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wWilliam Grey walter and his book

“The deeper we seek, the
more is our wonder excited”

(Abdus Salam)




Electroacupuncture book and website
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Timeline of EA research (from PubMed)

Exponential growth in EA research over time
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Electroacupuncture/TEAS - the brain and fr quency
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EA neurophysiology

ALS - LF, high intensity
(Acupuncture-like stimulation)

2-4 Hz (c. 200 psec)

Small diameter afferents activated

@al and s@effects

Release of 3-endorphin and Met-
enkephalin in the brain

Central effects mean analgesia has
slow onset and lasts longer — 30 mins
may suffice for ongoing effect
(cumulative effect)

Little ‘tolerance’ develops from such
short treatments

a summary from the 1990s

TLS — HF, low intensity

(TENS-like stimulation)

50-200 Hz (80-100 psec)

Large diameter afferents activated
Segmental effects: large diameter
fibres inhibit pain signals in small
diameter fibres (‘Gate’ in dorsal horn)

orphin in spinal cord

Iong longer periods of treatment
may be necessary

Tolerance may develop from longterm
use

[~15 Hz will activate both mechanisms]

Use acupoints (more small diameter
fibres), locally or distally

Deqi-like sensation important, results
from strong stimulation

Single pulses

LF does not produce muscle spasm
at high intensity

Stimulate locally (large diameter fibres
are widely distributed)

Tingling, not deqi (high intensity may be
uncomfortable)

Trains enhance comfort of single pulses
HF may result in uncomfortable tetany
(may also be useful for spasticity)



Timeline of EA & entropy research (from PubMed)

Exponential growth in EA & entropy research
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Complexity and Entropy in Physiological Signals
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Visual abstract by Tony Steffert
(https://doi.org/10.3390/e23030321)
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Collecting data 1n the Physiotherapy Lab
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Above: Participant with cap and Mitsar amplifier, eyes
open, looking at an object to reduce eye movement.

Researcher, hidden from view, observes onscreen EEG.

Left: 19-channel EEG data with blink & muscle activity.

Right: EEG showing the effect of jaw clenching.
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Online initial questionnaire

Session - time line
8 x 5-minute slots

Baseline  Stiml Stim?2 Stim3 Stim4 Postl Post?2 Post3
Physiological monitoring (EEG, ECG, PPG, Respiration, Head movement)

Room Room Room Room
temp temp 1 temp temp

Online debriefing questionnaire
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TEAS — Stimulation details

Above: The Equinox stimulator and its output.
Below: Sensors and electrodes in place, showing
fingertip PPG sensor, one ECG electrode on right
forearm, and TENS electrodes at LI4 and on the ulnar
border of the hands. ECG electrodes on the left
forearm are not visible (thermistor on left middle
finger is hidden by the PPG sensor).

Note: True square waves are
made up of odd ‘harmonics’.

A 2.5 Hz square wave is the
sum of sine waves at 2.5 Hz
(the ‘fundamental’) and its
odd ‘harmonics’ - 7.5 Hz,
12.5Hz, 17.5 Hz ... etc.
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Electrical activity in the brain. I. EEG electrodes
The “10-20° system

Nose

@ F Prefrontal A\ — ‘@ Left Yang (odd
@ F  Frontal <.
Tz
@ C Central 1C7
9 T Tempora ‘@ Right Yin (even)
@ P Parietal OPZ
. Oy 1 O
@ O Occipital T S

Back of head

We used these 19 electrodes, recording with the linked ears
potential as ‘reference’ (zero).
Some systems use 64, 128 or more electrodes.

12
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EEG caps at the MRC

‘Conductor’ and ‘orchestra’, wearing Muse
headbands on the banks of the Cam
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Eligible: ¥ = 121
Enrolled: N « 66
[ Drop-outs: 4 after 1, 1 after 3 sessions ]
M )

Protocol error: N = 4
issed slots (comfort/technical issues): 25 (V=6
Bad data: ¥ = 3

Good data: N = 48

Pre-Process: 50 Hz Notch Filter, Average Reference EEG Frequency bands OUT
Pre-processed EEG IN l/ \ \/\—/\.ﬁ/\/\/\/\/\ Delta (3)
AMICA Infomax ICA
gyl ( N / N \/VW\’WVW\/W\/\F T
IClabel IClabel '”' . i I'Hu , "‘”',\, A :" il Alpha (a)

Trimoutlier ﬁ MM«MWWI\WN Beta (B)

Aty o o il - Al Gamma (y)
Laplaclan

Tim ; Time Frequency‘domain XequvT-dOmai“ Frequency-domain Frequency-domain

Linear Global Descriptors Hjorth Parameters Complex Morlet Wavelet Multitaper
Frequency of Field Changes, Wavelet Packet
Field Strength, Spatial Complexity Activity, Mobility, Complexity Frequency-Based Power-Based Cordance Decomposition

et ]

Machine Learning (ML) Deep Learning (DL)



EEG bands

Standard bands

Delta D5to<4
Theta 4to<8
Alpha Sto<14
Beta 14 <32
Gamma =32
1-Hz bins

Stimulation Hz &

(sub)harmonics

0.125

20
40
30

1.5
15
30
B0

and potentially useful measures

ner electrode

Univariate measures

SOURCE Power- Frequency- Complexity Entropy Symbolic TOTALS
based based dynamics
CEPS 28 14 31 42 3 118
Other 44 12 12 37 0 105
TOTALS 72 26 43 79 3 223

Global | Other
Micro- Eye

Multivariate measures
Mondirectional Directional Complex

pairs pairs MNetworks  states blinks
& Graphs T

HERMES & 11 0 0 0 19
LORETA 12 11 0 0 0 23
ENT'HUB 17 0 0 0 0 17
BELINKER 0 0 0 0 4 4

Other 15 2 437 15 0 74
TOTALS 52 24 42 15 4 137

HERMES, LORETA, Entropyhub and BLINKER are computational toolboxes
used in EEG analysis. Numbers in the lower Table are approximate.

16



EEG ‘cordance’

Partial correlations between perfusion and EEG cordance or power Research by Leuchter et al. suggests
that blood perfusion within the brain
(motor strip) during a hand motor

0.3 ‘;‘Ph: task is inversely correlated with alpha
o =t Increased Blood Flow power or cordance (with eyes open
' or closed).
0.1
p-values o /\ Others have found that blood

Decreased
Blood

perfusion correlates negatively with

! Flow resting delta, not alpha power
0.2 (O’Gorman et al. 2012).
-0.3

We know EA improves blood flow.

2 4 6 8 10 12 14 16 18 20 22 24 26 28

EEG Frequency (Hz) Will different frequencies of TEAS
Z-normalised cordance Relative power Absolute power have different effects?

Adapted by Tony Steffert from Leuchter et al. 1999
17



Literature review 1

China 56
[Tianjin 25]
Korea 13
Us 13
Japan 11
Taiwan 10

Other < 10

147 studies on EEG and acupuncture/TENS, 1986-2022

Modality
MA B35
TEMNS 24
EA 21
TEAS 15

Magnetic 9
Laser 6
Pressure 5
Moxa 1

Other 1

Species
Human 127
Animal 20

Median 14
QR 10-25

Pain 15
Sedation/ anaesthesia 7
Stroke 6
Sleep/fatigue 5
Epilepsy 4
Anxiety 2

Brain injury 2
Gastroparesis 2
Fibromyalgia 1
Phantom limb 1
Depression 1
Burn-out 1
Addiction 1
Dementia 1

DEQI 1
Placebo 1

5T36: 33
Lid: 27
Po: 27

‘ﬁnmng: 11
GVvV20: 10

21 points in
2-8 studies
each

27 points in
1 study each

Variable

TEAS/TENS
20-30 min

TEAS: Transcutaneous electroacupuncture stimulation; TENS: Transcutaneous electrical nerve stimulation.

Abbreviations:
EA: Electroacupuncture; IQR: Interquartile range;

18



Literature review 2

Analytical methods used in studies on EEG and acupuncture/TENS, 1986-2022

Power-based Nonlinear
1986-2012 29 10 1
2013 [median yr) 5 2 1
2014-2022 31 5 13
Tianjin (% all) 3 (4.6%) 11 (64.7%) 8 (53.3%)
Numbers of ML, DL, EA, TENS, TEAS
& acupuncture studies in PubMed, 2000-2021
20000 3500
. 18000 I
S 16000 ki
§ 14000 2200 E Abbreviations:
% 12000 2000 g
& 10000 1500 & DL: Deep learning
5 8000 ke ML: Machine learning.
£ 6000 1000 g
g 4000 & Dotted lines indicate trends —
o 500
2000 e e 3l N | linear or exponential.
0 e L .
2203388088200 23nS28S
Year
Il m— DL EA TENS emmmm ACUp = TEAS




Some recent study results 1. Counts of peaks & powers

Counts of Maximum power found in 0.2 Hz bins Counts of Jocal peaks found in 0.2 Hz bins
centred on 2.5, 5, 10 and 20 Hz, centred on 2.5, 5, 10 and 20 Hz,
over all 19 electrodes in some 750 slot recordings over all 19 electrodes in some 750 slot recordings
24<Hz=2.6 492Hz=5.1 99<Hz=10.1 199=Hz=20.1 2A4<Hz=<26 49=<Hz=5.1 09<Hzr<10.1 199<Hz=20.1
Sham Base 0 33 54 100 Sham Base 5] 2 22 3
(160 Hz) | Stim1 |0 40 70 101 (160 Hz) | Stiml | 6 6 25 3
Postl [0 36 62 107 Postl |3 8 31 5
2.5 Hz Base 0 31 108 106 2.5 Hz Base 5 2 44 6
Stiml | 113 236 136 145 Stim1l | 97 117 51 7
Postl [0 33 121 93 Postl |1 8 48 0
10 Hz Base 0 25 125 117 10 Hz Base 3 2 48 3
Stiml | 0 106 218 263 Stim1 |1 27 82 33
Postl |0 23 115 107 Postl |1 7 47 3
20 Hz Base B 40 100 99 80 Hz Base 5 5 40 4
Stiml | 3 24 71 97 Stiml | 4 6 30 4
Postl [0 28 117 77 Postl |3 9 48 3
Nose Counts of Jecal peaks found in control bins
Unrelated to stimulation frequency
Stim Hz
Sham Base 5 1 47 3]
(160 Hz) [ Stim1 | 12 4 26 5 Note the predominance of
Postl |9 2 36 6 :
e e - " - alpha (9-10 Hz) in both
stiml | 44 0 28 6 Tables of peaks, but not the
T o . = : Table of Maximum powers
10 Hz Base 7 2 41 4 d p :
stiml |9 3 28 4
Postl | 13 2 49 5
30 Hz Base 7 1 21 4
stiml | 14 1 36 3 20
Back of head Postl |9 5 25 3




Some recent study results 2. The somatosensory cortex

Counts of Jocal peaks found in 0.4 Hz bins

centred on 2.5, 5,

10 and 20 Hz,

over the somatosensory cortex (C3 & C4)

24<Hz<2.6 A49<Hz<51 74<Hz<7.6 9.9<Hz<10.1
Sham Base 1 0 1 10
(160 Hz) | stiml | 8 2 40 30
Postl |6 0 13 30
/ 2.3 Hz Base 0 o 3 —lg
e stiml | 88 [ 105 50 103)

a2 Postl | O T~ % — 40
‘ 10 Hz Base 2 0 3 11

stiml |9 27 L10~ 147
OH ade r . } 0 Postl 3 1 7 36
L - . 80Hz |Base |1 0 =N 11
stiml |6 0 1 46
3 0 9 37

Note that the effect does not continue after TEAS.

More even than odd harmonics of 2.5 Hz occur at
\ /7 C3 and C4 during Sham and 10 Hz TEAS,
but this is less clear at 2.5 Hz,

and the effect collapses at 80 Hz.

What does this tell us about FFR vs VC?

FFR1,VC1

21



EEG regions 1. Anterior (A) & posterior (P)

Nose

Anterior 7

All peaks Harmonic peaks [%all)
N peaks 13254 5559 (41.9%)
N peaks/electrode (av.) | 1853.4 7941

iRy Ap"

= _O' —
|
4

Back of head

N peaks Posterior /

) All peaks Harmonic peaks [%all)
During N peaks 16870 8106 (48.0%)
TEAS N peaks/electrode (av.) | 2410 1158

22




EEG regions 2. Left (L) & right (R)

Left 8
All peaks Harmonic peaks (%all)
N peaks 18270 8414 (46.0%)
N peaks/electrode (av.) | 2283.8 1051.8

Back of head

N peaks
During
TEAS

Right &
All peaks Harmonic peaks [%all)
N peaks 18258 7949 (43.5%)
N peaks/electrode (av.) | 2282.3 393.6

23




EEG regions 3. Central (C) and outer (0O)

During 2.5 Hz stimulation,
more peaks occur at the central electrodes
(p<10°).
During 10 Hz stimulation,
similar numbers of peaks occur centrally
and at the outer electrodes (n.s.).

During Sham and 80 Hz stimulation,
more peaks occur at the outer electrodes
(p < 10%, p =0.004).

Back of head
Central 9 N peaks Quter 10
All peaks Harmonic peaks (%all) . All peaks Harmonic peaks [%all)
N peaks 23063 11289 (48.9%) During N peaks 20685 8639 (41.8%)
N peaks/electrode (av.) | 2562.6 1254.3 TEAS N peaks/electrode (av.) | 2068.6 863.9

24




EEG regions 4. All and harmonic peaks

All

neaks

Posterior/Anterior

Posterior 7

16870

Anterior 7

13254

Ratio P/A

1.273

Harmonic peaks

Posterior/Anterior
Posterior 7 8106
Anterior 7 5559
Ratio P/A 1.458

Left/Right

Left/Right

[ Left 8 18270 | Left 8 2414
Right 8 18258 Right 8 7949
Ratio L/R 1.001 Ratio L/R 1.058

Central/Outer Central/Outer
Central 9 23063 Central 9 11289
Outer 10 20685 Outer 10 8639
Ratio C/O 1.115 Ratio C/O 1.307

Back of head

Peaks — especially harmonic peaks — occur more often FFR2,VC2
during TEAS on the Left (but not at 10 Hz), Posteriorly

and Centrally (at 2.5 Hz). =



Local peaks - before, during and after TEAS

N peaks per electrode (Baseline)

- Sham 25Hz 10Hz 80 Hz
N TN ——R
- -
o

Cv=0.173 Av N peaks per electrode (Stim)

- o Sty {Sham)

Stum (2.5 Hz)

Stim {10 Hz) Stim {80 Hz)

Fpl Fp2 F7 F3 Fz F4 F8 T7 3 C2 CAT8 P P3 P2 PA PR O1 O2 180
EEG Electrodes 1{;"'
a0
120
| (Bareline 100
< an
10
Av N peaks per electrode (Post)
10
20
i = Post (Sham) Post (2.5 H2) Post (10Hz2} Post {80 Hz)
4]
l Fpl Fp2 F7 F3 Fz F4 F8 T7 C3 €2 C4A T8 PZ P3 P2 PA P8 180
Al peaks |SEim) 1 )
230 10M oy EEG Electrodes 164
. 140 M
100 ’/\A\
< R -
60 CV=0.152
il peaks (Post) a0
10 Hz RO HE : 20
U
FplFp2 F7 €3 F2 F4 F8 17 €3 Cz2 C4 18 P7 P3 Pz PA PR O1 2
5 I EEG Electrodes

Total Counts v
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Cordance: a work-in-progress 1

% change in Cz cordance from baseline - Sham

% change in Cz cordance from baseline - 2.5 Hz

Inset: with Delta removed

% change in Cz cordance from baseline - 10 Hz

% change in Cz cordance from baseline - 80 Hz

Alpha cordance decreases at
all frequencies except 2.5 Hz.

Slopes:
Sham
2.5 Hz
10 Hz
80 Hz

-5.9

Does this tell us anything
about blood perfusion?

Alpha
Band Incressed B2opd Fiow

A\ =7

Decreased
01 Bload
Flow
0.2
G2

z “ . Al 1m° ” 1“ " % 20 22 24 ¥ =

EEG Frequency (Hz)




Cordance: a work-in-progress 2

N Significant ANOVA results by Slot
(all electrodes)

1 2 3 4 5 6 7 8
Slots

Mean for all 1-Hz bins (11) e [\lean for all standard bands (4)

3.5

2.5

15

0.5

N Significant ANOVA results by Slot
(F3)

2 3 - 5 6 7

Mean for all 1-Hz bins (11) e [\lean for all standard bins (4)

8
Slots

Left: Differences in cordance with frequency are fewer post-TEAS.
Right: At some electrodes, these differences are more evident in 1-Hz bins than standard bands.

Significant differences in cordance with frequency occur
more often on the Left and Anteriorly than
on the Right or Posteriorly (p < 102, p < 104).

During stimulation, posterior/anterior, left/right and
central /outer ratios of positive cordance (‘concordance’)
are all greatest during sham TEAS.

FFR 3, VC 2?



EEG linear time-domain measures

35
30
25
20
15
10

H

0

5

-10
Slots 1

Hjorth Activity (Cz) - Group Median Global Field Strength () - Group Median
—— SNEM  —2 5 Hz 10 Hz 80 Hz e SNEM e 2.5 HzZ 10 Hz 80 Hz
. 15
Is 10 Hz TEAS ‘different’
in some way. ®
5
If so —what does this .
tell us?
-5
N\
-10
2 3 4 5 6 7 8 Slots 1 2 3 4 5 6 7
Hjorth Complexity (Cz) - Group Median Hjorth Mobility (Cz) - Group Median
e SNEM  w—2 5 Hz 10 Hz 80 Hz Sham 25 Hz 10 Hz 80 Hz
3 7
2 6
i 5
0 4
3
-1
2
.2 1
-3 e — D /
-4 1
-5 2 ,_,_,/
-6 -3 e
Slots 1 2 3 4 5 6 7 8 Slots 1 2 3 4 5 6 7 8




Deep Learning vs Machine Learning 1

Deep Learning (DL

Disadvantages
s Automated feature extraction & selection with sufficiently large * MNeeds big data to learn
dataset * Training the algorithm is computationally expensive
* High accuracy possible without domain expertise = Many test runs may be needed to tune parameters (e.g. for
s  Hand-crafted feature extraction/selection not needed CMN)
& Robust against EEG noise & Training method and model hyperparameters are still user-
s |S5TM can process temporal or sequential information dependent
* NN or MLP able to estimate any continuous function if * Notorious for poor interpretability (especially CNN)
sufficient layers and neurons ¢  Current DL methods are still ‘black boxes’, with hidden inner
s Deep networks with more parameters allow more complex, patterns and logic rules
non-linear function to be learned, but shallow networks are *  Particularly challenging to identify the most influential features
easier to train (especially on small data). of the data

* Cross-validation methods can overestimate predictive accuracy
and model generalisability [ use a separate testing dataset]

*  May output false predictions with high confidence

&  ANMs are prone to over-fitting (if insufficient data)

* Meed to balance accuracy and explain-ability

* Results may be sensitive to decoder’s architecture, not purely

: data structure
Deep Learning (DL)
% * EEG data may require prior normalising

* Deep network can be difficult to converge
* Shallow network may not be adequate for classification.

Machine Learning (ML)
?

Abbreviations:
ANN = Artificial Neural Network; CNN = Convolutional Neural Network; (F)LDA = (Functional) Linear Discriminant
Analysis; k-NN = k-Nearest Neighbours algorithm; LSTM = Long Short-Term Memory; MLP = Multi-Layer Perceptron;
NB = Naive Bayes; SVM = Support Vector Machine.
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Deep Learning vs Machine Learning 2

Advantages

*  5VM linear and stable

e SWVM useful for smaller data
*  5VM robust to overtraining
*  5VM has high generalisation

« k-NMN nonlinear and stable
* k-NN simple

to use
« | DA linear and stable

methods
= NB Monlinear and stable
= NB Simple, low computation
= NB can cope with large dimension.

*  5VM can provide nonlinear boundaries using kernel methods
*  5VM widely considered the most powerful training method .

* DA has a very low computational requirement, and it is simple

* DA Generalisable as a nonlinear classifier using kernel

Machine Learning

* ML may help guide selection of useful measures/features .
= 5VM commonly used due to its computational efficiency

ML
Disadvantages

SWM has a poor learning efficiency for learning non-linear data
and cannot handle abnormal values

SVM sometimes slower than other classifiers

SVM parameter optimisation essential

SVM not efficient for noisy data with outliers.

k-NN algorithms very sensitive to dimensionality of the feature
vector (does not cope well with data of large dimension)
Computational complexity of kNN decreased by increasing k-
value, but classification performance also decreases

LDA fails with complex data structure having non-Gaussian
distribution (g.g. noise, outliers)

LDA only for linear data

FLDA does not work well if number of features becomes too
large in relation to the number of training examples (‘small
sample size problem’)

Most ML cannot classify dynamic brain signal changes
accurately

best algorithm is unknown and thus, a lot of trial and error is
necessary to select the best feature extraction algorithms and
classification methods

EEG non-stationarity & dynamics across subjects may
considerably limit generalisability of EEG analyses.

Splitting data into subsets for training and evaluation may introduce artefacts that are exploited by the classifier

Training dataset size, confounding clinical variables, and variability in data collection and interpretation may affect generalisability of all

methods. Regularisation or data augmentation may improve model generalisability in both DL and ML

Increased complexity may not improve accuracy!

[References to these Tables available on request]
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