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Abstract: Flexible wearable strain sensors demonstrate promising application prospects
in health monitoring, human-machine interaction, motion tracking, and the detection of
human physiological signals. Although laser-induced graphene (LIG) materials have been
extensively utilized in these scenarios, traditional types of LIG sensors are constrained by
intrinsic limitations, including discontinuous conductive networks and electromechanical
responsive hysteresis. These limitations hinder their applications in micro-strain detection
scenarios. Consequently, enhancing the performance of LIG-based sensors has become a
crucial priority. To address this challenge, we developed a novel MXene/LIG composite
featuring optimized conductive networks and interfacial coupling effects through the
systematic enhancement of LIG. The flexible strain sensor fabricated using this composite
exhibits exceptional performance, including an ultra-low sheet resistance of 14.1 Ω, a
high sensitivity of 20.7, a micro-strain detection limit of 0.05%, and a rapid response time
of approximately 65 ms. These improvements significantly enhance electromechanical
responsiveness and strain detection sensitivity. Furthermore, the sensor exhibits remarkable
stability under varying tensile strains, particularly showing outstanding repeatability across
2500 cyclic tests. Notably, when applied to the pilot health monitoring scenarios, the
MXene/LIG-based sensor demonstrates robust capability in detecting body movement
signals such as micro-expressions and joint movements. This establishes a novel and highly
effective technological solution for the real-time monitoring of pilots’ motion states during
operational scenarios.

Keywords: MXene/LIG; flexible wearable strain sensor; response; body motion

1. Introduction
Flexible wearable strain sensors have recently garnered considerable research attention

for their applications in healthcare monitoring, motion tracking, and physiological signal
detection [1,2]. Given that pilots, as a high-risk occupational group, play a critical role in
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aviation safety, the health conditions of pilots warrant close monitoring. These sensors
demonstrate significant potential in capturing subtle physiological variations in real-time,
thereby enabling effective monitoring of pilots’ physiological signals and health status
and providing robust support for health management systems [3,4]. Nevertheless, several
challenges remain in enhancing sensor performance, particularly regarding sensitivity
improvement, response time optimization, and stability maintenance under operational
conditions [5,6].

Among the diverse range of flexible sensing materials, laser-induced graphene (LIG)
has emerged as a prominent candidate owing to its unique synthesis methodology and
exceptional properties [7–9]. Through the process of laser irradiation of carbon precursors,
such as polyimide (PI), LIG forms a three-dimensional porous graphene structure directly
on the material’s surface [10,11]. This technique is characterized by its cost-effectiveness,
single-step in situ fabrication, and exceptional environmental stability, which collectively
enhance the material’s electrical conductivity, mechanical flexibility, and adaptability to
various environments. Consequently, the LIG has become a critical approach for devel-
oping high-performance graphene-based sensors [12–15]. In comparison with traditional
graphene synthesis approaches, the LIG technique demonstrates unparalleled simplic-
ity and scalability, making it highly promising for applications in flexible wearable sen-
sors [16,17].

Since Yakobson and colleagues pioneered the synthesis of three-dimensional porous
graphene via CO2 laser direct ablation of PI in 2014 [18], significant advancements have
been achieved in the preparation and application of LIG. Li et al. conducted a compre-
hensive review of the progress in LIG-based sensors for health monitoring, emphasizing
various sensing mechanisms and applications [19]. For instance, Yang’s team developed a
sweat sensor by integrating LIG with microfluidic technology to achieve high-sensitivity
detection of uric acid and tyrosine in sweat. However, its one-minute response time limits
the efficiency of dynamic signal detection. Additionally, the Torrente group fabricated
a wireless mobile health device using an LIG-based electrochemical sensor capable of
detecting cortisol in sweat within one minute [20]. Nevertheless, its prolonged signal
processing time hinders real-time monitoring capabilities. Despite these achievements
being remarkable in terms of sensitivity and multi-parameter detection, challenges remain,
such as discontinuities in the conductive network and electromechanical response delays.

The performance of LIG is influenced by a variety of factors, such as the selection of
carbon precursors, laser processing parameters, and dopant incorporation [21–23]. Among
these factors, MXene materials have garnered significant attention due to their exceptional
electrical conductivity, mechanical flexibility, and high specific surface area [24]. Although
the intrinsic three-dimensional porous structure of LIG ensures superior conductivity,
irreversible changes in interlayer contact resistance under cyclic strain often compromise
the sensing stability. By incorporating MXene into carbon precursors for the fabrication of
MXene/LIG composites, both enhanced conductivity and increased surface activity can
be achieved [25]. Previous studies have demonstrated that adjusting the concentration
of MXene significantly modulates key sensor performance metrics, including electrical
conductivity, sensing sensitivity, and operational stability [26].

Against this backdrop, this study systematically investigates the synergistic mecha-
nisms between MXene doping concentrations and LIG fabrication protocols for the devel-
opment of a flexible sensor based on MXene/LIG composite architecture. Specifically, this
study investigates the influence of variations in MXene concentration on the performance
of flexible wearable strain sensors. Notably, this study features three key innovation points
and contributions as follows:
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1. Innovative modification of conventional LIG fabrication protocols enables the single-
step fabrication of MXene-enhanced LIG. This advancement overcomes the inherent
limitations of multi-step doping methodologies, offering a novel and efficient method-
ology for the production of high-performance flexible sensors.

2. Significant performance enhancement was achieved through MXene modification,
characterized by a reduced sheet resistance (14.1 Ω), an expanded strain detection
limit (0.05%), and a rapid response time (65 ms). These improvements substantiate the
critical role of MXene in optimizing conductive networks and enhancing interfacial
charge transfer dynamics.

3. Pioneering advancements have been made in the application of pilot health moni-
toring within the civil aviation sector. The MXene/LIG sensor exhibits remarkable
capability in detecting subtle body movement signals. This innovation establishes an
effective technological framework for real-time monitoring of pilots’ motion states
during operational scenarios.

2. Materials and Methods
2.1. Preparation of LIG

The experimental process for preparing the MXene/LIG composite is shown in
Figure 1. Initially, 125 µm thick polyimide (PI) films (Shenzhen Jihongda Plastic Products
Co., Ltd., Shenzhen, China) were immersed in MXene solutions of varying concentrations
prior to undergoing the LIG process. The PI substrates were ultrasonically cleaned in
deionized water for 10 min using an ultrasonic cleaner (Chun Rain Inc., Shenzhen, China),
followed by drying at 50 ◦C for 30 min in a thermostatic drying oven (DHG-202, Shaoxing
Subo Instrument Co., Ltd., Zhejiang, China). MXene solutions with concentrations of 5, 10,
15, 20, and 25 mg/mL were prepared by mixing predetermined masses of MXene powder
(Sigma-Aldrich, St. Louis, MI, USA) with deionized water under magnetic stirring for
10 min. To ensure uniform dispersion, the solutions were further subjected to ultrasonica-
tion at 60 degrees Celsius for 20 min. The pretreated PI films were subsequently immersed
in these MXene solutions for 30 min. Due to the hydrophilic nature of MXene and its
abundant polar functional groups, stable adsorption layers formed on the PI surface via
electrostatic interactions, van der Waals forces, and hydrogen bonding. After each immer-
sion, the process was repeated three times to prepare partially black MXene-enhanced PI
films, as shown on the right side of Figure 1. These samples were labeled as MXene-x/LIG,
where x represents the concentration of the MXene solution (5–25 mg/mL). Subsequently,
the MXene-enhanced PI films were secured on a three-axis motion stage and irradiated
using a CO2 infrared laser system (Synrad P150, Novanta Corporation, Bedford, MA, USA)
with fixed parameters: a laser focal length of 95.5 mm, wavelength of 10.6 µm, repetition
rate of 20 kHz, pulse width of 100 µs, power of 10 W, scanning speed of 100 mm/s, and
hatch spacing of 200 µm.

2.2. Material Characterization

In this study, the surface morphology of LIG was characterized using scanning electron
microscopy (SEM; Thermo Scientiffc Helios 5 CX, Thermo Fisher Scientiffc Inc., Waltham,
MA, USA). Energy-dispersive X-ray spectroscopy (EDS; Thermo Scientiffc Helios 5 CX,
Thermo Fisher Scientiffc Inc., Waltham, MA, USA) was employed to analyze the elemental
composition and spatial distribution in MXene/LIG composites. The positions and intensity
ratios of the D-peak, G-peak, and 2D-peak in MXene/LIG were investigated using a Ren-
ishaw inVia confocal micro-Raman spectrometer (Raman; Renishaw Plc., Gloucestershire,
UK). X-ray photoelectron spectroscopy (XPS; FEI ESCALAB Xi+, Thermo Fisher Scientiffc
Inc., Waltham, MA, USA) was utilized to determine atomic species and their relative con-
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centrations. Crystalline phase identification and peak intensity analysis were performed via
X-ray diffraction (XRD; Rigaku Ultima IV, Rigaku Corporation, Akishima, Japan). Fourier-
transform infrared spectroscopy (FTIR; Thermo field Nicolet iS5, Thermo Fisher Scientific
Inc., Waltham, MA, USA) in the mid-infrared range was applied to detect functional groups
within MXene/LIG. Real-time resistance measurements were conducted using a digital
multimeter (RIGOL DM3058E, RIGOL Technologies Co., Ltd., Suzhou, China), while tensile
strain testing was carried out with a universal testing machine (WNMC, Beijing, China).
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Figure 1. Fabrication process of the MXene/LIG-based flexible wearable sensor. (a) Treatment of PI
with MXene solution; (b) laser direct writing; (c) assembly and application.

3. Results and Discussion
3.1. Surface Morphology Analysis of MXene/LIG

In this section, optical spectroscopy characterization and analysis were performed on
MXene-x/LIG composites synthesized via laser direct writing technology using PI films
impregnated with MXene solutions of varying concentrations. Figure 2 presents SEM
images of MXene−x/LIG for the evolution of surface microstructure. Figure 2a displays
the SEM micrograph of MXene−5/LIG, revealing a relatively loose structure with com-
paratively larger pores (measured pore diameter range: 11.85–1.72 µm) and significant
inter-pore voids, as quantified using Image View(V4.7.15144) software. Figure 2b illus-
trates MXene−10/LIG at higher magnification, revealing slightly reduced pore dimensions
(8.25–1.5 µm) while maintaining structural dispersion. This phenomenon can be attributed
to the onset of laser-induced thermal effects, which promote localized particle aggregation
and moderate pore densification. Figure 2c demonstrates MXene−15/LIG, where further
pore size reduction (7.19–1.38 µm) and enhanced particle aggregation are observed. The
intensified thermal effects during laser irradiation likely enhance particle mobility, facilitat-
ing tighter packing. Figure 2d corresponds to MXene−20/LIG, exhibiting markedly denser
structures with minimal pores (6.24–1.53 µm). At this concentration, the thermal effects
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induced by laser irradiation become more pronounced, with local heating promoting the
flow of MXene particles, leading to their aggregation into larger agglomerates or massive
structures and a further reduction in pore size. Figure 2e depicts MXene−25/LIG, char-
acterized by nearly pore-free surfaces (3.7–0.95 µm), where laser energy induces extreme
particle coalescence.
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Statistical analysis of 30 randomly selected pores (excluding outliers) across Figure 2a–e
yielded average pore diameters of 1.275 µm (standard deviation: 0.06457 µm), 1.521 µm
(standard deviation: 0.07896 µm), 1.607 µm (standard deviation: 0.05954 µm), 1.84 µm (stan-
dard deviation: 0.0642 µm), and 1.412 µm (standard deviation: 0.05617 µm), respectively.
MXene−20/LIG was identified as the optimal sensing material due to its homogeneous
and densely packed architecture, which effectively balances enhanced electrical conductiv-
ity with controlled porosity. This structural configuration not only improves sensitivity,
stability, and response speed but also circumvents the structural inhomogeneity observed
at higher concentrations (e.g., 25 mg/mL). EDS analysis of MXene−20/LIG (Figure 2f)
confirmed the presence of titanium, thereby verifying the successful integration of MXene
into the LIG matrix.

3.2. Optical Spectrum Analysis of MXene/LIG

Raman, XRD, FTIR, and XPS analyses were performed on the MXene−5/LIG,
MXene−10/LIG, MXene-15/LIG, MXene−20/LIG, and MXene−25/LIG, with the results
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presented in Figure 3. Figure 3a displays the Raman spectra of MXene/LIG at varying
concentrations, showing characteristic peaks: the D peak at 1344.86 cm−1, the G peak at
1578.21 cm−1, and the 2D peak at 2694.79 cm−1. Figure 3b illustrates the concentration-
dependent trends of the intensity ratios ID/IG and I2D/IG, which are associated with the
graphene layer thickness, defect density, and structural quality. Lower MXene concentra-
tions resulted in graphene with fewer defects and superior structural integrity, whereas
higher concentrations led to an increase in ID/IG due to MXene-enhanced defect gener-
ation. At a concentration of 20 mg/mL, graphene exhibited optimal structural stability,
minimal defects, and a higher I2D/IG, indicating enhanced electrical conductivity and
structural coherence.
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Figure 3c illustrates the XRD patterns of LIG, which are utilized to analyze the crystal
structure of LIG. Distinct (001) and (002) diffraction peaks are observed, indicating the
presence of a well-defined crystal lattice. The variations in peak position and intensity
reveal the influence of different MXene solution concentrations on the graphene crystal
structure and interlayer spacing. Notably, the (002) peak is the most characteristic diffraction
peak in graphene, directly reflecting the interlayer spacing. As the concentration of the
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MXene solution increases to 15 mg/mL, the intensity of the (002) peak gradually increases,
indicating a reduction in the interlayer spacing and tighter stacking of graphene layers. This
phenomenon may be attributed to the high MXene concentration, which promotes closer
packing of the graphene layers. The (001) peak is typically associated with the fundamental
arrangement of graphene’s crystal structure and its crystallinity. Its intensity and position
can provide insights into the local orderliness and crystal structure of graphene. At a
concentration of 25 mg/mL, the (001) peak exhibits the highest intensity, indicating superior
crystal arrangement and enhanced crystallinity of the graphene material. Conversely, at a
concentration of 20 mg/mL, the material may be in a transitional stage where the interlayer
stacking and orderliness have not yet reached their optimal configuration, resulting in a
lower intensity of the (001) peak.

Figure 3d demonstrates the FTIR spectrum, which elucidates the influence of varying
MXene concentrations on the functional groups present on the graphene surface. Distinct
absorption peaks at 1050 cm−1 (C–O), 1620 cm−1 (C=C), and 3450 cm−1 (–OH) confirm the
hydrophilic characteristics of the material. Notably, at a MXene concentration of 20 mg/mL,
the peak corresponding to hydroxyl groups becomes flattened, indicating a reduction in
the density of hydroxyl functional groups on the graphene surface and an enhancement
in hydrophobicity. This phenomenon suggests that, at this specific concentration, MXene
and the PI film exhibit synergistic effects, resulting in a more complete LIG structure with
minimized superfluous oxygen-containing hydrophilic functional groups. Conversely,
when the MXene concentration is elevated to 25 mg/mL, the intensity of the hydroxyl
peak increases once again. This may be attributed to structural heterogeneity induced
by high-concentration MXene during the laser treatment process, leading to non-uniform
distribution of functional groups.

Figure 3e illustrates the XPS test data, which primarily eliminates the variations in
elemental composition on the graphene surface treated with varying concentrations of
MXene solutions. Specifically, it focuses on the changes in binding energy and content of
elements such as C, Ti, and O. The trend of elemental changes is displayed in a bar graph
in Figure 3l. Figure 3f–j show the XPS peak splitting diagram of MXene−x/LIG C1s, which
quantitatively analyzes the proportions of various chemical states, including C–C, C–O,
and C–N bonds. These results not only reflect the oxidation of graphene-containing MXene
but also confirm the presence of functional groups on its surface. Figure 3k further provides
a comparative analysis of the C–Ti peak in MXene−x/LIG, revealing that the intensity of
the C–Ti characteristic peak increases with the number of impregnation cycles. This trend
confirms the formation of covalent bonding between MXene and LIG. This interaction
facilitates the construction of a three-dimensional conductive network where MXene is
embedded within the three-dimensional LIG framework.

3.3. Performance Evaluation of MXene/LIG-Based Sensor

In the performance evaluation phase, electrical resistance measurements were ini-
tially conducted on MXene−x/LIG-based flexible wearable strain sensors fabricated with
varying concentrations of MXene. As illustrated in Figure 4a, the sensor assembled with
undoped LIG exhibited a baseline resistance of 35.9 Ω. Upon increasing the MXene con-
centration, the resistance of the MXene−x/LIG sensors demonstrated a decreasing trend,
with recorded values of 19.4 Ω, 17.9 Ω, 15.7 Ω, and 14.1 Ω for concentrations of 5, 10, 15,
and 20 mg/mL, respectively. However, at excessively high concentrations (25 mg/mL), an
anomalous resistance increase to 15.9 Ω was observed, which may suggest potential struc-
tural saturation or agglomeration effects. Figure 4b presents the cyclic relative resistance
changes (∆R/R0) of the sensor under varying tensile strains (1%, 2%, 3%, and 4%) over
time. The amplitude of resistance variation increases proportionally with increasing strain,
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reaching its maximum at 4% strain, where the ∆R/R0 response is most pronounced. This
behavior suggests that progressive structural reconfiguration within the material under
mechanical deformation—particularly microcrack propagation and conductive network
disruption—leads to enhanced resistance modulation at elevated strain levels.
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Figure 4. Performance valuations of the sensors: (a) Resistance characterization of the flexible
wearable strain sensors based on MXene−x/LIG; (b) relative resistance change analysis during
five cycles of stretching and releasing at strains of 1%, 2%, 3%, and 4%; (c) Continuous relative
resistance change monitoring under sustained stretching and consecutive releasing at strains of 0%,
1%, 2%, 3%, and 4%; (d) time response assessment; (e) relative resistance change analysis for the
minimum detection limit of MXene−20/LIG flexible wearable strain sensors; (f) comparative analysis
of the minimum detection limit and time response between MXene−20/LIG flexible wearable strain
sensors and other sensors; (g) Cycle repeatability evaluation of the flexible wearable strain sensors;
(h) enlarged view of the cycle period from 1668 to 1675 in (g).

As demonstrated in Figure 4c, the variation in resistance exhibits a progressively
increasing trend within the strain range of 0–4%. The magnitude of resistance change
intensifies with increasing strain, indicating more pronounced conductivity modulation
under higher mechanical deformation. This behavior validates the sensor’s superior
sensitivity across extended strain ranges, which can be attributed to the strain-dependent
structural reconfiguration of the conductive network. Figure 4d shows that upon applying
a strain of 1%, the time response of the resistance change is rapid, particularly within
the interval of approximately ±65 ms and ±400 ms. A swift time response indicates
the sensor’s ability to promptly react during both the application and release of strain,
offering an advantage for the detection of rapid movements. Figure 4e shows that at a
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strain of 0.05%, the variation in resistance is minimal. However, as the number of cycles
increases, the change in resistance tends to stabilize. This indicates that under low-strain
conditions, the sensor exhibits a weak response but maintains stable performance over
prolonged usage. Figure 4f and Table 1 demonstrate that, compared to other sensors [27–35],
the MXene/LIG-based flexible wearable strain sensor developed in this study exhibits
superior performance in terms of the lowest detection limit and temporal response. The
data points in the figure indicate that the sensor maintains excellent detection sensitivity
even under small strains, with a rapid response time, outperforming other reference
sensors. As shown in Figure 4g, with an increasing number of cycles, the resistance change
remains relatively stable, particularly after approximately 1500 cycles, where the resistance
fluctuation is minimal and consistent, indicating that the sensor possesses superior cyclic
stability and is suitable for long-term applications. Figure 4h provides an enlarged view
of the 1500–2500 cycle range from Figure 4g, showing periodic fluctuations in resistance
at 4% strain, with the amplitude of resistance change remaining consistent. This confirms
that the sensor can perform stable strain detection after multiple cycles of stretching and
releasing, exhibiting outstanding repeatability and long-term stability.

Table 1. Comparative analysis of MXene−20/LIG sensor relative to other sensing technologies.

Materials Processing Response Time (ms) Detection Limit (%) References

LIG Laser direct writing 150 0.05 [22]

PDMS/PEI/CNT
Sandpaper Spray-coating 53.6 0.1 [27]

CNT/CB/TPU Spraying carbon black 80 0.05 [28]

PAM/HA/MMT hydrogel Dual physically
cross-linked 62.5 1 [29]

PAAM/CS hydrogels Surface coating 300 0.2 [30]

Hydrogel fiber Introduction crack 78 0.02 [31]

MXene/paper Dip coating 220 0.1 [32]

rGO/CNTs/TPU-TPU
composite fibers Dip coating 300 0.05 [33]

Nano-Silver-modified LIG Laser direct writing 150 0.2 [34]

P-PDMS Laser direct writing 140 0.0125 [35]

MXene/LIG Laser direct writing 65 0.05 This work

3.4. Applications of MXene/LIG-Based Sensor

To validate the practical applicability of the developed MXene/LIG-based flexible
sensor, we innovatively applied it to pilot body movement monitoring. The developed
flexible sensor was strategically attached to various body parts of pilots, including the wrist,
fingers, arm, and knees, for comprehensive motion detection. As shown in Figure 5a, arm
bending induced periodic resistance fluctuations with significant amplitude, revealing the
impact of bending-induced surface deformation on the sensor’s performance. The bending
motion subjected the sensor to tensile or compressive stresses, resulting in periodic varia-
tions in electrical resistance. Furthermore, the amplitude of resistance fluctuation varied
correspondingly with variations in bending angle. Figure 5b demonstrates periodic resis-
tance fluctuations during knee flexion-extension cycles, albeit with comparatively lower
amplitude compared to arm movements, indicating distinct mechanical loading patterns.
Figure 5c reveals subtle periodic resistance variations during facial expressions (smiling),
which are associated with minute muscle contractions that induce micro-deformations.
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In Figure 5d, wrist articulation monitoring displays characteristic resistance waveforms
generated by bidirectional motion-induced structural alterations in the sensor’s functional
layer. Figure 5e–f reveal the resistance changes corresponding to finger bending at 45◦

and 90◦, respectively. Compared to the 45◦ bending, the amplitude of resistance change is
enhanced, reflecting the influence of the bending angle on the sensor’s surface morphology.
Figure 5g–h show the resistance variations during transitions from hand back extension to
a tight grip and from palm extension to a tight grip, both exhibiting pronounced period-
icity. The resistance changes associated with the back-of-hand movements are attributed
to increased muscle activity during a tight grip, while those related to palm movements
involve significant contractions of the hand muscles, resulting in substantial fluctuations in
resistance. These distinct responses highlight the sensor’s biomechanical relevance and
electromechanical coupling efficiency.
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4. Conclusions
In this study, we developed a flexible strain sensor based on MXene/LIG composite

films, fabricated through solution immersion in conjunction with laser direct writing tech-
nology on PI substrates with precisely controlled MXene concentrations. The enhanced
MXene/LIG sensor demonstrated exceptional performance characteristics, including ul-
tralow resistance (14.1 Ω), an exceptionally low detection limit (0.05%), and rapid response
time (~65 ms). Furthermore, it exhibited remarkable operational reliability during extensive
cyclic testing while providing precise strain detection in practical scenarios, such as finger
flexion and dorsal hand stretching. Systematic investigations revealed that both laser pro-
cessing parameters and MXene concentration significantly influenced the pore architecture
of LIG matrices, thereby establishing a direct correlation with the optimization of sensor
performance. Notably, this study proposes a novel approach for enhancing MXene-based
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flexible sensors through synergistic material-process engineering, offering significant po-
tential for application in aviation body movement monitoring systems, particularly in pilot
health management.
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