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Abstract: The mix-zone method is effective in preserving real-time vehicle identity and
location privacy in Vehicular Ad Hoc Networks (VANETs). However, it has limitations in
low-vehicle-density scenarios, where adversaries can still identify the real trajectories of
the victim vehicle. To address this issue, researchers often generate numerous fake beacons
to deceive attackers, but this increases transmission overhead significantly. Therefore, we
propose the Communication-Efficient Pseudonym-Changing Scheme within the Restricted
Online Knowledge Scheme (CPCROK) to protect vehicle privacy without causing signif-
icant communication overhead in low-density VANETs by generating highly authentic
fake beacons to form a single fabricated trajectory. Specifically, the CPCROK consists
of three main modules: firstly, a special Kalman filter module that provides real-time,
coarse-grained vehicle trajectory estimates to reduce the need for real-time vehicle state
information; secondly, a Recurrent Neural Network (RNN) module that enhances pre-
dictions within the mix zone by incorporating offline data engineering and considering
online vehicle steering angles; and finally, a trajectory generation module that collaborates
with the first two to generate highly convincing fake trajectories outside the mix zone.
The experimental results confirm that CPCROK effectively reduces the attack success rate
by over 90%, outperforming the plain mix-zone scheme and beating other fake beacon
schemes by more than 60%. Additionally, CPCROK effectively minimizes transmission
overhead by 67%, all while ensuring a high level of protection.

Keywords: beacon; mix zone; privacy; pseudonym changing; RNN; transmission overhead;
VANET

1. Introduction
The Vehicular Ad Hoc Network (VANET), as a branch of Intelligent Transportation

Systems (ITS), is a dynamic wireless network that seamlessly connects vehicles and roadside
units (RSUs) to provide a wide range of traffic-related and entertainment applications.
The VANET is designed to enhance traffic safety and efficiency by increasing the awareness
of vehicles about their surrounding traffic [1]. The key aspect of VANET applications lies in
communication, enabling vehicles to exchange information and interact with other vehicles
(V2V), road infrastructure (V2I), and everything else (V2X) [2–5]. This communication
facilitates enhanced awareness of surrounding traffic conditions, thereby significantly
improving traffic safety and efficiency [1,6,7].
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Figure 1 illustrates the VANET scenario, wherein it is formed by a short-haul wireless
network connecting RSUs, vehicles, and a backbone network. RSUs are established by
trusted authorities for dedicated short-range communication (DSRC). Vehicles are equipped
with On-board Units (OBUs) that possess unique IDs, primarily utilized for authentication
purposes by the authority. This authentication process enables vehicles to establish safe
connections with one another, either directly or by leveraging RSUs for re-transmission.
In VANETs, vehicles broadcast safety messages to report accidents or congestion. Ad-
ditionally, to support various functionalities within the VANET, vehicles are required
to periodically broadcast beacons, known as Cooperative Awareness Messages (CAMs),
to apprise others of their state information [8].

Figure 1. The diagram of the VANET scenario.

Despite the enhanced traffic safety and efficiency brought by periodically broadcasting
beacons, the lack of security protection of vehicles in VANETs suffers from the problem
of low data trustworthiness [9,10]. There is growing concern about the potential threat to
confidentiality, particularly regarding privacy issues [11,12]. Due to the inherent openness
of wireless communication in VANETs [13], attackers can intercept and eavesdrop on CAM
beacons and exploit the state information they contain, such as vehicle ID, speed, GPS
position, timestamp, and acceleration, to uncover a vehicle’s trajectory. Consequently,
this could result in severe consequences, such as unauthorized vehicle tracking, potential
misuse of personal information, and even the facilitation of targeted attacks on individual
vehicles or groups of vehicles.

Therefore, VANETs have gained considerable research attention in addressing privacy
concerns arising from beacon broadcasting while preserving the core functionality of
the VANET [14]. Using pseudonyms instead of real IDs in authentication processes is
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widely recognized as an effective measure to safeguard vehicle privacy [15]. The European
standard ETSI TS 102 941 [16] exemplifies the responsibility of the authority in issuing
pseudonym certificates, which should be updated within a time frame of five minutes [17].

Despite the implementation of the pseudonym, the threat of pseudonym-linking
attacks persists, enabling attackers to associate previous and new pseudonyms [18].
These attacks can take on a syntactic level, involving correlation of previous and cur-
rent pseudonyms when a vehicle changes its pseudonym individually, or a semantic level,
wherein the vehicle behavior and trajectory are estimated based on the state information of
broadcast beacons to unveil identity and undermine pseudonym changes [19].

To combat pseudonym-linking attacks, various mix-zone-related approaches have
been proposed [19–21]. As shown in Figure 1, vehicles collectively replace their
pseudonyms upon leaving the mix zone by communicating with the mix-zone Roadside
Unit (mRSU) [20]. Anonymity algorithms like k-anonymity [22] are employed to make the
pseudonyms used within the mix zone unlinkable. This makes it challenging for attackers
to associate a vehicle’s trace inside and outside the mix zone, as well as the new pseudonym,
with the vehicle’s real ID or previous pseudonyms based solely on beacons [23]. However,
most research assumes a high-vehicle-density scenario where vehicles have enough neigh-
bors to maintain anonymity. Yet the efficacy of the mix zone is compromised when there
are insufficient vehicles, allowing attackers to employ beacon-based semantic attacks and
disclose vehicle trajectories despite the full anonymity of beacons [24]. A vehicle may not
be able to travel to a high-density area where privacy protection remains a priority for an
extended period. Therefore, changing pseudonyms in low-density areas is a critical issue
that must be addressed to ensure privacy.

Several studies [25–27] have addressed the problem of low vehicle density by im-
plementing fake beacons generated by the RSU, commonly referred to as chaff or decoy
beacons. The purpose of these beacons is to mimic real vehicles and artificially augment
the vehicle density. The inclusion of supplementary fake beacons poses a challenge for
adversaries attempting to accurately link inbound and outbound traces within the mix zone.
While these approaches effectively mitigate the susceptibility to pseudonym-linking attacks
in scenarios characterized by low vehicle density, they also introduce new challenges.

It is crucial to generate accurate fake beacon trajectories for the pseudonym-changing
scheme. These trajectories should mimic genuine vehicle behavior in terms of location and
speed, but originate from different exits to confuse attackers. However, generating such
trajectories can be challenging due to the requirement for timely updates on the vehicle’s
behavior to accurately predict its trajectory. Inaccurate predictions may potentially expose
vehicle trajectories to attackers through semantic analysis.

On the other hand, most fake-beacon-based pseudonym-changing schemes involve
generating multiple fake trajectories to effectively deceive attackers [22,24,26]. However,
generating fake trajectories to mimic real vehicles requires the fake beacons to be processed
by RSUs similarly to genuine ones. While this approach reduces the risk of vehicle privacy
leakage, it also introduces excessive network overhead to the VANET, threatening the
environment awareness functionality of the VANETs [28,29].

Inspired by the capability of neural network models to assist in vehicle trajectory
prediction, which can be further applied to the protection of vehicle privacy, we propose
the Communication-Efficient Pseudonym-Changing Scheme Within the Restricted Online
Knowledge Scheme (CPCROK) to protect vehicle privacy in low-density VANETs and
effectively address the shortcomings of the aforementioned pseudonym-changing scheme.
CPCROK outperforms the state-of-the-art safeguards (the plain mix zone, other fake beacon
schemes) in reducing the attacker’s success rate while minimizing transmission overhead.
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The contributions of this work are summarized as follows:

1. We propose CPCROK to protect vehicle privacy in VANET scenarios with minimal ad-
ditional network overhead, even in low-vehicle-density and limited real-time vehicle
information scenarios. CPCROK achieves this through a modular design, consisting
of three modules: the IKF-CGTGM, an improved Kalman filter method to capture non-
linear vehicle movements, providing real-time coarse-grained trajectory knowledge
for the next phase; the RNN-FGTGM, a lightweight RNN model to capture intricate
vehicle motion patterns and adjust predicted trajectories based on previous IKF re-
sults; and the FBG module, an iterator to generate a single, highly convincing fake
trajectory outside the mix zone to deceive attackers. CPCROK minimizes the need
to generate a large number of fake beacons by introducing an accurate hierarchical
vehicle trajectory prediction approach and reducing the reliance on real-time vehicle
state information.

2. CPCROK outperforms the mix-zone scheme by over 90% in vehicle privacy protection.
Compared to other fake beacon strategies, CPCROK shows an improvement of over
50%. Additionally, it reduces the transmission overhead of generating fake beacons
by 67%, achieving a commendable level of protection.

The rest of this paper is organized as follows: Section 2 presents the state of the art
in pseudonym-changing schemes. Section 3 introduces the system and the threat models.
Section 4 details the CPCROK scheme. Section 5 evaluates CPCROK’s performance with
regards to privacy protection offered and transmission overhead compared with mix zone
and other fake beacon schemes. Finally, Section 6 concludes the paper and suggests
further work.

2. Related Work
To overcome pseudonym-linking attacks, especially semantic attacks, the mix zone

has been proved as a widely acknowledged and the most effective technology [20,30–36].
The mix zone allows a group of vehicles to enter an area within a close time frame, change
pseudonyms, and exit through different exits to achieve anonymity.

Freudiger et al. [30] first introduced a mix zone in the VANET named CMIX (Cryp-
tographic MIX), where beacons are encrypted. The pseudonym-changing process is con-
cealed, preventing continuous vehicle tracking by eavesdroppers. In addition, some studies
proposed maintaining silence within the mix zone [31,32]. However, this can lead to re-
duced awareness of the vehicle’s surroundings, giving rise to other issues such as the
inability to promptly prevent collisions [33]. Conversely, while encryption might lead to
increased computational overhead, the inherent low latency of VANETs ensures the timely
delivery of beacons. To enhance the privacy protection of CMIX, other encryption-based
mix-zone schemes focus on supplementary techniques like game theory [34] and statistical
approaches [35,36].

Research on mix-zone deployment locations and methods aims to strike a balance be-
tween maximizing privacy protection and minimizing the impact on network performance
and resource utilization. Instead of junctions, some studies have concentrated on reposi-
tioning mix zones to areas where vehicles come to a full stop. For instance, Lu et al. [37]
recommended establishing mix zones at social locations like shopping mall parking lots,
while [38] proposed sites like gas stations and toll booths. However, this approach limits
the opportunities for encountering a mix zone, which subsequently diminishes privacy
due to the scarcity of suitable locations.

Another alternative line of study suggests using dynamic mix zones since the VANET
is decentralized and self-organized. A cluster of vehicles initiates a dynamic mix zone,
enabling them to change or swap pseudonyms based on their awareness of the surrounding
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traffic through encrypted V2V transmissions [39]. This occurs, for instance, when vehicles
share a similar direction and velocity [40] or possess simultaneous intent [41]. However,
establishing the optimal timing to trigger dynamic mix zones in scenarios with low vehicle
density remains a challenging task.

The methods mentioned above either overlook low-vehicle-density scenarios or ex-
hibit inadequate performance in such situations. Recently, some approaches based on
generating fake beacons have been proposed to address privacy concerns in low-vehicle-
density scenarios. The usage of fake states is widespread in Mobile Ad Hoc Networks
(MANETs) [42], where user mobility is uncertain, making it challenging to discern real
location information through semantic analysis.

In terms of the VANET, RSUs can generate fake beacons as dummy nodes to artificially
increase the number of vehicles and maintain the anonymity. However, in Vehicular Ad
Hoc Networks (VANETs), vehicles are constrained to move along roads, and due to the
dense interconnections between frequently broadcasted beacons, attackers can more easily
reveal complete vehicle trajectories through semantic analysis. Therefore, introducing fake
beacons in VANETs presents greater challenges.

In the context of low vehicle density, C. Vaas et al. [26] enhanced the CMIX approach by
introducing chaff beacons whenever a vehicle enters a junction to fill up exits. The quantity
of chaff vehicles is regulated based on the current number of vehicles within the CMIX
zone. Additionally, ref. [43] redesigned the authentication process of employing Cuckoo
Filters to differentiate between genuine beacons and chaff beacons. M. Khodaei and P.
Papadimitratos [27] suggested using relaying vehicles to cooperatively disseminate decoy
traffic without the requirement from vehicles to provide their intended trajectory path to the
RSUs. N. Guo et al. [22] introduced an indMZ scheme that involves collaborative vehicles
generating randomized versions of a pseudonym until the desired level of anonymity
is achieved.

Despite the privacy enhancement offered by fake beacons, a fundamental conflict
between VANET functionality and privacy preservation persists. To enhance anonymity,
the size of the mix zones is often extended beyond junctions to obscure critical information,
such as steering angles, lane changes, and accelerations. Due to imperfect trajectory
predictions, the need for increased fake beacons arises to reduce the success rate of tracking
by attackers. However, this significantly amplifies the transmission overhead of the system
and may potentially impact the Quality of Service (QoS) of the VANET [29,44].

Deep learning has been extensively applied in the field of trajectory prediction and
pseudonym changing for vehicles, primarily due to its ability to model complex patterns
and dependencies in sequential data. However, the effectiveness of these applications can
vary significantly based on the specific architecture used and the context of the application.

Some studies [45,46] explored the use of Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks for generating vehicle trajectories. While RNNs are
adept at processing sequential information, their performance in trajectory prediction at
intersections was found to be less accurate due to the lack of practical intersection-related
information during training. This shortfall makes the dummy vehicles generated by RNNs
more susceptible to being distinguished by attackers. LSTMs, on the other hand, are better
suited for long-distance trajectory predictions. They tend to underperform in scenarios
involving short distances, such as those encountered at intersections, where the trajectory
changes are abrupt and localized.

Zhang et al. [47] shifted focus to reinforcement learning, which is utilized to generate
complete vehicle trajectories over large areas that closely mimic the real vehicular states.
However, this approach does not specifically address trajectory generation at junctions.
Since semantic attacks often exploit the continuity of vehicle states to track vehicles, gen-
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erating realistic trajectories within junctions becomes crucial. The short duration vehicles
spend at junctions necessitates a method that not only maintains accuracy but also speeds
up trajectory generation to effectively confuse attackers.

One of the inherent limitations of deep learning highlighted by these studies is its
relative inefficiency in real-time applications. Deep learning models, especially those
involving complex architectures like LSTMs and reinforcement learning networks, require
substantial computation, which can impede their ability to generate immediate responses
needed for intersection scenarios.

These insights suggest a need for optimizing deep learning approaches that cater
specifically to the unique dynamics at intersections, possibly by integrating more contextual
data or employing models that balance complexity with computational efficiency. Further
research could explore hybrid models or advanced training techniques that enhance the
real-time capabilities of deep learning applications in vehicular systems.

The challenge of minimizing the generation of fake trajectories while preserving
vehicle privacy in low-vehicle-density scenarios remains to be addressed.

3. System and Threat Models
3.1. Mix-Zone Deployment in VANETs Using Fake Beacons

Figure 2 illustrates the system model for implementing fake beacon approaches in mix
zones within VANETs at junctions. The mix zone, depicted by the red circle, is established
by an mRSU through the periodic transmission of beacons. In VANETs, vehicles period-
ically broadcast beacons containing their state information x(t) at time t, which consists
of coordinates (x(t), y(t)) and speeds (vx(t), vy(t)). These beacons form a chronological
sequence, representing the vehicle trajectory r.

As depicted in Figure 2, the solid black line represents the vehicle trajectory with a
pseudonym called Alice, which enters the mix zone. After receiving the beacon from the
mRSU, the vehicle requests a change in the pseudonyms, to ensure anonymity within the
mix zone. Upon receiving a request to change the pseudonym, the mRSU performs a check
to determine if there are enough vehicles within the mix zone to maintain k-anonymity.
If there are at least k vehicles present, the mRSU directly applies the k-anonymity algorithm
to change the pseudonym of each vehicle. However, if the number of vehicles is insufficient,
the mRSU generates fake beacons for each entering vehicle and modifies the pseudonyms
accordingly. The dotted black lines, representing all communications and beacons within
the mix zone, are encrypted to ensure privacy.

As illustrated in Figure 2, the vehicle’s pseudonym is changed from Alice to Bob,
while two additional fake trajectories are generated to represent vehicles with pseudonyms
Juliet and Romeo, respectively. This design ensures that the attacker cannot distinguish
the real trajectory of the vehicle among the three trajectories. By generating multiple
fake trajectories, the system prioritizes the identity and location protection of individual
vehicle identities.

However, various studies have shown that attackers can identify real trajectories from
fake trajectories by analyzing the semantic information of beacons, especially when the
generated fake trajectories lack authenticity. To address this concern, researchers often
generate a large number of fake beacons to deceive attackers, but this approach leads to a
significant increase in transmission overhead. In light of this, the study aims to address
the threat model associated with beacon semantic analysis. Subsequently, the CPCROK
scheme will be presented in Section 4, which safeguards vehicle identity and location
privacy without compromising the core functionality of the VANETs.
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Figure 2. Mix-zone deployment in VANETs using fake beacons.

3.2. Threat Model Based on the Beacon Semantic Analysis

By intercepting the beacons transmitted within the VANET, the attacker conducts
beacon semantic analysis using the beacons emitted by the targeted vehicle as it enters the
mix zone (indicated by the black solid line in Figure 2), with the intention of predicting
sensitive data, like GPS position, speed, and timestamp, once the targeted vehicle exits
the mix zone (indicated by the blue solid line in Figure 2). The attacker then compares
the beacons obtained outside the mix zone with the anticipated trajectory, identifying the
targeted vehicle based on the closest match. It is important to note that there are two
common assumptions regarding mix-zone vehicle beacon semantic analysis [30]: First,
the attacker can access the beacons outside the mix zone (indicated by the solid line), while
the beacons inside the mix zone (indicated by the dotted line) remain invisible due to
encryption. Second, the attacker operates remotely instead of resorting to hacking cameras
or tailing vehicles, as it requires a higher level of attacker capability and greater costs.
In other words, the adversary relies solely on collecting beacons to gather information such
as speed, position, and timestamps to uncover traces.

This study will take the multi-hypothesis-tracking (MHT) method originated from [48]
and simplified in [24] as an example to illustrate how beacon semantic analysis can ef-
fectively unveil vehicle trajectories. In brief, the MHT method aims to match the new
measurement driving outwards from a mix zone to a piece of trace that leads into the same
junction, as detailed below.

3.2.1. Trajectory Prediction

For each mix zone, the adversary classifies all inbound beacons by their pseudonyms
as a trace set R and then forms all first beacons of outbound traces as a candidate set S.
To estimate the state of each trajectory r in R at the exit, the adversary employs a Kalman
filter. The state of a vehicle x at a given time t is initially modeled as xt = xt−1 + w,
while the linear relation between the state measurement z and the state x at time t can be
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represented as zt = Axt + v, where H is a measurement matrix and v is the measurement
noise. The noises w and v, are set to obey normal distribution with zero means and a very
small standard deviation. The matrices A and H are:

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

, H =

[
1 0 0 0
0 1 0 0

]

where ∆t represents the time interval between two estimations. For the iteration in r, ∆t
equals the beacon interval. For the final estimation of arrival at the exit, ∆t equals the
difference ∆trn ,s between the timestamp trn of the last state in r and the timestamp ts of
each candidate s in S.

When a new measurement is iterated at time t, the Kalman filter updates the es-
timated state x̂ without correction, along with the error covariance P̄ affected by the
disturbance noise.

x̂t = Axt−1 (1)

P̄t = APt−1 AT + Q (2)

where Pt−1 is the error covariance at the previous timestamp t − 1, and Q is a carefully
selected covariance matrix. Using x̂ and P̄, the control input matrix B can be calculated
as follows:

B = HPtHT + R (3)

where R is another covariance matrix that is carefully selected. The variables in the Kalman
filter are then updated as follows:

K = P̄HT R−1 (4)

x̄ = x̂ + K(zt − Hx̂t) (5)

Pt = P̄ − P̄HT(HP̄HT + R)−1HP̄ (6)

where K represents the Kalman gain. The estimated state after correction xt and the updated
error covariance Pk are utilized in the subsequent calculation at the next timestamp t + 1.
Lastly, the adversary leverages ∆tr,s to update the Kalman filter and acquire the estimation
xr,s for each r at every timestamp at each timestamp ts.

3.2.2. Victim Recognition

Using the final state estimation xr,s, the adversary computes the probability of an
end-initial state pair belonging to the same vehicle. This probability set, denoted as Φr,s, is
calculated as follows:

Φr,s = N(s − xr,s, Br) (7)

where Br denotes the latest control input matrix for r, and N(x, P) denotes the nor-
mal distribution:

N(x, P) ∼ exp[−1
2

xT P−1x]/
√

2π|P | (8)

Next, the adversary eliminates probabilities in Phir,s that fall below the threshold η

in order to reduce computational load. Subsequently, the adversary matches each candi-
date from set S with another candidate from set R by selecting the pair with the highest
probability in Phir,s. This pair is then removed, and the matching process is repeated until
either set R or S becomes empty. Following these steps, each incoming trace is associated
with a hypothetical outgoing trace at each junction. By connecting all the hypothetical
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traces together, the success rate of the adversary can be measured by the number of fully
revealed traces.

Originally, the MHT model [48] employed Bayes’ theorem to compute the probability
of the current hypothesis, typically based on the product of prior hypotheses since previous
trajectory hypotheses were also uncertain. However, in our scenario, it has been established
that beacons outside the mix zone are not encrypted, and hence the trajectories of the
vehicles before entering the mix zone are known (as they use the same pseudonym).
For prior trajectory segments, there is no need to apply Bayes’ theorem; instead, we use
Equations (7) and (8) as a simplification to select the highest probability hypothesis matches
for trajectories entering and exiting the mix zone.

4. Proposed CPCROK Scheme
As previously discussed, in high vehicle density scenarios, there is no need to use

CPCROK, as the abundance of neighboring vehicles is sufficient for a standard mix-zone
strategy to meet the privacy protection needs of vehicles. However, in low-vehicle-density
situations, applying CPCROK to create fake traces would be an appropriate method to
enhance privacy protection.

Beacons inside the mix zone are encrypted, and therefore the vehicle behavior inside
the mix zone is unknown and invisible to the adversary. In contrast, mRSUs can interpret
trajectory preferences from internal beacons, including the pattern of acceleration and
deceleration, the steering arc, and the duration of staying in a junction. Thus, the fake trace
by trajectory prediction is more likely to attract the attention of attackers.

As less realistic fake trajectories have the potential to expose vehicle trajectories to
attackers via the beacon semantic analysis mentioned above, most current fake beacon
schemes address privacy vulnerabilities in low-vehicle-density scenarios by incorporating
a large number of fake beacons. However, the generation of these fake beacons requires
significant resource consumption to ensure desirable performance [24]. Hence, we propose
the CPCROK approach to effectively protect vehicle privacy in VANET scenarios with
minimal additional network overhead, even in situations of low vehicle density and limited
real-time vehicle information.

4.1. Overview of the CPCROK Scheme

As depicted in Figure 3, the CPCROK approach comprises three modules: the IKF-
based coarse-grained trajectory-generation module (IKF-CGTGM), the RNN-based fine-
grained trajectory-generation module (RNN-FGTGM), and the fake beacon generation
module (FBG). Each vehicle’s trajectory Vi before entering a mix zone is represented by
a series of beacons (x(t1), x(t2), etc.). Leveraging the steering angle θ in the mix zone,
the IKF-CGTGM provides a coarse trajectory prediction Pi within the mix zone for each
vehicle, along with corresponding timestamps (t1, t2, etc.) in beacons. The RNN-FGTGM
then trains an RNN model using Pi to generate outputs that closely match the observed
trajectories V

′
within the mix zone (zt+1, zt+2, etc.). Once the training phase is complete,

the inference phase begins, where the IKF-CGTGM follows the same process for each new
vehicle V, and the coarse prediction P is adjusted by the well-trained RNN model in the
RNN-FGTGM. Finally, the FBG generates extended fake beacons based on the estimated
states from the RNN-FGTGM to form the whole fake trajectory Vf . By working together,
these modules distribute highly realistic fake beacons using a single fake trajectory.
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Figure 3. Flowchart of CPCROK modules.

4.2. IKF-CGTGM

In this method, mRSUs are required to store beacons and the number of pseudonym
changes for vehicles. When a vehicle enters the mix zone, the mRSU checks if the number of
pseudonym changes reaches the limit. If this vehicle has passed adequate mix zones, there
is no need to generate fake beacons. However, if this vehicle is still vulnerable, the mRSU
will retrieve beacons for this vehicle and report to the IKF-CGTGM.

This module is used to preprocess the real vehicle trajectories to gather coarse-grained
predictions. The traditional Kalman filter makes state estimations in a linear dynamic
system. However, the vehicle maneuver in the junction cannot be regarded as a linear
movement. Steering angle and radius have a great influence on the results predicted by
a linear model. Thus, the traditional Kalman filter is not suitable for estimating vehicle
behaviors in junctions. As a result, an improved Kalman filter (IKF) is introduced using
beacons before a vehicle enters the mix zone to establish a model. Then IKF-CGTGM
involves the steering angle of this vehicle to continue updating the model by giving the
predicted state a deflection direction.

When a vehicle has passed a junction, the information extracted from beacons is
passed to the IKF, which includes vehicle ID, vehicle trajectory before entering the mix
zone, length of the beacon sequence in the mix zone, and the system command.

Before the vehicle enters the mix zone, its trajectory information is open to everyone.
The traditional Kalman filter can be used to gather estimations x by continuously updating
the Kalman gain K and covariance matrix P in the iterative process. In accordance with the
traditional Kalman filter, all trajectory points are involved in the iteration as measurements
Z, in which the speed is focused only:

Z =

[
vx

vy

]
(9)

In a certain iteration i, the speed information of the trajectory point predicted by the
Kalman filter is corrected by the measurement matrix Zi from x̂i to xi.
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However, the vehicle information inside the mix zone is not provided to the IKF since
the objective is to predict the vehicle’s complete journey within the mix zone. The iteration
in the traditional Kalman filter stops at the edge of the mix zone. Therefore, a new observa-
tion matrix based on the predicted state and the system command is generated to continue
the update step.

The system command is the angle θ that the vehicle is expected to turn in the mix zone,
given the inbound angle θin and outbound angle θout:

θ = ±(θin + θout) (10)

If the vehicle chooses to take a right turn within (0◦, 180◦), θ takes a positive value;
otherwise, θ takes a negative value. The direction of the predicted state is changed by the
system command to create a definite measurement Z

′
:

Z
′
=

[
vy × sinθcorrect + vx × cosθcorrect

vy × cosθcorrect − vx × sinθcorrect

]
(11)

where:
θcorrect =

1
2

θ (12)

The decision to use 1
2 θ for angle correction in our model was empirically determined.

If Z
′

is amended by θ after each iteration, it will cause the vehicle to turn too quickly
during predictions. Therefore, θcorrect is used instead to make the rotation smoother. We
experimented with various correction factors and found that 1

2 θ consistently yielded a
coarse-grained trajectory that closely approximates the real one. This specific adjustment
is crucial not only for enhancing the performance of our model but also for optimizing
computational efficiency. By reducing the complexity of the input to the RNN, we effectively
decrease the computational overhead required, thereby accelerating the generation of
fake beacons. Our use of the Kalman filter is primarily aimed at increasing the speed of
this process, aligning with the overall goal of our system to produce quick responses in
dynamic environments.

Hence, the estimation inside the mix zone is corrected by the predicted state in the
IKF and the new rotated measurement:

x = x̂ + K(Z
′ − Hx̂) (13)

where K is the Kalman coefficient, which increases in iterations since the IKF chooses to
believe the definite measurement created by the prediction from the previous step.

The length of the beacon sequence in the mix zone is used to determine the number
of iterations. Ergo, the size of Z

′
is the same as the number of beacons inside the mix

zone. This is designed to avoid padding processes in RNN training. After the iteration is
completed, the final predicted trajectory for each vehicle is stored in the database according
to the vehicle ID.

The improved Kalman filter differentiates itself from existing models like the extended
Kalman filter (EKF) primarily through its handling of information gaps. In our scenario,
the RSUs have access to the motion trajectories of the vehicles within the mix zone, including
insights into potential exit points. This type of privileged information, crucial for strategic
data handling, remains inaccessible to potential external attackers.

In contrast, the extended Kalman filter does not inherently require nor utilize specific
directional (steering) information as part of its estimation process. The EKF, designed to
handle non-linear systems, approximates state transitions by linearizing about the current
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estimate, which, while effective under many scenarios, does not specifically tailor for the
strategic manipulation of trajectory data as seen in our application.

The IKF is not devised to enhance the accuracy of trajectory predictions but rather to
optimize the speed of computation. By rapidly calculating what we term the coarse-grained
trajectory, our system is capable of quickly synthesizing effective and plausible fake beacons
without compromising the operational efficiency of the system.

We will deliberately choose an exit different from the real vehicle’s trajectory for
later use.

4.3. RNN-FGTGM

The aim for this module is to adjust predictions provided by the IKF-CGTGM using a
forward-pass RNN to generate precise fake traces containing similar states compared with
real vehicles. All the results of the IKF-CGTGM are used as the input dataset to feed the
RNN-FGTGM and all beacons inside mix zones are used as the validation set to correct
and update the RNN model.

A Recurrent Neural Network (RNN) is an artificial recursive neural network that
processes sequential data, evolving in the sequence’s direction, and interconnects circular
units in a chained network with feedback loops [49]. The RNN is commonly employed
for time series prediction [50], especially for vehicle behavior prediction utilizing the
sequential state information from beacons. For short distance or maneuver intention,
RNNs can provide a higher-level understanding of vehicle behaviors, especially in a simple
driving scenario [51]. For instance, Zyner et al. [52] presented a prediction method based
on an RNN to predict the destination in a junction by labeling the distance and speed at
each junction exit to give early warning of collisions.

As a combination of RNN and privacy protection, the following is a newly proposed
algorithmic workflow for generating more accurate fake beacons through trajectory predic-
tion using RNNs.

The RNN model designed for trajectory predictions operates through a series of
time steps, each involving several components and processes. At any given time step t,
the input vector xt includes four features: the x-coordinate, y-coordinate, and the velocity
components along the x-axis and y-axis. The hidden state ht represents the output of the
hidden layer, which incorporates information from all preceding time steps, ensuring the
model captures temporal dependencies effectively.

The output ot at each time step is generated from the current hidden state ht, while yt

serves as the target or actual value used for validation purposes. The loss function Lt is
calculated to measure the discrepancy between the predicted output ot and the validation
value yt, aiding in model optimization.

Figure 4 shows the structure of the RNN model for trajectory predictions. In time
step t, xt denotes the input vector, including four features: the x-coordinate, y-coordinate,
and the velocity components of the x-axis and y-axis. ht denotes the value of the hidden
unit influenced by all previous hidden units, ot denotes the output value based on the
current hidden unit, yt denotes the validation value, and Lt denotes the loss function.

There are three key parameters in this RNN model.

• U: The weight matrix applied to the input vector xt;
• W: The weight matrix applied to the previous hidden state ht−1;
• V: The weight matrix that transforms the hidden state ht into the output ot.

During the forward pass, the next hidden state ht is computed using the input xt and
the previous hidden state ht−1, incorporating a linear bias b and processed through an
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activation function σ. This function introduces non-linearity into the model, enabling it to
capture complex patterns in trajectory data.

h(t) = σ(z(t)) = σ(Ux(t) + Wh(t−1) + b) (14)

The generation of the output ot at time step t is relatively simple, where c is another
linear bias:

o(t) = Vh(t−1) + c (15)

The loss function calculates the difference between o(t) and yt for each time step. In this
model, since the objective is composing precise fake beacons that have similar states as
real ones, the Euclidean distance d is selected as the loss function. In each time step t, d is
calculated as:

d(zt,r, zt,o) =

√
n

∑
i=1

(xt,ri − zt,oi)
2 (16)

where z denotes the state vector in time step t for the real vehicle r and the RNN output o,
including coordinate (x(t), y(t)) and speed (vx(t), vy(t)).

Figure 4. The structure of the RNN model [53].

Gradients are calculated using backward propagation so that the hyperparameters of
the RNN are updated using the optimizer. The gradient calculation for V and c is relatively
simple, as illustrated in the partial derivatives:

∂L
∂c

=
τ

∑
t=1

∂L(t)

∂c
=

τ

∑
t=1

o(t) − y(t) (17)

∂L
∂V

=
τ

∑
t=1

∂L(t)

∂V
=

τ

∑
t=1

(o(t) − y(t))(h(t))T (18)

The gradient of W, U, b is then calculated. During backward propagation, the gradient
loss at a certain time step t is determined by the gradient loss corresponding to the output
of t and t + 1. Therefore, the gradient loss of W at t needs to be calculated step by step.
First, the gradient of the hidden state at t is defined as:

δ(t) =
∂L

∂h(t)
(19)
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Thus, the state at t − 1 can be derived from the state at t:

δ(t−1) = (
∂o(t−1)

∂h(t−1)
)T ∂L

∂o(t−1)
+ (

∂o(t)

∂h(t−1)
)T ∂L

∂o(t)

= VT(o(t−1) − y(t−1)) + WTdiag(1 − (h(t))2)δ(t)
(20)

For the last state τ, since there are no more time steps after it, the calculation is:

δ(τ) = (
∂o(τ)

∂h(τ)
)T ∂L

∂o(τ)
= VT(oτ − yτ) (21)

Thus, the gradient calculation for W, U, and b can be expressed as:

∂L
∂W

=
τ

∑
t=1

diag(1 − (h(t))2)δ(t)(h(t−1))T (22)

∂L
∂U

=
τ

∑
t=1

diag(1 − (h(t))2)δ(t)(x(t))T (23)

∂L
∂b

=
τ

∑
t=1

diag(1 − (h(t))2)δ(t) (24)

The above steps are repeated for several epochs until a specified number of epochs is
reached to obtain a low overall loss function. At last, each vehicle has a prediction route
corrected by the RNN model. The route consists of many beacons in both the IKF and real
vehicle trajectories.

The LSTM model, while powerful in handling long-term dependencies, is not em-
ployed in the current scenario primarily due to the nature and scope of the data involved.
LSTMs are indeed suitable for trajectory prediction and have been effectively applied in
contexts such as intersection path prediction, as demonstrated in [54]. However, in the
specific context of the mix zone, the data comprising encrypted beacons represent only a
short sequence. The limited spatial extent of the mix zone restricts the length of these se-
quences, thus diminishing the advantage offered by LSTM’s long-term memory capabilities.
Furthermore, employing an LSTM in such scenarios introduces a significant computational
overhead. Studies, including those reported in [55], have shown that when handling identi-
cal time-series prediction tasks, LSTMs require approximately 151% of the computational
time needed by simpler RNN models under the best circumstances and up to 227% un-
der the worst scenarios. This increase in computational demand can be attributed to the
LSTM’s complex internal architecture, which includes multiple gates that manage the flow
of information.

Given these considerations, for the specific application of predicting vehicle trajectories
within the relatively confined space of a mix zone, the additional computational cost of
employing an LSTM does not justify the potential gains in prediction accuracy. Instead,
we have opted for a more lightweight RNN model. This choice is driven by the need for
rapid computation and efficiency in generating plausible fake beacons, where the simplicity
of RNNs offers a more balanced solution. The RNN’s less complex structure allows it to
process the necessary data sequences quickly and efficiently, making it an ideal choice for
applications where speed is crucial and the data sequences are inherently short.

4.4. FBG

This module generates fake beacons according to the predictions provided by the
RNN-FGTGM. When a new vehicle approaches a mix zone that has deployed the RNN-
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based fake beacon scheme, the mRSU first collects all beacons before this vehicle enters the
mix zone. If this vehicle requires a fake trace, the mRSU will continue with the algorithm.

At this time, the direction of this vehicle has been detected by either indicator light
information from beacons or steering angle analysis. Thus, the mRSU chooses another
random exit and uses the angle of deflection to this exit as the system command to build an
IKF and make preliminary predictions. Each time the mRSU receives a new interval beacon
before the vehicle leaves the mix zone, an iteration is updated in the IKF.

Next, the data from the IKF are put into the RNN model to make final predictions.
To enhance privacy protection in VANET simulations, asynchronous timestamps are used,
meaning each vehicle is randomly assigned a start time to broadcast beacons. Vehicles
decide whether to encrypt their beacon based on their location relative to the mix zone.
Upon entering the mix zone, vehicles continue to broadcast using their previous timestamp
and pseudonym, but only RSUs can receive these encrypted beacons. As a vehicle reaches
the edge of the mix zone, the RSU assigns a new pseudonym to the vehicle and begins
broadcasting at a new random time. This strategy is also applied to fake beacons. Since
the length of the RNN prediction sequence is the same as that of the real trajectory, the last
state of the prediction sequence becomes the first fake beacon, i.e., the start of the fake trace
driving out of the mix zone. Starting from the first point of the fake trace, if the position
indicated in the fake beacon is still within the range of the mix zone, this fake beacon will
be encrypted by the mRSU.

Prior to the real vehicle exiting the mix zone, each new beacon received by the mRSU is
used to update the IKF and the RNN model. Regardless of where the fake beacon generated
by the RNN model terminates within the mix zone, the generation of fake beacons will
continue following the protocol outlined in [24] to form a complete fake trajectory. As the
RNN eventually generates beacons at the edge of the mix zone, the RSU also assigns
new pseudonyms and new random times to these fake beacons. Attackers cannot trace
vehicles by merely analyzing time intervals. If a fake beacon terminates inside the mix
zone, all subsequent fake beacons generated within the mix zone will need to be encrypted
to maintain security. This ensures that the continuation of fake beacons adheres to the
established security protocols whether or not the real vehicle has left the mix zone.

With the help of the RNN model, the fake trace behaves very closely to a real vehicle,
with similar patterns of steering angle and speed transformation in the junction. Therefore,
fake traces are accurate enough to deceive attackers, and a small number of fake traces can
effectively protect the privacy of vehicles under a low-vehicle-density situation.

5. Evaluation
To evaluate the performance of the CPCROK scheme, we constructed a mix-zone

scenario in a VANET environment using Python 3.8.12 and PyCharm (version 2022.3.1;
JetBrains, Prague, Czech Republic). This scenario included vehicles entering and exit-
ing the mix zone, the generation of mRSU beacons, beacon encryption, semantic-level
pseudonym-changing attacks, and the implementation of various pseudonym-changing
schemes. The simulations were conducted on a high-performance desktop computer with
an Intel Core i7-11700F @ 2.50 GHz 16-core CPU, 16 GB RAM, and NVIDIA GeForce
RTX 3060 graphics card. The computer ran on the Windows 10 64-bit operating system.
The experiment setup and discussion are elaborated upon in the subsequent sections.

5.1. Scenario Setting

In a prior study [24], we meticulously designed a traffic simulation that incorporated
numerous traffic rules, including overtaking allowance and connected junctions with roads
to form a map. We also set up a Poisson vehicle arrival pattern to simulate vehicle entries
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and exits. The experimental results indicated that these factors did not significantly impact
the attacker, while the success rate of an attacker recognizing a vehicle dropped expo-
nentially as the vehicle passed through several intersections (i.e., changed pseudonyms
multiple times). This is because, during other times on the road when the vehicle did not
change its pseudonym, attackers could easily track its trajectory segment. Since this paper
focuses on the success rate of changing pseudonyms once, the experiment was simpli-
fied to only involve passing through junctions of different shapes, removing additional
influencing factors.

As illustrated in Figure 5, the simulation encompasses five commonly encountered
junction shapes. These include two T-junctions with three potential exits, two crossroads
with four possible exits, and a multi-way junction offering five potential exits. The mix
zones, depicted as red circles, extend beyond the boundaries of the junctions. For perfor-
mance evaluation, the radius of all the mix zones is set to 10 m, similar to the attacking
strategy proposed in [24].

In designing traffic rules, we considered the worst-case scenario, where the vehicle’s
dwell time within the mix zone is minimal (with no red light delays or traffic congestion).
This approach ensures that attackers receive more closely linked segments of vehicle
trajectories. As we have demonstrated in [24] and also seen in [56], traffic simulation
experiments spanning multiple mix zones indicate that prolonged stays within the mix
zone are highly disadvantageous for attackers, significantly reducing their success rate in
tracking trajectories.

For each junction in the simulation, we randomly select two ends. One end is des-
ignated as the vehicle entrance, while the other end is designated as the vehicle exit.
The arrival interval of vehicles entering the mix zone λ is used to describe the vehicle
density in the simulation. We set λ to 2, 4, 6, 8, and 10, representing a new vehicle entering
the mix zone every 2, 4, 6, 8, and 10 seconds, respectively. For example, when λ is set to 2,
multiple vehicles will appear in the junction simultaneously, with some having just arrived
and others about to leave. In contrast, when λ is set to 10, vehicles will rarely encounter
other vehicles during their journey inside the junction. The vehicles’ speed ranges from
2 to 8. The minimum speed of 2 m/s ensures vehicles keep moving, reducing congestion
risks, while the maximum of 8 m/s enhances safety, allowing drivers enough time to react
to sudden changes. These limits are consistent with typical urban traffic rules, making the
experimental conditions realistic. Their speed gradually decreases as they approach the
mix zone, remains constant within the mix zone, and slightly increases at the exit of the
mix zone to simulate real-world traffic conditions. All other parameters for the traffic and
VANET simulations are shown in Table 1.

Table 1. Simulation parameters.

Module Parameter Value

RNN

Learning rate 0.001
Number of epochs 50

Number of training vehicles 5000
Number of inference vehicles 250

Traffic

Maximum speed 8 m/s
Minimum speed 2 m/s

Maximum acceleration 0.8 m/s2

Maximum deceleration 0.2 m/s2

VANET Mix-zone radius 10 m
Beacon interval 0.3 s
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(a) (b) (c) (d) (e)

Figure 5. Five commonly encountered junction shapes utilized in the simulation. (a) T-junction 1,
(b) T-junction 2, (c) crossroad 1, (d) crossroad 2, (e) multi-way. The red circular areas indicate the
mix-zone ranges, and the green areas represent non-road regions.

5.2. CPCROK Implementation
5.2.1. Data Preparation

By generating a large number of vehicle trajectories passing through the mix zone,
as mentioned earlier, we have successfully collected a substantial amount of data. This data
have been carefully organized into a dedicated dataset, specifically designed for offline
model training in the RNN-FGTGM module. The dataset comprises four features: the
x-coordinate, y-coordinate, and velocity components of the x-axis and y-axis, which are
fed chronologically. Similarly, the output dataset also contains the same four features,
which are used to form fake beacons. To ensure comprehensive RNN training and cover
all possible steering angles, random noises are introduced to both entrance and exit. This
ensures that even vehicles following the same route will have slightly different steering
actions, covering the range of angles from −90◦ to 90◦ and enhancing the diversity and
effectiveness of the training process.

5.2.2. Model Setting

Our RNN-FGTGM module utilizes the Adam Optimizer, and we have tested combi-
nations of different numbers of neurons (16, 32, 64, 128) and different numbers of hidden
layers (1, 2) to evaluate their impact on the success rate and the size of the loss function. Ul-
timately, we selected 64 neurons and one hidden layer as the hyperparameters, because this
combination achieves the lowest loss function value while minimizing the attacker’s suc-
cess rate, all within the constraints of limited computational time. Other parameters are
displayed in Table 1.

5.3. Comparison Schemes

The simulations employed the MHT method mentioned in Section 3 as the attack
model. Three pseudonym-changing schemes were implemented to compare the perfor-
mance of the proposed CPCROK scheme, as described below:

• The plain mix-zone (MZ) scheme proposed in [30] changes the pseudonym of the
vehicle when it enters the mix zone, but without any additional protection.

• The fake beacon (FB) scheme proposed in [24] generates a fake trajectory that directs
the vehicle towards an alternative exit point within the mix zone, bewildering potential
adversaries. This fake trajectory is carefully crafted based on the vehicle’s pre-entry
state and the distance between the entrance and the selected exit.

• The advanced fake beacon (AFB) scheme [24] utilizes an approach similar to the FB
scheme but enhances privacy protection by generating two distinct fake trajectories
with different estimated states.
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Since the traditional Kalman filter cannot provide turning information, it is unable
to offer possibilities other than going straight when generating fake trajectories; therefore,
there is no need for comparative analysis against the traditional Kalman filter.

5.4. Evaluation Metrics

To evaluate the effectiveness of the pseudonym-changing schemes, we assess the capa-
bility to ensure privacy protection and communication efficiency by analyzing the attacking
success rate and the number of fake trajectories required for preserving identification and
location privacy.

5.4.1. Success Rate

The attacking success rate ρ is defined as

ρ =
1
N ∑

i∈V
λV,V′ × 100, λVi ,V

′
i
=

{
1 Vi ≡ V

′
i

0 otherwise

}

where V
′

represents the set of hypothetical traces, V represents the actual trace set of
vehicles, N denotes the number of vehicles (i.e., the size of V), and Vi and V

′
i represent

individual traces in V and V
′
, respectively. A higher value of ρ indicates that the adversary

has successfully matched more vehicle trajectories, which suggests a weaker performance
of the pseudonym-changing scheme. Hence, an effective pseudonym-changing scheme
should strive to minimize the value of ρ.

5.4.2. Minimal Number of Fake Trajectories

The required number of generated fake trajectories ψ is defined as

ψ = logρλ
E(ρ) (25)

where ρλ denotes the success rate when the arrival interval is λ, and E(ρ) denotes the
expected success rate. A pseudonym-changing scheme utilizing fake beacons is consid-
ered more efficient if it can achieve a certain level of protection while generating fewer
fake trajectories.

5.5. Visualization of Fake Beacon Trajectories

Figure 6 visualizes real and fake vehicle trajectories during the inference phase. In the
actual experiment, vehicles can enter from any end of the junction, whilst Figure 6 only lists
an instance of entering from one direction in each junction and all mix zones are of the same
size and settings. Referring to Figure 6, we can obtain the following conclusions: (1) Differ-
ent types of junctions lead to variations in turning angles and distances covered between
fake and genuine trajectories; (2) taking Figure 6c as an example, the distance between
the fake vehicle trajectory predicted by the IKF-CGTGM (red dotted line) and the preset
exit is very different. The significant deviations when leaving the mix zone are attributed
to the lack of post-entry status information, which makes them easily distinguishable by
attackers; (3) the fake beacon trajectory (blue dotted line) generated by CPCROK illustrates
one beacon leaving from the 12 o’clock direction and another from the 6 o’clock direction at
the same time, both deviating by 90 degrees from the entrance direction. The state of this
fake vehicle closely approximates the state when the victim vehicle chooses the 12 o’clock
exit, effectively confusing attackers.
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(a) (b) (c)

(d) (e)

Figure 6. Visualization of fake beacon trajectories generated in CPCROK across various types of
junctions. (a) T-junction 1, (b) T-junction 2, (c) crossroad 1, (d) crossroad 2, (e) multi-way.

5.6. Vehicle Privacy-Preserving Evaluation

Each experimental scenario underwent five trials with different 5000 vehicles and the
average value is taken as the result to eliminate randomness.

Figure 7 illustrates the average success rate of attackers under different pseudonym-
changing schemes as the vehicle’s arrival interval varies.

From Figure 7, the following observations can be made: First, the MZ scheme exhibits
the highest attacking success rate, highlighting the vulnerability of vehicles to pseudonym-
linking attacks. Then, vehicle privacy can be adequately maintained with an arrival
interval λ = 2, even without additional fake traces. However, as vehicle density decreases,
the success rate of attackers gradually increases, reaching nearly 100%. Thus, incorporating
fake traces becomes crucial in low-vehicle-density scenarios to enhance privacy protection.
Thirdly, CPCROK demonstrates a significant decrease in the adversary’s success rate,
reducing it by over 90% across varying vehicle density scenarios compared to the mix-
zone scheme. Additionally, CPCROK performs better compared to the other two fake
beacon schemes, by 60% in low vehicle density and over 50% in normal vehicle density.
Lastly, and most importantly, when comparing the FB and AFB schemes, despite the latter
generating one additional fake trajectory, there is hardly any improvement in the success
rate. This is because the fake trajectories generated by traditional methods do not behave
like real vehicles, causing the extra fake trajectory to be identified by attack algorithms as
inconsistent with real vehicle patterns. As a result, this trajectory is not matched with the
real vehicle.

Simulations were conducted to assess attacks on vehicles as they traverse multiple
junctions. Figure 8 shows the success rates for passing through one to four mix zones,
considering different vehicle density scenarios with λ values of 2, 6, and 10. The results
indicate that the attacker’s success rate decreases exponentially with each additional mix
zone. This is due to the increased frequency of pseudonym changes as vehicles pass
through multiple mix zones, making it challenging for attackers to analyze the beacons.
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Additionally, while the FB and AFB schemes offer some privacy protection compared to the
MZ scheme, they require vehicles to pass through more mix zones. In contrast, the attacking
success rate when CPCROK is implemented drops to be lower than 10% with only a few
pseudonym changes, even in scenarios with limited mixing opportunities.

Figure 7. Success rate under different pseudonym-changing schemes as the vehicle’s arrival inter-
val varies.

(a) (b) (c)

Figure 8. The success rates of vehicles traversing different numbers of mix zones under varying
vehicle densities. (a) λ = 2, (b) λ = 6, (c) λ = 10.

5.7. Communication Efficiency Evaluation

We aim to trade computational overhead for reduced transmission overhead to en-
hance the stability of VANETs. This approach is justified as the mRSUs leverage backbone
networks, which are more robust and reliable, while vehicles are limited to mobile wire-
less networks.

Figure 9 illustrates the minimum number of fake trajectories ψ required to achieve
various success rates for fake beacon schemes. The MZ scheme is excluded since it does
not generate fake beacons. For instance, when the success rate is 30%, both the AFB and
FB schemes become resource-intensive, particularly at low vehicle density. In contrast,
the CPCROK scheme achieves a 30% success rate reduction for adversaries, with only
one-third of the overhead of the FB scheme and one-sixth of the AFB scheme when the
arrival interval is 10 s. Therefore, CPCROK strikes a balance between privacy protection
and resource conservation by generating a minimal number of fake trajectories.
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Figure 9. The minimum number of fake trajectories required to achieve various success rates for fake
beacon schemes.

6. Conclusions
In this paper, we propose CPCROK to preserve vehicle identity and location privacy

in low-density VANET scenarios, without imposing an obvious increase in transmission
overhead. In CPCROK, three modules cooperate to generate highly authentic fake beacons,
forming a single fake trajectory. This trajectory is authentic enough to deceive attackers,
even in low-density VANET scenarios with limited online knowledge. The evaluation
results demonstrate that CPCROK can reduce the success rate of attacks by approximately
90% compared to the plain mix-zone approach, and by 60% compared to the state-of-the-art
fake beacon-based mix-zone approach. Additionally, CPCROK significantly reduces the
additional transmission overhead by generating fewer fake beacons. Specifically, while
the FB scheme requires three fake traces and the AFB scheme requires six, CPCROK only
necessitates one to achieve the same protection level, resulting in a transmission overhead
reduction of 67% compared to the FB scheme and 83% compared to the AFB scheme.

In future work, we will evaluate CPCROK against other pseudonym-changing
schemes. We also plan to train and evaluate CPCROK with other datasets, such as NGSIM
and HighD. Finally, we plan to extend our threat model to consider other attack strategies
(e.g., deep learning-based trackers) and develop a pseudonym-changing mechanism that
can adapt to different attack scenarios.
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