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Abstract: A Bayesian network offers powerful knowledge representations for indepen-
dence, conditional independence and causal relationships among variables in a given
domain. Despite its wide application, the detection limits of modern measurement tech-
nologies make the use of the Bayesian networks theoretically unfounded, even when the
assumption of a multivariate Gaussian distribution is satisfied. In this paper, we intro-
duce the censored Gaussian Bayesian network (GBN), an extension of GBNs designed to
handle left- and right-censored data caused by instrumental detection limits. We further
propose the censored Structural Expectation-Maximization (cSEM) algorithm, an iterative
score-and-search framework that integrates Monte Carlo sampling in the E-step for efficient
expectation computation and employs the iterative Markov chain Monte Carlo (MCMC)
algorithm in the M-step to refine the network structure and parameters. This approach
addresses the non-decomposability challenge of censored-data likelihoods. Through simu-
lation studies, we illustrate the superior performance of the cSEM algorithm compared to
the existing competitors in terms of network recovery when censored data exist. Finally,
the proposed cSEM algorithm is applied to single-cell data with censoring to uncover the
relationships among variables. The implementation of the cSEM algorithm is available
on GitHub.

Keywords: Bayesian networks; censored data; structural EM algorithm; structure learning

MSC: 62H22

1. Introduction
In genomics and biological science, a primary goal is to discover the interactions,

dependencies and causal relationships among biological entities, such as genes, proteins,
metabolites and other biomolecules. One of the most popular tools for describing these
complex relationships is Bayesian networks [1,2]. A Bayesian network is a special class of
graphical model and it represents a set of random variables (for example, biological entities)
and their conditional dependencies via a directed acyclic graph (DAG) without directed
cycles, where each vertex represents a random variable, and the directed edges model the
dependencies between random variables [3]. One well-known specific case is the class
of Bayesian network classifiers, which includes models such as the multi-view attribute
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weighted naive Bayes [4] and the attribute and instance weighted naive Bayes classifiers [5].
Among various types of Bayesian networks, the Gaussian Bayesian network (GBN), where
the random variables are assumed to follow a multivariate Gaussian distribution jointly, is
the most common type of Bayesian network in genomics, biology and other sciences [6,7].

1.1. Structure Learning for Bayesian Networks

One major task for the GBN is to learn its structure from data; that is, to find a sparse
DAG to represent conditional dependencies among variables. There are mainly three
kinds of algorithms for structural learning in the literature. First, the constraint-based
algorithms try to recover the underlying structure of DAG by exploiting a set of conditional
independence statements obtained from a sequence of statistical tests [8]. For more details,
see, for example, the Peter-Clark (PC) algorithm [9], the PC-stable algorithm [10], Really
Fast Causal Inference (RFCI) [11], and PC-complex surveys [12]. Second, the score-and-
search method searches for a DAG that maximizes a given scoring function, such as the
Greedy Equivalence Search (GES) [13], partition MCMC [14] and so on. The overriding
challenge for score-based learning is to find high, or ideally the highest, scoring graphs
among the vast number of possible DAGs [8]. A potential limitation of these methods is that
they generally fall into the local optima. Last, the hybrid method uses a constraint-based
approach to restrict the search space in which a subsequent score-based approach finds a
DAG with a local or globally maximum score in order to improve speed and accuracy. For
details, see, for example, Max-Min Hill-Climbing (MMHC) [15], Hybrid HPC (H2PC) [16]
and the iterative MCMC algorithm [17,18].

1.2. Related Work on Censored Data Subject to Limit of Detection

It should be noted that all the methodologies mentioned above assume that the data are
completely observed. However, in a large number of applied research areas, the detection
limits of modern measurement techniques make it impossible to satisfy the completeness
of data. For example, the data with the Human Immunodeficiency Virus (HIV) viral
load below the lower detection limit cannot be observed, resulting in left censoring in
the HIV viral load measurements [19]. Another example is given by the flow cytometers
which are instruments used in biomedical research and clinical diagnostics to analyze
and measure various characteristics of cells or particles. Flow cytometers typically have a
limited range of signal strength within which they can accurately detect and record marker
values. If a measurement obtained from a flow cytometer falls outside this limited range, it
is considered out of bounds or beyond the detection capabilities of the instrument. In these
cases, the measurement is censored or replaced by the nearest legitimate value within the
allowed range [20]. It should be noted that censoring the out-of-range values to the nearest
legitimate values might lead to bias or loss of sensitivity in the measurements. For this
reason, some authors provide the maximum likelihood estimator of the covariance matrix
under left-censoring [21–24]. However, these works focus solely on covariance estimation
and do not infer the relationships between variables.

More recently, several studies employed undirected graphical models to represent
the relationships between variables for censored data subject to limit of detection [25–27].
Augugliaro et al. [25] defined the censored Gaussian graphical model and proposed an
l1-penalized Gaussian graphical model for censored data. Augugliaro et al. [26] proposed
conditional cglasso for inferring sparse conditional Gaussian graphical models for data
subject to censoring. Sottile et al. [27] extended the joint Gaussian graphical model to
account for censored data scenarios and extended the joint glasso estimator to multivariate
censored data generated under multiple conditions.
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1.3. Our Contributions

To the best of our knowledge, there is no existing literature on structural learning of
Bayesian networks for censored data. In this paper, we first extend the Gaussian Bayesian
network to the censored Gaussian Bayesian network, and then propose an iterative score-
and-search method for learning Bayesian networks from censored data due to out-of-range
values. In the context of score-and-search methods, a scoring function is required to
evaluate the goodness of fit of different network structures to the data. It is desirable for the
scoring function to satisfy three important properties: decomposability, score equivalence
and consistency [28]. Decomposability refers to the property that the overall score of a
Bayesian network structure can be expressed as a sum of local scores, each depending only
on a variable and its parent set. Decomposability is crucial for computational efficiency,
as modifications to the parent set of a single variable affect only a small portion of the
total score, thereby facilitating efficient local search algorithms. Score equivalence ensures
that different network structures representing the same dependencies receive equivalent
scores and it avoids favoring one equivalent structure over another. Consistency is an
asymptotic property whereby, as the sample size n → ∞, the probability that the true
underlying network structure maximizes the score function converges to one. Consistency
guarantees that, given sufficient data, the learning procedure will recover the correct
network structure with high probability. The Bayesian information criteria (BIC) score
is a popular score that satisfies these properties, and is used in structural learning for
nominal categorical data [28] and continuous data [13]. The Bayesian Gaussian equivalent
score defined in Geiger and Heckerman [29] and subsequently corrected in Moffa and
Heckerman [30] for continuous variables also satisfies these properties. However, it is
non-trivial to develop such a score satisfying all these properties for censored data since
the log-likelihood function for censored data is not decomposable for a DAG due to the
integration over censored variables.

In this paper, we view censored data as a special kind of incomplete data, and consider
the structural learning problem under the framework of incomplete data. Specifically, we
will apply the structural EM (SEM) algorithm proposed by Friedman [31,32] for structural
learning with censored data. The SEM algorithm combines the standard Expectation
Maximization (EM) algorithm, which optimizes parameters, with structure search for
model selection. It iterates E-step and M-step for structural learning until convergence.
In E-step, SEM computes the expected scoring function of the complete data given the
observed data, under the current network structure and its corresponding parameters.
Notably, the expected scoring function of the complete data remains decomposable, which
facilitates efficient computation. In M-step, SEM conducts structure search to minimize
the expected scoring function and simultaneously optimizes the model parameters. We
implement E-step and M-step for the censored Gaussian Bayesian network efficiently and
refer to the resulting procedure as the censored SEM (cSEM) algorithm. Through simulation
studies, we illustrate the superior performance of the cSEM algorithm compared to the
existing competitors in terms of network recovery when the censored data exist. We apply
the cSEM algorithm to analyze a single human MK-MEP dataset.

The remaining part of this paper is organized as follows. In Section 2, we review the
Gaussian Bayesian network and extend it to censored data subject to the limit of detection.
In Section 3, we propose the cSEM algorithm. In Section 4, we compare the cSEM algorithm
with existing competitors via simulation studies. In Section 5, the cSEM algorithm is applied
to model networks from the Single Cell data. In Section 6, we draw our conclusions and
discuss possible directions for future work. In the appendix, we give detailed derivations
in the M-step of cSEM and show additional results in simulation and real data analysis.
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2. Censored Gaussian Bayesian Network
In this section, we review the GBN and then extend it to a censored GBN. Let

X = (X1, X2, . . . , Xp)⊤ be a random vector from the problem we are modeling. A Bayesian
network makes it possible to represent independence, conditional independence among
these variables by a directed acyclic graph G, where each vertex i corresponds to Xi and
each directed edge i→ j indicates that Xi has a direct probabilistic influence on Xj [28,33].
Note that a DAG is a directed graph with no directed cycles. The primary advantage of
Bayesian networks is that they enable an efficient representation of the joint probability dis-
tribution of X by factorizing it into a product of local conditional distributions. Specifically,
the joint probability can be written as

P(X) =
p

∏
j=1

P(Xj
∣∣Xπj), (1)

where πj represents the parent set of the variable Xj, i.e., the set of vertices that have
directed edges pointing to j.

It is well known, however, that the DAG structure of the Bayesian network is identi-
fiable only up to an Markov equivalence class. All DAGs in an equivalence class encode
the same probability distribution. Equivalent DAGs share the same skeleton (where a
skeleton of a DAG is an undirected graph that is extracted from it by ignoring the direc-
tionality of edges) and the same set of v-structures (where a v-structure is a pattern of
the form i → j ← k, where i and k are not directly connected). The Completed Partially
Directed Acyclic Graph (CPDAG) provides a representation of the Markov equivalence
class of a Bayesian network by including both directed and undirected edges: directed
edges represent dependencies that are consistent across all equivalent networks, while
undirected edges indicate that multiple Markov equivalent DAGs exist with different
edge orientations.

A GBN is a Bayesian network where X follows a multivariate Gaussian distribution.
According to the factorization (1), the GBN can be written in the form of a linear structural
equation model

Xj = µj + ∑
i∈πj

bijXi + Zj, (2)

where Zj ∼ N(0, dj) and j = 1, . . . , p. From (1) and (2), we can obtain the joint density
function of X

φ(x|θ) =
p

∏
j=1

1√
2πdj

exp

{
−
(xj − µj −∑m∈πj

bmjxm)2

2dj

}
, (3)

where θ = (θ1, . . . , θp), θj = (µj, bπj j, dj) for j = 1, . . . , p. By (2) and (3), X follows a

multivariate normal distribution N(ν, Σ) with mean ν = (1 − BT)−1µ and covariance
Σ = (1− BT)−1D(1− B)−1, where 1 is an identity matrix, µ = (µ1, . . . , µp), B =

(
bmj
)

is a matrix with regression coefficients in (2) such that bmj ̸= 0 if G contains a directed
edge from m to j otherwise bmj = 0, and D is a diagonal matrix with diagonal elements
d1, . . . , dp. Thus, the GBN can be denoted by (G, X, θ). Note that the matrix (1 − B) is
invertible according to Lemma 1 in [34], since the non-zero elements in B are determined
according to G.

To incorporate the censoring mechanism in our framework, we follow Little and Rubin [35]
and Augugliaro et al. [25]. Let X be a Gaussian random vector. The vectors of known left
and right-censoring thresholds are denoted by l =

(
l1, · · · lp

)
and u =

(
u1, · · ·up

)
, respectively,
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with lj < uj for j = 1, . . . , p. We denote the censoring pattern by a p-dimensional random
vector R(X; l, u) with support set {−1, 0, 1}p. Specifically, the jth element of R(X; l, u) is defined
as R

(
Xj, lj, uj

)
= I

(
Xj > uj

)
− I
(
Xj < lj

)
, where I(·) denotes the indicator function. Thus,

R
(
Xj, lj, uj

)
= 0 (i.e., Xj is observed) only if it is inside the interval [lj, uj]. R

(
Xj, lj, uj

)
= −1 (i.e.,

Xj is censored from below) if Xj < lj; and R
(
Xj, lj, uj

)
= 1 (i.e., Xj is censored from above) if

Xj > uj.
Given a censoring pattern r ∈ {−1, 0, 1}p, we partition the set V = {1, . . . , p} into

three subsets o =
{

j ∈ V | rj = 0
}

, c+ =
{

j ∈ V | rj = 1
}

and c− =
{

j ∈ V | rj = −1
}

.
Note that xo is the observed vector, and the observed data can be represented as (xo, r).
As pointed out by Little and Rubin [35] and Augugliaro et al. [25], a rigorous definition
of the joint distribution of the observed data can be derived using the framework for
missing data with an ignorable mechanism. Specifically, the joint probability distribution
of the observed data, denoted by ψ(xo, r|θ), is obtained by integrating out the unobserved
(censored) components Xc = (Xc+ , Xc−) from the joint distribution of X and the censoring
pattern R(X; l, u). Accordingly, the density of (xo, r) is given by

ψ(xo, r|θ) =
∫

Dc
φ(xo, xc|θ)dxc I(lo ≤ xo ≤ uo), (4)

where c = c+ ∪ c−, φ(xo, xc|θ) is the density in (3) and Dc = (−∞, lc−) × (uc+ ,+∞) is
a Cartesian product. Augugliaro et al. [25] applied (4) to define a censored Gaussian
graphical model. Following Augugliaro et al. [25], we define a censored Gaussian Bayesian
network using (4) as follows.

Definition 1. For a GBN (G, X, θ), let R(X; l, u) be the censoring pattern for X. We formally
define the censored GBN to be (G, X, θ, R(X, l, u), ψ(xo, r | θ)).

From Definition 1, the censored GBN degrades into a GBN if l = (−∞, · · · ,−∞),
u = (+∞, · · · ,+∞). Definition 1 reveals that the proposed notion of the censored GBN
is characterized by a high degree of generality since it covers also the special case of the
classical GBN.

3. Structural Learning of Censored GBN
3.1. EBIC for Censored GBN

Consider a sample of n independent observations drawn from a censored GBN
(G, X, θ, R(X; l, u), ψ(xo, r | θ)). We assume that l and u are known and fixed across n
observations. Let ri be the ith realization of the random vector R(xi; l, u); then, the vari-
ables can be partitioned into three subsets oi =

{
j ∈ V|rij = 0

}
, c+i =

{
j ∈ V|rij = 1

}
,

c−i =
{

j ∈ V|rij = −1
}

. The ith observation is the vector (xioi , ri), and the ith complete
observation is xi = (xioi , xici ), where ci = c+i ∪ c−i . By (4), we obtain the observed log-
likelihood function

ℓobs(G, θ|xo, r) =
n

∑
i=1

log ψ(xioi , ri|θ) =
n

∑
i=1

log
∫

Dci

φ(xioi , xici |θ)dxici I(loi ≤ xioi ≤ uoi ). (5)

In this paper, we aim to learn the structure of the censored GBN by minimizing the
extended BIC (EBIC) score for the observed data, written as follows:

EBICobs(G, θ|xo, r) = −2ℓobs(G, θ|xo, r) + λ|B|0, (6)

where |B|0 is the l0 norm (i.e., the number of nonzero elements) of B (corresponding to the
number of edges in the DAG G) and λ = log(n) + 4 · γ log(p). The EBIC score is indexed
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by a parameter γ ∈ [0, 1]. When γ = 0, EBIC reduces to the classical BIC, which is widely
used as a scoring function for Bayesian network structure learning. A positive γ introduces
stronger penalization on large Bayesian networks, promoting sparsity by favoring network
structures with fewer edges.

Originally, EBIC was developed by Chen and Chen [36] for variable selection in high-
dimensional regression and later applied by Foygel and Drton [37] for tuning parameter
selection in graphical lasso for Gaussian graphical models. Building on EBIC, Scutari
et al. [38] introduced the G2

BICγ
independence test for constraint-based Bayesian network

structure learning. The EBIC is provided as a score function in the R package bnlearn for
structural learning. The primary advantage of EBIC over BIC lies in its ability to enforce
sparsity, reducing the risk of overfitting in cases where BIC tends to select overly complex
models. Unfortunately, the EBIC score in (6) is not decomposable, which will lead to high
computational burden for a score-and-search method since local changes in the structure
can result in global changes in the log-likelihood function for observed data. We will show
how to decrease the EBIC score iteratively in the next subsection.

Note that the EBIC is based on the l0 penalty. In the Bayesian network literature, the l1
penalty, MCP penalty, and SCAD penalty have also been applied for structural learning
in high-dimensional settings [39,40]. However, optimizing the penalized log-likelihood of
censored data with these penalties is challenging due to the integration involved in the
log-likelihood. Although the EM algorithm [41] could potentially be applied, as we do for
EBIC optimization in the next subsection, its convergence remains to be established.

3.2. Censored Structural EM Algorithm

In this paper, we view censored data as a special kind of incomplete data, and we apply
the SEM algorithm [31,32] to decrease the EBIC score in (6). The SEM algorithm is a score-
and-search method for structural learning of Bayesian network, particularly in scenarios
with missing or latent variables [28,31,32]. It is an extension of the EM algorithm [41]
for model selection problems that performs search for the best structure inside the EM
algorithm, so it is also called the model selection EM (MS-EM) algorithm by Friedman [31].

In cSEM, let (G0, θ0) be an initial network structure and the corresponding param-
eter. In the (t + 1)th iteration, (Gt, θt) obtained in the tth iteration serves as the current
network and parameter. To decrease the EBIC score function of the observed data, the SEM
recursively chooses a structure Gt+1 and corresponding parameter θt+1 that decrease the
following expected scoring function:

Q(G, θ|Gt, θt) = Exc |xo ,r(EBICcom(G, θ|xo, xc)|xo, r, Gt, θt), (7)

where EBICcom(G, θ|xo, xc) is the EBIC for the complete data, written as

EBICcom(G, θ|xo, xc) = −2
n

∑
i=1

log φ(xioi , xici |θ) + λ|B|0, (8)

and the expectation in (7) is computed with respect to the distribution of censored variables
conditional on the observed data (xo, r), under the current network structure and its
corresponding parameters. In the SEM, the computation of the Q function constitutes the
E-step, while the search for the updated structure Gt+1 and parameter θt+1 defines the
M-step. Note that E-step involves calculating the expected sufficient statistics for each
variable and its parent set. These expectations are typically computed using inference
algorithms such as belief propagation or sampling methods. According to Theorem 3.1 in
Friedman [31], if the following inequality holds:
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Q(Gt+1, θt+1|Gt, θt) < Q(Gt, θt|Gt, θt),

then the observed-data EBIC satisfies

EBICobs(Gt+1, θt+1|xo, r) < EBICobs(Gt, θt|xo, r).

This ensures that the SEM algorithm will monotonically decrease the EBIC score at each
iteration. Notably, the expected scoring function Q(G, θ|Gt, θt) of the complete data is
decomposable. Consequently, any score-and-search algorithm or hybrid method, such as
GES [13] or MMHC[15], can be applied in the M-step. Since the score is lower-bounded,
the SEM algorithm is guaranteed to converge [28].

It is important to note that searching for both the updated structure Gt+1 and pa-
rameter θt+1 in the M-step of the SEM algorithm is computationally more expensive than
parameter learning for a fixed network in the standard EM algorithm. Recognizing this is-
sue, Friedman [32] proposed an optional parameter-learning step to improve computational
efficiency. Specifically, the parameters of the current network structure are first optimized
using the EM algorithm before proceeding to the E-step and the M-step. This modified
version of SEM, which incorporates the optional parameter-learning step, is referred to
as the Alternating MS-EM (AMS-EM) algorithm in [32]. We describe the SEM with the
optional parameter-learning step in Algorithm 1. If the optional parameter-learning step
in Line 2 is not executed, then in Lines 3 and 4, the parameter θt′ should be replaced by
θt accordingly.

Algorithm 1: The structural EM (SEM) algorithm for structural learning

Input: Initial network structure G0, the corresponding parameter θ0 and the partially
observed data (xo, r)

1 for each t = 0, 1, . . . , until convergence do
2 //Optional parameter learning step: Fix the DAG Gt, and then apply the EM algorithm

to learn the parameter and get the resulting optimal parameter, say it, θt′ ;
3 E-step: Compute the expected score, i.e., Q(·|Gt, θt′ ) in (7).
4 M-step: Choose Gt+1 that decrease Q(·|Gt, θt′ ) and update

θt+1 = arg minθ Q(Gt+1, θ|Gt, θt′ , xo)

Output: Gt, θt

To clarify the points of convergence in the SEM algorithm, Friedman [31] defined the
class of “stationary points” for the SEM algorithm as all points to which the algorithm can
converge. Note that this set of stationary points is a subset of the set of stationary points in
spaces of parameterizations of all the candidate Bayesian networks.

Next, we apply the SEM algorithm for structural learning of the censored Gaussian
Bayesian Network. We first describe the E-step and M-step in Sections 3.2.1 and 3.2.2,
respectively. Then, we introduce the optional parameter-learning step in Section 3.2.3 and
discuss the choice of initial values in Section 3.2.4.

3.2.1. E-Step

According to the density in (3), we compute the expected EBIC score in (7) for com-
plete data

Q(G, θ|Gt, θt′) = np log(2π) +
p

∑
j=1

E
(

Lj(θj|xo, xc) | xioi , ri, θt′
)
+ λ|B|0 (9)
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where Lj(θj|xo, xc) = n log(dj) +
∑n

i=1

(
xij−µj−bTπj jxiπj

)2

dj
. Denote

xij = xij(xioi , ri, θt′) =

xij if rij = 0

E(xij|xioi , ri, θt′) otherwise,
(10)

and

xijxim = xijxim(xioi , ri, θt′) =


xijxim if rij = 0, rim = 0

xijE(xim|xioi , ri, θt′) if rij = 0, rim ̸= 0

E(xij|xioi , ri, θt′)xim if rij ̸= 0, rim = 0

E(xijxim|xioi , ri, θt′) if rij ̸= 0, rim ̸= 0,

(11)

then, we obtain

Q(G, θ|Gt, θt′) = np log(2π) +
p

∑
j=1

(
n log(dj) +

Ej

dj
+ λ|Bj|0

)
(12)

where Ej = ∑n
i=1

(
x2

ij − 2xijµj − 2bTπj j
xiπj xij + µ2

j + bTπj j
xiπj x

T
iπj

bπj j + 2µjxTiπj
bπj j

)
and Bj is

the jth column of B.
Note that, xici given xioi , ri follows a truncated multivariate normal distribution

xici |xioi , ri ∼ TMN(µt′
ci |oi

, Σt′
ci |oi

, l̃i, ũi), (13)

where µt′
ci |oi

= µt′
ci
+ Σt′

cioi
(Σt′

oioi
)−1(xioi − µt′

oi
), Σt′

ci |oi
= Σt′

cici
− Σt′

cioi
(Σt′

oioi
)−1Σt′

oici
, Σt′ =

(1 − (Bt′)T)−1Dt′(1 − Bt′)−1 is the covariance matrix in the tth iteration, l̃i is the vec-
tor with element l̃ij = uj I(ri

j = 1) − ∞I(ri
j = −1) and ũi is the vector with element

ũij = lj I(ri
j = −1) + ∞I(ri

j = 1). Thus, the conditional expectation in (9), (10) and (11)
necessitates calculating both the first and second moments of the truncated multivariate
normal distribution, which is computationally intensive for moderate size problems as it
involves complex numerical integration [42].

To address this issue, we approximate the conditional expectation by the Monte Carlo
(MC) sampling of Wei and Tanner [43]. Specifically, we draw a sample xi(1)ci

, . . . , xi(K)ci

of size K from the truncated multivariate normal distribution in (13) by the R package
tmvtnorm [44]. This allows us to obtain the complete data xi(k) = (xioi , xi(k)ci

) where k =

1, . . . , K and i = 1, . . . , n. Then, we compute approximately E(xij|xioi , ri, θt′) ≈ 1
K ∑K

k=1 xi(k)j

and E(xijxim|xioi , ri, θt′) ≈ 1
K ∑K

k=1 xi(k)jxi(k)m. With these approximations, we can compute
the Q function in (9) more efficiently.

3.2.2. M-Step

In the M-step, we aim to search for a DAG G and the corresponding parameters θ that
decrease the Q function. First, we fix G and minimize over θ, then we obtain

Q(G, θ̂|Gt, θt′) = np log(2π) +
p

∑
j=1

(
n log(Sjj − Sπj jS

−1
πjπj

Sjπj) + n + λ|Bj|0
)

(14)

where S is the expected sample covariance matrix with (j, m) entry being

Sjm =
1
n

n

∑
i=1

xijxim −
1
n2

n

∑
i=1

xij

n

∑
i=1

xim.
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From (14), we observe that Q(G, θ̂|Gt, θt′) is decomposable with respect to the DAG
G, as it is expressed as a sum of local scores, each depending only on a single variable
and its parent set. Consequently, any existing score-and-search or hybrid algorithm can
be employed to identify an improved structure Gt+1 that further reduces Q(G, θ̂|Gt, θt′).
We recommend using the iterative MCMC (iMCMC) algorithm [17,18] to obtain Gt+1, as it
has been shown to produce higher-quality DAGs compared to Greedy Equivalence Search
(GES) [13] and Max-Min Hill-Climbing (MMHC) [15] through simulation studies.

Note that the iMCMC algorithm is a hybrid approach to Bayesian network structure
learning that efficiently searches for the maximum a posteriori graph. Unlike traditional
MCMC methods, iMCMC first reduces the search space using the PC algorithm or prior
knowledge, improving efficiency. It then applies an iterative order MCMC scheme to refine
the structure while respecting the learned constraints. Luo et al. [45] adapted iMCMC for
Bayesian network structure learning with ordinal data by replacing the posterior score with
the BIC score. Following their approach, we use iMCMC to decrease the Q function, which
corresponds to the expected EBIC score.

After obtaining Gt+1, we update the parameter θt+1 by minimizing Q(Gt+1, θ|Gt, θt′).
By differentiating Q(Gt+1, θ|Gt, θt′) with respect to bπj j, dj and µj, we obtain

bt+1
πj j

= S−1
πjπj

Sπj j, (15)

µt+1
j = xj − xπj S

−1
πjπj

Sπj j, (16)

dt+1
j = Sjj − Sπj jS

−1
πjπj

Sjπj , (17)

where xj =
1
n ∑n

i=1 xij and xπj are the expected sample mean of variable Xj and vector Xπj ,
respectively, and S is the expected sample covariance matrix. The detailed derivation in
this subsection will be provided in Appendix A.

It should be noted that we assume the sub-matrix Sπjπj of the expected sample covari-
ance matrix is invertible in equations (14) and (16). This assumption typically holds if the
sample size n is greater than the number of parents of each variable in Gt+1.

3.2.3. Optional Parameter-Learning Step

To implement the EM algorithm in the optional parameter-learning step (i.e., Line 2
of Algorithm 1), we first initialize the parameters using θt, the estimates obtained from
the previous iteration. Then, we iteratively perform the E-step and M-step. The E-step
is carried out in the same manner as described in Subsection 3.2.1. In the M-step, we
optimize only the parameters while keeping the structure Gt unchanged, unlike the M-step
in Section 3.2.2, which searches for an improved network structure.

3.2.4. Initial Values of cSEM

It should be noted that, similar to the EM algorithm, different initial values of G0 in
the cSEM algorithm may lead to different outcomes. Therefore, selecting a good initial
structure is crucial for achieving robust and accurate results. We propose two alternative
initialization strategies for obtaining G0, using Greedy Equivalence Search (GES) and the
iterative MCMC algorithm (iMCMC) [17,18], both of which are widely used for structure
learning. Since these algorithms are not designed to handle censored data directly, they
are applied to datasets in which the censored values are replaced by their corresponding
censoring thresholds. The corresponding initial parameter matrix B0 can be estimated via
maximum likelihood estimation (MLE) of Gaussian Bayesian network on the threshold-
substituted dataset given G0. For initializing each µ0

j and d0
j , we assume that each variable

Xj follows a normal distribution N(µj, dj), and compute the MLEs µ0
j and d0

j by the EM
algorithm accordingly.
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4. Simulation
In this section, we conduct simulations to assess the performance of the proposed

cSEM algorithm in recovering the structure of Bayesian network with censored data. In
our simulation, the parameter γ in λ = log(n) + 4 · γ log(p) of the EBIC score is set to 0.5,
following the recommendation of Foygel and Drton [37] for learning Gaussian graphical
models. Note that all analyses are performed using R software. Our codes are available at
https://github.com/xupf900/cSEM (accessed on 27 April 2025).

In simulation studies of the first two subsections we generate the censored Gaussian
dataset as follows. First, we generate a random DAG with a given number of vertices p
and an expected neighborhood size s using the randDAG function from the R package
pcalg [46]. Second, the sparse adjacency matrix B is obtained from the DAG, where a
nonzero entry bij is drawn uniformly from (0.5, 1) and (−1,−0.5). We generate d1, . . . , dp in
(3) uniformly from the interval [0.5, 1] and set µj = 0 for all j. Then, we obtain a multivariate
Gaussian distribution as defined by (2). Last, we draw a Gaussian sample from above
multivariate Gaussian distribution and cut it by a left-censoring threshold vector l to obtain
left-censored data, where l is determined by the mean, the square root of variance of each
variable and the percentage c of left censoring.

To assess the performance for structural recovery, we need some metrics. Notice
that we can only identify the true DAG up to its Markov equivalence class, so it is more
appropriate to compare the corresponding CPDAGs. Therefore, we calculate the Structural
Hamming Distance (SHD) between the estimated CPDAG and the true CPDAG. SHD
includes the number of extra edges (ee), the number of missing edges (me), the number
of reverse directions of edges (rd), the number of missing directions of edges (md), the
number of the extra direction of edges (ed). That is, SHD = me + ee + md + ed + rd. We
also use the true positive rate (TPR), the false positive rate (FPR) and the true discovery
rate (TDR) between the estimated skeleton and the true skeleton. Note that the skeleton
of a DAG is an undirected graph with the same vertex set and the undirected edges set
where the undirected edge is obtained by removing direction of the directed edge in DAG.
TPR is the number of correctly found edges in estimated skeleton divided by the number
of true edges in true skeleton, and FPR is the number of incorrectly found edges divided
by the number of true gaps in true skeleton and TDR is the number of correctly found
edges divided by the number of found edges. To compare the computational efficiency of
different algorithms, we record the CPU time for each algorithm.

4.1. Evaluating MC Sampling in E-Step

In this subsection, we evaluate the effect of Monte Carlo (MC) sampling in the E-
step of the cSEM algorithm using simulated data. Specifically, we consider a DAG with
p = 20 vertices and 31 edges, and generate a dataset of size n = 100, where the proportion
of left-censored values is set to c = 0.2. The initial DAG G0 is obtained using the iterative
MCMC (iMCMC) algorithm. During the E-step, we vary the MC sampling size K over
the values 50, 200, 1000 and 2000. The corresponding variants of the cSEM algorithm
are denoted as csem.50, csem.200, csem.1k and csem.2k. Each variant is run fifty times,
resulting in fifty CPDAGs per setting.

Figure 1 presents boxplots of the CPU time (in seconds) for each computation step, the
number of iterations and the EBIC values across the cSEM variants. In addition, Table 1
reports the number of distinct CPDAGs with different SHDs for each value of K. From
Figure 1, we observe that, as K increases, the number of iterations required for convergence
and the CPU time for searching for Gt+1 in M-step tends to decrease. However, the CPU
time spent on initializing the graph and parameters, the optional parameter-learning step,
Monte Carlo sampling in E-step and updating parameters in M-step increases with larger

https://github.com/xupf900/cSEM
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K. Notably, the total CPU time does not exhibit a clear trend with respect to K, although
K = 1000 results in the shortest total CPU time. In terms of EBIC values, larger K leads
to more stable and robust performance, while smaller K (e.g., K = 50) may occasionally
yield the lowest EBIC. According to Table 1, the number of distinct CPDAGs generated
over fifty runs decreases as K increases: K = 50 produces eight distinct CPDAGs, while
K = 200, 1000, and 2000 each result in only two distinct CPDAGs. While K = 50 achieves
the best CPDAG with SHD equal to 0, it also produces the worst with SHD as high as 16.
In contrast, larger values of K yield more consistent results, with SHDs ranging between 1
and 5.
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Figure 1. Boxplots of CPU times in seconds for each step of the cSEM variants across different values
of K are presented, including: (a) initialization of the graph and parameters, (b) optional parameter
learning step, (c) Monte Carlo sampling in E-step, (d) searching for Gt+1 in M-step, (e) updating
parameters in M-step and (f) total computational time. Subfigure (g) shows the boxplot of the number
of iterations, and subfigure (h) displays the boxplot of EBIC values for the cSEM variants across
different values of K.

Table 1. Number of distinct CPDAGs for cSEM variants with different K over fifty runs.

SHD 0 1 4 5 13 14 15 16

K = 50 3 3 10 27 1 2 2 2
K = 200 9 39 2
K = 1000 1 49
K = 2000 2 48

These findings suggest that, when computational resources allow for multiple runs,
it is beneficial to run csem.50 multiple times and select the CPDAG with the smallest
EBIC. However, if only a single run is feasible, using a larger value of K (e.g., K = 1000 or
K = 2000) is preferable for obtaining more reliable and stable results.

4.2. Comparison of Methods on Data Simulated from Censored GBN

In this subsection, we compare the performance of cSEM with four existing structure
learning approaches: the PC-stable algorithm [10] (referred to as PC hereinafter), Greedy
Equivalence Search (GES) [13], the iterative MCMC procedure (iMCMC) [17,18] and the
Max-Min Hill-Climbing algorithm (MMHC) [15]. Among these methods, PC is a constraint-
based approach, GES is a score-and-search method and both iMCMC and MMHC are
considered hybrid methods.

For the cSEM algorithm, we evaluate two initialization strategies as described in
Section 3.2.4, and we fix the MC sampling size in the E-step to K = 2000. When the optional
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parameter-learning step based on the EM algorithm is included, the corresponding versions
are denoted by csem.2k.imcmc.emup and csem.2k.ges.emup, depending on whether the
initialization is from iMCMC or GES, respectively. If the optional EM-based parameter
update is not performed, the versions are referred to as csem.2k.imcmc and csem.2k.ges.

For the PC algorithm, we follow the recommendations in Kalisch and Bühlman [47]
and set the significance level α ∈ {0.001, 0.005, 0.01}. As the performance is generally
consistent across these values, we report results only for α = 0.001. For GES and iMCMC,
we use the extended BIC (EBIC) with regularization parameter γ = 0.5, while for MMHC
we use EBIC with γ = 1, as implemented in the R package bnlearn [48]. Since none of the
competing methods are specifically designed to handle censored data, we address censoring
by substituting each censored value with its corresponding left-censoring threshold from
the vector l. The resulting completed datasets are then passed to the competitors for
structure learning. To assess the impact of censoring, we also apply each method to
uncensored Gaussian data generated from the same underlying models.

For the simulation setup, we consider vertex numbers p = 50 and 100, expected
neighborhood size s = 3, sample sizes n = 200 and 500, and censoring rates c = 0.25 and
0.5. For each configuration, we generate 50 random DAGs, and from each DAG we sample
an i.i.d. censored dataset of size n. These simulated datasets are used to systematically
evaluate and compare the performance of the different structural learning methods.

We present the average SHDs using stacked bar charts in Figures 2 and 3, which illus-
trate the average number of incorrect edges for p = 50 and p = 100, respectively. In these
figures, algorithm.sub denotes that an algorithm is applied to a dataset in which censored
values are replaced by their corresponding threshold values, while algorithm.com refers
to the same algorithm applied to the complete, uncensored Gaussian dataset. From these
figures, we observe that different initial DAGs for cSEM result in similar average SHDs.
Moreover, the inclusion of the optional parameter-learning step has little effect on the
accuracy of structural recovery. However, it can reduce the total CPU time, as detailed in
Table A1 in Appendix B. Across all settings, the cSEM variants consistently outperform
their algorithm.sub counterparts.
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Figure 2. Stacked bar charts of the average SHDs for p = 50.
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Figure 3. Stacked bar charts of the average SHDs for p = 100.

We further report the average true positive rates (TPRs), false positive rates (FPRs)
and true discovery rates (TDRs) between the estimated skeletons and the true skeletons in
Figures 4 and 5. In each figure, the first, second and third columns correspond to results for
c = 0.25, c = 0.5, and the complete dataset, respectively. These figures demonstrate that
the cSEM variants outperform all algorithm.sub methods across all three metrics (TPR,
FPR and TDR).
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Figure 4. Line charts of the average TPRs, FPRs and TDRs for p = 50.
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Figure 5. Line charts of the average TPRs, FPRs and TDRs for p = 100.

Detailed information on the average CPU time for all algorithms is provided in the
Appendix B.

4.3. Additional Simulations on Artificially Censored Biological Data

In this subsection, we assess the performance of our cSEM algorithm using realistic
biological data from the New Hampshire Birth Cohort Study, as provided by Ma et al. [49].
The dataset is available at https://doi.org/10.21228/M8K69N (accessed on 18 May 2024). It
comprises metabolomics data obtained from stool samples collected from infants at around
6 weeks of age, encompassing information on 36 metabolites from a total of 158 infants.

Despite the data being fully observed, we apply our method to the datasets where
observations are made artificially right-censored similarly to Augugliaro et al. [25]. Three
datasets are generated with varying percent c of right-censoring by designating the top
10%, 20% and 30% of the highest values to be censored. To assess our method, we compare
it with k-nearest neighbor imputation (denoted as missknn) and random forests imputation
(denoted as missforest). Both techniques start by imputing censored values and then
utilize iMCMC to learn structure. In Table 2, the structural Hamming distance (SHD) and
mean square error (MSE) of cSEM, missforest and missknn are presented under varying
degrees of censoring. The MSE evaluates the estimation precision of the covariance matrix,

calculated as MSE = 1
p2 ∑

p
i=1 ∑

p
j=1

(
Σ̂com

ij − Σ̂cen
ij

)2
, where Σ̂com is the covariance matrix

computed from the estimated adjacency matrix by the iMCMC method for complete data,
and Σ̂cen is the covariance matrix obtained by cSEM variants with different K and initial
values, missknn or missforest. All cSEM variants consistently outperform two imputation
methods in terms of structural learning and parameter estimation across various censoring
degrees. However, the CPDAGs obtained from cSEM variants with different values of
K and different initializations may vary and exhibit some instability. This suggests that
running cSEM multiple times and selecting the CPDAG with the smallest EBIC value can
lead to more reliable results.

https://doi.org/10.21228/M8K69N
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Table 2. SHDs and MSEs of cSEM variants, missforest and missknn under c = 0.1, 0.2 and 0.3.

SHD me ee md ed rd MSE

c = 0.1

csem.50.ges 36 10 12 4 2 8 0.003
csem.200.ges 34 9 9 2 4 10 0.002
csem.1k.ges 35 8 9 5 3 10 0.002
csem.2k.ges 45 10 13 10 2 10 0.003
csem.50.imcmc 48 10 10 11 3 14 0.003
csem.200.imcmc 29 8 8 5 2 6 0.002
csem.1k.imcmc 34 10 11 5 2 6 0.003
csem.2k.imcmc 34 8 10 5 3 8 0.002
missForest 74 24 23 3 2 22 0.016
missknn 78 23 24 7 2 22 0.013

c = 0.2

csem.50.ges 42 15 15 4 2 6 0.006
csem.200.ges 47 13 15 5 2 12 0.006
csem.1k.ges 38 11 11 6 2 8 0.005
csem.2k.ges 39 13 12 6 2 6 0.004
csem.50.imcmc 44 13 14 5 2 10 0.005
csem.200.imcmc 51 17 15 9 2 8 0.005
csem.1k.imcmc 45 12 12 11 2 8 0.007
csem.2k.imcmc 39 15 14 1 1 8 0.008
missForest 89 33 31 8 3 14 0.040
missknn 79 33 26 10 2 8 0.035

c = 0.3

csem.50.ges 62 21 18 11 2 10 0.010
csem.200.ges 64 20 18 14 2 10 0.009
csem.1k.ges 75 22 22 11 2 18 0.011
csem.2k.ges 61 19 18 12 2 10 0.009
csem.50.imcmc 55 25 16 7 1 6 0.009
csem.200.imcmc 60 28 15 14 1 2 0.009
csem.1k.imcmc 62 26 17 14 1 4 0.010
csem.2k.imcmc 56 26 17 6 1 6 0.009
missForest 90 34 35 7 4 10 0.059
missknn 87 34 30 8 3 12 0.056

Note: The bold formatting is used to highlight the best results.

5. Structural Learning of Single Cell Data
In a study on blood cell formation, Psaila et al. [50] identified three distinct subpopula-

tions of cells that hematopoietic stem cells can generate through cellular differentiation; one
of them is called MK-MEP. This subpopulation is a rare population of cells and it mainly
generates megakaryocyte progeny. In this section, our cSEM algorithm is applied to model
networks from a dataset comprising n = 48 single human MK-MEP cells and p = 63 genes
that is available from Augugliaro et al. [25]. Data were obtained by multiplex RT-qPCR
analysis. RT-qPCR measures gene expression by amplifying DNA sequences. If a target
gene is not expressed, the expression level does not reach the set threshold within the
maximum cycles, making the cycle-threshold value undefined. This leads to right-censored
data. In this dataset, the limit of detection is fixed by the manufacturer to 40, which means
that gene expressions are right-censored at 40.

In this application, we assume that the maximum number of parents for each variable
is less than the sample size n = 48 to ensure that the sub-matrix Sπjπj of the expected
sample covariance matrix is invertible in Equations (14) and (16). We run csem.50.ges
and csem.50.iMCMC fifty times each. The smallest EBIC value achieved by csem.50.ges
is 4750.352, while that of csem.50.iMCMC is 4767.84. Therefore, we present the CPDAG
corresponding to the smallest EBIC from csem.50.ges in Figure 6. Among the 63 variables,
only the 22 connected by at least one edge are shown in the figure. The directed edge
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implies the direct dependency relationship between the child variable and parent variable.
The presence of undirected edges, such as those between CD9 and CNRIP1, and between
HIF1A and RGS18, indicates that the directionality of these relationships cannot be deter-
mined from the data. As illustrated in Figure 6, TGFB1, VWF and CD61 occupy central
positions in the inferred network. TGFB1 is a multifunctional cytokine that plays a key
role in numerous cellular physiological processes, including cell growth, differentiation,
apoptosis, immunomodulation and extracellular matrix synthesis. VWF and CD61 are
highly expressed in the MK-MEP subpopulation. VWF is involved in blood coagulation
and platelet aggregation, while CD61 plays an important role in platelet generation and
hematopoietic stem cell function. This structural analysis of single human MK-MEP cells
using cSEM serves as a reference for genetic scientists.

CD110.MPL

CD117 CD41.ITGA2B

CD61

CD71

CD9

CDK4

CDK6

CLU

CNRIP1

HIF1A

JAK2 KLF1MCL1

MEIS1

MYB

PIM1

RGS18RUNX1

TGFB1

TMOD1

VWF

Figure 6. Estimated CPDAG of the network with the smallest EBIC for single human MK-MEP cells.

6. Conclusions
In this paper, we define the censored GBN, and propose the cSEM algorithm for

learning Bayesian networks from censored data by combining the MC sampling method [43]
and the Structural EM algorithm [31]. By extensive simulation studies, we demonstrate
the computational efficiency of MC sampling in E-step of cSEM and we show that the
cSEM algorithm outperforms all competitors, including PC, GES, iMCMC and MMHC, in
recovering the network structure. To validate its real-world applicability, we apply cSEM
to the MK-MEP human cell dataset, revealing key regulatory networks involved in blood
development—offering valuable insights for genetic research.

In the future, we will explore several directions to enhance our approach. First, while
cSEM is effective, it is computationally expensive, primarily due to the iMCMC algorithm
used in the M-step, which is time-consuming. A potential improvement is to incorporate
more efficient score-and-search methods [8,51] to enhance computational efficiency. Second,
we will extend our work to structure learning in high-dimensional censored data, where the
number of variables exceeds the sample size. In this setting, l1-penalty, SCAD penalty and
MCP penalty have proven effective for Bayesian network structure learning with complete
data [39,40]. A natural extension is to apply the EM algorithm to optimize the penalized
log-likelihood for censored data using these penalties. However, rigorous convergence
analysis will be necessary to ensure the stability and reliability of this approach.
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Appendix A. Detailed Derivations in M-Step
In this appendix, we derive (14)–(17) in M-step. Denote x = 1

n ∑n
i=1 xi being the

expected mean with the jth element being xj =
1
n ∑n

i=1 xij, and S be the expected sample
covariance matrix with the (j, m) entry being

Sjm =
1
n

n

∑
i=1

xijxim −
1
n2

n

∑
i=1

xij

n

∑
i=1

xim.

Note that, θ =
(
θ1, . . . θp

)
, where θj = (µj, bπj j, dj) is independent for j = 1, . . . , p. We

fix G and differentiate Q(G, θ|Gt, θt) with respect to θj = (µj, bπj j, dj) and set to zero; then,
we obtain

2nµj − 2
n

∑
i=1

xij + 2
n

∑
i=1

b⊤πj jxiπj = 0, (A1)

2
n

∑
i=1

xiπj x
⊤
iπj

bπj j − 2
n

∑
i=1

xiπj xij − 2µj

n

∑
i=1

xiπj = 0, (A2)

n
dj
−

Ej

d2
j
= 0. (A3)

From (A1), (A2) and (A3), we obtain

bπj j =
(

1
n ∑n

i=1 xiπj x
⊤
iπj
− 1

n2 ∑n
i=1 xiπj ∑n

i=1 x⊤iπ j

)−1( 1
n ∑n

i=1 xiπj xij − 1
n2 ∑n

i=1 xij ∑n
j=1 xiπj

)
= S−1

πjπj
Sπj j,

(A4)

µj =
1
n

n

∑
i=1

xij −
1
n

n

∑
i=1

x⊤iπj
bπj j = xj − xπj

⊤S−1
πjπj

Sπj j, (A5)

dj =
Ej

n
. (A6)

Substitute µj in (A5) into (A6), we have that

dj =
1
n

n

∑
i=1

x2
ij −

1
n2

(
n

∑
i=1

xij

)2

+ b⊤πj j

(
1
n

n

∑
i=1

xiπj x
⊤
iπj
− 1

n2

n

∑
i=1

xiπj

n

∑
i=1

x⊤iπj

)
bπj j

− 2

(
1
n

n

∑
i=1

xijx⊤iπj
− 1

n2

n

∑
i=1

xij

n

∑
i=1

x⊤iπj

)
bπj j.
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Then plug bπj j in (A4) into above equation, and we obtain

dj = Sjj + b⊤πj jSπjπj bπj j − 2S⊤jπj
bπj j,

= Sjj − S⊤jπj
S−1

πjπj
Sπj j. (A7)

We plug (A7) into (12) and then obtain (14).
In M-step, after we obtain Gt+1, we can obtain πj in Gt+1. Then, we apply (A4), (A5)

and (A7) to update bt+1
πj j

, µt+1
j and dt+1

j in (15), (16) and (17).

Appendix B. Average CPU Time
Table A1 summarizes the average CPU time (in seconds) of each step, average CPU

time in total and average number of iterations of cSEM variants and average CPU time of
iMCMC, GES, MMHC, PC for p = 50, 100. From this table, we observe that incorporating
the optional parameter-learning step enhances convergence speed by reducing the number
of iterations. It leads to a reduction in total CPU time, although the parameter-learning
step introduces additional computational overhead. In addition, due to the iterative nature
of cSEM, cSEM variants are slower than all competitors. Such a loss in computational effi-
ciency is mainly due to the iterative search process for the DAG by iMCMC in M-step. From
Table A1, it can be seen that iMCMC exhibits slower computational efficiency compared to
PC, MMHC and GES, all of which are similar in CPU time. In the future, we will try to incor-
porate more efficient score-and-search methods [8,51] to improve computational efficiency.

Table A1. Average CPU time (in seconds) of each step, average CPU time in total and average number
of iterations of cSEM variants and four competitors.

c = 0.25 c = 0.5 com

EM.update E.step M.step Total Iter EM.update E.step M.step Total Iter Total

p = 50

n = 200

csem50.ges.emup 11.38 10.19 131.10 153.03 17.08 26.61 22.86 153.96 204.02 20.08
csem50.imcmc.emup 12.19 11.05 141.25 167.18 19.30 23.57 21.31 138.31 186.13 19.98
csem50.ges 0.00 13.60 178.98 192.94 22.78 0.00 32.38 213.27 246.24 29.54
csem50.imcmc 0.00 13.08 173.22 189.04 22.32 0.00 32.74 213.42 249.11 30.66
ges 0.10 0.08 0.16
pc 0.08 0.06 0.09
mmhc 0.10 0.10 0.10
iMCMC 7.76 7.57 7.53

n = 500

csem50.ges.emup 26.98 24.12 126.75 178.43 15.60 64.30 52.64 146.22 264.27 18.52
csem50.imcmc.emup 27.45 24.65 132.85 187.85 17.00 62.33 54.44 152.43 272.63 19.82
csem50.ges 0.00 29.68 157.77 188.06 19.74 0.00 86.22 245.03 332.40 30.44
csem50.imcmc 0.00 31.82 171.69 206.50 21.60 0.00 80.91 232.69 317.17 29.04
ges 0.12 0.12 0.17
pc 0.15 0.16 0.14
mmhc 0.14 0.14 0.15
iMCMC 9.09 10.49 7.87

p = 100

n = 200

csem50.ges.emup 22.89 20.56 658.80 715.40 17.34 126.91 103.92 695.10 929.27 17.78
csem50.imcmc.emup 22.72 20.40 600.17 655.79 17.34 105.08 88.42 577.90 785.19 16.10
csem50.ges 0.00 22.58 694.62 718.74 18.74 0.00 163.38 1107.90 1274.56 28.90
csem50.imcmc 0.00 25.05 765.48 803.26 21.44 0.00 145.89 984.50 1144.85 26.42
ges 0.43 0.40 0.50
pc 0.19 0.15 0.21
mmhc 0.33 0.33 0.33
iMCMC 36.60 38.54 35.43

n = 500

csem50.ges.emup 45.15 39.43 494.57 581.10 12.88 126.91 103.92 695.10 929.27 17.78
csem50.imcmc.emup 43.27 37.66 473.67 567.26 13.10 105.08 88.42 577.90 785.19 16.10
csem50.ges 0.00 54.44 700.19 756.62 18.26 0.00 163.38 1107.90 1274.56 28.90
csem50.imcmc 0.00 57.86 754.20 825.35 19.96 0.00 145.89 984.50 1144.85 26.42
ges 0.51 0.56 0.53
pc 0.39 0.38 0.38
mmhc 0.45 0.44 0.45
iMCMC 41.80 53.31 36.43
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