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Abstract
Biogas production through anaerobic digestion (AD) of industrial organic waste andwastewater offers
a sustainablemethod for energy recovery.However, since process efficiency heavily relies on
operational factors, continuousmonitoring of theADprocess and the implementation of necessary
operational strategies are crucial. In recent years, the use ofmachine learning techniques (ML)has
becomewidespread for analysing the effects of operational factors on anaerobic digestion efficiency.
Among these, Support Vector Regression (SVR)with aRadial Basis Function (RBF) kernel has been
used to predict biogas yield based on diverse operating parameters. This study aimed to investigate the
predictability of changes in biogas production using the SVR algorithmwith anRBF kernel in a full-
scale anaerobic digester treatingwastewater from a fruit processing plant. In themodel, biogas
productionwas estimated based on variations in selected operational parameters, achieving a
regression coefficient (R2) of 0.8983± 0.03withmean square error (MSE) of 0.0047± 0.0017. The
model’s performancewas evaluated using 10-fold cross-validation techniques and relevant statistical
indicators to ensure robustness and generalisability. Hyperparameter tuningwas conducted to
enhance prediction accuracy while reducingmodel error. Thefindings demonstrated thatML-based
modelling can serve as a reliable and effective tool to improve biogas production efficiency in
wastewater treatment applications. Furthermore, the study highlights the potential of suchmodels to
support real-time process control and decisionmaking in anaerobic digestion systems operating
under variable industrial conditions.

Introduction

Renewable energy incentives and the transition processes towards a circular economy in the context of climate
change have increased the significance of biomass as a rawmaterial (Sherwood, 2020). Anaerobic digestion (AD)
is one of themost widely utilised technologies for convertingwaste and raw biomass into feedstock for energy
production. AD technology is effectively used in industries that generate high organic content wastewater, such
as fruit processing plants, for simultaneouswastewater treatment and energy recovery. However, the
composition of wastewater produced in these industries varies based on the type and quantity of rawmaterial
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processed at the facility. This variability inwastewater composition, known as influent parameters, leads to
unstable conditions inAD and, consequently, fluctuations in biogas production. Achieving high biogas output
withAD relies onmanaging the sensitivemicroorganisms involved in converting biomass tomethane, which is
crucial for process control. In otherwords, the efficiency of ADparticularly depends on regulating operational
parameters [1].

Operating parameters that affect the performance of anaerobicmicroorganisms and the efficiency of biogas
production include pH, temperature, organic loading rate (OLR), and carbon/nitrogen ratio, which indicate the
nutrient balance necessary formicrobial growth. Additionally, alkalinity, hydraulic retention time (HRT), and
solids content play important roles [2–4]. OLR determines themaximumbiogas production and the extent of
chemical oxygen demand (COD) removal. Effluent characteristics, including recirculation practises,
significantly influence removal efficiency.Methane production and hydrolysis rates are particularly affected by
the recirculation rate. However, substrates with high solid content reducemethane production [5], while lower
HRT can enhance biogas yield [6]. Each of these parameters is critically important for evaluating the
performance and operational efficiency of awastewater treatment system.

Optimising operating parameters and process configurations to enhance biogas production throughAD is a
crucial subject for research.However, experimental studies aimed at optimising various operating parameters
across different process configurations can be time-consuming and expensive. Therefore, similar to other
biochemical processes,modelling studies are conducted to understand andmanage AD. Predicting and
optimising biogas production is essential for energy savings and efficiency inwastewater treatment facilities.
While kineticmodels, such asfirst-order and theGompertz equation, estimate parameters like reaction rates
based on cumulativemethane production data from various biomass types [7], mechanisticmodels that provide
more detailed results are used to comprehend the biochemical processes occurring during AD. Themost
prominentmechanisticmodel for predicting cumulative biogas yield and composition inAD, based on
biochemical and physicochemical processes, is the AnaerobicDigestionModelNo. 1 (ADM1) [8].

Mechanisticmodels such as ADM1 require long-termdata that reflect steady-state conditions due to their
comprehensive nature.However, in practical applications, such as controlling real-scale industrial anaerobic
digesters that operate under variable conditions and varying feedstock contents, the use ofmechanisticmodels
presents challenges due to their computational complexity [9]. In contrast,machine learning approaches do not
require detailed biochemical assumptions and can effectively learn patterns fromoperational data,making them
highly suitable for real-time biogas yield optimisation under dynamic industrial conditions.

In recent years,machine learning (ML)models and soft computing techniques have emerged as alternative
methods for ADmodelling. Various regression analysismethods have been developed to predict biogas
production yield andCOD removal rates based on operating parameters [10]. Regression analysis is a statistical
technique used tomodel and analyse the relationship between a dependent variable and one ormore
independent variables [11]. In this approach, the developedmodel is transformed into a continuous-valued
output rather than an output derived from afinite set. In otherwords, a regressionmodel estimates a
continuous-valuedmultivariate function.Many algorithms have been devised for regression problems based on
the relationships among variables, such asMultiple Linear Regression (MLR) [12] for linear variables,
Polynomial Regression (PR), Support Vector Regression (SVR), orDecisionTree (DT) [13] for nonlinear
variables, as well as Ridge, Lasso, or ElasticNet [14] tomitigate the risk of overfitting, RandomForest, Gradient
Boosting, or Artificial NeuralNetworks (ANN) [15] for large and complex datasets, and finally, Bayesian
Regression [16] for uncertainty analysis. However,most of thesemodels have been tested in controlled or
limited-scale environments, and their comparative performance in real-scale, high-variability wastewater
conditions has not been comprehensively addressed.

In a study investigating the performance of threemachine learning techniques- namely ANN,Adaptive
Neuro-Fuzzy Inference System (ANFIS), and support vectormachine (SVM)- for predictingmethane
production in landfills wheremunicipal solidwaste is stored, it was determined that the SVMmodel
outperformed the otherMLmodels in predictingmethane production [17]. Although the SVMmodel excels in
estimating biogas production, it has significant drawbacks, including high computational costs whenmanaging
large datasets and an extremely slow training process due to the kernelmatrix growing quadratically with data
size in large datasets [18]. To address these challenges, SVR, a generalised formof SVMdesigned for regression
problems, is applied tomodel linear or nonlinear hyperplane variables using error tolerance (ò) and kernel
functions [19]. Themain advantages of SVR are (i) its computational complexity, which is independent of the
input domain’s dimensionality; (ii) the ability to generalise within input data, enhancing the system’s prediction
efficiency; (iii) adaptability to current data; and (iv) effectiveness in predicting future unknown data [19, 20].
Consequently, SVR exhibits a strong capability tomanage complex and nonlinear relationships among various
dependent and independent parameters [21]. Its application is becoming increasingly widespread to address
issues involving both linear and nonlinear correlations across various engineering challenges, including
wastewater treatment simulations. In a recent study, the relationship between process parameters (pH,
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oxidation–reduction potential, and conductivity) and daily volatile fatty acid production in an anaerobic
digester treating sewage sludgewas accurately predicted using theMLmodel constructedwith the SVR
algorithm [20]. Nevertheless,many of these applications focus on laboratory-scale systems and often lack
rigorous hyperparameter tuning procedures, which limits their robustness in industrial applications.

In order to achieve high accuracy estimation for complex data in SVR algorithm applications, the
appropriate selection of hyperparameters such as epsilon, box restriction (C), kernel scale and kernel function is
of great importance [22]. In SVRmodels, especially in order to effectively solve nonlinear andmultidimensional
problemswith limited samples, the appropriate kernel function selection is required. Linear, radial basis
function (RBF), polynomial and sigmoid kernel functions are themost frequently preferred kernel functions
[23]. Two SVR algorithmswith three kernel functionswere successfully implemented to relate process
parameters (flow rate,OLR, temperature, and influent solid concentration) toCOD removal efficiency in a
pilot-scale anaerobic digester treating printing and dyeingwastewater [24]. In the study, linear, RBF, and
sigmoid kernel functionswere utilized, and it was found that using different kernel functions did not
significantly affect the SVR algorithm’s performance, although the algorithms using the RBF kernel function
demonstrated the lowest error tolerance. TheRBF kernel has become the preferred kernel function in SVR
modelling for estimating biogas production [22, 25] due to its high efficiency andminimal parameter
changes [26].

While numerous studies have appliedmachine learning techniques tomodel anaerobic digestion processes,
themajority have focused on laboratory or pilot-scale reactors operating under stable and controlled conditions,
limiting their practical applicability to industrial systems. In particular, the effects of influent variability—caused
by seasonal and process-driven fluctuations in real industrial wastewater streams—have not been sufficiently
addressed. Furthermore, previous SVR-based studies often omit a detailed hyperparameter tuning process,
which is crucial for enhancingmodel generalisation and avoiding overfitting in nonlinear, high-dimensional
settings. Addressing these limitations, this study develops a robust, data-driven approach for biogas prediction
by applying an optimised SVRmodel to operational data from a full-scaleUASB reactor treating variable
industrial effluent. This contribution aims to bridge the gap between theoreticalmodel development and real-
world implementation in anaerobic digestion systems.

To address the identified research gap, this study implements a tuned SVRmodel on a real-scaleUASB
reactor dataset with high influent variability, aiming to improve the generalisability and practical applicability of
ML-based biogas prediction. Considering these challenges, this study investigates the predictability of biogas
production in a real-scaleUpflowAnaerobic Sludge Blanket (UASB) reactor using a SVRmodel with anRBF
kernel. This study specifically explores how variations in operational parameters—such as influent/effluent
CODconcentrations, soluble COD, volumetric organic loading rate, and hydraulic retention time—affect
biogas yield under industrial conditions. Through the integration of cross-validation and hyperparameter
tuning, the proposedmodel provides a reliable framework for guiding real-time operational decisions in large-
scale anaerobic digestion processes. The following sections present thematerials andmethods, experimental
findings, and the implications for biogas optimisation inwastewater treatment applications.

Material andmethods

Data collection
Inmodelling studies, operating parametersmonitored for three years during the operation of aUASB-type AD
reactor for treating wastewater generated in a fruit processing plant with a capacity of 125,000 tons/yearwere
used. Citrus fruits were used in the process. Thewastewater characteristics vary depending on the specific type of
citrus fruit processed, resulting in dynamic influent compositions throughout the year. These variations are
valuable for evaluating themodel’s robustness under real industrial conditions. Themeasured values of the
parameters selected as input data for developing and evaluating themodel, such as influent CODconcentration
(CODin), effluent CODconcentration (CODeff), effluent soluble CODconcentration (sCODeff), volumetric
organic loading rate (vOLR), andHRT, alongwith themeasured biogas production taken as output, were
summarised in table 1. The independent variables used in themodel were determined by considering their
effects on biogas production. The selected parameters are themost critical operational variables affecting biogas
production in the anaerobic digestion process and are supported by the findings of previous studies. In
particular, it is widely recognised in the literature that COD concentration, OLR, andHRT are strongly
correlatedwith biogas production [27]. Therefore, no additional feature selectionmethodwas applied in the
present study; instead, variables representing the key dynamics of the process were directly included in the
model.

The large variation in input parameters, particularly CODconcentrations, wasmeasured using the
procedure defined in the StandardMethods [28]. In this study, a real-scale UASB reactor was utilised, and no
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additional control reactor was installed. This decision aimed to directlymodel industrial-scale dynamic
operating conditions and generateML-based predictions using real systemdata.However, comparative analysis
with a control reactor in future studiesmay enhance the validity of themodel. The significant fluctuations in
input parameters arise fromprocessing different fruit types in various seasons at the facility. Such variations are
deemed beneficial for testing the accuracy of the SVR algorithm.

To clarify the structure and limitations of the dataset, it is important to note that themodel was developed
using a real-scale dataset collected over three years from a single industrial UASB reactor treating citrus fruit
processingwastewater. The dataset contains 300 instances, each representing a daily average of key operational
parameters and corresponding biogas production. Datawere collected using online sensors and lab-based
measurements, adhering to standardmonitoring protocols. No artificialfiltering or interpolationwas applied to
smooth the data, allowing themodel to reflect true industrial variability. Although this dataset provides high
temporal resolution and captures seasonal dynamics effectively, it is limited to a single facility and type of
wastewater. As such, the generalisability of the findings to other industrial sectors or digester configurations
requires validationwith diverse datasets. The selected features (CODin, CODeff, sCODeff, OLR, andHRT)were
chosen based on both domain knowledge and their consistent availability across themonitoring period.

Support vector regression (SVR)
SVM is a powerful supervised learning algorithmused for binary classification and regression problems, aiming
tofind the hyperplane that best separates the data by formulating them as convex optimisation problems [29].
The hyperplane is represented in terms of support vectors. SVR is a generalised formof SVMadapted for
regression problems andwas pioneered byVapnik andChervonenkis [19, 30]. Themain objective of SVR is to
find a function that best fits the training data while ensuring good predictive performance on new, unseen data.
SVR also defines an ε-insensitive zone around the function, referred to as the ε-tube. This tube redefines the
optimisation problem to identify the tube thatmost accurately approximates the continuous-valued function
while balancingmodel complexity and prediction error. The continuous-valued function can be expressed as
seen in equation (1):

R R( ) ( )y f x w x b w x by b x w, , , 1
j

M

j j
M

1
å= = á ñ + = + Î
=



whereMdenotes the order of the polynomial used to approximate a function. Additionally, x, y, w, and b denote
the input feature vector, target output, weight vector, and bias term, respectively. Themagnitude of theweights
can be viewed as an indicator offlatness. To achieve aflat function f, theweight vector wmust be small. A convex
optimisation problem is utilised tominimise the regression risk Rreg, as shown in equation (2):
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where the constant C> 0 acts as a regularization parameter, referred to as the box constraint. This parameter
balances the trade-off between the smoothness of f and the allowable deviation beyond the εmargin. Increasing
C imposes a greater penalty on errors, resulting inmore precise predictions. However, a higher C also elevates
model complexity, which diminishes its generalization ability compared to amodel with a lowerC value. In this
study, the C value is determined to be 0.3556, identified as the optimal value through cross-validation.

SVR interprets function approximation as an optimisation problem that seeks tofind the smallest possible
tube centred around the surfacewhileminimising the error value, which represents the difference between
predicted and actual outputs. SVR employs an ε-insensitive loss function that discards predictions deviating by
more than ε from the target output. The ε value determines the tube’s width, with a smaller ε indicating less
error tolerance, which affects both the number of support vectors and the sparsity of the solution. SVR considers
the ε-insensitive loss function as outlined in equation (3) to achieve its goal.

Table 1.Model input and output parameters.

Parameters Minimum Maximum Mean Standard deviation

Inputs

CODin (mg/l) 820.0 18558.0 6859.1 2604.1

CODeff (mg/l) 20.0 6690.0 1787.8 1001.6

sCODeff (mg/l) 0.0 2340.0 684.6 451.5

vOLR (kg/m3) 0.90 30.40 10.54 6.54

HRT (day) 3.20 75.60 21.23 16.39

Output

Biogas production (m3/day) 222.0 14317.0 4284.0 2977.1
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SVMuses kernel functions to transformdata points from their original feature space into a higher-
dimensional space, facilitating linear separation in the new space [31]. The RBF shown in equation (4) is selected
as the kernel function because it is themost commonly used kernel and performswell on complex nonlinear
data. The RBF kernel computes the exponential of the negative squared Euclidean distance between feature
vectors x and x’, scaled by a parameterσ. x and x’ represent the input feature vectors.
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The gamma value is important for the RBF kernel. A low gamma value provides a broader generalisation but
reduces the complexity of themodel. A high gamma value, on the other hand, leads tomore detailed learning but
increases the risk of overfitting. In this study, it is set to 0.7543. For this study, an SVRmodel is employed, where
careful parameter selection is essential to optimise accuracy and generalisation. The input layer comprises seven
vectors: TCOD in, TCODout, SCODout, volumetric load, retention time in the reactor (hour), retention time
in the reactor (day), andTCOD removal efficiency (%). Themodel features one hidden node and a single output
node representing biogas production (figure 1). Implemented in Python using scikit-learn, themodel aims to
minimise the loss function effectively.

Evaluation of statisticalmetrics
To assess the robustness of the developed SVRmodel, Cross-validation,Mean Squared Error (MSE) and the
Coefficient ofDetermination (R2) have been employed. Cross-validation is amodel validation technique that
tests how the results of a statistical analysis will performon an independent dataset. In a predictive problem, the
model is typically trained on the knowndatasets and tested on the unknown datasets (validation set). This testing
aims to identify overfitting or selection bias [32]. In this study, 10-fold cross-validationwas applied, where the
dataset was partitioned into 10 equal subsets (folds).

MSE is awidely used predictor to quantify the average squared difference between the observed and
predicted values using equation (4).MSE is derived from the square of the Euclidean distance, which always
gives a positive value and decreases as the error approaches zero. For SVR similarity approach,MSE predictor is
calculated using equation (4).

( ) ( )MSE
n

y y a
1

4
i

n

i i
1

2å= - ¢
=

where n is the number of the data points, yi and y’i observed and predicts values for the i-th observation,
respectively.

Figure 1.Architecture of the SVR.
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The coefficient of determination (R2) indicates the extent towhich themodel accurately replicates observed
outcomes, reflecting the proportion of the total variation in the outcomes that is explained by themodel. The R2

is calculated using equation (5):
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where n, yi and y’i are the number of the data points, observed and predicts values of the i-th observation,
respectively like equation (4). In addition, ̅yi it represents themean of the observed values.

Experimental results

Performance of the SVRmodel
In this study, an SVRmodel with RBF kernel is developed for themodelling of biogas production from an
anaerobic digester treating fruit processingwastewater. The dataset used encompasses critical operational and
performance parameters, highlighting the fundamental dynamics of anaerobic digester performance and its
correlationwith biogas production. To further examine the relationships between selected inputs and output, a
correlationmatrix was computed, as presented infigure 2. The analysis revealed thatOLR exhibits the strongest
positive correlationwith biogas production (correlation coefficient= 0.92), indicating its key role as a predictor.
In contrast, HRTdemonstrates a strong negative correlation (−0.63), suggesting an inverse effect. CODin and
CODeff also showmoderate positive correlations (0.57 and 0.38, respectively), while sCODeff appears to have
negligible influence (−0.02). These results confirm that thefive selected features collectively provide a robust
basis formodeling, withOLR emerging as themost informative variable in relation to the output.

The performance of themodel first comes through in a comparison between actual and predicted values of
biogas production, represented infigure 3. The scattered points exhibit a clear trend aligning closely with the
perfectfit line (y= x), indicating that the SVRmodel effectively captures the nonlinear relationships between the
input variables and biogas production, demonstrating high predictive accuracy across the entire dataset.

Figure 4 presents a time-series plot of actual and predicted values, demonstrating themodel’s ability to
accurately follow trends and fluctuations in biogas production over time. Performance is demonstrable in both
low and high output ranges, attesting to themodel’s effectiveness under a variety of operational regimes.

Figure 2. Feature correlationmatrix for SVR.
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Robustness and generalisability of SVRmodel
The comparative performance of different regressionmodels using 10-fold cross-validation is presented in
table 2 (MSE) and table 3 (R2). Thesemeasures provide a sense of the stability and generalisability of the SVR
model compared to Linear and Polynomial Regression approaches. The benchmark values in tables 2 and 3were

Figure 3.Comparison of actual and predicted biogas production values.

Figure 4.Time-series of actual and predicted biogas production values.

Table 2.BenchmarkingMSE performance of regressionmodels via 10-FoldCross-Validation.

Model Mean Standard deviation Min(Fold-wise) Max(Fold-wise)

SVR 0.0047 0.0017 0.0011 0.0092

Linear 0.0057 0.0028 0.0018 0.0100

Polynomial (2ndDegree) 0.0086 0.0070 0.0015 0.0260

Polynomial (3rdDegree) 0.0691 0.1424 0.0059 0.4895
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established by evaluating the consistency and predictive accuracy ofmultiple regressionmodels using standard
cross-validationmetrics.MSE andR2were used to quantify bothmodel bias and variance.

The SVRmodel is the best among all themodels regardingMSE, having the lowest error rate (0.0047mean
MSE) and the smallest variation (0.0017 standard deviation), as shown in table 2. This indicates that SVR
provides accurate predictionswithminimal variation across different folds, reflecting its stability. In table 3, SVR
achieves the highest average R2 value (0.8983), demonstrating that it can account formost of the data variance.
Moreover, a low standard deviation of 0.0382 indicates strong generalisation performance, with themodel
maintaining high predictive quality across various training and validation sets.

Linear Regression (LR) performs really well, with a competitive R2 score (0.8707), but a less favourableMSE
(0.0057) than SVR. This suggests that linear relationships capture a lot of the structure of the data, yet SVR
pushes accuracy even further. PR (2ndDegree) demonstratesmore volatility in performancewith its larger
standard deviation both forMSE (0.0070) andR2 (0.1881). This suggests that themodel overfits on some of the
folds and underfits on others, reducing the reliability.

PR (3rdDegree) is the least effective, exhibiting an unstable and negativemeanR2 (−0.8693) alongside an
exceedingly high standard deviation (3.8921). The significant variation in the fold-wise scores reinforces the
existence of extreme overfitting, rendering themodel highly unreliable for generalisation. The results fromboth
MSE andR2metrics clearly indicate that SVR offers the best balance of accuracy, stability, and generalizability.
Its low error, high explanatory power, andminimal performance variation between folds demonstrate its
robustness. Unlike polynomial regression, which is highly unstable due to overfitting, SVR successfully captures
nonlinear patterns without exhibiting high variance,making it themost dependable regression technique for
this data.

Refinement of SVRmodel
Hyperparameter optimisation plays a crucial role in enhancingmachine learningmodels by identifying the
optimal combination of parameters tomaximise predictive performance. To refine the SVRmodel,
hyperparameter tuningwas conducted using RandomizedSearchCV, which efficiently explores the search space
by evaluating a randomly selected subset of parameter combinations. UnlikeGridSearchCV, which exhaustively
tests all possible configurations, RandomizedSearchCV reduces computational costs whilemaintaining a high
likelihood of identifying near-optimal hyperparameters. By carefully adjusting the number of iterations, it is
possible to strike a balance between optimisingmodel performance and ensuring computational efficiency.

To achieve awell-tunedmodel, a total of 100 different hyperparameter configurationswere evaluated using
10-fold cross-validation, leading to 1.000model fits. The optimisation process determined the best values for γ
and C as 0.7543 and 0.3556, respectively, which resulted in aminimummean squared error of 0.0011. The
stability of the cross-validationmean squared error across folds confirms that the refinedmodelmaintains high
accuracywhile avoiding both overfitting and underfitting. This consistency across validation sets indicates that
the optimised SVRmodel generalises well to unseen data, reinforcing its robustness and predictive reliability. In
order to further cross-check the validity of themodel, residual analysis was performed, as evident infigure 5. The
residuals exhibit a uniformdistribution centred at zerowith no systematic distortion and recognisable patterns.
This observation indicates that themodel effectively captures the underlying patterns within the dataset with a
goodmargin of accuracy. Furthermore, the absence of heteroscedasticity among the residuals further guarantees
the stability of themodel and that prediction errors are constant at different levels of the response variable.
Taken together, the findings conclude that the optimised SVRmodel is not only reliable and capable ofmaking
predictionswith a goodmargin of accuracy at different working conditions.

Feature contribution analysis using SHAP
To enhance interpretability of the SVRmodel and provide a deeper understanding of how each input feature
influences biogas prediction, SHAP analysis was employed. This post hocmethod decomposes the SVRoutput
into additive feature contributions, enabling a detailed assessment of input importance over the entire dataset.

The SHAP results indicate that TCODOutflow (mg/l) andVolumetric Load (kg/m3) are themost impactful
features, withmean SHAP contributions of approximately+0.0022 and+0.0014, respectively. These features

Table 3.Benchmarking R2 performance of regressionmodels via 10-Fold cross-validation.

Model Mean Standard deviation Min(Fold-wise) Max(Fold-wise)

SVR 0.8983 0.0382 0.8029 0.9248

Linear 0.8707 0.0506 0.7753 0.9434

Polynomial (2ndDegree) 0.7874 0.1881 0.2928 0.9623

Polynomial (3rdDegree) −0.8693 3.8921 −12.3063 0.8521
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consistently exhibit strong positive influence on biogas prediction, aligningwith their established role in
anaerobic digestion processes. In contrast, SCODOutflow (mg/l) shows a negativemean SHAP value around
−0.0019, suggesting an inverse or non-contributory relationshipwith themodel output. Retention Time (days)
also yields amoderate negative contribution (−0.0012), while other features such as TCOD Inflow andTCOD
Removal Efficiency havemarginal impact (near zeromean SHAP values).

These findings confirm that predictive relevance is feature and context dependent. As shown infigure 6,
TCODOutflow andVolumetric Load dominate themodel’s output attribution, underscoring their role as key
drivers in SVR-based biogas predictionmodels.

Comparison of developedmodelswith literature studies
Recent literature underscores the effectiveness of variousmachine learning (ML)models—such as artificial
neural networks (ANN), support vectormachines (SVM), adaptive neuro-fuzzy inference systems (ANFIS), and
their hybrid forms—in predicting biogas production,methane emissions, and other bio-process parameters, as
summarised in table 4. For instance, AbuQdais et al (2010) reported a high predictive accuracy (R2= 0.8703)
using anANN-GAhybridmodel, based on input variables such as temperature, solids content, and pH.

Figure 5.Residuals plot for biogas production predictions.

Figure 6.Total SHAP contributions of input features to SVRpredictions.
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Table 4. Literature-based performance comparison ofML techniques in anaerobic digestion prediction.

Reference Data size Model type Output R2 Error rate

(AbuQdais et al 2010) 177 ANN-GA Biogas production ~0.870 MSE: 0.006

(Xu et al 2014) 50 ANN Methane emission 0.912–0.976 —

[17] 9327 ANNANFIS SVM Methane emission 0.680–0.900 MSE: 0.04–0.05RMSE: 10.31–13.13

(Zaied et al 2020) 15 ANN-PSO Biogas production 0.977–0.998 MSE 0.016–0.209

(Asadi andMcPhedran, 2021) 15 ANN-ANFIS Biogas production ~0.810 RMSE 0.95

(Alejo et al 2018) 37 SVMANN Protein degradation 0.875–0.898 MSE 0.095–0.122

(Olatunji et al 2024) 14–18 SVR Biogas production ~0.900 RMSE 0.0842

(Farzin, et al 2024) 297 SVR-GASVR-PSOANN-GAANN-PSO Biogas production 0.645–0.773 MSE 0.200–0.265RMSE 0.477 - 0.515

[24] 45 SVR Biogas production ~0.738 RMSE 5.05

Our study 300 SVR Biogas production 0.802–0.924 MSE 0.001–0.009
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Similarly, Xu et al (2014) achieved R2 values ranging from0.912 to 0.976 formethane emission estimation using
ANNarchitectures applied to various biomass inputs. In larger datasets, such as the one analysed byMehrdad
et al (2021), bothANFIS and SVMmodels demonstrated robust performance, with R2 values between 0.70 and
0.90, andRMSE values in the range of 11–13, indicating their reliability inmodelling landfillmethane emissions.

More recent studies have continued to investigate hybrid and optimisedML frameworks. Zaied et al (2020)
andAsadi andMcPhedran (2021) employedANN-PSO andANN-ANFISmodels, respectively, reporting
exceptionally high prediction accuracies (R2 up to 0.998) in biogas yield prediction. Likewise, support vector
regression (SVR) and its optimised variants—such as SVR-GA and SVR-PSO—have shown consistent
performance in studies byOlatunji et al (2024) and Farzin et al (2024), with R2 values ranging from0.645 to 0.773
andRMSE values as low as 0.0842. Additionally, Qi et al (2022) demonstrated the applicability of SVR in
modelling anaerobic baffled reactor (ABR) performance, achieving amoderate R2 value of 0.738. Collectively,
these studies emphasise thatmodel selection, hyperparameter optimisation, and hybridisation strategies
significantly influence predictive performance—particularly when alignedwith the characteristics of the input
variables and the scale of the data.

Limitations of the study
Although the proposed SVRmodel exhibits high predictive performance, several limitationsmust be considered
to properly interpret its applicability and scope. Themodel was trained using data from a single full-scaleUASB
reactor treating wastewater from a fruit processing facility.While this dataset offers rich variability due to
seasonalfluctuations in influent composition, it also reflects the specific operational characteristics of one
industrial site. Therefore, generalising the findings to other reactor types orwastewater sources—such as
municipal or dairy effluents—requires further validation acrossmultiple case studies

Another limitation stems from the number of input variables included in themodelling process. The study
utilised five key parameters (CODin, CODeff, sCODeff, OLR, andHRT) based on their known relevance in
biogas production and consistent availability in plant records. However, other influential factors—such as
temperature, pH, alkalinity, total solids, andmicrobial community composition—were excluded due to
incomplete or irregular data collection. This exclusionmay limit themodel’s ability to capture certain biological
or environmental dynamics that affectmethane yield.

The learning architecture used in this work is offline and static in nature, relying on historical datasets.While
effective for training and validation, suchmodelsmay not respond optimally to sudden changes in system
conditions unless periodically retrained. For deployment in real-time control systems, adaptive or online
learning strategies should be considered to enhance responsiveness.

Finally, although SVR is highly effective in learning nonlinear relationships, it functions as a black-box
model with limited interpretability. Unlikemechanisticmodels such as ADM1, it does not provide insight into
causal pathways or internal process states. This restricts its utility in diagnostic or explanatory scenarios where
understanding of systembehaviour is required. Additionally, no uncertainty quantification or input sensitivity
analysis was performed, which could have strengthened the robustness evaluation of themodel under varying
operational regimes.

Conclusion

This study evaluated the predictive capability of a Support Vector Regression (SVR)model with a Radial Basis
Function (RBF) kernel for estimating biogas production in a full-scale UpflowAnaerobic Sludge Blanket (UASB)
reactor treating industrial wastewater from a fruit processing facility. Using five key operational parameters—
namely influent and effluent CODconcentrations, soluble COD, volumetric organic loading rate, and hydraulic
retention time the SVRmodel achieved high accuracy, with an average coefficient of determination (R2) of
0.8983 and amean squared error (MSE) of 0.0047 under 10-fold cross-validation.

Comparative analysis showed that SVR consistently outperformed conventional regression approaches,
particularly third-degree Polynomial Regression, which exhibited overfitting and poor generalisation. The
robustness of the SVRmodel under conditions of variable influent composition further underlines its suitability
for real-world industrial applications. Seasonal fluctuations inwastewater characteristics, often a challenge for
modelling efforts, were effectively capturedwithout degradation in predictive performance. Hyperparameter
tuning via RandomizedSearchCVwas instrumental in enhancingmodel generalisationwhilemaintaining
computational efficiency.

In addition to its predictive strength, themodel’s interpretability was enhanced using SHAP analysis, which
quantified the contribution of each input variable to themodel’s output. TCODOutflow andVolumetric Load
emerged as themost influential predictors, while features such as SCODOutflow andRetentionTime had lower
or even negative contributions. These insights not only alignwith established process knowledge but also
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demonstrate themodel’s transparency and reliability. The integration of SHAP analysis supports explainable AI
practices, enabling process engineers tomake informed decisions based on bothmodel outputs and the
underlying feature dynamics.

Overall, the SVRmodel presents a reliable and interpretable solution for biogas yield prediction and process
optimisation in anaerobic digestion systems. Future studiesmay explore the inclusion of additional process
parameters such as temperature, pH, and alkalinity, as well as the integration of real-time sensor data streams.
Furthermore, hybrid approaches that couplemachine learningmodels withmechanistic frameworks like
ADM1 could offer a powerful synergy between predictive accuracy and process-level interpretability, paving the
way toward intelligent and adaptive biogas production systems.
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