ubtle ring-like structure with a slightly younger stellar population is
resent. Our method accurately identified all these regions, particu-
arly the faint ring-like structure, which is barely visible in the old age
in panel. Unlike 8443–6102, 10224–6104 displays a complex struc-
ure with three distinct light centres and an uneven stellar population.
he rightmost light source is dominated by an FC-type continuum,

he leftmost by a young stellar population, and the central, brightest
ource by an intermediate-age stellar population. CAPIVARA was able
o detect each light source and group their influence regions together,
ighlighting these differences. Additionally, a fourth region with a
ifferent continuum composition was detected in the left edge of our
oV, showing a slightly higher FC contribution if compared to its
urroundings. 

Our final object, 11749–12701, is especially notable because,
espite its simple stellar population – featuring an old bulge and
ounger outskirts – a field star is also present. Using our approach,
e automatically identified the galaxy’s structures and separated the
eld star from the rest of the FoV. 

.2 Emission lines classification 

fter subtracting the stellar spectra derived in Section 4.1 , we
easured the flux of the four main emission lines (H α, H β,

N II ] λ6583 Å, and [O III ] λ5007 Å) required to build the Baldwin–
hillips–Terlevich diagram (BPT; Baldwin, Phillips & Terlevich
981 ; Veilleux & Osterbrock 1987 ; Rola, Terlevich & Terlevich
997 ; K e wley et al. 2001 ; Kauf fmann et al. 2003 ; Stasi ́nska 2007 ;
chawinski et al. 2010 ). This analysis was conducted by fitting a
aussian function to each emission line using the IFSCUBE code

Ruschel-Dutra et al. 2021 ). IFSCUBE fits multiple Gaussian or Gauss–
ermite profiles, with or without constraints, and supports pixel-
y-pixel uncertainties, weights, flags, and pseudo-continuum fitting.
he best fit is determined by minimizing the χ2 , the free parameters
eing the amplitude, radial v elocity, and v elocity dispersion of each
omponent. Our sample galaxies exhibited no signs of multiple
omponents per emission line, and a single narrow Gaussian was
uf ficient. Gi ven that similar ionization potentials of H α, H β, and
N II ] have similar ionization potentials, their kinematic properties
ere fixed, while [O III ] was allowed independent radial velocity

nd v elocity dispersion. Fig. 8 , pro vides an e xample fit for galaxy
0224–6104 at (10 . ′′ 0, 0 . ′′ 0). 
The H α, H β, [N II ], and [O III ] maps are displayed in Figs 9 and

0 . From left to right, the panels depict the fluxes for [O III ], H β,
N II ], and H α. The top row presents the fluxes measured from the
riginal data cube, while the bottom row shows the measurements
fter running CAPIVARA . Similar to the stellar continuum, our method
f fecti vely identifies the main emission-line regions in each object.
o we v er, the impro v ement in S/N is much more pronounced in the

mission lines. In many regions of the original data cube, these
eatures are not properly measured due to not meeting the S/N
hreshold. This issue is resolved in the decomposed data cube, where
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Figure 6. Stellar population demographics for 7443–12703 (top) and 8135–12701 (bottom). Top row in each set: Regions derived from the original data cube. 
Bottom row in each set: Results from the decomposed data cube using CAPIVARA . The categories, from left to right, are featureless continuum (FC), young (xy: 
≤ 100 Myr), intermediate-age (xi: 0.1–2.0 Gyr) and old (xo: 2–13 Gyr) stellar populations. The colour bar indicates the fractional contribution of each age bin 
to the total light, with brighter colours representing higher contributions. 
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ur model not only enhances the S/N and correctly groups the regions
ut also ensures more consistent and accurate measurements of these 
eatures, without merging regions that are not physically meaningful 
rom a spectral perspective. 

In our sample, regions identified by their distinct continuum 

roperties also exhibit differences in emission line properties, so the 
gures typically highlight the same regions discussed in Section 4.1 . 
o we ver, e ven when two regions share similar continuum properties
ut differ in their emission lines, or vice versa, our approach 
hould be able separate them ef fecti v ely. Moreo v er, depending on
he spectral features being studied, different techniques can be 
pplied. For instance, when focusing on the stellar continuum, our 
ethod can be performed on the original data cube since there 

re significantly more continuum points than emission line points. 
lternatively, if the study targets emission lines, one can analyse the 
eri v ati ve of the original data cube. In regions where the continuum
ominates, the deri v ati ve will be close to zero, whereas in areas dom-
nated by complex emission lines, it will deviate significantly from 

ero. 
In this way, CAPIVARA can be tailored to focus on specific features

f interest, classifying different regions of the galaxy based on those
hosen features. Since this paper focuses on the methodology rather 
han specific astrophysical cases, which will be addressed in follow- 
p papers, we performed both continuum and emission line analyses 
ased on the initial decomposition into 20 distinct re gions. Ev en
ith this straightforward approach, the characteristics of the original 
bject were successfully reco v ered, showcasing the simplicity and 
fficacy of our method. 

.3 Continuum and emission line spectral classification 

lthough the same galaxy can be classified into different categories 
ased on ad hoc criteria or specific predetermined wavelength 
indows, a general sanity check for CAPIVARA is to ensure that
MNRAS 539, 3166–3179 (2025) 
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Figure 7. Stellar population demographics for 8443–6102 (top), 10224–6104 (middle), and 11749–12701 (bottom). Top row in each set: Regions derived from 

the original data cube. Bottom row in each set: Results from the decomposed data cube using CAPIVARA . The categories, from left to right, are featureless 
continuum (FC), young (xy: ≤ 100 Myr), intermediate-age (xi: 0.1–2.0 Gyr), and old (xo: 2–13 Gyr) stellar populations. The colour bar indicates the fractional 
contribution of each age bin to the total light, with brighter colours representing higher contributions. 
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Figure 8. Fitting example for the (10 . ′′ 0, 0 . ′′ 0) spaxel of 10224–6104. Each 
emission line was fitted with a single Gaussian profile. 
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igure 9. Logarithmic fluxes of the four main emission lines for 7443–12703 (to
luxes measured in the original datacube. Bottom row in each set: Fluxes measure
ts spectral segmentation is qualitatively consistent with traditional 
ontinuum and emission line-based classifications. To achieve this, 
e classified each representative spectrum based on both continuum 

eatures and emission line characteristics. 
We divided our sample into five classes according to the dominant

tellar populations in each object, presented here in the order of
ppearance: AGN, star-forming (SF), post-starburst (PS), mixed 
MIX), and quenched (QUENCH). The AGN class includes objects 
ominated by an FC component. The SF class consists of objects
here simple stellar populations (SSPs) younger than 100 Myr 
ominate the emission. The PS class is defined by objects in which
SPs between 100 and 2000 Myr dominate. In the MIX class, SSPs
lder than 2 Gyr contribute less than 40 per cent of the luminosity,
hile in the QUENCH class, SSPs older than 2 Gyr contribute more

han 40 per cent of the luminosity. 
The BPT diagram classifies galaxies into five distinct categories 

ased on their emission-line flux es: inactiv e (INACT), star-forming 
SF), composite or transition (TRANSIT), low-ionization nuclear 
MNRAS 539, 3166–3179 (2025) 

p) and 8135–12701 (bottom), in ergs ·s −1 ·cm 

−2 ·Å−1 . Top row in each set: 
d in the decomposed datacube using CAPIVARA . 

https://academ
ic.oup.com

/m
nras/article/539/4/3166/8120522 by guest on 08 M

ay 2025



3176 R. S. de Souza 

M

Figure 10. Logarithmic fluxes of the four main emission lines for 8443–6102 (top), 10224–6104 (middle), and 11749–12701 (bottom), in ergs ·s −1 ·cm 

−2 ·Å−1 . 
Top row in each set: Fluxes measured in the original datacube. Bottom row in each set: Fluxes measured in the decomposed data cube using CAPIVARA . 
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Figure 11. Spectral classification maps for five regions: 7443–12703 (top), 8135–12701 (second from top), 8443–6102 (middle), 10224–6104 (second from 

bottom), and 11749–12701 (bottom). The first two panels on the left display the maps for the continuum classes, while the two panels on the right present the 
classification based on emission lines. In each case, the left panels show the analysis on the original data cube, and the right panels show the analysis in the 
decomposed datacube using CAPIVARA . 
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mission-line region (LINER), and Seyfert galaxies. Here, we utilize
he BPT diagram based on the flux ratios of H β, [O III ] λ5007,
 α, and [N II ] λ6583, plotting galaxies in a parameter space defined
y log ( [N II ] / H α) on the x -axis and log ( [O III ] / H β) on the y -axis.
he thresholds between these line ratios, as defined by K e wley et al.
 2001 ) and Kauffmann et al. ( 2003 ), are used to differentiate between
hese classes. Inactive galaxies are identified by [O III ] emission
elow 3 σ of the continuum signal-to-noise ratio (S/N). Star-forming
alaxies, primarily influenced by photoionization from massive
oung hot stars, exhibit low values of both [N II ]/H α and [O III ]/H β,
ccupying the left wing locus of the BPT diagram. In contrast,
GN-dominated galaxies, including LINERs and Seyferts, lie on

he opposite side. LINERs display high [N II ]/H α but low [O III ]/H β

atios, with their ionization source being uncertain, possibly due to
uclear activity or evolved stellar populations. Seyferts show high
alues in both [N II ]/H α and [O III ]/H β ratios. Finally, the transition
lass falls in the zone between star-forming and AGN objects,
emarcated by the theoretical extreme starburst line proposed by
 e wley et al. ( 2001 ) and the empirical starburst line by Kauffmann

t al. ( 2003 ). 
Fig. 11 shows the classification maps for our five galaxies.

he first two panels on the left in each row display the maps
or the continuum classes, while the two on the right present the
lassifications based on emission lines. In both cases, the original
ata cube is shown first, followed by the segmented version. Before
he CAPIVARA se gmentation, man y galaxies e xhibit low S/N re gions
here classifications fluctuate across adjacent spaxels, often within

reas smaller than the PSF. These fluctuations are not physically
eaningful, as coherent structures should span spatial scales larger

han the PSF. While our method does not explicitly enforce spatial
oherence, it preserves spectral similarity across regions, which
aturally leads to more spatially coherent segmentations. This, in
urn, mitigates the likelihood of merging physically distinct regions.
evertheless, in some cases, adjacent regions with subtle spectral
ifferences may still be grouped together, leading to the dilution
r suppression of less dominant classes. This limitation can be
lleviated by increasing the number of classes, though the optimal
hoice is likely galaxy-dependent and best addressed in dedicated
pplications. Ev en so, the se gmented re gions often align with
hysically distinct components – whether driven by gas excitation,
tellar populations, or a combination of both. 

 C O N C L U S I O N S  

raditional methods for analysing astronomical data cubes often
truggle to extract full signals from noisy backgrounds, particularly
hen astrophysical or instrumental correlations between nearby
easurements are underestimated. To address these challenges,

fforts have been made to incorporate spatial information, such
s global parametric models for physical distributions in kinematic
tudies (e.g. Krajnovi ́c et al. 2006 ; Watkins et al. 2013 ) and automated
patial segmentation (Casado et al. 2017 ). One common approach to
mpro v e signal-to-noise ratio (S/N) is through adaptive binning tech-
iques like Voronoi tessellation (Cappellari & Copin 2003 ), which
roups spaxels into contiguous regions for averaged measurements
Sanders & Fabian 2001 ; Diehl & Statler 2006 ; S ́anchez et al. 2016 ).

hile these techniques enhance statistical confidence, they often do
o at the expense of spatial resolution. 

Our method, ho we ver, takes a dif ferent approach. Primarily de-
igned to segment data into regions with distinct physical properties,
t naturally enhances the S/N as a secondary benefit. In contrast to
oronoi binning – which focuses on data quality by merging regions

hat may have different physical characteristics – our approach
NRAS 539, 3166–3179 (2025) 

c

nsures that only regions with similar properties are grouped. In our
urrent analysis, segmenting the data cube into 20 distinct regions
esults in a five-fold improvement in S/N compared to individual
pectra. 8 

Building on this, we introduce CAPIVARA , a no v el spectral-based
egmentation method for IFU data cubes. Designed specifically to
nhance the study of structural properties in galaxies, CAPIVARA

mploys hierarchical clustering in the spectral domain, grouping
imilar spectra to impro v e S/N without compromising astrophysical
imilarity among regions. 

As a caveat, the quality of the segmentation produced by CAPIVARA

ltimately depends on the spectral features present in the data. This
s not a limitation of the method itself, but rather a reflection of
he information content available to the algorithm. Users should
onsider pre-processing the spectra for specific needs, emphasizing
r isolating regions of interest – such as prominent emission or
bsorption features – or adopting more physically moti v ated distance
etrics, depending on the scientific goal. Another current limitation

f our package is the lack of correction for internal kinematics, such
s velocity shifts across the galaxy. While this does not appear to
ignificantly impact the results for the systems analysed – since
pectral variations from ionization or stellar populations tend to
ominate – it may become more rele v ant in galaxies with strong
elocity gradients. Future incarnations of the code may address
his effect through case-by-case implementations that incorporate
inematic effects into the clustering process. 
In a demonstration using five selected MaNGA galaxies, CAPIVARA

dentified and grouped regions with similar physical properties.
hese groupings were validated against standard methods for stellar
ontinuum and gas property analysis. By providing both segmented
ata cubes and integrated one-dimensional spectra for each region,
APIVARA facilitates a more detailed investigation of stellar and

onized gas properties. 
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