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ABSTRACT

We present CAPIVARA, a fast and scalable spectral-based segmentation package designed to study astrophysical properties within
distinct structural components of galaxies. This spectro-segmentation code for integral field unit (IFU) data provides a holistic
view of galactic structure, moving beyond conventional radial gradients and the bulge-plus-disc dichotomy. It enables detailed
comparisons of stellar ages and metallicities across components, and naturally identifies outliers by grouping spaxels according
to dominant spectral features. The algorithm leverages Torch’s scalability and GPU acceleration, outputting a masked FITS file
that assigns each pixel to its respective group and generates the corresponding one-dimensional spectrum per group, without
relying on Voronoi binning. We demonstrate the capabilities of the method using a sample of MaNGA galaxies, combining
CAPIVARA segmentation with the STARLIGHT spectral fitting code to derive stellar population and ionized gas properties. The
method effectively identifies regions with similar spectral properties across both continuum and emission lines. By aggregating
the spectra of these regions, we enhance the signal-to-noise ratio of the analysis while preserving the spectral coherence within

each group. CAPIVARA is released under an MIT license and is available at 0.
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1 INTRODUCTION

Galaxies, the fundamental building blocks of the cosmos, comprise
a rich diversity of stellar components, including bulges, discs, bars,
spiral arms, and nuclear star clusters. Each of these structures exhibits
distinct signatures in age, metallicity, and kinematics, shaped by the
interplay of galactic formation and evolution over cosmic time (e.g.
Hubble 1926; Cappellari 2016; Tabor et al. 2017; Coccato et al. 2018;
Sanchez 2020; HauBler et al. 2022; Johnston, HauBler & Jegatheesan
2022; Jegatheesan et al. 2024; Lima-Dias et al. 2024; Nedkova et al.
2024; Zanatta et al. 2024). The bulge of the Milky Way primarily
consists of an ancient population over 10 billion years old and rich
in metals, but it also contains intermediate-age, thick-disc-like stars
and a relatively young nuclear disc. This contrasts with its thin disc,
which exhibits metallicity closer to that of the Sun and a considerably
younger average age (Hayden et al. 2015; Howes et al. 2015; Ness &
Freeman 2016; Chiti et al. 2021).

Upon detailed analysis, the Milky Way reveals thick and thin
discs, a bar, spiral arms, a nuclear disc, and a complex halo (e.g.
Anders et al. 2014; Helmi 2020; Queiroz et al. 2021; Ardern-
Arentsen et al. 2024). Other models have been suggested to explain
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the formation of the Galactic disc, involving processes such as star
formation, gas accretion, galaxy mergers, and stellar migration (Di
Matteo 2016; Imig et al. 2023). Unlike our Galaxy, such detailed
scrutiny of structural components in galaxies beyond the Local
Group is not possible, often leading to crude divisions between
disc and bulge components (Buitrago et al. 2008; Nedkova et al.
2024), although advances have been achieved for nearby galaxies
with newer instrumentation (Gadotti et al. 2019; van de Sande et al.
2024). Yet, the distinction between bulge and disc populations is
pivotal for understanding the processes behind galaxy formation
and evolution. It is generally accepted that massive galaxies form
hierarchically in a simplified two-phase process: a rapid dissipative
phase (which includes a starburst phase), followed by multiple
mergers (Whitney et al. 2021). The JWST is showing that massive
galaxies are already in place at z ~ 3 (Carnall et al. 2023). Bulges are
typically older and more metal-rich relative to discs (Lah et al. 2023).
The influence of bulges and discs on galaxy evolution depends on
factors like galaxy/halo mass, environment, and redshift (Conselice
2014; Cimatti, Fraternali & Nipoti 2019).

A galaxy’s environment (Peng et al. 2010b) also influences its
properties (Lani et al. 2013; Lima-Dias et al. 2021), with central
massive galaxies typically growing inside-out due to mechanisms
like gas accretion and Active Galactic Nucleus (AGN) feedback,
which predominantly impact central regions (e.g. Croton et al.
2006; Kim et al. 2011; Goddard et al. 2017; Krumholz et al.
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2018; Baker et al. 2023). Conversely, satellite galaxies often exhibit
outside-in profiles due to external quenching forces that suppress
star formation from the edges inward, a phenomenon underscored
by mechanisms such as major mergers (Lin et al. 2019; Cortese,
Catinella & Smith 2021; Samuel et al. 2022). Recent findings of
outside-in radial gradients in distant low-mass satellites (Sandles
et al. 2023) emphasize environmental quenching’s role from as early
as z = 2. Alongside stellar histories, gas distribution and properties
offer insights into quenching processes, with internal mechanisms
leading to central outflows and environmental quenching leaving
extended shocked gas distributions, identifiable by specific emission
line ratios (Carniani et al. 2023).

The use of Integral Field Units (IFUs) has enabled more detailed
studies of galaxy properties by providing simultaneous spectral
and spatial information, allowing for the examination of chemical
abundances, kinematics, and star formation histories in a spatially
resolved manner. These observations are an integral part of numerous
low- and high-redshift surveys, including SAURON (Bacon et al.
2001), the Spectroscopic Imaging Survey in the Near-infrared with
SINFONI (SINS; Forster Schreiber et al. 2009), Mapping Nearby
Galaxies at Apache Point Observatory (MaNGA; Bundy et al.
2015), Calar Alto Legacy Integral Field Area (CALIFA; Sanchez
etal. 2012), the Sydney Australian Astronomical Observatory Multi-
Object Integral Field Spectrograph (SAMI; Croom et al. 2012, 2021),
Galaxy Survey, the Gemini Near-Infrared Field Spectrograph (NIFS;
Riffel et al. 2018), Time Inference with MUSE in Extragalactic Rings
(TIMER; Gadotti et al. 2019), and the Middle Ages Galaxy Properties
with Integral Field Spectroscopy (MAGPI; Foster et al. 2021).

IFU data have been used in morphological decomposition to
identify spaxels belonging to bulge- or disc-dominated regions (and
other structures), enabling the examination of the properties of the
stellar populations in these regions. For example, Wisotzki et al.
(2003) used 2D modelling techniques on IFU data to deblend the
quadruple QSO and gravitational lens HE 0435-1223. A similar
approach was used to separate the nuclear and host galaxy of the
central region of 3C 120 (Sanchez et al. 2004) and to extract the
deblended spectra of the galaxies in the core of Abell 2218 (Sénchez
etal. 2007). A noteworthy package is the Bulge-Disc Decomposition
of IFU data (BUDDI; Johnston et al. 2017), which utilizes GALFITM
(HéuBler et al. 2013), a modified version of GALFIT (Peng et al.
2002, 2010a), to model the light profile of multiwavelength images
of a galaxy. Méndez-Abreu, Sinchez & de Lorenzo-Caceres (2019)
employed C2D, a multicomponent decomposition, which consists of
fitting a galaxy’s surface-brightness distribution at each wavelength
(quasi-monochromatic image) via a 2D photometric decomposition
code. Bittner et al. (2021) studies the kinematic and stellar population
of inner bars in three disc galaxies, based on the multicomponent
photometric decompositions from de Lorenzo-Céceres et al. (2019).

One shortcoming of current image decomposition methods is
their reliance on preset categories — such as haloes, bulges, discs,
bars, and rings — which exclude structures that do not fit, like
asymmetric features. Additionally, when working with IFUs, these
methods typically treat each wavelength independently rather than as
part of a high-dimensional tensor, potentially overlooking important
correlations — such as those between bluer wavelengths and H1l
emission. This results in the loss of useful information that could
provide insights into the physical mechanisms behind these features.

This work explores an alternative approach for spectral catego-
rization of different physical regions in galaxies. Instead of using
preconceived two-dimensional profile models, our method employs a
spectral-based segmentation approach solely relying on spectral sim-
ilarity. This allows for greater flexibility in characterizing complex
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structures, such as those found in mergers and irregular galaxies. By
utilizing unsupervised hierarchical clustering, our approach directly
targets the wavelength space instead of treating the data cube as a
stack of images at each wavelength. This methodology leverages
torch (Paszke et al. 2019), a deep learning library designed
for tensor computations and GPU acceleration, enabling fast and
efficient matrix calculations. Its capabilities make it particularly
suitable for the segmentation of large datasets, offering a powerful
tool for the analysis of IFU data cubes.

This paper is organized as follows: In Section 2, we provide a
detailed description of our method. Section 3 briefly describes the
data used in our study. In Section 4, we demonstrate the practical
application of our code on five MaNGA galaxies. We compare our
approach with existing methods from the literature and present our
conclusions in Section 5.

2 METHOD: SPECTRO-SEGMENTATION

Our model classifies each IFU pixel ¢ = {¢; € [I?”-VX“’};\/:l into C
clusters, ensuring that spectra within a cluster are similar, while those
in different clusters are dissimilar. Here, N denotes the total number
of pixels (x x y), and w is the number of spectral wavelengths. We
measure similarity using the ¢, distance metric, given by:

d P
€y, v) = (Z Jui — vl-|f'> : )

i=1

where p = 2 represents the Euclidean distance. Here, u and v
represent two independent vectors of features, i is the index of the
feature, and d is the number of features.

In our case, the features are the flux values at each wavelength bin
of a spaxel in the IFU. While other possible choices exist, such as
the Kullback—Leibler divergence (Kullback & Leibler 1951), mutual
information (Li 1990), and so forth, we opt for the ¢, norm due
to its simplicity and its relation to x? statistics, a standard method
for spectral fitting and template matching. This approach preserves
the common underlying assumption that spectra can be compared
via their respective Euclidean distances. The properties of the
spectra include their overall shape, the strength of particular spectral
lines, and other distinguishing characteristics that can influence the
similarity measure.

Once the similarity measure, in the form of a distance matrix, is
established, the algorithm begins by assigning each spectrum from
a given spaxel to its own group. This initial step ensures that each
spectrum is considered a unique entity, facilitating a more granular
analysis. The algorithm then proceeds iteratively, merging the two
most similar clusters in each iteration until a predetermined number
of groups is achieved. This process of successive merging can be
visualized as the construction of a hierarchical tree, where groups
formed by merging similar spectra are placed lower on the tree, and
those that are less similar are positioned higher.

One of the significant advantages of hierarchical clustering is its
ability to detect associations at various levels of granularity (e.g.
Murtagh & Legendre 2014; de Souza et al. 2023). For example,
to identify broad categories of galaxy spectra like star-forming and
passive galaxies, the algorithm can cut the tree at a higher level
in the hierarchy, leading to fewer, broader groups. Conversely, for
more specific distinctions within a category of galaxy spectra, we
can cut the tree at a lower level, resulting in finer-grained groups.
This approach allows for a hierarchical tree with broad categories at
the higher levels and more specific subcategories at the lower levels.
We note that during the writing of our work, independent groups
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Figure 1. Workflow illustration of our spectro-based segmentation method. The model reads an IFU data cube composed of multiple wavelength channels,
each represented by a slice in the left image. Hierarchical clustering is then performed on the dissimilarity matrix computed from pairwise distances between all
spectra within the cube. Once the groups are assigned, the data are back-transformed into a 2D matrix where each group represents spectra with similar features.
This process identifies galactic structures through spectral characteristics, enabling a refined structural decomposition.

have also pursued the idea of an unsupervised approach to cluster
regions of similar spectra, but using a different methodology based on
the Fisher Expectation-Maximization algorithm (Chambon & Fraix-
Burnet 2024).

The general workflow of our approach is depicted in Fig. 1.
Consider a hypothetical data cube with dimensions 64 x 64 x 1,000,
where the first two dimensions represent the spatial resolution in
pixels, and the last dimension represents the number of sampled
wavelengths in the spectra. The 64 x 64 spectra are transformed
into a matrix with 1000 columns and 64 x 64 rows, where each
row represents a particular spaxel and each column represents a
wavelength. On this matrix, we perform a pairwise distance estimate,
which yields a dissimilarity matrix of size 4096 x 4096, where
each cell represents the dissimilarity between pairs of spaxels. We
then apply the hierarchical clustering model on the dissimilarity
matrix, assigning each set of spectra to a particular group. Once
this procedure is completed, we back-transform the list of spectral-
based groups into their respective original spatial positions. The
output will then be a 64 x 64 FITS file with an assigned group for
each matrix element, which is depicted by the rightmost panel of
Fig. 1.

MNRAS 539, 3166-3179 (2025)

To decide the number of groups, we suggest a heuristic approach.
If the goal is to separate the galaxy into bulge and disc components,
two groups are often sufficient, assuming we disregard the group
corresponding to the sky background. However, if the aim is to
detect regions with different star-formation histories or ionization
mechanisms, an increasing number of components should be used.
If the objective is to increase the signal-to-noise ratio without losing
information, the number of components must account for the spatial
resolution, bin size, and field of view of the data. Therefore, we
recommend using a sufficiently large number of groups that remain
manageable for running a spectral fitting code of choice.

3 MANGA IFU DATA

To showcase our approach, we use data from the MaNGA IFU
survey — a major observational campaign of the Sloan Digital Sky
Survey IV (SDSS-IV; Blanton et al. 2017) that aimed to study the
internal kinematics and chemical properties of a large sample of
nearby galaxies. It is the largest IFU survey of nearby galaxies
to date, using the BOSS spectrograph to obtain spatially resolved
spectroscopic data for approximately 10 000 galaxies in the redshift
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Table 1. Basic properties of our galaxy sample.

3169

MaNGA ID Name RA Dec. z Type Diameter (kpc)
7443-12703 VV 705 (IRAS F15163+4255) 229.525 42.745 0.0403 Merger 47.91
8135-12701 UGC 3907 113.472 37.025 0.0618 SABc 111.32
8443-6102 UGC 8730 207.061 24.777 0.0274 (R)SBO 45.49
10224-6104 MCG +-00-07-007 35.624 0.383 0.0248 Spiral 17.85
11749-12701 MCG+05-22-014 138.318 31.358 0.0417 Sc 59.80

8135-12701

10224-6104 11749-12701

Figure 2. Top row: SDSS images of five galaxies in our sample, with the MaNGA plate numbers indicated in the upper-right corner of each image. The field of
view of the IFU (Integral Field Unit) is overlaid in purple. Middle row: Spatial distribution maps of 20 components detected by CAPIVARA in the same galaxies.
Bottom row: Spatial distribution maps for 20 components detected by the VORBIN package.

range 0.01 < z < 0.15 (typical z ~ 0.03). The survey uses custom
fiber bundles with a core diameter of 2”0 and IFUs ranging from
19 to 127 fibers, providing a field of view from 1270 to 3270. The
spectra have a wavelength coverage of 3622—10 354 A and a spectral
resolution of R ~ 2000. MaNGA obtains three dithered exposures
for each target galaxy. The data cube has a spatial scale of 0.5
arcseconds per pixel and varies in the number of wavelength channels
based on the sampling method used. The MaNGA data cube contains
4573 channels for logarithmic sampling and 6732 channels for linear
sampling (Law et al. 2016).

4 ANALYSIS OF FIVE MANGA GALAXIES

We demonstrate the feasibility of our method for identifying regions
with different spectral properties within an extended object by
selecting a sample of five morphologically diverse galaxies from
MaNGA. The main properties of each galaxy, as listed in Table 1,
were obtained from NED' and Marvin? (Aguado et al. 2019). Our

Thttp://ned.ipac.caltech.edu/
Zhttps://dr17.sdss.org/marvin/

sample includes spiral, elliptical, and merger galaxies, as well as
various features such as bars, rings, and individual stars in the field.

After applying the CAPIVARA algorithm to the MaNGA data cubes,
we obtained segmentation matrices assigning each pixel of the galaxy
images to their respective component groups. Fig. 2 presents SDSS
gri composite images of five selected galaxies from our sample
in the top row, with their MaNGA plate numbers indicated in the
upper-right corner and the corresponding IFU fields of view outlined
in purple. The middle row displays the spatial distributions of the 20
components detected by CAPIVARA, while the bottom row shows
the spatial distributions obtained using the VORBIN package for
the same galaxies. Comparing the segmentation maps from both
approaches provides insight into their sensitivity in capturing distinct
morphological and structural features. The colour schemes employed
are qualitative, as the components represent discrete groups without
an implied continuous ordering.’

A visual inspection of these figures reveals several interesting
features. For example, our method effectively identifies the merger
structure directly from the data cubes for the galaxy 7443-12703 (VV

3The colour palette employed was inspired by Vincent van Gogh’s painting
The Starry Night (Gonzélez-Gaitan et al. 2019).
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Figure 3. Top row: CAPIVARA segmentation maps for varying target SNR levels, which correspond to different numbers of components. From left to right,
the typical SNR values are approximately 50, 100, 150, and 200. Bottom row: The Voronoi binning output for the same target SNR levels. In both rows, the

rightmost panel displays the MaNGA galaxy 7443-12703 for visual comparison.

705), a binary merger system in the constellation of Bottes (Rupke &
Veilleux 2013; Larson et al. 2016), with a nuclear separation of
approximately 6—7 kpc and featuring long tidal tails (~40 arcsec).

In the case of the spiral galaxies UGC 3907 (8135-12701) and
MCG+05-22-014 (11749-12701), located in the constellations of
Lynx and Cancer, respectively, our approach isolates what is most
likely a foreground star, eliminating the need to mask the cube
before further analysis, as is standard procedure in the Data Analysis
Pipeline for MaNGA (Westfall et al. 2019). For the spiral galaxy
MCG+00-07-007 (10224-6104), located in the constellation Cetus,
the model detects at least three distinct spots, which we will further
discuss as representing different stellar populations. These results
illustrate the method’s efficiency in isolating foreground elements
and detecting key structural components of the galaxy with minimal
pre-processing.

In Fig. 3, we compare our results with Voronoi tessellation at
various granularity levels. We run VORBIN across a range of target
signal-to-noise (S/N) ratios: 50, 100, 150, 200, 250. Each target
S/N corresponds inversely to the number of resulting regions — the
higher the target S/N, the fewer the regions generated. Subsequently,
we run capivara with a comparable number of regions to facilitate
a meaningful comparison between the two segmentation methods.
CAPIVARA preserves an aesthetically pleasing visual resemblance to
the composite SDSS image. This visual coherence is desirable, as
our objective extends beyond mere S/N enhancement — we aim to
group pixels into physically meaningful regions reflective of intrinsic
galactic structures.

Finally, to provide both a qualitative and quantitative impression
of our model compared to standard Voronoi binning, we conducted
an illustrative experiment with six groups. This choice, made without
loss of generality, serves merely to convey the intuitive qualitative
differences between the two strategies. A key desideratum for
any clustering approach is to enhance the SNR while preserving
spectral similarity. Increasing the SNR by combining highly dis-
similar spectra may indeed improve noise characteristics; however,
this also dilutes the intrinsic physical properties of the region®.

“4For example, reaching the target SNR may require summing a large number
of spaxels, but this predominantly accumulates noise, thereby merging regions
that are not physically connected.

MNRAS 539, 3166-3179 (2025)

Fig. 4 illustrates this point. In both the top and bottom maps, each
colour-coded region corresponds to a cluster of pixels found by
CAPIVARA and VORBIN, respectively. On the right, we show all spectra
associated with a given region, annotated with two key metrics: n, the
number of pixels in the cluster, and the average pairwise correlation
among all spectra within that cluster (AvgCorr). Higher values of
AvgCorr indicate more homogeneous spectral shapes, reflecting
the internal consistency of each cluster. By comparing the left and
right panels, one can observe both the spatial distribution of each
cluster and the degree to which those pixels share a common spectral
signature—highlighting CAPIVARA’s ability to preserve shape infor-
mation throughout the data.

We note that this initial analysis should be taken as a proof of
concept since we are using the entire wavelength range of the spectra
for clustering. For case-specific applications, we advise selecting
specific ranges of the spectra to achieve a more domain-specific
segmentation. Below, we show a continuum and emission line
analyses to compare the results before and after decomposition.

4.1 Stellar continuum classification

Examining galaxies beyond the Local Group presents the challenge
of not resolving individual stars, which necessitates modelling a
galaxy’s integrated light (e.g. colours or full spectrum) as a combi-
nation of simple stellar populations (SSPs; see e.g. Coelho & Gadotti
2011; Lopez-Corredoira et al. 2017; Bittner et al. 2020; Pernet,
Bocker & Martin-Navarro 2024). These combinations are compared
with the galaxy’s observed emission, and inversion techniques are
employed to infer its physical properties. In many cases, this process
begins with photometric decomposition applied to broad-band galaxy
images.

Spectral fitting, on the other hand, involves matching observed
spectra with SSP models while accounting for physical effects
such as dust attenuation and Doppler shifts. A common approach
is the inversion technique, in which a linear combination of SSP
models is fitted to the observed spectrum, incorporating processes
like reddening and stellar velocity dispersion. The best fit is typically
determined by minimizing the x? statistic (Walcher et al. 2011). Once
the best-fitting template is identified, the galaxy’s physical properties
—such as age, metallicity, and star formation history — can be inferred.
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Figure 4. Comparison of segmentation approaches: the top panel shows results from CAPIVARA, while the bottom panel displays Voronoi binning via the
VORBIN package. In both cases, the left panels illustrate the spatial distribution of six distinct regions, and the right panels show all individual spectra within each
group (rather than a single median spectrum). Each group is annotated with the number of spaxels (n) and the average pairwise correlation (AvgCorr), which
quantifies the internal spectral similarity. This comparison highlights how CAPIVARA preserves spectral-shape diversity within clusters, in contrast to Voronoi
binning, which aggregates spaxels to achieve a target S/N, potentially mixing different spectral shapes.

The star formation history can be deduced from the light contribution
of stellar population models in each age bin to the best-fit template.
By averaging the contributions of the different SSPs, we can also
infer integrated properties such as light- and mass-weighted ages
and metallicities. Prior to the fitting, spurious features and emission
lines are often masked to ensure a more accurate study on the stellar
continuum.

We employed the STARLIGHT code (Cid Fernandes et al. 2004,
2005), which fits observed spectra using a model library that accounts
for kinematics and dust reddening. We utilized the E-MILES library
of SSP models (Vazdekis et al. 2016), based on a revised Kroupa
(2001) initial mass function and BaSTI isochrones (Pietrinferni et al.
2004, 2006). This library spans from 1680 to 50000 A, with an
optical resolution of FWHM = 2.5 A. STARLIGHT has been rigorously
tested across multiple IFS galaxy surveys; for an application to
MaNGA data, see Mallmann et al. (2018). Since CAPIVARA outputs
are in FITS format, any spectral fitting method can easily be applied to
extract stellar and ionized-gas properties from our galaxy structures.

To expedite our analysis, we restricted our library to 10 represen-
tative ages® and 3 representative metallicities®. We also included a

50.03, 0.06, 0.1, 0.3, 0.6, 1.0, 3.0, 6.0, 10.0, and 13.0 Gyrs
67 =0.2,1,and 2 Zg

featureless continuum (FC) with F, oc v™!* to account for potential
AGN emission, as well as very young (< 5Myr) SSPs, which are
indistinguishable from AGN-type continua (Koski 1978; Storchi-
Bergmann et al. 2000; Riffel et al. 2009). Caution is therefore advised
when interpreting this component. Fig. 5 shows the integrated
observed spectra of each galaxy in black, with the corresponding
STARLIGHT model spectra in red.’

Since small differences in stellar population composition are often
obscured by noise in real data (Cid Fernandes et al. 2004, 2005; Riffel
et al. 2009), we grouped the SSP models into three age bins: young
(xy: < 100 Myr), intermediate-age (xi: 0.1-2.0 Gyr), and old (xo: 2—
13 Gyr). This categorization reflects the dominant contributors to the
integrated light in each bin: blue, hot stars in the young population;
evolved giants, particularly TP-AGB stars, in the intermediate-age
range; and cooler, red stars in the old population.

In Figs 6 to 7, we present FC and condensed stellar population
vectors in light fraction. The top row shows the results before
decomposition, while the bottom row displays the results after

"For galaxy 10224-6104, the adopted SSP base may not fully capture its
stellar populations. Incorporating younger populations reveals clear signs
of recent star formation. See https://manga.if.ufrgs.br/explorer/215 for an
interactive visualization
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Figure 5. Observed (black) and modelled (red) integrated spectra of our
sample galaxies are shown. Grey-shaded regions correspond to the areas
integrated to construct the BPT diagram. For better visualization, we present
these spectra in order of inclination. From top to bottom: 10224-6104, 7443—
12703, 11749-12701, 9039-9102, 8443-6102, and 8135-12701.

decomposition. Our method effectively identifies the main regions in
each galaxy, preserving their distinct features. For the galaxy 7443—
12703, our code successfully identified two regions with younger
stellar populations and stronger FC contributions: one concentrated
in the nucleus and another located 470 East and 870 North of the
nucleus. Additionally, it accurately grouped the semi-ring structure
observed in the xy age bin panel. In the galaxy 8135-12701,
our method identified the bulge and disc regions, with the bulge
dominated by an old stellar population (SP) and the disc primarily
by intermediate-age SPs. Additionally, our method identified a
spiral arm with elevated FC contributions compared to the rest of
the galaxy, clearly visible in the upper left region of the 8135—

MNRAS 539, 3166-3179 (2025)

12701 FC panel. This apparent FC excess is likely a consequence
of fitting degeneracies, where STARLIGHT is driven to compensate
for limitations in the base set’s representation of the youngest
populations. The fitting process is influenced by reddening and flux
calibration effects, which often force unphysical negative values that
artificially shift the fits toward bluer solutions (see e.g. Riffel et al.
2022, for a more detailed discussion).

Galaxy 8443-6102, the only early-type galaxy in our sample, ex-
hibits the simplest stellar population structure. It consists of an older
central region and outer areas within our Field of View (FoV), where
a small FC contribution (~10 per cent) was detected. Additionally, a
subtle ring-like structure with a slightly younger stellar population is
present. Our method accurately identified all these regions, particu-
larly the faint ring-like structure, which is barely visible in the old age
bin panel. Unlike 8443-6102, 10224—6104 displays a complex struc-
ture with three distinct light centres and an uneven stellar population.
The rightmost light source is dominated by an FC-type continuum,
the leftmost by a young stellar population, and the central, brightest
source by an intermediate-age stellar population. CAPIVARA was able
to detect each light source and group their influence regions together,
highlighting these differences. Additionally, a fourth region with a
different continuum composition was detected in the left edge of our
FoV, showing a slightly higher FC contribution if compared to its
surroundings.

Our final object, 11749-12701, is especially notable because,
despite its simple stellar population — featuring an old bulge and
younger outskirts — a field star is also present. Using our approach,
we automatically identified the galaxy’s structures and separated the
field star from the rest of the FoV.

4.2 Emission lines classification

After subtracting the stellar spectra derived in Section 4.1, we
measured the flux of the four main emission lines (Ha, Hp,
[N1]A6583 A, and [0 11]A5007 A) required to build the Baldwin—
Phillips—Terlevich diagram (BPT; Baldwin, Phillips & Terlevich
1981; Veilleux & Osterbrock 1987; Rola, Terlevich & Terlevich
1997; Kewley et al. 2001; Kauffmann et al. 2003; Stasifiska 2007;
Schawinski et al. 2010). This analysis was conducted by fitting a
Gaussian function to each emission line using the IFSCUBE code
(Ruschel-Dutraetal. 2021). IFSCUBE fits multiple Gaussian or Gauss—
Hermite profiles, with or without constraints, and supports pixel-
by-pixel uncertainties, weights, flags, and pseudo-continuum fitting.
The best fit is determined by minimizing the x2, the free parameters
being the amplitude, radial velocity, and velocity dispersion of each
component. Our sample galaxies exhibited no signs of multiple
components per emission line, and a single narrow Gaussian was
sufficient. Given that similar ionization potentials of Ha, H 8, and
[N ] have similar ionization potentials, their kinematic properties
were fixed, while [O ] was allowed independent radial velocity
and velocity dispersion. Fig. 8, provides an example fit for galaxy
10224-6104 at (1070, 070).

The Ha, H 8, [N11], and [O 111] maps are displayed in Figs 9 and
10. From left to right, the panels depict the fluxes for [O111], H 8,
[N11], and Ha. The top row presents the fluxes measured from the
original data cube, while the bottom row shows the measurements
after running CAPIVARA. Similar to the stellar continuum, our method
effectively identifies the main emission-line regions in each object.
However, the improvement in S/N is much more pronounced in the
emission lines. In many regions of the original data cube, these
features are not properly measured due to not meeting the S/N
threshold. This issue is resolved in the decomposed data cube, where
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Figure 6. Stellar population demographics for 7443—12703 (top) and 8135-12701 (bottom). Top row in each set: Regions derived from the original data cube.
Bottom row in each set: Results from the decomposed data cube using CAPIVARA. The categories, from left to right, are featureless continuum (FC), young (xy:
< 100 Myr), intermediate-age (xi: 0.1-2.0 Gyr) and old (xo: 2—13 Gyr) stellar populations. The colour bar indicates the fractional contribution of each age bin

to the total light, with brighter colours representing higher contributions.

our model not only enhances the S/N and correctly groups the regions
but also ensures more consistent and accurate measurements of these
features, without merging regions that are not physically meaningful
from a spectral perspective.

In our sample, regions identified by their distinct continuum
properties also exhibit differences in emission line properties, so the
figures typically highlight the same regions discussed in Section 4.1.
However, even when two regions share similar continuum properties
but differ in their emission lines, or vice versa, our approach
should be able separate them effectively. Moreover, depending on
the spectral features being studied, different techniques can be
applied. For instance, when focusing on the stellar continuum, our
method can be performed on the original data cube since there
are significantly more continuum points than emission line points.
Alternatively, if the study targets emission lines, one can analyse the
derivative of the original data cube. In regions where the continuum
dominates, the derivative will be close to zero, whereas in areas dom-

inated by complex emission lines, it will deviate significantly from
Zero.

In this way, CAPIVARA can be tailored to focus on specific features
of interest, classifying different regions of the galaxy based on those
chosen features. Since this paper focuses on the methodology rather
than specific astrophysical cases, which will be addressed in follow-
up papers, we performed both continuum and emission line analyses
based on the initial decomposition into 20 distinct regions. Even
with this straightforward approach, the characteristics of the original
object were successfully recovered, showcasing the simplicity and
efficacy of our method.

4.3 Continuum and emission line spectral classification

Although the same galaxy can be classified into different categories
based on ad hoc criteria or specific predetermined wavelength
windows, a general sanity check for CAPIVARA is to ensure that
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its spectral segmentation is qualitatively consistent with traditional
continuum and emission line-based classifications. To achieve this,
we classified each representative spectrum based on both continuum
features and emission line characteristics.

We divided our sample into five classes according to the dominant
stellar populations in each object, presented here in the order of
appearance: AGN, star-forming (SF), post-starburst (PS), mixed
(MIX), and quenched (QUENCH). The AGN class includes objects
dominated by an FC component. The SF class consists of objects
where simple stellar populations (SSPs) younger than 100 Myr
dominate the emission. The PS class is defined by objects in which
SSPs between 100 and 2000 Myr dominate. In the MIX class, SSPs
older than 2 Gyr contribute less than 40 per cent of the luminosity,
while in the QUENCH class, SSPs older than 2 Gyr contribute more
than 40 per cent of the luminosity.

The BPT diagram classifies galaxies into five distinct categories
based on their emission-line fluxes: inactive (INACT), star-forming
(SF), composite or transition (TRANSIT), low-ionization nuclear
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Figure 9. Logarithmic fluxes of the four main emission lines for 7443—12703 (top) and 8135-12701 (bottom), in ergs-s—'-cm~2-A~!. Top row in each set:
Fluxes measured in the original datacube. Bottom row in each set: Fluxes measured in the decomposed datacube using CAPIVARA.
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emission-line region (LINER), and Seyfert galaxies. Here, we utilize
the BPT diagram based on the flux ratios of H g, [O 1] A5007,
Ha, and [N 11] 16583, plotting galaxies in a parameter space defined
by log([N11]/H &) on the x-axis and log([OIII]/H B) on the y-axis.
The thresholds between these line ratios, as defined by Kewley et al.
(2001) and Kauffmann et al. (2003), are used to differentiate between
these classes. Inactive galaxies are identified by [O1II] emission
below 30 of the continuum signal-to-noise ratio (S/N). Star-forming
galaxies, primarily influenced by photoionization from massive
young hot stars, exhibit low values of both [N 11]/H « and [O 111]/H 8,
occupying the left wing locus of the BPT diagram. In contrast,
AGN-dominated galaxies, including LINERs and Seyferts, lie on
the opposite side. LINERs display high [N 11]/H « but low [O 111]/H 8
ratios, with their ionization source being uncertain, possibly due to
nuclear activity or evolved stellar populations. Seyferts show high
values in both [N 11]/H « and [O 111]/H B ratios. Finally, the transition
class falls in the zone between star-forming and AGN objects,
demarcated by the theoretical extreme starburst line proposed by
Kewley et al. (2001) and the empirical starburst line by Kauffmann
et al. (2003).

Fig. 11 shows the classification maps for our five galaxies.
The first two panels on the left in each row display the maps
for the continuum classes, while the two on the right present the
classifications based on emission lines. In both cases, the original
data cube is shown first, followed by the segmented version. Before
the CAPIVARA segmentation, many galaxies exhibit low S/N regions
where classifications fluctuate across adjacent spaxels, often within
areas smaller than the PSF. These fluctuations are not physically
meaningful, as coherent structures should span spatial scales larger
than the PSF. While our method does not explicitly enforce spatial
coherence, it preserves spectral similarity across regions, which
naturally leads to more spatially coherent segmentations. This, in
turn, mitigates the likelihood of merging physically distinct regions.
Nevertheless, in some cases, adjacent regions with subtle spectral
differences may still be grouped together, leading to the dilution
or suppression of less dominant classes. This limitation can be
alleviated by increasing the number of classes, though the optimal
choice is likely galaxy-dependent and best addressed in dedicated
applications. Even so, the segmented regions often align with
physically distinct components — whether driven by gas excitation,
stellar populations, or a combination of both.

5 CONCLUSIONS

Traditional methods for analysing astronomical data cubes often
struggle to extract full signals from noisy backgrounds, particularly
when astrophysical or instrumental correlations between nearby
measurements are underestimated. To address these challenges,
efforts have been made to incorporate spatial information, such
as global parametric models for physical distributions in kinematic
studies (e.g. Krajnovi¢ et al. 2006; Watkins et al. 2013) and automated
spatial segmentation (Casado et al. 2017). One common approach to
improve signal-to-noise ratio (S/N) is through adaptive binning tech-
niques like Voronoi tessellation (Cappellari & Copin 2003), which
groups spaxels into contiguous regions for averaged measurements
(Sanders & Fabian 2001; Diehl & Statler 2006; Sanchez et al. 2016).
While these techniques enhance statistical confidence, they often do
so at the expense of spatial resolution.

Our method, however, takes a different approach. Primarily de-
signed to segment data into regions with distinct physical properties,
it naturally enhances the S/N as a secondary benefit. In contrast to
Voronoi binning — which focuses on data quality by merging regions
that may have different physical characteristics — our approach
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ensures that only regions with similar properties are grouped. In our
current analysis, segmenting the data cube into 20 distinct regions
results in a five-fold improvement in S/N compared to individual
spectra.8

Building on this, we introduce CAPIVARA, a novel spectral-based
segmentation method for IFU data cubes. Designed specifically to
enhance the study of structural properties in galaxies, CAPIVARA
employs hierarchical clustering in the spectral domain, grouping
similar spectra to improve S/N without compromising astrophysical
similarity among regions.

As a caveat, the quality of the segmentation produced by CAPIVARA
ultimately depends on the spectral features present in the data. This
is not a limitation of the method itself, but rather a reflection of
the information content available to the algorithm. Users should
consider pre-processing the spectra for specific needs, emphasizing
or isolating regions of interest — such as prominent emission or
absorption features — or adopting more physically motivated distance
metrics, depending on the scientific goal. Another current limitation
of our package is the lack of correction for internal kinematics, such
as velocity shifts across the galaxy. While this does not appear to
significantly impact the results for the systems analysed — since
spectral variations from ionization or stellar populations tend to
dominate — it may become more relevant in galaxies with strong
velocity gradients. Future incarnations of the code may address
this effect through case-by-case implementations that incorporate
kinematic effects into the clustering process.

In a demonstration using five selected MaNGA galaxies, CAPIVARA
identified and grouped regions with similar physical properties.
These groupings were validated against standard methods for stellar
continuum and gas property analysis. By providing both segmented
data cubes and integrated one-dimensional spectra for each region,
CAPIVARA facilitates a more detailed investigation of stellar and
ionized gas properties.
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