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Discrete memristive conservative chaotic map:
dynamics, hardware implementation and application

in secure communication
Quanli Deng, Chunhua Wang, Yichuang Sun Senior Member, IEEE, Gang Yang

Abstract—The randomness of chaotic systems are crucial for
their application in secure communication. Conservative systems
exhibit enhanced ergodicity and randomness in comparison to
dissipative chaotic systems. However, the memristor-based con-
servative chaotic maps remain unreported. This paper presents
a study of volume-preserving chaotic maps based on discrete
memristor (DM). We propose and analyze a generic conservative
map that incorporates DM. The conservative characteristics of
the proposed iterative map are confirmed through the deter-
minant of its Jacobian matrix. Furthermore, four distinct DM
models are introduced and their memristive characteristics are
verified through numerical simulations of hysteresis loops. To
investigate the dynamical properties of the discrete memristive
conservative map (DMCM), we incorporate the proposed DM
models into the generic conservative map model using numerical
methods, including phase portraits, Lyapunov exponents, and
bifurcation diagrams. Additionally, the hardware implementation
of the DMCM on an FPGA platform demonstrates the reliability
of the model. Finally, secure communication experiments based
on the DMCM show that it outperforms some classical dissipative
chaotic maps in terms of bit error rate performance.

Index Terms—conservative chaos, discrete memristor, FPGA
implementation, secure communication.

I. INTRODUCTION

CHAOTIC systems exhibit several unique properties, such
as sensitivity to initial conditions, topological transitivity,

and a dense distribution of periodic orbits. These characteris-
tics have inspired extensive research across various academic
fields and have facilitated applications in a broad range of
industrial domains [1]–[3]. Generally, chaotic systems can
be categorized into two types: dissipative and conservative.
Dissipative systems gradually lose energy over time and tend
to converge towards attractors, whereas conservative systems
conserve energy, are unable to form attractors, and maintain a
constant phase volume. In comparison to dissipative systems,
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conservative systems may offer advantages in term of random-
ness and ergodicity [4]. Strong randomness is crucial for the
reliability of applying chaos in fields such as image encryption
and secure communication [5]–[7].

Memristors have a wide range of applications in recent
years, including in-memory computing [8]–[10], bio-inspired
circuits [11]–[13], and chaotic systems [14]–[16], contributing
significantly to advancements in these fields. The conserva-
tive chaotic oscillations cooperating with memristors in the
continuous-time systems have attracted considerable interest.
Zhang et al. delved into memristor-based conservative sys-
tems, revealing symmetrical dynamics across varying con-
trol parameters and initial conditions [17]. Du et al. further
contributed by constructing a non-Hamiltonian conservative
system leveraging a charge-controlled memristor, exploring
both heterogeneous and homogeneous multistability within the
chaotic system [18]. Li et al. introduced a novel memristor-
based conservative chaotic system exhibiting extreme multi-
stability and hyperchaos properties [19]. These conservative
chaotic systems exhibit enhanced ergodicity and randomness
than the dissipative chaotic systems.

The current research primarily focuses on establishing mem-
ristive conservative systems in the continuous-time domain.
In contrast, discrete-time systems offer several advantages,
including more convenient hardware implementation, faster
computation capabilities and enhancing dynamical complexity
[20], [21]. Given these benefits, exploring memristive chaotic
maps with in discrete-time domain holds significant impor-
tance. Bao et al. introduced a circuit model incorporating a
sampling switch, a memristor, and a capacitor. They employed
the discrete Euler algorithm to construct a discrete-time itera-
tive map and explored the chaotic characteristics of the model
through various numerical simulations [22]. Fu et al. proposed
a novel approach, utilizing the difference in state variables as
input to the memristor to formulate a memristor-based Hénnon
map model. Based on this, they subsequently designed an
iterative map using analog circuits [23]. To tackle the chal-
lenges of discontinuous chaotic intervals and low Lyapunov
exponents in chaotic maps, Lai et al. presented a memristor-
based hyperchaotic map capable of generating cubic attractors
and exhibiting ultra-boosting behaviors, thereby effectively
enhancing the complexity of the chaotic system [24]. These
efforts have introduced innovative techniques for enhancing
the dynamical characteristics of chaotic maps through the
integration of memristors into discrete-time iterative maps.
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However, it is noteworthy that these memristive chaotic maps
are dissipative systems, conservative memristive maps remains
unreported.

Recognizing the potential superiority of conservative chaotic
systems and the benefits of integrating memristors into discrete
maps, we delve into the exploration of the conservative map
incorporated with the discrete-time memristors. To this end,
we design a generic discrete memristive conservative map
(DMCM). The conservative property of the DMCM is ana-
lyzed by examining the determinant of its Jacobian matrix.
To gain insights into the dynamical behaviors, we employ
four distinct discrete memristor models as case studies. A
comprehensive numerical simulation of these dynamics is
conducted, encompassing various perspectives such as phase
portraits, Lyapunov exponents (LEs), bifurcation diagrams
(BDs), and attraction basin. The primary contributions of this
article are outlined as follows.

1) A generic discrete memristive conservative system is
proposed, and its dynamic characteristics are revealed using
four distinct memristor models as case studies.

2) A hardware implementation of the DMCM is designed,
leveraging the Field-Programmable Gate Array (FPGA) plat-
form.

3) A secure communication system based on conservative
chaotic flows is designed and evaluated. Our findings demon-
strate that the proposed scheme based on DMCM outperforms
some classical dissipative chaotic maps in terms of perfor-
mance.

The remainder of this study is organized as follows. Section
II describes generic DMCM model and four distinct discrete
memristor models. Section III investigates the dynamical be-
haviors of the DMCM by four different memristor models.
Section IV focuses on the digital implementation using FPGA
technology. Section V designs the chaotic secure communi-
cation scheme and evaluates its performance. Finally, Section
VI summarizes the whole work and provides further research
directions.

II. MODEL DESCRIPTION

A. Generic DM-based conservative map model

Given the distinctive nonlinear characteristics of DMs, these
models have been utilized for the generation of chaotic maps.
In this work, we introduce a novel DM-based conservative
map, wherein the DM serves as a nonlinear component within
the discrete-time iterative system, as depicted in Fig.1. Within
this framework, z−1 denotes a one sampling step delay of
the state variable. The parameters m and k represent the
control parameters of the state variable yn self-feedback and
the memristive feedback, respectively. Furthermore, M(zn)
denotes the resistance function of the DM.

With the schematic structure illustrated in Fig.1, a generic
DM-based conservative map can be formulated as follows: xn+1 = yn

yn+1 = −xn − kM(zn)yn +myn
zn+1 = zn + f(yn)

(1)

where xn+1 is the (n+1)-th value of the state variable x, which
is set to the n-th value of state variable y. The new value of

yn+1
Z-1Z-1

kk

Z-1Z-1

M(zn)M(zn)

yn xn 

mm

xn+1

Fig. 1. Structure of the DM-based conservative chaotic map model.

state variable y at the (n+1)-th iteration, yn+1, is determined
by the current state variable xn, self-feedback with control
parameter m, and memristive feedback with control parameter
k. The state variable of the DM at the (n+1)-th iteration is
denoted as zn+1, which is determined by the n-th value of
itself, and the state variable yn.

The conservative characteristic of the system (1) implies
that the determinant of the Jacobian matrix should equal to
one, indicating that the system preserves the volume in the
state space during its evolution. The Jacobian matrix of the
DM-based map can be derived as follows:

J =

 0 1 0
−1 m− kM(zn) −kM ′(zn)yn
0 f ′(yn) 1

 (2)

where M ′(zn) and f ′(yn) represent the derivative functions
of M(zn) and f(yn), respectively.

Obviously, the determinant of the above matrix can be
obtained by

det(J) = (−1)1+2 · (−1)

∣∣∣∣ 1 0
f ′(yn) 1

∣∣∣∣ = 1 (3)

Consequently, the dynamics of the proposed map is a conser-
vative map [25].

B. Discrete memristor models

According to their mathematical expressions, memristors
can be classified into three categories including ideal mem-
ristor, generic memristor and extended memristor. The math-
ematical definition of the generic memristor model is shown
as

v = M(x)i
dx/dt = f(x, i)

(4)

where M (x) denotes the resistance value of the memristor
that depends on the state variable x, and the function f(x, i)
represents the relationship between the state variable x and
the input i.

Inspired by the work [22], a discrete generic memristor can
be obtained by performing the forward Euler method on the
model (4). The mathematical definition of the discrete generic
memristor can be obtained as

vn = M(xn)in
xn+1 = xn + f(xn, in)

(5)

where in, vn and xn are the input, output and state variable at
the n-th sampling time. In this study, four different forms of
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discrete generic memristor model are designed as shown in (6).
These models are developed using a trial-and-error approach,
with the objective of constructing conservative maps in the
subsequent design process.

DM1:
{

vn = tanh(xn)in
xn+1 = xn + in · exp(−i2n)

(6a)

DM2:


vn = tanh(xn)in
xn+1 = xn + exp(−0.2(in − 3)2)

− exp(−0.2(in + 3)2)
(6b)

DM3:

 vn = cos(πxn)in
xn+1 = xn + (tanh(in)− sign(in))

· (1− cos(in))
(6c)

DM4:
{

vn = (xn · exp(−x2
n))in

xn+1 = xn + tanh(2in)− tanh(in)
(6d)

Drawing upon the test scheme outlined in [22], we conduct
a hysteresis loop analysis in the in-vn plane by connecting a
discrete current source to the input terminal of the DM models.
Specifically, we utilize a discrete sinusoidal current signal
denoted as in = 0.5sin(ωn), where n represents the discrete
time index. By varying the frequency ω, we numerically simu-
late the resulting current-voltage relationship using MATLAB
and present the outcomes in Fig.2. The results reveal that all
four DM models exhibit pinched hysteresis loops in the in-
vn plane. Furthermore, as the frequency ω increases, the area
enclosed by the hysteresis loop lobes decreases monotonically.
These numerical results conclusively demonstrate that these
four DM models possess the characteristics of memristors.

Fig. 2. Frequency-dependent pinched hysteresis loops when applying
in=0.5sin(ωn) to (a) DM1 model, (b) DM2 model, (c) DM3 model, (d) DM4
model.

III. NUMERICAL SIMULATION RESULTS

By substituting the various forms of DM models provided
in (6) into the generic DM-based conservative map model (1),
we obtain four distinct DMCMs as (7).

DMCM1:


xn+1 = yn
yn+1 = −xn − ktanh(zn)yn +myn
zn+1 = zn + yn · exp(−y2n)

(7a)

DMCM2:


xn+1 = yn
yn+1 = −xn − ktanh(zn)yn +myn
zn+1 = zn + exp(−0.2(yn − 3)2)

− exp(−0.2(yn + 3)2)

(7b)

DMCM3:


xn+1 = yn
yn+1 = −xn − kcos(πzn)yn +myn
zn+1 = zn + (tanh(yn)− sign(yn))

· (1− cos(yn))

(7c)

DMCM4:


xn+1 = yn
yn+1 = −xn − k(zn · exp(−z2n))yn +myn
zn+1 = zn + tanh(2yn)− tanh(yn)

(7d)

To investigate the dynamical properties of these DMCMs,
we analyze them from the aspects, including the phase por-
traits, Lyapunov exponents, bifurcation diagrams, and attrac-
tion basins.

A. Phase plots of the DMCMs

With the memristive feedback parameter k set to 1, the self-
feedback control parameter m set to 0.4, and initial values
of 1, 0, 0, we perform numerical iterations 105 times on
the MATLAB for the four distinct DMCMs. The resulting
chaotic flows are projected onto the x− y plane, as depicted
in Fig.3. Unlike dissipative chaotic systems, which typically
exhibit strange attractors that compress motion into a lower-
dimensional set, the trajectories of conservative systems gen-
erally remain within the full-dimensional phase space and do
not converge to a lower-dimensional manifold. Through obser-
vations of the phase portraits, it can be seen that the DMCMs
possess the properties of conservative chaotic systems.

Fig. 3. Chaotic flows projected on x − y plane with k=1, m=0.4 for (a)
DMCM1, (b) DMCM2, (c) DMCM3, (d) DMCM4.
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In dissipative continuous systems, a chaotic attractor is
typically indicated by a largest Lyapunov exponent (LLE)
greater than zero and a sum of all LEs less than zero.
In dissipative discrete chaotic systems, chaos is primarily
characterized by a positive LLE, while the sum of LEs can
be either positive or negative. In contrast, for conservative
systems, the sum of all LEs must equal zero. The numerical
calculated results for the four distinct DMCMs are summarized
in Table I. These results show that the DMCMs have LEs with
a sum of zero and exhibit integer dimensions. This confirms
that the DMCMs possess the characteristics of conservative
chaotic systems. The Kaplan-Yorke dimension (DKY) provides
additional information about the dimensionality of the chaotic
flow in these systems.

TABLE I
LES AND KAPLAN-YORKE DIMENSIONS OF DMCMS

models LE1 LE2 LE3
∑

LEs DKY

DMCM1 0.0087 -0.0002 -0.0085 0 3
DMCM2 0.0052 0.0001 -0.0053 0 3
DMCM3 0.0388 -0.0001 -0.0387 0 3
DMCM4 0.0052 -0.0001 -0.0051 0 3

B. Parameter-dependent dynamical behaviors

With the self-feedback parameter m fixed at 0.4 and initial
conditions set to 1, 0, 0, we explore the influence of the
memristive feedback strength k on the dynamics of the four
distinct DMCMs through the Lyapunov exponent spectra.
Figs.4 (a) to (d) show the LEs with respect to the parameter
k in the range [-1,1] for each DMCM. As can be seen in
Figs.4(a1) to (d1), the positive LE and the negative LE are
symmetrical about the y-axis at zero. The sums of LEs for
each DMCM have been plotted in Figs.4(a2) to (d2), and the
resulting lines coincide with the y-axis at zero conforming
that the systems are conservative. When the absolute value of
k is small, all the LEs equal to zero, indicating that DMCMs
exhibit quasi-periodic behavior. As the parameter k increases
beyond a certain threshold, a positive LE emerges, indicating
that the DMCM transitions into the chaotic state.
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Fig. 4. Lyapunov exponents spectra with k ∈[-1,1] for (a) DMCM1 (b)
DMCM2 (c) DMCM3 (d) DMCM4.

The bifurcation behavior of the state variable x for the four
DMCMs is illustrated in Fig.5. The symmetry properties of the
state variable x can be disclosed from the bifurcation diagrams.
In particular, the conservative chaotic orbit arises from a
quasi-periodic bifurcation, which is a specific bifurcation route
compared to the more common period-doubling bifurcation
[26].

Fig. 5. Bifurcation diagram of x with k ∈[-1,1] for (a) DMCM1 (b) DMCM2
(c) DMCM3 (d) DMCM4.

The influence of the self-feedback strength m on the dynam-
ics of the four distinct DMCMs is explored through the LEs by
setting k=0.1 and the initial conditions to 1, 0, 0. As the self-
feedback strength m varies in the range [-1,1], the LEs of the
systems exhibit symmetry about y=0, as shown in Fig.6(a1)
to (d1). The sum of all LEs for each DMCM equals to zero,
satisfying the characteristic of conservative systems. The LE
spectra show unique patterns that reflect the specific dynamics
of each DMCM with the variation of m. For example, in
the case of DMCM1, there are three positive LLE parameter
intervals [-0.78,-0.23], [0.35,0.42] and [0.53,0.95]. Comparing
the variations of LEs with the bifurcation behavior of the
state x in Fig.7, the bifurcation behavior influenced by m is
corresponding to the variations of LEs. This correspondence
reveals the dynamical variations that occur as the self-feedback
strength varies.

C. Initial condition-dependent dynamical behaviors

In the realm of nonlinear systems, certain systems can
exhibit multiple distinct dynamical behavior in response to
variations in initial conditions. This phenomenon, known as
coexistence of dynamical behaviors, has been extensively
studied in dissipative systems, particularly in the context of co-
existence of multiple attractors. Although conservative chaotic
systems cannot form attractors, coexistence phenomena still
exist in conservative systems. The coexisting flows can also
been found by setting different initial values. The system can
display multiple stable dynamical behaviors, which persist
over time. Fix the parameters of DMCMs as k=0.1 and m=0.4.
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Fig. 6. Lyapunov exponents spectra with m ∈[-1,1] for (a) DMCM1 (b)
DMCM2 (c) DMCM3 (d) DMCM4.

Fig. 7. Bifurcation diagram of x with m ∈[-1,1] for (a) DMCM1 (b) DMCM2
(c) DMCM3 (d) DMCM4.

Varying the initial condition of state variable x in range [-4,4],
Fig.8 depicts the LE spectra with respect to the variation of
initial condition. As can be observed the LLE can take value
of zero or positive numbers, indicating that changes in the
initial condition lead to the dynamical behavior variations of
DMCMs.

As an illustration, Fig.9 depicts the phase portraits of the co-
existing flows of DMCM1, corresponding to initial conditions
[0.01,0,0] and [1,0,0]. In Fig.9(a), the red region indicates the
periodic behavior, while in Fig.9(b), the blue region represents
the chaotic behavior. The attraction basin is known as a set of
all initial conditions in the phase space that lead to a specific
flow as time progresses, which essentially defines the region
in the state space from which the trajectory will be converged.
Set the initial value of the state variable z to 0. The attraction
basin is obtained by changing the values of x0 and y0 in range
[-4,4], as shown in Fig.10. The coexisted bistable flows are
painted by distinct colors, where the blue represents the initial
regions converge to the quasi-periodic flow, and the yellow
denotes a chaotic flow can be obtained by selecting initial
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Fig. 8. Lyapunov exponents spectra with x0 ∈[-4,4] for (a) DMCM1 (b)
DMCM2 (c) DMCM3 (d) DMCM4.

Fig. 9. Coexisted phase portraits in DMCM1 with initial conditions for (a)
[0.01,0,0] (b) [1,0,0].

values in these areas. The attraction basins reveal the complex
dynamics behaviors of the DMCMs depending on the initial
conditions.
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Fig. 10. Attraction basin in x0-y0 plane for (a) DMCM1 (b) DMCM2 (c)
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IV. FPGA PLATFORM-BASED IMPLEMENTATION

The implementation of chaotic maps in FPGA-based digital
circuits has garnered significant interest due to the advantages,
such as high computational speed, robust stability, and the
ease altering system parameters and initial conditions [27]–
[29]. This study presents the FPGA-based implementation
of the proposed DMCMs. The flow block diagram for the
FPGA-based implementation of the DMCM models is shown
in Fig.11. In this implementation, the state variables at the
n-th iteration are denoted as xn, yn and zn, respectively.
The DMCM block is responsible for performing the iterative
calculations of the models, and the outcomes are transmitted
to the Data Transfer block for preparation of the output sig-
nal for the Digital-to-Analog Converter (DAC). The iterative
calculations and output preparation operations are executed on
the Xilinx xc7z020clg400-1 platform. The digital signals are
then converted into analog singles by the AD9767 DAC and
subsequently captured using an oscilloscope.
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Fig. 11. Block diagram for the FPGA-based implementation of DMCMs.

In the FPGA-based design process, the Verilog Hardware
Digital Language is utilized to craft the program code. A 32-bit
fixed-point decimal format, comprised of 1 sign bit, 6 integer
bits, and 25 decimal bits, is employed for precision. The
hyperbolic tangent function is achieved through an approxima-
tion technique as delineated in [30]. For the implementation
of cosine function in the FPGA, the CORDIC algorithm is
implemented using the Verilog HDL. The implementation of
the exponential function facilitates the transformation of the
exponential function with base e into one with base 2 for
computation purposes as proposed in [31].

The hardware experimental results, with the initial condi-
tions for the state variables xn, yn and zn set to 1, 0, 0,
respectively, and parameters as k=0.1, m=0.4, are depicted in
Fig.12. Observations from the hardware implemented phase
portraits in xn − yn plane, as captured by the oscilloscope,
aligns with the numerical simulations presented in Fig.3. These
experimental results demonstrate the feasibility and simplicity
of digital FPGA-based implementation, and also manifest the
correctness of the mathematical models of DMCMs.

V. APPLICATION IN SECURE COMMUNICATION

Chaotic systems are prime candidates for secure communi-
cation due to their inherent properties, including unpredictabil-
ity and ergodicity [32]–[34]. Conservative chaotic systems
often exhibit enhanced ergodicity and randomness compared to

(a) (b)

(c) (d)

Fig. 12. Captured results on oscilloscope of FPGA-based implementation for
(a) DMCM1, (b) DMCM2, (c) DMCM3, (d) DMCM4.

dissipative chaos. Consequently, conservative chaotic maps are
well-suited for secure communication applications. We inte-
grate DMCMs into the reference-shifted differential chaos shift
keying (RS-DCSK) [35] communication scheme to showcase
the utility of DMCMs in secure communications.
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The RS-DCSK represents a non-coherent system that elimi-
nates the need for synchronized chaotic carriers [36], making it
an attractive and practical choice for real-world applications. In
the transmitter of RS-DCSK system, as illustrated in Fig.13(a),
each frame consists of two equal time slots: the first slot is
dedicated to transmitting a chaotic reference signal, while the
second slot carries the information-bearing signal. Both an
exact copy and a shifted version of the signal transmitted in
the first slot serve as message bearers, allowing each wavelet
in the second time slot to convey two bits of information. The
k-th frame of the transmitted signal si(k) can be derived using
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the following equation

si(k) =


xi 2kM < i ≤ (2k + 1)M
(b2kxi−M+b2k+1xi−M/2)√

2
(2k + 1)M < i ≤ (2k + 1.5)M

(b2kxi−M+b2k+1xi−3M/2)√
2

(2k + 1.5)M < i ≤ 2(k + 1)M

(8)
where b2k and b2k+1 represent the information bits contained
within the k-th frame. The chaotic sequence of length M ,
denoted as x2kM+1 . . . x(2k+1)M , serves as the reference for
b2k. The reference for b2k+1 is obtained by circularly right
shifting the reference of b2k by M /2 times, a process that is
executed within the delay block depicted in Fig.13(a).

The schematic structure for recovering the information
bits is illustrated in Fig.13(b). This structure employs two
independent branches to identify every bit simultaneously but
separately. To extract information bits, the received signal ri is
multiplied by its delayed signal ri−M and r∗i−M respectively
in two branches. The signal r∗i−M is obtained by circularly left
shifting ri−M for M /2. Assuming perfect bit synchronization
has been established and the received signal ri is described
by ri=si+ξi where ξi represents the channel noise, the outputs
Z2k and Z2k+1 for b2k and b2k+1 can be calculated using the
following equations

Z2k =

2(k+1)M∑
i=(2k+1)M

ri−Mri

=
b2k√
2

2(k+1)M∑
i=(2k+1)M

x2
i−M + γ

(9)

Z2k+1 =

2(k+1)M∑
i=(2k+1)M

r∗i−Mri

=
b2k+1√

2

2(k+1)M∑
i=(2k+1)M

x2
i−M + η

(10)

where γ and η are the noise components. The information bits
of b2k and b2k+1 are recovered by the sign of Z2k and Z2k+1,
which can be calculated by

b̂n =

{
1 Zn > 0
−1 Zn ≤ 0.

(11)

Given that most physical transmission channels are subject
to Gaussian noise, we simulate the RS-DCSK system in
an additive white Gaussian noise (AWGN) environment and
calculate the bit error rate (BER) under various signal-noise-
rate (SNR) and spread factors. In these experiments, the
state x after modulo 1 calculation of the discrete memristive
conservative chaotic maps is utilized as the chaos generator.
The modulo operation regulates the state variable in region
[0,1], which facilitates the comparison with subsequent dissi-
pative systems whose output range are also within [0,1]. The
parameters (k,m) for each DMCMs are set to (0.1,0.4). These
parameter settings guarantee that all the discrete maps exhibit
chaotic behavior.

Two sets of experiments are designed to evaluate the BERs
using randomly generated sequences of length 54 bits. The
first set of experiments examines the BERs against varying
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Fig. 14. BERs of the RS-DCSK using different chaotic maps when (a) spread
factor M=40 and noise strength SNR varying in [0,25] (b) SNR=10 and M
varying in [10,150]

levels of noise. Specifically, the RS-DCSK system is simulated
ten times using randomly generated initial states for each
simulation, with the spread factor M fixed at 40 and the
SNR varied in the range of [0,25] dB. The average BERs
from these ten simulations are then calculated. The simulated
results are presented in Fig.14(a). It can be seen that all
the chaotic maps achieve similar BERs under the high noise
conditions. However, as the SNR increases, the schemes based
on memristive conservative maps achieve significantly lower
BERs compared to the three classical dissipative chaotic
systems. The second set of experiments investigate the BERs
against different lengths of the spread factor M . Specifically,
the SNR of noisy signal is fixed to 10 dB, and the spread
factor M is varied within the range of [10,150]. The BERs
are calculated ten times for each value of M , with randomly
generated initial values for the DMCMs. The average BERs
from these ten simulations are then computed. The experi-
mental results are plotted in Fig.14(b). For the purpose of
comparison, we selected the one-dimensional Logistic map,
the two-dimensional Hennon map and the three-dimensional
Stefanski map. These classical chaotic maps are all dissipative
systems. It can be observed that the RS-DCSK system using
the presented memristive conservative maps achieves much
lower BERs compared to the system using the three classical
dissipative chaotic maps. Based on the results concerning
performance against noise, it can be concluded that the discrete
memristive conservative chaotic maps are more suitable for the
secure communication application than some one-dimensional
dissipative maps.

VI. CONCLUSION AND OUTLOOK

Conservative chaotic systems, as an important branch of
nonlinear systems, have not yet received sufficient atten-
tion, especially regarding the study of discrete-time conser-
vative maps. While previous works [17]–[19] have explored
continuous-time memristive conservative systems requiring
computationally expensive integral operations. Investigating
of discrete-time memristive conservative system cannot only
revealing dynamical behaviors in discrete-time domain but also
lay a foundation for conservative chaos-based applications.
This work makes three key advances: (1) We present a novel
discrete memristive conservative map for the first time that
eliminates the need for numerical integration while preserving
essential conservative properties; (2) Compared to the analog
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implementations in [17]–[19], our FPGA-based digital realiza-
tion achieves faster iteration speed and provide a foundation
for subsequent hardware-oriented research. (3) The developed
secure communication scheme based on conservative chaotic
flows achieves lower bit error rate compared to some classical
dissipative chaotic maps. These innovations bridge the gap
between theoretical conservative dynamics and practical digital
applications.

Future research will focus on three promising directions:
(1) extending this framework to explore other discrete-time
memory elements such as memcapacitor-based conservative
systems, which reveal new dynamical phenomena; (2) design-
ing more complex discrete-time memristive conservative sys-
tems with multiple positive LEs and developing correspond-
ing chaos control strategies; and (3) investigating practical
industrial applications of conservative chaotic flows, particu-
larly in secure communication and signal processing domains.
These directions could significantly expand both theoretical
understanding and practical implementation of conservative
nonlinear systems.
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