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Memristor-based brain emotional learning neural
network with attention mechanism and its

application
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Abstract—The brain emotional learning network offers several
advantages when compared to traditional neural networks. It
features a simpler structure, low computational complexity, and
fast training speed. These characteristics make it ideal for
applications like pattern recognition, data classification, and
intelligent control. However, current brain emotional learning
networks, including their modified networks, are not capable
of recognizing or classifying data in complex environments.
To address this issue, this paper proposes a brain emotional
learning network with an attention mechanism that strengthens
the processing of key information while suppressing interfering
information, thereby enabling the network to recognize data
within complex environments. Furthermore, software implemen-
tation of neural networks often experiences slow computing
speeds due to the separation of storage and computation in
traditional von Neumann computers. To combat this issue,
the paper presents a hardware circuit implementation of the
attention mechanism-based brain emotional learning network
using memristors. Finally, the designed in-memory computing
neural network has been successfully applied to the recognition
of traffic signs within complex environments, and has achieved
accurate and rapid recognition.

Index Terms—Article submission, IEEE, IEEEtran, journal,
LATEX, paper, template, typesetting.

I. INTRODUCTION

The design of advanced electronic systems, particularly
those incorporating emerging devices such as memristors,
is intrinsically dependent on computer-aided design meth-
ods [1]–[3]. The integration of computer-aided design tech-
niques with hardware design has become essential for op-
timizing complex circuit and accelerating the development
of memristive circuits. In recent years, with advancement of
computer-aided design methods the memristor-based neural
network circuit design has been anticipated to surmount the
von Neumann bottleneck, garnering widespread attention [4]–
[6]. The novel memristor-based architectures offer advantages
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such as in-memory computing [7]–[9], high integration den-
sity [10]–[12], inherent nonlinear characteristics [13]–[15].
Consequently, memristive neural networks exhibit significant
potentials across diverse learning frameworks, including the
transformer network [16], Bayesian inference network [17],
bio-inspired neural network [18].

In the field of object recognition applications, the memris-
tive neural network have emerged as a research focus. For
instance, Zhang et al. constructed a memristive multilayer
perceptron and employed the error back propagation (BP)
algorithm for network training, achieving successful character
recognition [19]. Yao et al. fabricated memristor crossbar
arrays to implement convolutional neural networks (CNNs),
enhancing parallel-computing efficiency and achieving rapid
and highly accurate recognition of MNIST images [20]. Qin
et al. developed a memristive binary neural network (BNN)
and utilized the BP algorithm for training, achieving high
recognition accuracy on the MNIST images [21]. Wen et al.
designed a memristor-based sparse compact convolutional neu-
ral network capable of maintaining accuracy and reducing the
hardware circuit scale during recognition tasks [22]. Zhang et
al. constructed a memristor-based gated recurrent unit with full
circuit functionality, applying it to the recognition and predic-
tion of handwritten characters [23]. While diverse architectures
of neural networks based on memristors have been proposed
and applied to recognition tasks, it is noteworthy that most of
these networks are trained using gradient descent algorithm
for weight optimization. This training method carries the risk
of gradient vanishing or explosion, and circuits designed based
on gradient descent algorithms exhibit the disadvantage of
complex structures.

Emotional learning constitutes a vital component of cogni-
tive systems, and in recent years, the significance of emotional
intelligence has been underscored in the era of AI. Research
in emotional neuroscience has elucidated the limbic system
theory of emotion as an anatomical model of emotional brain
[24]. The limbic system is composed of the thalamus, the
amygdala, the orbitofrontal cortex (OFC), the hippocampus,
the hypothalamus and other associated structures. The brain
emotional learning (BEL) model, proposed in [25], emulates
the emotional learning mechanism between the OFC and the
amygdala, which aims to address the issue of long training
times associated with traditional neural networks, making them
widely employed in classification [26], prediction [27], and
intelligent control tasks [28]. Th implementation of emotional
learning using memristor-based circuits has also attracted
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attention to overcome the limitations of traditional neural
networks. Xu et al. introduced a memristive brain emotional
learning circuit that incorporates contextual information. They
applied this circuit to multi-task classification, achieving high
accuracy and fast response speed [29]. Zhou et al. presented
a unique memristive circuit that simulates the dual-loop emo-
tional learning process in the human brain. They designed a
radiation early warning monitoring system that utilizes this
circuit to process radiation signals and generate emotional
responses [30]. Zhang et al. proposed an operant conditioning
model and memristive circuit implementation based on the
neural and psychological mechanisms that influence human
behavioral decision-making during interactions with dynamic
environments [31]. Zhang et al. simulated the limbic system by
a Pleasure-Arousal-Dominance emotion system and designed
its memristive circuit applied in the multimodal input based
facial emotion generation [32].

Despite the ongoing proposal and application of various
emotional learning algorithms and their memristive circuit im-
plementations, there remain unexplored areas. Notably, the at-
tention mechanism, a crucial element in cognitive systems, has
not received thorough investigation, particularly in the realm of
emotional learning systems. Biologically, the attention mech-
anism operates at the onset of visual information input, ex-
erting a significant influence on emotional learning [33], [34].
Computationally, introducing attention mechanism into neural
networks can effectively enhance the computational efficiency
[35]–[37]. Therefore, investigating attention mechanism-based
emotional learning networks holds substantial value. In this
paper, we propose a novel attention mechanism-based brain
emotional learning (AttBEL) model, combining the attention
mechanism’s capacity to select relevant information and sup-
press interference with the fast convergence characteristics
of brain emotional learning. Subsequently, we implement the
hardware circuit of the proposed AttBEL model using memris-
tors and discrete electronic components, enabling in-memory
computing. This hardware implementation significantly en-
hances the network’s running speed. Finally, we evaluate the
designed memristive AttBEL circuit in the task of traffic sign
recognition, achieving superior recognition speed compared to
software-based approaches.

The main contributions of this work are summarized as
follows.

1) A novel visual selective attention-based brain emotional
learning model is proposed. Unlike previous research on
brain emotional learning models [25]–[27], this work con-
siders the visual attention mechanism.

2) An in-memory computing circuit implementation of the
attention mechanism-based brain emotional learning model
based on memristor is proposed. In contrast to previous
memristive BEL circuits [29]–[31], our designed circuit
incorporates the attention mechanism, endowing the circuit
with enhanced functionality.

3) The memristor-based in-memory computing circuit is ap-
plied in the task of traffic sign recognition. The experi-
mental results demonstrate that our memristive attention
mechanism-based brain emotional learning circuit achieves

faster recognition speed compared to the existing literature
[38]–[40].

The rest of this article consists of the following. In Section
II, the saliency-based attention mechanism is reviewed and
the attention mechanism-based brain emotional learning model
is proposed. Section III introduces the memristive circuit
implementation of the visual selective attention model and the
brain emotional learning model. Section IV performs the traffic
sign recognition task on the memristive attention mechanism-
based brain emotional learning circuit. Section V presents the
conclusion and outlook of this work.

II. ATTENTION MECHANISM-BASED BRAIN EMOTIONAL
LEARNING MODEL

A. Saliency-based visual attention mechanism

The saliency-based visual attention model, derived from
Koch and Ullman’s selective attention theory [41], is based
on two fundamental assumptions. Firstly, human visual pro-
cessing occurs hierarchically, where lower-level visual features
(such as edges and textures) are processed before higher-
level features (such as object identification). Secondly, saliency
maps are generated from visual features of a scene to guide
attention. To construct saliency maps, a sequence of filters is
applied to emphasize various visual features. These filters are
designed to highlight specific characteristics, such as regions
of high contrast or high orientation selectivity. By combining
these filters, a set of saliency maps is obtained, with each map
representing the likelihood of a particular location in the image
attracting attention. The winner-take-all (WTA) mechanism is
then employed to direct attention to the most salient location
in the scene for further processing. This chosen location
determines subsequent processing, as attention sequentially
moves to other salient areas in a serialized manner.
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Fig. 1. Architecture of Itti’s saliency-based visual attention model.

A diagram describing the main processing stages of the
model is shown in Fig.1. A set of topographic feature maps
is extracted from the visual input. All feature maps are
normalized and combined into a master saliency map, which
topographically codes for local saliency over the entire visual
scene. Different spatial locations then compete for largest
saliency, based on how much they stand out from their
surroundings. A WTA circuit selects this most salient location
as the focus of attention. The WTA circuit is endowed with
internal dynamics, which generate the shifts in attention based
on a mechanism named inhibition of return.
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B. Proposed attention mechanism-based brain emotional
learning model

Although the neural network model based on brain emo-
tional learning has the advantages of simple structure, low
computational complexity and fast training speed, however,
the existing BEL models has not taken the attention mech-
anism into consideration. To this end, we propose an atten-
tion mechanism-based brain emotional learning model, whose
structure is shown in Fig.2. The mechanism of the proposed
AttBEL model is as follows.
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Fig. 2. Structure of the proposed attention mechanism-based brain emotional
learning model.

(1) According to the theory of visual information processing
in [33], the data S=[S1, S2, . . . , Sn] processed by visual fea-
tures is transmitted to the selective attention module through
the thalamus and sensory cortex modules. The selective at-
tention module is composed of star-connected leaky-integrate-
and-fire neurons (LIFN), which realizes the aggregation and
transfer of attention through competition and cooperation
mechanisms.

Assuming the input to the selective attention model is
S=[S1, S2, . . . , Sn], the i-th neuron output of the selective
attention network can be calculated as

Atti =

{
Si if Si ∈ k
0 otherwise

(1)

where Att=[Att1, Att2, . . . , Attn], and k is a set that contains
the largest value and its surrounding neighbors of a.

(2) The selected data Att is used as the input of the
amygdala module and the orbitofrontal module. The weight of
the amygdala is v, the output of the amygdala is EA, which
can be obtained by

EA =

n∑
i=1

Atti · vi (2)

For the OFC block, the output EO is the sum of the
multiplication of the input Att and the weights w, and it can
be expressed as

EO =

n∑
i=1

Atti · wi (3)

The output of the AttBEL is E = EA − EO.
(3) Use the errors between the reward signal Rew and the

output of amygdala module EA and orbitofrontal cortex mod-
ule EO to regulate the weights of these modules, respectively.
The new weight values of amygdala model and OFC model
are calculated by the following{

vi(n+ 1) = vi(n) + α(Atti · (Rew −
∑

j EAj))

wi(n+ 1) = wi(n) + β(Atti · (
∑

j EOj −Rew))
(4)

where vi, wi are the weight values of amygdala model and
OFC model, respectively, and α, β, and Rew are learning
rates for amygdala model and OFC model, and reword signal,
respectively.

The design of electronic systems, especially the circuit de-
sign of advanced electronic components such as memristors, is
essential through computational design assistance. The process
of combining the attention mechanism with emotional learning
can be described in Algorithm 1. The algorithm describes the
first stage in computer-aided circuit design which can be used
to verify the correctness of the design system.

Algorithm 1 Attention mechanism-based brain emotional
learning model
Input: data S=[S1, S2, . . . Sn] and Reward signal Rew;
Output: network output E;

1: initialize weights v and w
2: while not converge do
3: attention output Atti ← ai
4: amygdala model output EAi ← Atti · vi
5: OFC model output EOi ← Atti · wi

6: network output E = EA − EO

7: update the weights of vi and wi

vi ← vi + α(Atti · (Rew −
∑

j EAj))
wi ← wi + β(Atti · (

∑
j EOj −Rew))

8: error e← Rew − E
9: if e is small enough then break

10: end while

III. MEMRISTIVE CIRCUIT IMPLEMENTATION OF ATTBEL
MODEL

A. Memristor model

Since memristors are nanoscale devices, the use of
computer-aided circuit design is of significant importance for
memristor application research [42]–[44]. The choice of device
model has a crucial impact on the functionality of the designed
circuit. Therefore, it is necessary to select a memristor model
that meets the circuit requirements when conducting computer-
aided circuit design. Generally, memristors can be categorized
into threshold and non-threshold types. The resistance state
of a non-threshold memristor changes immediately upon the
application of an external voltage, while a threshold memristor
requires the applied voltage to exceed a certain threshold
before its resistance state changes. In the subsequent circuit
design of this work, the threshold characteristics of mem-
ristors need to be utilized. Therefore, the voltage controlled
memristor model proposed in [45] is used in all simulations.
The relationship between voltage, current and memristance of
memristor is described as:{

v(t) = R(t)i(t)

R(t) = Ron
w(t)
D +Roff (1− w(t)

D )
(5)

where w(t) is the width of doped region, D is the overall width
of the memristor device. Ron and Roff indicate the lowest and
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highest resistance value of the memristor, respectively.

dw(t)

dt
=


µv

Ron

D
ioff

ion
f(w(t)), v(t) ≤ VT− < 0

0, VT− < v(t) < VT+

µv
Ron

D
ioff

i(t)−i0
f(w(t)), v(t) ≥ VT+ > 0

(6)

where µv represents the average ion mobility, i0, ion and
ioff are constants, VT+ and VT− are positive and negative
threshold voltages of memristor, respectively. f(w(t)) is the
window function, which is used to increase the authenticity of
the model and describe the non-linearity of the ion migration
process. The expression of the window function is described
as:

f(w(t)) = 1− (
2w(t)

D
− 1)2p (7)

To verify the resistance change characteristics of the mem-
ristor model, the device parameters are set as: D=3nm, µv =
1.6e−17m2s−1Ω−1, Ron = 1kΩ, Roff = 200kΩ, ion = 1A,
ioff = 10µA, i0 = 1mA, Rinit = 190kΩ and VT± = ±1.2V.
The gradual memristance tuning property under a positive or a
negative voltage pulse is examined through the PSPICE circuit
simulation software. Fig.3 depicts the change process of the
memristance under the ±1.5V pulse voltage. The memristance
decreases with the positive voltage from Rinit to Ron within
2ms, and the memristance increases with the negative voltage
from Ron to Roff within 2ms.
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Fig. 3. Simulation results of the memristance change corresponding to applied
voltage. (a) voltage pulses applied to the memristor, (b) memristance tuning
process corresponding to the applied voltage.

B. Memristor-based selective attention circuit

In order to realize the aggregation and transfer of attention,
we use a memristor-based competitive neural network. Each
neuron of the network is implemented by a LIFN circuit. The
traditional circuit schematic of the LIFN is shown in Fig.4,
where Vm is the membrane potential, Cm, and Rm are the
membrane capacitance and membrane resistance, respectively.
The membrane potential Vm will be integrated, and normally
it will be increased until meeting the firing threshold Vth.
When the firing threshold Vth is met, a pulse Vp will be

generated and the membrane potential will be reset to Vreset.
The mathematical model of the LIFN can be written as{

Cm
dVm

dt = I(t)− Vm(t)−Vreset

R if Vm(t) < Vth

Vm = Vreset if Vm ≥ Vth
(8)

For a constant input, the minimum input to reach the threshold

Pulse 

generator

Pulse 

generatorComp

Vth

I

Vm

Vreset

Cm

R

OP-Amp

Fig. 4. Circuit schematic of LIFN

is given by Ith = Vth/R. If the input current is lower than Ith,
the neuron will not generate any pulses. If the input current
exceeds Ith, the neuron will fire at a constant frequency. It
is worth noting that in a competitive network composed of
LIFNs, the neuron that wins competition first will have the op-
portunity for permanent firing, while neurons that do not win
initially will never fire a spike. This principle, known as the
winner-take-all principle, is beneficial for selecting the most
significant input. However, in the context of visual attention,
the focus does not always remain fixed on a single part of an
object but changes over time. Therefore, we propose a self-
inhibition LIFN (SILIFN) circuit to provide an opportunity
for other neurons to win the competition. The designed circuit
diagram is shown in Fig.5. The design principle of this circuit
is to replace the resistor with a memristor. When the membrane
potential exceeds the threshold of memristor, it resistance
changes, which affects the activity of the neuron firing. In
order to facilitate the subsequent design of competitive and
cooperative network, control switch circuits are added to the
circuit, as shown in Figs.5(b) and (c). These switches release
the charge on the capacitor after being turned on, so that the
membrane potential of the neuron is reset to the desired value,
thus simulating the competition and cooperation mechanism in
the network.

In the circuit diagram, the input voltage is first inverted
using an analog inverting circuit consisting of Op-AMP1 and
then fed into the inverting integrator composed of Op-AMP2.
The membrane resistance R in Fig.4, is replaced by the mem-
ristor M in our designed circuit. The firing reset voltage V1 is
set within a range not exceeding the lower threshold voltage
VT− of the memristor, allowing the neuron to decrease the
membrane resistance after each firing process. As mentioned
earlier, the minimum input current required to reach the firing
threshold Vref1 can be calculated as Ith = Vref1/RM . Under
the fixed input voltage, the increase of Ith results in neuron
firing more difficult and achieving the self-inhibition mech-
anism. The firing spike Vspi is generated by comparing the
membrane potential Vm and the firing threshold Vref1 using
the the hysteresis comparator COMP1. When Vm ≥ Vref1,
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Fig. 5. Schematic diagram of the SILIF neuron model where (a) is the circuit
diagram of neuron model, (b) is the competition inhibition switch block, (c)
is the neighbor cooperation switch block.

Vspi is set to a high-level voltage, and when Vm < Vref1,
Vspi remains at a low-level voltage. It should be noted that
in general LIFN circuits, the firing pulse is realized using a
monostable trigger. However, for the sake of convenience, in
subsequent applications, we employ the method of hysteresis
comparison between the inverted membrane potential and a
fixed voltage Vref2 to obtain a wider voltage pulse, as shown
by Op-AMP3 and COMP2 in the circuit diagram.

The switch blocks CIS and NCS in the Fig.5 represent
the competition inhibition switch and neighbor cooperation
switch, respectively. The voltage source V2 and V3 correspond
to the reset voltages during the competition and cooperation
processes. The competitive inhibition in our network follows
the winner-first principle, which is similar to the winner-
take-all principle. In a network comprising N neurons, when
the neuron Ni fires, the membrane potential of the neuron
Ni is reset to V1 and the membrane potential of all other
neurons is set to V2. This is achieved using the CIS block.
The CIS block consists of N-1 control switches composed
of transmission gates and the NOT gates. The control ports
Vinh1 . . . VinhN−1

of the switches are connected to the Vspi

ports of the N-1 neurons, enabling pulse coupling control.
Through this mechanism, we can select the neuron with the
maximum input value. As time progresses, neurons with large
inputs become less likely to fire due to the self-inhibition
mechanism, and the neuron with the second-largest input gets
the opportunity to fire. Over time, all neurons with large inputs
will have the opportunity to fire.

Although the competition mechanism mentioned above can
select neurons with large inputs, using only the winner output
as the input of the subsequent circuit would result in a limited
input range. To address this, we introduce the cooperation
mechanism in the network. This mechanism in our designed
circuit can be explained as follows: if any of the M neighboring

neurons adjacent to the neuron Ni fires, then the neuron Ni

will generate firing pulses, even if its membrane potential does
not reach the firing threshold Vref1. This is achieved using the
NCS block. The control ports Vnc1 . . . Vncm of the switches
are connected to the Vspi port of the neighboring M neurons.
When any of the M neighbors fires, the membrane potential
will be set to V3.

Here we should summarize the functions of the voltage
sources in Fig.5 to provide a clear understanding of their roles.
Vref1 represents the firing threshold of the neuron. When the
membrane potential Vm exceeds this value, a firing spike is
generated. Vref2 denotes the threshold for pulse generation.
When the inverted membrane potential exceeds this value, a
firing pulse is generated. V1 is the reset of the neuron after
firing. To realize the self-inhibition mechanism of the neuron,
its value is set within a range not exceeding VT− of the
memristor. V2 is the reset voltage of competitive inhibition.
When any neuron in the network fires, the other neurons are
reset to this value. To ensure that the inhibited neurons do not
fire pulses, V2 should be set to below Vref2. V3 represents
the reset voltage for neighbor cooperation. To generate pulses
without altering the memristance of the neuron, V3 is set within
the region Vref2 ≤ V3 < |VT−|.

Through the further explanation of the SILIFN, we can
know the role of it in the competitive neural network. Then,
the competitive network is designed as shown in Fig.6, where
each neuron is surrounded by eight adjacent neurons except
for the neuron located at the edges. Taking the neuron N2,2 as
an example, its output pulse is assisted by its surrounding eight
neurons, that is, any one of these eight neurons winning in the
network competition will result in the generation of pulse of
N2,2. At the same time, the neuron N2,2 also acts as a neighbor
of other neurons to cooperate with them to form output pulses.
The cooperation is a local behavior and the competition is a
global behavior. The firing of any winner in the competition
will reset the membrane potential of other competitors at V2

to inhibit the firing behavior of competitors.

N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3

N1,n

N2,n

N3,n

Nm,1 Nm,2 Nm,3 Nm,n

Fig. 6. Connection structure of the competition and cooperation network.

To assess the network’s performance, we selected a road
picture as our research object, depicted in Fig.7(a). For con-
sistency, we set the voltage values as Vref1=0.4V, Vref2=0.5V,
V1=-1.2V, V2=0V and V3=-0.6V. Initially, we extracted the
salient region of the image using the method described in [33],
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resulting in Fig.7(b). Subsequently, we utilized the normalized
pixel values from Fig.7(b) as the input for the network. For
the purpose of analysis, we intercept a 4×4 pixel block from
Fig.7(b) and presented it in Fig.7(c). In Fig.7(c), we can
observe that different normalized pixel values correspond to
pixel blocks with varying brightness levels. To facilitate a
clear comparison of the normalized pixel values, we generated
a three-dimensional statistical diagram as shown in Fig.7(d),
where the height of each bar graph represents the magnitude
of the normalized pixel value. The arrows in Fig.7(c) indicate
the transformation direction of matrix stretching into a vector,
which serves as the input for the network. The stretched pixels
and the corresponding values are presented in Fig.7(e). It is
evident that the neuron with the largest input is the fifteenth
neuron, followed by the third and then the eighth.
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(a) (b) (c) (d)

(e)

Fig. 7. The road image and its saliency map used to test the performance of
the network.
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Fig. 8. Firing spikes and raster plot of the winners within 2 milliseconds.

The voltages corresponding to the values in Fig.7(e) were
inputted into the network. Fig.8 shows the output spikes of the
wining competitive neurons within a two-millisecond interval,
along with their firing time raster plot. The figure illustrate
the intense competition between neurons N15 and N3 during
the initial stage, with spikes firing alternately between these
two neurons. Over time, neurons N8, N2, N14 and N12

subsequently gain the opportunity to fire. According to the
design principles of the circuit network, even though only
six neurons win the competition within the two milliseconds,
their neighboring neurons also exhibit pulse output. The output
pulses of network within the two-millisecond interval are
displayed in Fig.9, which will serve as the input for the subse-
quent circuit. The simulation results confirm the competition
and cooperation mechanisms of the network, validating that
the designed circuit can effectively focus on the maximum
input and facilitate the transformation of attention over time.
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Fig. 9. Output pluses of the network within 2 milliseconds.

C. Memristor-based brain emotional learning circuit

In the previous section, we presented a design for a mem-
ristive competition network that effectively focuses on the
maximum saliency region and facilitates attention transforma-
tion over time. Additionally, we incorporated a cooperative
mechanism into the network, expanding the output beyond
just the winner neuron to include its surrounding neurons. In
the following, we propose a memristive emotional learning
circuit as a subsequent circuit to the attention network, which
integrates the attention mechanism and emotional learning
mechanism in the cognitive process to form a system.

The memristive brain emotional learning circuit, shown in
Fig.10, is designed based on the learning mechanisms of the
amygdala and the orbitofrontal cortex (OFC) in the brain. The
operation of the memristive BEL circuit involves two main
stages:

Feed Forward Stage: In this stage, the input signal is propa-
gated through the amygdala and OFC circuits. Simultaneously,
the error between the output signal E and the target signal is
calculated, and a feedback control signal is generated in the
feedback control block.

Weight Modification Stage: In this stage, the memristance
values of the amygdala and OFC modules are adjusted based
on the feedback control signals ∆V and ∆W , respectively. To
simplify the circuit implementation, we modify the expressions
for ∆V and ∆W as follows:
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{
∆V = α(S

∑
j(Rew − EAj))

∆W = β(S
∑

j(EOj −Rew))
(9)

where α and β are the learning rates. It should be noted that
the resistance of the memristor remains unchanged in the feed
forward stage, and the memristance changes according to the
feedback signal.

In the amygdala and OFC modules, the memristor Vip

exhibits opposite polarity to that of Vin, while the memristor
Wip has opposite polarity to Win. This ensures that the
memristance change of these memristors is opposite under the
feedback signal, enabling the implementation of positive and
negative weights in these modules. In circuit blocks (a) and
(b) of the figure, the input signal S, as well as the feedback
signals fvi and fwi, are fed alternately into the memristors.
This process is controlled by the transmission gate switches,
as depicted in the circuit block (d) of the figure. The output
EA of the amygdala module can be mathematically expressed
as

EA = R(

m∑
i=1

(
1

Vip
− 1

Vin
) ·Hi)

= R(

m∑
i=1

(viHi))

(10)

where

vi =
1

Vip
− 1

Vin

Hi =

{
Si if Vc > 0
fvi if Vc < 0

(11)

Similarly, the output EO of the OFC module can be calculated
by

EO = R(

m∑
i=1

(
1

Wip
− 1

Win
) ·Ni)

= R(

m∑
i=1

(wiNi))

(12)

where

wi =
1

Wip
− 1

Win

Ni =

{
Si if Vc > 0
fwi if Vc < 0

(13)

The feedback signal fvi and fwi are generated according to
the error between the output E and the target T , which can
be calculated by

Verr = E − T

fvi = Si ·∆V

fwi = Si ·∆W

(14)

where the feedback control voltage ∆W is the inverse of ∆V ,
which are

∆W = −∆V =

{
Verr + VT+ if Verr > 0
Verr + VT− if Verr < 0

(15)

Combing the (9) with (10) and (12), we can obtain the
circuit weight update as following

V new
ip = V olde

ip +R/2 · α(S
∑

j(Rew − EAj))

V new
in = V olde

in −R/2 · α(S
∑

j(Rew − EAj))

W new
ip = W olde

ip +R/2 · β(S
∑

j(EOj −Rew))

W new
in = W olde

in −R/2 · β(S
∑

j(EOj −Rew))

(16)

where R is the value of reference resistance, V new
ip and V new

in

are the new memristor resistance values of the amygdala mod-
ule, and W new

ip and W new
in are the new memristor resistance

values of the OFC module. V olde
ip , V olde

in , W olde
ip and W olde

in

are the old memristor resistance values of the amygdala and
OFC modules.

In order to verify the functionality of the designed BEL
circuit, the training method involving adjusting the memristive
weights to make the output approach to the target is explained
in the following. The learning process in the amygdala module
and OFC module is illustrated in simulated results shown in
Fig.11. The forward propagation and feedback adjustments
occur alternately, controlled by the signal Vc. In the first cycle
(0-0.1ms), during the forward propagation stage (0-0.05ms),
the input signal is set to 1V, which is below the memristor
threshold, resulting in no change in memristance. The feed-
back voltage fv1 exceeds the positive threshold of memristor,
while the feedback voltage fw1 is below the negative threshold
voltage of memristor. Consequently, in the amygdala module,
the memristance of V1p increases while the memristance
of V1n decreases from its initial states. Conversely, in the
OFC module, the memristance of W1p decreases while the
memristance of W1n increases. As a result, the weight v1 of
the amygdala module gradually decreases, while the weight w1

of the OFC module increases. The output signal approaches
the target value at 1.4ms, but does not exactly match it. In
the subsequent stage, the feedback signal slightly modifies
the output voltage above the target, resulting in over-learning.
However, due to the robustness of the designed module, the
output value quickly adjusts to equal to the target value.
Finally, at 1.8ms the output voltage equals to the target.
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Fig. 11. Learning process of the BEL circuit. Vc is the control voltage of
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memristors in amygdala and OFC, respectively. The output of the network E
is drawn in blue.

IV. MEMRISTIVE ATTBEL CIRCUIT AND ITS APPLICATION
ON TRAFFIC SIGN RECOGNITION

Traffic sign recognition is a challenging task in the field
of multi-classification, as it involves identifying various types
of signs with distinct shapes, colors, sizes, and orientations
against complex backgrounds. The complex background of
signs can be defined as visual senses that contain diverse
visual features such as multiple objects, textures, and contex-
tual elements. These backgrounds pose challenges for visual
processing systems, as the require the model to effectively
focus on relevant information while filtering out irrelevant
distractions. Due to the high speed of vehicles on the road
and complex backgrounds such as buildings, pedestrians,
vegetation in the visual scene of traffic sign recognition, it is
of great significance to quickly identify traffic signs to ensure
driving safety.

Numerous methods have been proposed for traffic sign
recognition, including traditional machine learning ap-
proaches, such as Support Vector Machine (SVM) [46], nearest
neighbors [47], and random forests [48], as well as deep
learning-based techniques such as Convolutional Neural Net-
work (CNN) and its variants [49]. Although the gradually
matured deep neural networks have achieved high-precision
performance in the task of traffic sign recognition in recent
years, the complex structures of these methods restricts their
deployment primarily to general-purpose processors, which
brings a disadvantage that severely limits the operation speed
of the network. On the other hand, the model based on brain
emotional learning utilizes the fast learning characteristics of
the limbic system, has a simple structure and fast convergence
characteristics, which is expected to achieve good performance
in tasks with high real-time requirements [25]–[27]. Therefore,
we applied the designed AttBEL model in the task of traffic
sign recognition.

In China, traffic signs conform to international standards
and can be categorized into three main classes: warnings

(typically depicted as yellow triangles with a black boundary
and informational content), prohibitions (usually depicted as
white surrounded by a red circle and also possible having a
diagonal bar), and mandatory signs (often represented as blue
circles with white informational content). Fig.12 provides a
visual representation of a selection of traffic signs from each
of these three classes.

C1

C2

C3

Fig. 12. Part of Chinese traffic signs, in C1, C2 and C3 are warning,
prohibitory and mandatory signs, respectively.

In the preceding sections, we have accomplished the design
and verification of the memristor-based visual selective atten-
tion circuit and the brain emotional learning circuit, demon-
strating their functionality. To further leverage the advantages
of these circuits, we propose integration of the selective at-
tention circuit into the overall emotional learning circuit. This
integration aims to enhance the hardware-oriented nature of
the entire recognition system and fully harness the capabilities
of the circuitry. Fig.13 depicts the schematic of the proposed
AttBEL circuit implementation for performing the traffic sign
recognition task.

A modular design strategy for the circuit in the PSPICE
simulation software is adopted. The overall circuit consists of
SLIFN and BEL modules, and the internal circuits of each
module are shown in Fig.5 and Fig.10. Initially, the original
road traffic image P undergoes pre-processing to extract fea-
tures by computer software according to the method in [33],
resulting in a feature map F(P). Subsequently, the feature map
F(P) is fed into visual attention circuit, which incorporates
competition and cooperation mechanisms to selectively focus
on relevant traffic regions and highlight salient areas within
the feature map. The output of the visual attention circuit is
multiplied with the feature map F(P) to obtain the input S
for the emotional circuit. It should be noted that in the visual
attention circuit, a competitive winner triggers the generation
of output pulses in surrounding neurons, while neurons farther
away from the winner produce zero output. Consequently, the
output of the visual attention circuit takes the form of a sparse
matrix with predominantly zeros and only a small portion
being non-zero. The input S for the emotional learning circuit
retains non-zero values around the winner determined by the
visual attention circuit, while values away from the winner are
set to zero. The BEL circuit utilizes the selected portion of
the feature map Att=[Att1, Att2, . . . , Attn], as determined by
the visual attention circuit, for traffic sign classification. By
leveraging the salient information emphasized by the visual
attention circuit, the BEL circuit can effectively classify the
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traffic signs present in the input image. The integration of
the visual attention mechanism and emotional learning circuit
enables an efficient and hardware-focused traffic sign recog-
nition process. The visual attention circuit enables selective
focusing on salient regions, while the emotional learning
circuit utilizes the identified features for accurate classification.
This combined approach offers potential benefits in terms of
real-time processing, reduced computational complexity, and
improved recognition performance.
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Fig. 13. Schematic diagram of the memristive visual attention brain emotional
learning network performing the traffic sign recognition tasks.

The proposed AttBEL circuit for sign recognition is summa-
rized in Algorithm 2. The algorithm leverages a combination
of computer-aided preprocessing and hardware-based memris-
tive circuits to achieve efficient applications [50]–[52]. Specif-
ically, the input image is preprocessed using computer-aided
techniques to extract relevant features, resulting in a feature
map that is subsequently fed into the memristive circuit sys-
tem. In the context of electronic system design, the computer-
aided design plays a crucial role in reducing the complexity of
circuit design while enhancing system efficiency. According
to the algorithm, the proposed circuit employs computer-
aided design to implement a visual attention mechanism and
brain emotional leading rule, enabling efficient traffic sign
recognition through in-memory computing.

To illustrate the learning process, we present the recognition
of a warning sign as an example, as depicted in Fig.14. In
Fig.14(a), we have a road image P with size of 256×256.
After performing feature extraction, we obtain the feature
image F(P) sized at 32×32, as shown in Fig.14(b). Next, we
input F(P) into the visual attention circuit, and the firing time
diagram of the two winners and theirs surrounding neurons in
the competition is illustrated in Fig.14(c). In this diagram, the
red dots represent the winning neurons, while the blue dots
represent the neurons surrounding the winners. The selected
regions output by the visual attention circuit are displayed in
Fig.14(d). Winner 1, winner 2 and their nearest 15 neighbors
are alternately input into the BEL circuit, while the other parts
are set to 0. The output of the AttBEL circuit is shown in
Fig.14(f). We observe that the yellow signal, representing the
warning sign, gradually increases and approaches 1V, while
the output signals representing the prohibitory and mandatory
signs progressively trend toward 0V. This behavior indicates

Algorithm 2 Traffic sign recognition based on AttBEL
Input: traffic sign image P and traffic sign category T ;
Output: recognized traffic sign class E;

1: initialize memristor resistance Vip, Vin, Wip and Win

2: extract feature map F (P ) from the image P with
computer-aided

3: input F (P ) into the visual attention circuit
4: while not converge do
5: attention circuit output Atti ← F (Pi)
6: amygdala circuit output EAi ← R(1/Vip − 1/Vin) ·Hi

7: OFC circuit output EOi ← (1/Wip − 1/Win) ·Hi

8: network circuit output E = EA − EO

9: error voltage Verr = E − T
10: update memristor resistance

Vip ← Vip +R/2 · α(S
∑

j(Rew − EAj))
Vin ← Vin −R/2 · α(S

∑
j(Rew − EAj))

Wip ←Wip +R/2 · β(S
∑

j(EOj −Rew))
Win ←Win −R/2 · β(S

∑
j(EOj −Rew))

11: feedback voltage fvi = Si ·∆V , fwi = Si ·∆W
12: control voltage Vc to switch the forward and feedback

stage
13: if Verr is small enough then break
14: end while

that the designed circuit successfully identifies and classifies
the traffic signs. Through this example, we demonstrate the
effectiveness of the designed circuits in accurately recognizing
and classifying traffic signs. The integration of visual attention
mechanism and emotional learning circuit enables efficient
and accurate processing, leading to improved recognition
performance in complex classification tasks.
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Fig. 14. Example of the learning process of the proposed network. (a) original
road image, (b) saliency map of the road image, (c) raster plot of the visual
attention circuit, (d) winners and their surroundings of the attention circuit,
(e) part of inputs to the brain emotional learning circuit, (f) output voltage of
the three classes of the BEL units.

According to the working principle of the AttBEL circuit
designed for traffic sign recognition, the resistance value of the
memristor in the circuit is continuously adjusted to facilitate
network training with different data inputs. Fig.15 illustrates
the distribution of memristor resistance values and their cor-
responding weights w and v in the BEL circuit modules after
training. The colors yellow, red, and blue correspond to the C1,
C2 and C3 circuit modules, respectively. From the diagram, it
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TABLE I
COMPARISON OF TRAFFIC SIGN RECOGNITION SPEED

literature model implementation method time
[38] YOLOv2 software 0.017s
[40] CNN software 4.289s
[39] YOLOv4 software 20ms

This work AttBEL hardware <2.5ms

is evident that the designed AttBEL circuit effectively achieves
the positive, zero, and neighbor distribution of neural network
weights after training.
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Fig. 15. Distribution of memristor resistance values and network weights, (a)
distribution of resistance values Rw , (b) distribution of resistance values Rv ,
(c) distribution of weight values w, (d) distribution of weight values v.

In order to facilitate the display of the speed performance of
the memristive in-memory computing circuit in the traffic sign
recognition task, we have selected 15 pictures after processing
and coding for illustration, as shown in Fig.16. The amplitude
of the input voltage pulse in the circuit is determined based on
the feature value F(P) of the picture. Each picture is encoded
into a voltage pulse with an on-time of 2.5ms and an off-
time of 0.5ms, resulting in a change of input data every
3ms. Fig.16(a) presents the 15 data inputs of the first neuron
within a 45ms time frame. In Figs.16(b) to (d), the solid lines
represent the actual output voltages of the circuit, while the
dashed lines represent the expected output values. It is evident
from the figure that, with different data inputs, the output
voltage of the trained circuit rapidly converges to the expected
values within 2.5ms. This verifies that the designed circuit
can achieve the function pf traffic sign recognition quickly
and accurately. Table I compares the speed performance of
the traffic sign recognition based on the proposed memristive
in-memory computing circuit with the existing software-based
approaches. The table clearly demonstrates that the designed
circuit significantly reduces the recognition time for traffic
signs.

The design of memristor-based emotional circuit design has
garnered significant research interest in recent years. Table II
compares the proposed memristive emotional learning model
with related works. The study in Ref. [29] integrated context
information into emotional learning and utilized the memris-
tive BEL circuit for the character classification task. Refs.
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Fig. 16. (a) Input voltage pulse of the first neuron in 45ms, (b) voltage pulse
corresponding to class C1, (c) voltage pulse corresponding to class C2, (d)
voltage pulse corresponding to class C3.

TABLE II
COMPARISON OF MEMRISTIVE EMOTIONAL LEARNING MODEL WITH

RELATED WORKS

literature mechanisms involved application
[29] BEL model, context information character classification
[53] BEL model, Big Five model emotion generation
[54] BEL model, hippocampus memory emotion generation
[55] BEL model, fear generation emotion generation

This work BEL model, attention model traffic sign recognition

[53]–[55] combined various mechanism within the emotional
learning process and designed memristive circuits for emotion
generation. This work introduced a model that integrates
the visual selective attention mechanism into the emotional
learning model, distinguishing it from the existing models.
The proposed model is applied to the task of traffic sign
recognition, which holds practical significance in electronic
circuits.

V. CONCLUSION AND OUTLOOK

Attention and emotion are crucial components of human
cognitive process, yet their combination forms have not been
adequately explored in existing research. This paper addresses
this gap by proposing an emotional learning model that
integrates visual selective attention mechanism. The hardware
circuit for the visual attention emotional learning is designed
using memristors. The visual attention mechanism is estab-
lished by the competition and cooperation circuit. The dual-
loop learning mechanism of emotion is designed through
memristor circuit. Finally,this circuit is applied to the task
of traffic sign recognition, resulting in fast recognition speed
for traffic signs. Circuit simulations have demonstrated its
superiority in recognition speed. However, there are some
issues are worth further study. In the task of traffic sign
recognition, the features need to be extracted by software. An
overall circuit scheme which including the feature extraction
can facilitate the improvement of efficiency. Additionally, the
simulation of the attention mechanism is crude, and many
influencing factors and biological characteristics are not taken
into account. In the future, we will further optimize the circuit
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design and explore the integration of the feature extraction
process.

REFERENCES

[1] L. Xia, B. Li, T. Tang, P. Gu, P.-Y. Chen, S. Yu, Y. Cao, Y. Wang,
Y. Xie, and H. Yang, “Mnsim: Simulation platform for memristor-based
neuromorphic computing system,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 5, pp.
1009–1022, 2018.

[2] B. Perach, R. Ronen, B. Kimelfeld, and S. Kvatinsky, “Understanding
bulk-bitwise processing in-memory through database analytics,” IEEE
Transactions on Emerging Topics in Computing, vol. 12, no. 1, pp. 7–
22, 2024.

[3] S. Thijssen, M. R. H. Rashed, S. K. Jha, and R. Ewetz, “Path: Evaluation
of boolean logic using path-based in-memory computing systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 43, no. 5, pp. 1387–1400, 2024.

[4] X. Ji, Z. Dong, Y. Han, C. S. Lai, G. Zhou, and D. Qi, “EMSN: An
energy-efficient memristive sequencer network for human emotion clas-
sification in mental health monitoring,” IEEE Transactions on Consumer
Electronics, vol. 69, no. 4, pp. 1005–1016, 2023.

[5] Z. Dong, X. Ji, J. Wang, Y. Gu, J. Wang, and D. Qi, “ICNCS: Internal
cascaded neuromorphic computing system for fast electric vehicle state-
of-charge estimation,” IEEE Transactions on Consumer Electronics,
vol. 70, no. 1, pp. 4311–4320, 2024.

[6] Z. Deng, C. Wang, H. Lin, Q. Deng, and Y. Sun, “Memristor-based at-
tention network for online real-time object tracking,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 44,
no. 2, pp. 684–695, 2025.

[7] Q. Deng, C. Wang, J. Sun, Y. Sun, J. Jiang, H. Lin, and Z. Deng,
“Nonvolatile cmos memristor, reconfigurable array, and its application
in power load forecasting,” IEEE Transactions on Industrial Informatics,
vol. 20, no. 4, pp. 6130–6141, 2024.

[8] J. Sun, Y. Yue, Y. Wang, and Y. Wang, “Memristor-based operant
conditioning neural network with blocking and competition effects,”
IEEE Transactions on Industrial Informatics, vol. 20, no. 8, pp. 10 209–
10 218, 2024.

[9] Q. Deng, C. Wang, and Z. Deng, “Memristive circuit of quaternion
multiplication and its application in aircraft attitude computation,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 8,
pp. 3970–3974, 2024.

[10] C. Wang, D. Luo, Q. Deng, and G. Yang, “Dynamics analysis and
FPGA implementation of discrete memristive cellular neural network
with heterogeneous activation functions,” Chaos, Solitons & Fractals,
vol. 187, p. 115471, 2024.

[11] H. Bao, Z. Chen, J. Ma, Q. Xu, and B. Bao, “Planar homogeneous
coexisting hyperchaos in bi-memristor cyclic Hopfield neural network,”
IEEE Transactions on Industrial Electronics, vol. 71, no. 12, pp. 16 398–
16 408, 2024.

[12] K. Huang, C. Li, X. Zhang, I. Moroz, and Z. Liu, “Constructing a mem-
ristive chaotic oscillator with 2-D offset boosting,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 44,
no. 1, pp. 294–303, 2025.

[13] C. Wang, Y. Li, and Q. Deng, “Discrete-time fractional-order local active
memristor-based Hopfield neural network and its FPGA implementa-
tion,” Chaos, Solitons & Fractals, vol. 193, p. 116053, 2025.

[14] Q. Deng, C. Wang, Y. Sun, and G. Yang, “Memristive multi-wing chaotic
Hopfild neural network for LiDAR data security,” Nonlinear Dynamics,
vol. 113, pp. 17 161–17 176, 2025.

[15] Q. Deng, C. Wang, Y. Sun, Z. Deng, and G. Yang, “Memristive tabu
learning neuron generated multi-wing attractor with fpga implementation
and application in encryption,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 72, no. 1, pp. 300–311, 2025.

[16] H. Xiao, Y. Zhou, T. Gao, S. Duan, G. Chen, and X. Hu, “Memristor-
based light-weight transformer circuit implementation for speech recog-
nizing,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 13, no. 1, pp. 344–356, 2023.

[17] Y. Zhou, X. Hu, L. Wang, G. Zhou, and S. Duan, “Quantbayes: Weight
optimization for memristive neural networks via quantization-aware
bayesian inference,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 68, no. 12, pp. 4851–4861, 2021.

[18] J. Liu, F. Xiong, Y. Zhou, S. Duan, and X. Hu, “Bioinspired memristive
neural network circuit design of cross-modal associative memory,”
IEEE Transactions on Cognitive and Developmental Systems, DOI
10.1109/TCDS.2023.3303653, pp. 1–1, 2023.

[19] Y. Zhang, X. Wang, and E. G. Friedman, “Memristor-based circuit
design for multilayer neural networks,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 2, pp. 677–686, 2018.

[20] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and
H. Qian, “Fully hardware-implemented memristor convolutional neural
network-append,” Nature, vol. 577, no. 7792, pp. 641–646, 2020.

[21] Y. F. Qin, R. Kuang, X. D. Huang, Y. Li, J. Chen, and X. S. Miao,
“Design of high robustness BNN inference accelerator based on binary
memristors,” IEEE Transactions on Electron Devices, vol. 67, no. 8, pp.
3435–3441, 2020.

[22] S. Wen, H. Wei, Z. Yan, Z. Guo, Y. Yang, T. Huang, and Y. Chen,
“Memristor-based design of sparse compact convolutional neural net-
work,” IEEE Transactions on Network Science and Engineering, vol. 7,
no. 3, pp. 1431–1440, 2020.

[23] Z. Zhang, Q. Chen, T. Han, C. Li, Y. Liu, and G. Liu, “Memristor-
based circuit demonstration of gated recurrent unit for predictable neural
network,” IEEE Transactions on Electron Devices, vol. 69, no. 12, pp.
6763–6768, 2022.

[24] J. Ledoux, “Emotion and the limbic system concept,” Concepts in
neuroscience, vol. 2, pp. 169–199, 1991.

[25] J. Morén, “Emotion and learning - a computational model of the
amygdala,” Lund University Cognitive Studies, 2002.

[26] Y. Mei, G. Tan, and Z. Liu, “An improved brain-inspired emotional
learning algorithm for fast classification,” Algorithms, vol. 10, no. 2,
p. 70, 2017.

[27] E. Lotfi and M. R. Akbarzadeh-Totonchi, “Adaptive brain emotional
decayed learning for online prediction of geomagnetic activity indices,”
Neurocomputing, vol. 126, pp. 188–196, 2014.

[28] M. H. El-Saify, A. M. El-Garhy, and G. A. El-Sheikh, “Brain emotional
learning based intelligent decoupler for nonlinear multi-input multi-
output distillation columns,” Mathematical Problems in Engineering,
2017.

[29] C. Xu, C. Wang, J. Jiang, J. Sun, and H. Lin, “Memristive circuit
implementation of context-dependent emotional learning network and its
application in multitask,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 41, no. 9, pp. 3052–3065, 2021.

[30] H. Zhou, Z. Fei, Q. Hong, J. Sun, S. Du, T. Li, and J. Zhang,
“Bionic dual-loop emotional learning circuit and its application in
radiation early warning monitoring,” IEEE Transactions on Cognitive
and Developmental Systems, 2022.

[31] Y. Zhang and Z. Zeng, “Neuromorphic circuit implementation of oper-
ant conditioning based on emotion generation and modulation,” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2023.

[32] M. Zhang, C. Wang, Y. Sun, and T. Li, “Memristive PAD three-
dimensional emotion generation system based on D-S evidence theory,”
Nonlinear Dynamics, vol. 112, pp. 4841–4861, 2024.

[33] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual at-
tention for rapid scene analysis,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, DOI 10.1109/34.730558, no. 11, pp.
1254–1259, 1998.

[34] J. G. Taylor and N. F. Fragopanagos, “The interaction of attention and
emotion,” Neural Networks, vol. 18, no. 4, pp. 353–369, 2005.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[36] M. Ilse, J. M. Tomczak, and M. Welling, “Attention-based deep multiple
instance learning,” in Proceedings of the 35th International Conference
on Machine Learning, pp. 2127–2136. PMLR, 2018.

[37] D. Zhao, Y. Chen, and L. Lv, “Deep reinforcement learning with visual
attention for vehicle classification,” IEEE Transactions on Cognitive
and Developmental Systems, vol. 9, DOI 10.1109/TCDS.2016.2614675,
no. 4, pp. 356–367, 2017.

[38] J. Zhang, M. Huang, X. Jin, and X. Li, “A real-time chinese traffic sign
detection algorithm based on modified yolov2,” Algorithms, vol. 10,
no. 4, p. 127, 2017.

[39] K. Ren, L. Huang, C. Fan, and X. Gao, “Real-time small traffic sign
detection algorithm based on multi-scale pixel feature fusion,” Signal
Process, vol. 36, pp. 1457–1463, 2020.

[40] X. Bangquan and W. Xiao Xiong, “Real-time embedded traffic sign
recognition using efficient convolutional neural network,” IEEE Access,
vol. 7, DOI 10.1109/ACCESS.2019.2912311, pp. 53 330–53 346, 2019.

[41] C. Koch and S. Ullman, “Shifts in selective visual attention: towards
the underlying neural circuitry.” Human neurobiology, vol. 4, no. 4, pp.
219–227, 1985.

[42] K. Kishori and S. Pyne, “In-memory set operations on memristor
crossbar,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 42, no. 12, pp. 5061–5071, 2023.

http://dx.doi.org/10.1109/TCDS.2023.3303653
http://dx.doi.org/10.1109/TCDS.2023.3303653
http://dx.doi.org/10.1109/34.730558
http://dx.doi.org/10.1109/TCDS.2016.2614675
http://dx.doi.org/10.1109/ACCESS.2019.2912311


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[43] C.-Y. Chen, B. K. Joardar, J. R. Doppa, P. P. Pande, and K. Chakrabarty,
“Mitigating slow-to-write errors in memristor-mapped graph neural net-
works induced by adversarial attacks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 43, no. 8, pp.
2411–2425, 2024.

[44] L. Zheng, A. Hu, Q. Wang, Y. Huang, H. Huang, P. Yao, S. Xiong,
X. Liao, and H. Jin, “Phgraph: A high-performance reram-based accel-
erator for hypergraph applications,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 43, no. 5, pp.
1318–1331, 2024.

[45] Y. Zhang, X. Wang, Y. Li, and E. G. Friedman, “Memristive model
for synaptic circuits,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 64, no. 7, pp. 767–771, 2016.

[46] J. Greenhalgh and M. Mirmehdi, “Real-time detection and recognition
of road traffic signs,” IEEE Transactions on Intelligent Transportation
Systems, vol. 13, no. 4, pp. 1498–1506, 2012.

[47] A. Gudigar, S. Chokkadi, U. Raghavendra, and U. R. Acharya, “Local
texture patterns for traffic sign recognition using higher order spectra,”
Pattern Recognition Letters, vol. 94, pp. 202–210, 2017.

[48] F. Zaklouta, B. Stanciulescu, and O. Hamdoun, “Traffic sign classifi-
cation using K-d trees and random forests,” in The 2011 international
joint conference on neural networks, pp. 2151–2155. IEEE, 2011.

[49] J. Jin, K. Fu, and C. Zhang, “Traffic sign recognition with hinge loss
trained convolutional neural networks,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 5, pp. 1991–2000, 2014.

[50] K. Eshraghian, O. Kavehei, K.-R. Cho, J. M. Chappell, A. Iqbal, S. F. Al-
Sarawi, and D. Abbott, “Memristive device fundamentals and modeling:
Applications to circuits and systems simulation,” Proc. IEEE, vol. 100,
no. 6, pp. 1991–2007, 2012.

[51] S. M. Siddaramu, A. Nezhadi, M. Mayahinia, S. Ghasemi, and M. B.
Tahoori, “Hardware and software co-design for optimized decoding
schemes and application mapping in nvm compute-in-memory archi-
tectures,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 43, no. 11, pp. 3744–3755, 2024.

[52] W. Xu, S. Gupta, J. Morris, X. Shen, M. Imani, B. Aksanli, and
T. Rosing, “Tri-HD: Energy-efficient on-chip learning with in-memory
hyperdimensional computing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 44, no. 2, pp. 525–539,
2025.

[53] J. Han, X. Cheng, G. Xie, J. Sun, G. Liu, and Z. Zhang, “Memristor-
based neural network circuit of associative memory with occasion
setting,” IEEE Transactions on Cognitive and Developmental Systems,
vol. 16, no. 3, pp. 1016–1026, 2024.

[54] Y. Zhu, Y. Zhao, J. Zhang, X. Sun, X. Zhou, X. Shen, Z. Xu, Z. Wu,
and Y. Dai, “Memristor-based circuit design of interweaving mechanism
of emotional memory in a hippocamp-brain emotion learning model,”
Neural Networks, vol. 186, p. 107276, 2025.

[55] M. Guo, D. Zhang, W. Guo, G. Dou, and J. Sun, “Implementing brain-
like fear generalization and emotional arousal associated with memory,”
IEEE Transactions on Cognitive and Developmental Systems, vol. 17,
no. 1, pp. 155–166, 2025.

Quanli Deng received the B.S. degree in Xiangtan
University School of Physics and Optoelectronics,
Xiangtan, China, in 2016, and the M.S. degree in
College of Information Science and Engineering,
Hunan University, Changsha, China, in 2020. He is
currently pursuing the Ph. D degree in College of
Computer Science and Electronic Engineering, Hu-
nan University, China. His research interests include
modeling and analysis of neural systems, fundamen-
tal theory of nonlinear systems and circuits, and
analog implementation of neuromorphic systems.

Chunhua Wang received the M.S. degree from
Zhengzhou University, Zhengzhou, China, in 1994,
and the Ph.D. degree from Beijing University of
Technology, Beijing, China, in 2003. He is currently
a Professor of College of Computer Science and
Electronic Engineering, Hunan University, Chang-
sha, China. He is a Doctor tutor, the director of
advanced communication technology key laboratory
of Hunan universities, the member of academic com-
mittee of Hunan university, the director of chaos and
nonlinear circuit professional committee of circuit

and system branch of China electronic society. Now, his research interests
include chaotic circuit, memristor circuit, chaotic encryption, neural networks
based on memristor, complex network, current-mode circuit. He has presided
over 8 national and provincial projects, and published more than 200 papers
retrieved by SCI, among which 20 papers were high cited.

Yichuang Sun (M’90-SM’99) received the B.Sc.
and M.Sc. degrees from Dalian Maritime University,
Dalian, China, in 1982 and 1985, respectively, and
the Ph.D. degree from the University of York, York,
U.K., in 1996, all in communications and electronics
engineering.

Dr. Sun is currently Professor of Communications
and Electronics, Head of Communications and Intel-
ligent Systems Research Group, and Head of Elec-
tronic, Communication and Electrical Engineering
Division in the School of Engineering and Computer

Science of the University of Hertfordshire, UK. He has published over 330
papers and contributed 10 chapters in edited books. He has also published four
text and research books: Continuous-Time Active Filter Design (CRC Press,
USA, 1999), Design of High Frequency Integrated Analogue Filters (IEE
Press, UK, 2002), Wireless Communication Circuits and Systems (IET Press,
2004), and Test and Diagnosis of Analogue, Mixed-signal and RF Integrated
Circuits - the Systems on Chip Approach (IET Press, 2008). His research
interests are in the areas of wireless and mobile communications, RF and
analogue circuits, microelectronic devices and systems, and machine learning
and deep learning.

He was a Series Editor of the IEE Circuits, Devices and Systems Book
Series from 2003 to 2008. He has been Associate Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS
from 2010 to 2011, from 2016 to 2017, and from 2018 to 2019. He is also
an Editor of the ETRI Journal, Journal of Semiconductors, and some others.
He was a Guest Editor of eight IEEE and IEE/IET journal special issues:
High frequency Integrated Analogue Filters in IEE Proc. Circuits, Devices
and Systems (2000), RF Circuits and Systems for Wireless Communications
in IEE Proc. Circuits, Devices and Systems (2002), Analogue and Mixed
Signal Test for Systems on Chip in IEE Proc. Circuits, Devices and Systems
(2004), MIMO Wireless and Mobile Communications in IEE Proc. Com-
munications (2006), Advanced Signal Processing for Wireless and Mobile
Communications in IET Signal Processing (2009), Cooperative Wireless and
Mobile Communications in IET Communications (2013), Software-Defined
Radio Transceivers and Circuits for 5G Wireless Communications in IEEE
Transactions on Circuits and Systems-II (2016), and 2016 IEEE International
Symposium on Circuits and Systems in IEEE Transactions on Circuits and
Systems-I (2016). He has also been widely involved in various IEEE technical
committee and international conference activities.

Cong Xu received the Ph. D degree in computer
science and technology from Hunan University,
Changsha, China, in 2022. She is current working
at the School of Computer and Communication
Engineering, Changsha University of Science and
Technology, Changsha, China. Her main research
interests include memristive neural network, mem-
ristor circuit and chaos secure communication.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

Hairong Lin received M.S. and Ph.D. degree in
information and communication engineering and
computer science and technology from Hunan Uni-
versity, China, in 2015 and 2021, respectively.

From 2022 to 2023, he was a Postdoctoral Fellow
with the School of Computer Science and Electronic
Engineering, Hunan University, Changsha, China.
He is currently an Associate Professor with the
School of Electronic Information, Central South
University, Changsha. He has presided over four
national and provincial projects, and published more

than 40 papers in related international journals, such as IEEE-TIE, IEEE-TII,
IEEE-TCAD, IEEE-TCAS-I, IEEE-TCAS-II, Neural Networks, etc.

Dr. Lin is a member of the Chaos and Nonlinear Circuit Professional
Committee of Circuit and System Branch of China Electronic Society.

Zekun Deng received the Bachelor’s degree in com-
munications engineering from Northeastern Univer-
sity, Shenyang, China. He is currently pursuing the
Ph. D degree in College of Computer Science and
Electronic Engineering, Hunan University, China.
His research interests include memristor neuron cir-
cuit and its applications.


	Introduction
	Attention mechanism-based brain emotional learning model
	Saliency-based visual attention mechanism
	Proposed attention mechanism-based brain emotional learning model

	Memristive circuit implementation of AttBEL model
	Memristor model
	Memristor-based selective attention circuit
	Memristor-based brain emotional learning circuit

	Memristive AttBEL circuit and its application on traffic sign recognition
	Conclusion and outlook
	References
	Biographies
	Quanli Deng
	Chunhua Wang
	Yichuang Sun
	Cong Xu
	Hairong Lin
	Zekun Deng


