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Abstract

Biogas production through anaerobic digestion (AD) of industrial organic waste and wastewater offers
asustainable method for energy recovery. However, since process efficiency heavily relies on
operational factors, continuous monitoring of the AD process and the implementation of necessary
operational strategies are crucial. In recent years, the use of machine learning techniques (ML) has
become widespread for analysing the effects of operational factors on anaerobic digestion efficiency.
Among these, Support Vector Regression (SVR) with a Radial Basis Function (RBF) kernel has been
used to predict biogas yield based on diverse operating parameters. This study aimed to investigate the
predictability of changes in biogas production using the SVR algorithm with an RBF kernel in a full-
scale anaerobic digester treating wastewater from a fruit processing plant. In the model, biogas
production was estimated based on variations in selected operational parameters, achieving a
regression coefficient (R*) 0f 0.8983 + 0.03 with mean square error (MSE) 0f 0.0047 4= 0.0017. The
model’s performance was evaluated using 10-fold cross-validation techniques and relevant statistical
indicators to ensure robustness and generalisability. Hyperparameter tuning was conducted to
enhance prediction accuracy while reducing model error. The findings demonstrated that ML-based
modelling can serve as a reliable and effective tool to improve biogas production efficiency in
wastewater treatment applications. Furthermore, the study highlights the potential of such models to
support real-time process control and decision making in anaerobic digestion systems operating
under variable industrial conditions.

Introduction

Renewable energy incentives and the transition processes towards a circular economy in the context of climate
change have increased the significance of biomass as a raw material (Sherwood, 2020). Anaerobic digestion (AD)
is one of the most widely utilised technologies for converting waste and raw biomass into feedstock for energy
production. AD technology is effectively used in industries that generate high organic content wastewater, such
as fruit processing plants, for simultaneous wastewater treatment and energy recovery. However, the
composition of wastewater produced in these industries varies based on the type and quantity of raw material

© 2025 The Author(s). Published by IOP Publishing Ltd
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processed at the facility. This variability in wastewater composition, known as influent parameters, leads to
unstable conditions in AD and, consequently, fluctuations in biogas production. Achieving high biogas output
with AD relies on managing the sensitive microorganisms involved in converting biomass to methane, which is
crucial for process control. In other words, the efficiency of AD particularly depends on regulating operational
parameters [1].

Operating parameters that affect the performance of anaerobic microorganisms and the efficiency of biogas
production include pH, temperature, organic loading rate (OLR), and carbon/nitrogen ratio, which indicate the
nutrient balance necessary for microbial growth. Additionally, alkalinity, hydraulic retention time (HRT), and
solids content play important roles [2—4]. OLR determines the maximum biogas production and the extent of
chemical oxygen demand (COD) removal. Effluent characteristics, including recirculation practises,
significantly influence removal efficiency. Methane production and hydrolysis rates are particularly affected by
the recirculation rate. However, substrates with high solid content reduce methane production [5], while lower
HRT can enhance biogas yield [6]. Each of these parameters is critically important for evaluating the
performance and operational efficiency of a wastewater treatment system.

Optimising operating parameters and process configurations to enhance biogas production through AD is a
crucial subject for research. However, experimental studies aimed at optimising various operating parameters
across different process configurations can be time-consuming and expensive. Therefore, similar to other
biochemical processes, modelling studies are conducted to understand and manage AD. Predicting and
optimising biogas production is essential for energy savings and efficiency in wastewater treatment facilities.
While kinetic models, such as first-order and the Gompertz equation, estimate parameters like reaction rates
based on cumulative methane production data from various biomass types [7], mechanistic models that provide
more detailed results are used to comprehend the biochemical processes occurring during AD. The most
prominent mechanistic model for predicting cumulative biogas yield and composition in AD, based on
biochemical and physicochemical processes, is the Anaerobic Digestion Model No. 1 (ADM1) [8].

Mechanistic models such as ADM1 require long-term data that reflect steady-state conditions due to their
comprehensive nature. However, in practical applications, such as controlling real-scale industrial anaerobic
digesters that operate under variable conditions and varying feedstock contents, the use of mechanistic models
presents challenges due to their computational complexity [9]. In contrast, machine learning approaches do not
require detailed biochemical assumptions and can effectively learn patterns from operational data, making them
highly suitable for real-time biogas yield optimisation under dynamic industrial conditions.

In recent years, machine learning (ML) models and soft computing techniques have emerged as alternative
methods for AD modelling. Various regression analysis methods have been developed to predict biogas
production yield and COD removal rates based on operating parameters [10]. Regression analysis is a statistical
technique used to model and analyse the relationship between a dependent variable and one or more
independent variables [11]. In this approach, the developed model is transformed into a continuous-valued
output rather than an output derived from a finite set. In other words, a regression model estimates a
continuous-valued multivariate function. Many algorithms have been devised for regression problems based on
the relationships among variables, such as Multiple Linear Regression (MLR) [12] for linear variables,
Polynomial Regression (PR), Support Vector Regression (SVR), or Decision Tree (DT) [13] for nonlinear
variables, as well as Ridge, Lasso, or Elastic Net [ 14] to mitigate the risk of overfitting, Random Forest, Gradient
Boosting, or Artificial Neural Networks (ANN) [15] for large and complex datasets, and finally, Bayesian
Regression [16] for uncertainty analysis. However, most of these models have been tested in controlled or
limited-scale environments, and their comparative performance in real-scale, high-variability wastewater
conditions has not been comprehensively addressed.

In a study investigating the performance of three machine learning techniques- namely ANN, Adaptive
Neuro-Fuzzy Inference System (ANFIS), and support vector machine (SVM)- for predicting methane
production in landfills where municipal solid waste is stored, it was determined that the SVM model
outperformed the other ML models in predicting methane production [17]. Although the SVM model excels in
estimating biogas production, it has significant drawbacks, including high computational costs when managing
large datasets and an extremely slow training process due to the kernel matrix growing quadratically with data
size in large datasets [ 18]. To address these challenges, SVR, a generalised form of SVM designed for regression
problems, is applied to model linear or nonlinear hyperplane variables using error tolerance (¢) and kernel
functions [19]. The main advantages of SVR are (i) its computational complexity, which is independent of the
input domain’s dimensionality; (ii) the ability to generalise within input data, enhancing the system’s prediction
efficiency; (iii) adaptability to current data; and (iv) effectiveness in predicting future unknown data [19, 20].
Consequently, SVR exhibits a strong capability to manage complex and nonlinear relationships among various
dependent and independent parameters [21]. Its application is becoming increasingly widespread to address
issues involving both linear and nonlinear correlations across various engineering challenges, including
wastewater treatment simulations. In a recent study, the relationship between process parameters (pH,
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oxidation—reduction potential, and conductivity) and daily volatile fatty acid production in an anaerobic
digester treating sewage sludge was accurately predicted using the ML model constructed with the SVR
algorithm [20]. Nevertheless, many of these applications focus on laboratory-scale systems and often lack
rigorous hyperparameter tuning procedures, which limits their robustness in industrial applications.

In order to achieve high accuracy estimation for complex data in SVR algorithm applications, the
appropriate selection of hyperparameters such as epsilon, box restriction (C), kernel scale and kernel function is
of great importance [22]. In SVR models, especially in order to effectively solve nonlinear and multidimensional
problems with limited samples, the appropriate kernel function selection is required. Linear, radial basis
function (RBF), polynomial and sigmoid kernel functions are the most frequently preferred kernel functions
[23]. Two SVR algorithms with three kernel functions were successfully implemented to relate process
parameters (flow rate, OLR, temperature, and influent solid concentration) to COD removal efficiency in a
pilot-scale anaerobic digester treating printing and dyeing wastewater [24]. In the study, linear, RBF, and
sigmoid kernel functions were utilized, and it was found that using different kernel functions did not
significantly affect the SVR algorithm’s performance, although the algorithms using the RBF kernel function
demonstrated the lowest error tolerance. The RBF kernel has become the preferred kernel function in SVR
modelling for estimating biogas production [22, 25] due to its high efficiency and minimal parameter
changes [26].

While numerous studies have applied machine learning techniques to model anaerobic digestion processes,
the majority have focused on laboratory or pilot-scale reactors operating under stable and controlled conditions,
limiting their practical applicability to industrial systems. In particular, the effects of influent variability—caused
by seasonal and process-driven fluctuations in real industrial wastewater streams—have not been sufficiently
addressed. Furthermore, previous SVR-based studies often omit a detailed hyperparameter tuning process,
which is crucial for enhancing model generalisation and avoiding overfitting in nonlinear, high-dimensional
settings. Addressing these limitations, this study develops a robust, data-driven approach for biogas prediction
by applying an optimised SVR model to operational data from a full-scale UASB reactor treating variable
industrial effluent. This contribution aims to bridge the gap between theoretical model development and real-
world implementation in anaerobic digestion systems.

To address the identified research gap, this study implements a tuned SVR model on a real-scale UASB
reactor dataset with high influent variability, aiming to improve the generalisability and practical applicability of
ML-based biogas prediction. Considering these challenges, this study investigates the predictability of biogas
production in a real-scale Upflow Anaerobic Sludge Blanket (UASB) reactor using a SVR model with an RBF
kernel. This study specifically explores how variations in operational parameters—such as influent/effluent
COD concentrations, soluble COD, volumetric organic loading rate, and hydraulic retention time—affect
biogas yield under industrial conditions. Through the integration of cross-validation and hyperparameter
tuning, the proposed model provides a reliable framework for guiding real-time operational decisions in large-
scale anaerobic digestion processes. The following sections present the materials and methods, experimental
findings, and the implications for biogas optimisation in wastewater treatment applications.

Material and methods

Data collection
In modelling studies, operating parameters monitored for three years during the operation of a UASB-type AD
reactor for treating wastewater generated in a fruit processing plant with a capacity of 125,000 tons/year were
used. Citrus fruits were used in the process. The wastewater characteristics vary depending on the specific type of
citrus fruit processed, resulting in dynamic influent compositions throughout the year. These variations are
valuable for evaluating the model’s robustness under real industrial conditions. The measured values of the
parameters selected as input data for developing and evaluating the model, such as influent COD concentration
(CODjy), effluent COD concentration (COD.g), effluent soluble COD concentration (sCOD.¢), volumetric
organic loading rate (VOLR), and HRT, along with the measured biogas production taken as output, were
summarised in table 1. The independent variables used in the model were determined by considering their
effects on biogas production. The selected parameters are the most critical operational variables affecting biogas
production in the anaerobic digestion process and are supported by the findings of previous studies. In
particular, it is widely recognised in the literature that COD concentration, OLR, and HRT are strongly
correlated with biogas production [27]. Therefore, no additional feature selection method was applied in the
present study; instead, variables representing the key dynamics of the process were directly included in the
model.

The large variation in input parameters, particularly COD concentrations, was measured using the
procedure defined in the Standard Methods [28]. In this study, a real-scale UASB reactor was utilised, and no
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Table 1. Model input and output parameters.

Parameters Minimum Maximum Mean Standard deviation
Inputs

CODy, (mg/1) 820.0 18558.0 6859.1 2604.1

CODeg(mg/1) 20.0 6690.0 1787.8 1001.6

sCOD,¢(mg/1) 0.0 2340.0 684.6 451.5

VOLR (kg/m?) 0.90 30.40 10.54 6.54

HRT (day) 3.20 75.60 21.23 16.39
Output

Biogas production (m?/day) 222.0 14317.0 4284.0 2977.1

additional control reactor was installed. This decision aimed to directly model industrial-scale dynamic
operating conditions and generate ML-based predictions using real system data. However, comparative analysis
with a control reactor in future studies may enhance the validity of the model. The significant fluctuations in
input parameters arise from processing different fruit types in various seasons at the facility. Such variations are
deemed beneficial for testing the accuracy of the SVR algorithm.

To clarify the structure and limitations of the dataset, it is important to note that the model was developed
using a real-scale dataset collected over three years from a single industrial UASB reactor treating citrus fruit
processing wastewater. The dataset contains 300 instances, each representing a daily average of key operational
parameters and corresponding biogas production. Data were collected using online sensors and lab-based
measurements, adhering to standard monitoring protocols. No artificial filtering or interpolation was applied to
smooth the data, allowing the model to reflect true industrial variability. Although this dataset provides high
temporal resolution and captures seasonal dynamics effectively, it is limited to a single facility and type of
wastewater. As such, the generalisability of the findings to other industrial sectors or digester configurations
requires validation with diverse datasets. The selected features (CODin, CODeff, sCODeff, OLR, and HRT) were
chosen based on both domain knowledge and their consistent availability across the monitoring period.

Support vector regression (SVR)

SVM is a powerful supervised learning algorithm used for binary classification and regression problems, aiming
to find the hyperplane that best separates the data by formulating them as convex optimisation problems [29].
The hyperplane is represented in terms of support vectors. SVR is a generalised form of SVM adapted for
regression problems and was pioneered by Vapnik and Chervonenkis [19, 30]. The main objective of SVRis to
find a function that best fits the training data while ensuring good predictive performance on new, unseen data.
SVR also defines an e-insensitive zone around the function, referred to as the e-tube. This tube redefines the
optimisation problem to identify the tube that most accurately approximates the continuous-valued function
while balancing model complexity and prediction error. The continuous-valued function can be expressed as
seen in equation (1):

M
y=f(x)=(w,x) +b="> wxj+ by, beRx, w € RM e))
=1
where M denotes the order of the polynomial used to approximate a function. Additionally, x, y, w, and b denote
the input feature vector, target output, weight vector, and bias term, respectively. The magnitude of the weights
can be viewed as an indicator of flatness. To achieve a flat function f, the weight vector w must be small. A convex
optimisation problem is utilised to minimise the regression risk R, as shown in equation (2):

N
Rreg == %Wz + CZ (€i + gik) (2)
i=1
where the constant C > 0 acts as a regularization parameter, referred to as the box constraint. This parameter
balances the trade-off between the smoothness of f and the allowable deviation beyond the ¢ margin. Increasing
Cimposes a greater penalty on errors, resulting in more precise predictions. However, a higher C also elevates
model complexity, which diminishes its generalization ability compared to a model with a lower C value. In this
study, the C value is determined to be 0.3556, identified as the optimal value through cross-validation.

SVR interprets function approximation as an optimisation problem that seeks to find the smallest possible
tube centred around the surface while minimising the error value, which represents the difference between
predicted and actual outputs. SVR employs an e-insensitive loss function that discards predictions deviating by
more than ¢ from the target output. The ¢ value determines the tube’s width, with a smaller  indicating less
error tolerance, which affects both the number of support vectors and the sparsity of the solution. SVR considers
the e-insensitive loss function as outlined in equation (3) to achieve its goal.

4



10P Publishing

Environ. Res. Commun. 7 (2025) 065016 M E Isenkul et al

TCOD in (mg/l)

TCOD out (mg/T)

<
w

N Biogas Production

._‘.- ® y ...' \ G .
N - Output (y)
W, X I
|

SCOD out (mg/T)

Volumetric Load (kg/m3)

Ret. Time in reactor (hour)
Ret. Time in reactor (day)

TCOD Rem Eff %

QOO

Weights
Input vectors Hidden nodes
Figure 1. Architecture of the SVR.
0 ly — f(x, w) < el
L b > - . 3
A {Iy —fwl —¢ otherwise )

SVM uses kernel functions to transform data points from their original feature space into a higher-
dimensional space, facilitating linear separation in the new space [31]. The RBF shown in equation (4) is selected
as the kernel function because it is the most commonly used kernel and performs well on complex nonlinear
data. The RBF kernel computes the exponential of the negative squared Euclidean distance between feature
vectors x and x’, scaled by a parameter 0. x and X’ represent the input feature vectors.

— 52
kRBF(x: X/) = exp(_u) (4)

202

The gamma value is important for the RBF kernel. A low gamma value provides a broader generalisation but
reduces the complexity of the model. A high gamma value, on the other hand, leads to more detailed learning but
increases the risk of overfitting. In this study, it is set to 0.7543. For this study, an SVR model is employed, where
careful parameter selection is essential to optimise accuracy and generalisation. The input layer comprises seven
vectors: TCOD in, TCOD out, SCOD out, volumetric load, retention time in the reactor (hour), retention time
in the reactor (day), and TCOD removal efficiency (%). The model features one hidden node and a single output
node representing biogas production (figure 1). Implemented in Python using scikit-learn, the model aims to
minimise the loss function effectively.

Evaluation of statistical metrics

To assess the robustness of the developed SVR model, Cross-validation, Mean Squared Error (MSE) and the
Coefficient of Determination (R*) have been employed. Cross-validation is a model validation technique that
tests how the results of a statistical analysis will perform on an independent dataset. In a predictive problem, the
model is typically trained on the known datasets and tested on the unknown datasets (validation set). This testing
aims to identify overfitting or selection bias [32]. In this study, 10-fold cross-validation was applied, where the
dataset was partitioned into 10 equal subsets (folds).

MSE is a widely used predictor to quantify the average squared difference between the observed and
predicted values using equation (4). MSE is derived from the square of the Euclidean distance, which always
gives a positive value and decreases as the error approaches zero. For SVR similarity approach, MSE predictor is
calculated using equation (4).

MSE = %Z(yi —y')? (4a)
i=1

where n is the number of the data points, y; and y’; observed and predicts values for the i-th observation,
respectively.
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Figure 2. Feature correlation matrix for SVR.

The coefficient of determination (R*) indicates the extent to which the model accurately replicates observed
outcomes, reflecting the proportion of the total variation in the outcomes that is explained by the model. The R
is calculated using equation (5):

S — y')?

R=1-5=— 5)
> 0r =7
i=1

where n, y;and y’; are the number of the data points, observed and predicts values of the i-th observation,
respectively like equation (4). In addition, 7, it represents the mean of the observed values.

Experimental results

Performance of the SVR model

In this study, an SVR model with RBF kernel is developed for the modelling of biogas production from an
anaerobic digester treating fruit processing wastewater. The dataset used encompasses critical operational and
performance parameters, highlighting the fundamental dynamics of anaerobic digester performance and its
correlation with biogas production. To further examine the relationships between selected inputs and output, a
correlation matrix was computed, as presented in figure 2. The analysis revealed that OLR exhibits the strongest
positive correlation with biogas production (correlation coefficient = 0.92), indicating its key role as a predictor.
In contrast, HRT demonstrates a strong negative correlation (—0.63), suggesting an inverse effect. CODin and
CODeff also show moderate positive correlations (0.57 and 0.38, respectively), while sCODeff appears to have
negligible influence (—0.02). These results confirm that the five selected features collectively provide a robust
basis for modeling, with OLR emerging as the most informative variable in relation to the output.

The performance of the model first comes through in a comparison between actual and predicted values of
biogas production, represented in figure 3. The scattered points exhibit a clear trend aligning closely with the
perfect fitline (y = x), indicating that the SVR model effectively captures the nonlinear relationships between the
input variables and biogas production, demonstrating high predictive accuracy across the entire dataset.

Figure 4 presents a time-series plot of actual and predicted values, demonstrating the model’s ability to
accurately follow trends and fluctuations in biogas production over time. Performance is demonstrable in both
low and high output ranges, attesting to the model’s effectiveness under a variety of operational regimes.
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Table 2. Benchmarking MSE performance of regression models via 10-Fold Cross-Validation.

Model Mean Standard deviation Min(Fold-wise) Max(Fold-wise)
SVR 0.0047 0.0017 0.0011 0.0092
Linear 0.0057 0.0028 0.0018 0.0100
Polynomial (2nd Degree) 0.0086 0.0070 0.0015 0.0260
Polynomial (3rd Degree) 0.0691 0.1424 0.0059 0.4895
Robustness and generalisability of SVR model

The comparative performance of different regression models using 10-fold cross-validation is presented in

table 2 (MSE) and table 3 (R%). These measures provide a sense of the stability and generalisability of the SVR
model compared to Linear and Polynomial Regression approaches. The benchmark values in tables 2 and 3 were
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Table 3. Benchmarking R? performance of regression models via 10-Fold cross-validation.

Model Mean Standard deviation Min(Fold-wise) Max(Fold-wise)
SVR 0.8983 0.0382 0.8029 0.9248
Linear 0.8707 0.0506 0.7753 0.9434
Polynomial (2nd Degree) 0.7874 0.1881 0.2928 0.9623
Polynomial (3rd Degree) —0.8693 3.8921 —12.3063 0.8521

established by evaluating the consistency and predictive accuracy of multiple regression models using standard
cross-validation metrics. MSE and R* were used to quantify both model bias and variance.

The SVR model is the best among all the models regarding MSE, having the lowest error rate (0.0047 mean
MSE) and the smallest variation (0.0017 standard deviation), as shown in table 2. This indicates that SVR
provides accurate predictions with minimal variation across different folds, reflecting its stability. In table 3, SVR
achieves the highest average R value (0.8983), demonstrating that it can account for most of the data variance.
Moreover, alow standard deviation of 0.0382 indicates strong generalisation performance, with the model
maintaining high predictive quality across various training and validation sets.

Linear Regression (LR) performs really well, with a competitive R* score (0.8707), but a less favourable MSE
(0.0057) than SVR. This suggests that linear relationships capture alot of the structure of the data, yet SVR
pushes accuracy even further. PR (2nd Degree) demonstrates more volatility in performance with its larger
standard deviation both for MSE (0.0070) and R* (0.1881). This suggests that the model overfits on some of the
folds and underfits on others, reducing the reliability.

PR (3rd Degree) is the least effective, exhibiting an unstable and negative mean R* (—0.8693) alongside an
exceedingly high standard deviation (3.8921). The significant variation in the fold-wise scores reinforces the
existence of extreme overfitting, rendering the model highly unreliable for generalisation. The results from both
MSE and R* metrics clearly indicate that SVR offers the best balance of accuracy, stability, and generalizability.
Its low error, high explanatory power, and minimal performance variation between folds demonstrate its
robustness. Unlike polynomial regression, which is highly unstable due to overfitting, SVR successfully captures
nonlinear patterns without exhibiting high variance, making it the most dependable regression technique for
this data.

Refinement of SVR model

Hyperparameter optimisation plays a crucial role in enhancing machine learning models by identifying the
optimal combination of parameters to maximise predictive performance. To refine the SVR model,
hyperparameter tuning was conducted using RandomizedSearchCV, which efficiently explores the search space
by evaluating a randomly selected subset of parameter combinations. Unlike GridSearchCV, which exhaustively
tests all possible configurations, RandomizedSearchCV reduces computational costs while maintaining a high
likelihood of identifying near-optimal hyperparameters. By carefully adjusting the number of iterations, it is
possible to strike a balance between optimising model performance and ensuring computational efficiency.

To achieve a well-tuned model, a total of 100 different hyperparameter configurations were evaluated using
10-fold cross-validation, leading to 1.000 model fits. The optimisation process determined the best values for y
and C as 0.7543 and 0.3556, respectively, which resulted in a minimum mean squared error o£0.0011. The
stability of the cross-validation mean squared error across folds confirms that the refined model maintains high
accuracy while avoiding both overfitting and underfitting. This consistency across validation sets indicates that
the optimised SVR model generalises well to unseen data, reinforcing its robustness and predictive reliability. In
order to further cross-check the validity of the model, residual analysis was performed, as evident in figure 5. The
residuals exhibit a uniform distribution centred at zero with no systematic distortion and recognisable patterns.
This observation indicates that the model effectively captures the underlying patterns within the dataset with a
good margin of accuracy. Furthermore, the absence of heteroscedasticity among the residuals further guarantees
the stability of the model and that prediction errors are constant at different levels of the response variable.
Taken together, the findings conclude that the optimised SVR model is not only reliable and capable of making
predictions with a good margin of accuracy at different working conditions.

Feature contribution analysis using SHAP

To enhance interpretability of the SVR model and provide a deeper understanding of how each input feature

influences biogas prediction, SHAP analysis was employed. This post hoc method decomposes the SVR output

into additive feature contributions, enabling a detailed assessment of input importance over the entire dataset.
The SHAP results indicate that TCOD Outflow (mg/1) and Volumetric Load (kg/ m’) are the most impactful

features, with mean SHAP contributions of approximately +0.0022 and +0.0014, respectively. These features
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Figure 5. Residuals plot for biogas production predictions.
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Figure 6. Total SHAP contributions of input features to SVR predictions.

consistently exhibit strong positive influence on biogas prediction, aligning with their established role in
anaerobic digestion processes. In contrast, SCOD Outflow (mg/1) shows a negative mean SHAP value around
—0.0019, suggesting an inverse or non-contributory relationship with the model output. Retention Time (days)
also yields a moderate negative contribution (—0.0012), while other features such as TCOD Inflow and TCOD
Removal Efficiency have marginal impact (near zero mean SHAP values).

These findings confirm that predictive relevance is feature and context dependent. As shown in figure 6,
TCOD Outflow and Volumetric Load dominate the model’s output attribution, underscoring their role as key
drivers in SVR-based biogas prediction models.

Comparison of developed models with literature studies

Recent literature underscores the effectiveness of various machine learning (ML) models—such as artificial
neural networks (ANN), support vector machines (SVM), adaptive neuro-fuzzy inference systems (ANFIS), and
their hybrid forms—in predicting biogas production, methane emissions, and other bio-process parameters, as
summarised in table 4. For instance, Abu Qdais et al (2010) reported a high predictive accuracy (R*=10.8703)
using an ANN-GA hybrid model, based on input variables such as temperature, solids content, and pH.
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Table 4. Literature-based performance comparison of ML techniques in anaerobic digestion prediction.

Reference Datasize Model type Output R? Error rate
(Abu Qdais et al 2010) 177 ANN-GA Biogas production ~0.870 MSE: 0.006
(Xuetal2014) 50 ANN Methane emission 0.912-0.976 —
[17] 9327 ANN ANFIS SVM Methane emission 0.680-0.900 MSE: 0.04—0.05 RMSE: 10.31-13.13
(Zaied et al 2020) 15 ANN-PSO Biogas production 0.977-0.998 MSE 0.016-0.209
(Asadiand McPhedran, 2021) 15 ANN-ANFIS Biogas production ~0.810 RMSE 0.95
(Alejo etal2018) 37 SVMANN Protein degradation 0.875-0.898 MSE 0.095-0.122
(Olatunji et al 2024) 14-18 SVR Biogas production ~0.900 RMSE 0.0842
(Farzin, et al 2024) 297 SVR-GASVR-PSOANN-GAANN-PSO Biogas production 0.645-0.773 MSE 0.200-0.265RMSE 0.477 - 0.515
[24] 45 SVR Biogas production ~0.738 RMSE 5.05
Our study 300 SVR Biogas production 0.802-0.924 MSE 0.001-0.009
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Similarly, Xu et al (2014) achieved R* values ranging from 0.912 to 0.976 for methane emission estimation using
ANN architectures applied to various biomass inputs. In larger datasets, such as the one analysed by Mehrdad
etal (2021), both ANFIS and SVM models demonstrated robust performance, with R values between 0.70 and
0.90, and RMSE values in the range of 11-13, indicating their reliability in modelling landfill methane emissions.

More recent studies have continued to investigate hybrid and optimised ML frameworks. Zaied et al (2020)
and Asadi and McPhedran (2021) employed ANN-PSO and ANN-ANFIS models, respectively, reporting
exceptionally high prediction accuracies (R* up to 0.998) in biogas yield prediction. Likewise, support vector
regression (SVR) and its optimised variants—such as SVR-GA and SVR-PSO—have shown consistent
performance in studies by Olatunji et al (2024) and Farzin et al (2024), with R* values ranging from 0.645 to 0.773
and RMSE values as low as 0.0842. Additionally, Qi et al (2022) demonstrated the applicability of SVR in
modelling anaerobic baffled reactor (ABR) performance, achieving a moderate R* value of 0.738. Collectively,
these studies emphasise that model selection, hyperparameter optimisation, and hybridisation strategies
significantly influence predictive performance—particularly when aligned with the characteristics of the input
variables and the scale of the data.

Limitations of the study

Although the proposed SVR model exhibits high predictive performance, several limitations must be considered
to properly interpret its applicability and scope. The model was trained using data from a single full-scale UASB
reactor treating wastewater from a fruit processing facility. While this dataset offers rich variability due to
seasonal fluctuations in influent composition, it also reflects the specific operational characteristics of one
industrial site. Therefore, generalising the findings to other reactor types or wastewater sources—such as
municipal or dairy effluents—requires further validation across multiple case studies

Another limitation stems from the number of input variables included in the modelling process. The study
utilised five key parameters (CODin, CODeff, sCODeff, OLR, and HRT) based on their known relevance in
biogas production and consistent availability in plant records. However, other influential factors—such as
temperature, pH, alkalinity, total solids, and microbial community composition—were excluded due to
incomplete or irregular data collection. This exclusion may limit the model’s ability to capture certain biological
or environmental dynamics that affect methane yield.

The learning architecture used in this work is offline and static in nature, relying on historical datasets. While
effective for training and validation, such models may not respond optimally to sudden changes in system
conditions unless periodically retrained. For deployment in real-time control systems, adaptive or online
learning strategies should be considered to enhance responsiveness.

Finally, although SVR is highly effective in learning nonlinear relationships, it functions as a black-box
model with limited interpretability. Unlike mechanistic models such as ADM1, it does not provide insight into
causal pathways or internal process states. This restricts its utility in diagnostic or explanatory scenarios where
understanding of system behaviour is required. Additionally, no uncertainty quantification or input sensitivity
analysis was performed, which could have strengthened the robustness evaluation of the model under varying
operational regimes.

Conclusion

This study evaluated the predictive capability of a Support Vector Regression (SVR) model with a Radial Basis
Function (RBF) kernel for estimating biogas production in a full-scale Upflow Anaerobic Sludge Blanket (UASB)
reactor treating industrial wastewater from a fruit processing facility. Using five key operational parameters—
namely influent and effluent COD concentrations, soluble COD, volumetric organic loading rate, and hydraulic
retention time the SVR model achieved high accuracy, with an average coefficient of determination (R*) of
0.8983 and a mean squared error (MSE) of 0.0047 under 10-fold cross-validation.

Comparative analysis showed that SVR consistently outperformed conventional regression approaches,
particularly third-degree Polynomial Regression, which exhibited overfitting and poor generalisation. The
robustness of the SVR model under conditions of variable influent composition further underlines its suitability
for real-world industrial applications. Seasonal fluctuations in wastewater characteristics, often a challenge for
modelling efforts, were effectively captured without degradation in predictive performance. Hyperparameter
tuning via RandomizedSearchCV was instrumental in enhancing model generalisation while maintaining
computational efficiency.

In addition to its predictive strength, the model’s interpretability was enhanced using SHAP analysis, which
quantified the contribution of each input variable to the model’s output. TCOD Outflow and Volumetric Load
emerged as the most influential predictors, while features such as SCOD Outflow and Retention Time had lower
or even negative contributions. These insights not only align with established process knowledge but also
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demonstrate the model’s transparency and reliability. The integration of SHAP analysis supports explainable Al
practices, enabling process engineers to make informed decisions based on both model outputs and the
underlying feature dynamics.

Opverall, the SVR model presents a reliable and interpretable solution for biogas yield prediction and process
optimisation in anaerobic digestion systems. Future studies may explore the inclusion of additional process
parameters such as temperature, pH, and alkalinity, as well as the integration of real-time sensor data streams.
Furthermore, hybrid approaches that couple machine learning models with mechanistic frameworks like
ADM1 could offer a powerful synergy between predictive accuracy and process-level interpretability, paving the
way toward intelligent and adaptive biogas production systems.
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