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1 Introduction

In recent years much progress has been made towards the reformulation of scattering am-
plitudes in terms of positive geometries [1]. Within this framework scattering amplitudes
are expressed as the differential canonical form of a particular positive geometry. The prime
example of this approach is the representation of the all-loop integrand of planar N = 4 SYM
as the canonical form of the amplituhedron [2]. Since the discovery of the amplituhedron,
scattering amplitudes in other theories such as ABJM theory [3, 4] and tr

(
ϕ3) theory [5], as

well as other physical quantities such as correlations function [6, 7], have also been described
using positive geometries.

Originally proposed in momentum twistor space, the analogue of the amplituhedron has
since been studied in spinor-helicity space, where the corresponding positive geometry is
referred to as the momentum amplituhedron [8, 9]. More recently, it has been translated
directly into the space of dual momenta with split signature R2,2 [10], with similar results
previously obtained for the ABJM theory in the three-dimensional Minkowski space in [11].
It is the dual-momentum space perspective which we adopt in this paper where we focus on
MHVn integrands. In dual-momentum space the scattering data upon which the amplituhe-
dron is defined consists of a null polygon x = {x1, . . . , xn}, whose edges define the momenta
of the scattering particles, together with L additional points (y1, . . . , yL) associated to the
loop momenta. At tree-level the amplituhedron places constraints upon the configuration
of the null polygon x, in particular the vertices of the null polygon are constrained to be
positively separated from one another. Viewing the tree-level data as fixed, the L-loop
amplituhedron is then defined as the collection of points (y1, . . . , yL) positively separated
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from each vertex of the null polygon and additionally constrained to be positively separated
from one another, that is they satisfy the constraints1

∀ i ∈ [n] and ∀ a, b ∈ [L] we have (ya − xi)2 ≥ 0 and (ya − yb)2 ≥ 0, (1.1)

where for any positive integer p we define [p] = {1, 2, . . . , p}. The first set of conditions
constrains each loop momentum to be in the one-loop amplituhedron region, which we refer
to as the one-loop fiber ∆(x), and the second set of conditions impose mutual positivity
amongst loop momenta.

The structure of the one-loop fiber ∆(x), most importantly its vertex set, has been
studied for arbitrary helicity in [10]. In this paper we will be interested in the MHV results,
in which case, independent of the tree-level configuration, the vertex set of ∆(x) consists
of the vertices x of the null polygon, together with a set of quadruple cut points ℓ∗ij for
1 < i < j < n defined to satisfy the quadruple cut constraints

(ℓ∗ij − xi)2 = (ℓ∗ij − xi+1)2 = (ℓ∗ij − xj)2 = (ℓ∗ij − xj+1)2 = 0 . (1.2)

From the positivity conditions (1.1), all points inside the fiber ∆(x) are positively separated
from all xi, however the distances to the quadruple cuts ℓ∗ij generally vary inside ∆(x). It
is therefore natural to consider how the signs of distances to the quadruple cut vertices ℓ∗ij
decompose the one-loop region into smaller regions. Using this decomposition we can associate
to each point y ∈ ∆(x) a sign pattern for the distances (y − ℓ∗ij)2 and define the one-loop
chambers, C = {c1, . . . , c[nC]}, to be subsets of ∆(x) with a fixed sign pattern. The question
of how the one-loop fiber decomposes into one-loop chambers was recently answered in [12].
Utilising a connection to the m = 2 amplituhedron, and ultimately the hypersimplex [13],
it was found that the one-loop fiber decomposes into nC = E3,n−1 many one-loop chambers,
where E3,n−1 are the Eulerian numbers. In this paper we will introduce the following graphical
notation for the chamber decomposition of the one-loop amplituhedron

y
=

∑
α∈[nC]

V+
α

V−
α

y
, (1.3)

where on the left hand side we have the canonical form for the one-loop amplituhedron, and
the term appearing in the sum on the right hand side is the canonical form for the one-loop
chamber cα. The sets V+

α and V−
α contain quadruple cuts ℓ∗ij for which the distances (y− ℓ∗ij)2

are negative (red) or positive (green) for all points y in a given chamber. The utility of
the decomposition (1.3) becomes most apparent at two loops where in [12] it allowed for a
re-writing of the two-loop MHV integrand in the following (term-wise) factorised form

y1 y2
=

∑
1≤i≤j≤n y1 ℓ∗ij

∧
ℓ∗ij

y1 y2
. (1.4)

On the left hand side we have the two-loop amplituhedron form, and on the right hand
side the first factor is a form in y1 only, whereas the second factor is a form in y2 only

1Here we have omitted the additional sign flip conditions needed to define the amplituhedron but will
return to the full definition in the main text.
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with y1 treated as a fixed point, given by the familiar chiral box integrands. This term-wise
factorisation property of the above formula was referred to as a fibration in [12].

An interesting question to consider is how the fibration formula (1.4) might generalise
to higher loops. Whereas this is a difficult question for the amplituhedron in general, a
simpler target is to consider the geometries obtained by relaxing, or flipping the sign of, the
mutual positivity conditions (ya − yb)2 amongst loops. To encode the set of mutual positivity
constraints we follow the graphical notation introduced in [14] where each loop variable is
represented as a vertex and mutual positivity or negativity between loop variables ya and yb

is represented by a green or red link respectively. Following the convention introduced in [15]
we refer to the graphs constructed in this way as graphs in loop space. A particularly simple
family of graphs in loop space are given by the ladder topologies with all negative links

. . .
y1 y2 yL+1

= Ωy1...yL+1

[
{y1, . . . , yL+1 ∈ ∆(x) : (ya+1 − ya)2 < 0 for all a ∈ [L]}

]
.

Such graphs with all negative links have been studied under the name of negative geometries,
and all loop formulae have already been obtained for the four and five-point ladders in [14, 16].
The main result of this paper will be to generalise these results to an arbitrary number of
particles, for all loop orders. In particular, we find the idea of fibration extends to all ladder
geometries where the solution takes the following graphical form

. . .
y1 y2 yL+1

=
∑

ℓ∗
kl
∈V−

∑
ℓ∗

ij∈V− y1 ℓ∗kl

∧ . . .
ℓ∗kl

y1 y2 yL ℓ∗ij

∧
ℓ∗ij

yL yL+1
, (1.5)

where the right hand side is written in a factorised form originating from the fibration of
fibration idea [12], and the sums are over all quadruple cuts ℓ∗ij in the fiber geometry ∆(x).
Only one of the terms appearing on the right is new compared to the two-loop result and
we provide a formula for this factor in terms of simple generalisations of chiral pentagons.
In the main text we will also provide similar formulae that are valid for ladders with any
number of negative links replaced by positive ones.

It is important to note that these ladder geometries not only provide a simplified version
of the momentum amplituhedron, but that they are also relevant for infrared finite quantities
in N = 4 SYM. In particular, in the case of the negative geometries, upon integrating all
but one loop momentum variable, the integrated result can be interpreted as the expectation
value of a null polygonal Wilson loop with a Lagrangian insertion [14–16].

The remainder of this paper is organised as follows. In section 2 we review the kinematics
of scattering amplitudes in the split-signature dual-momentum space. In section 3 we review
the definition of the amplituhedron for MHV integrands in dual momentum space. In
section 4 we introduce the graphical notation which will be used throughout the paper. To
gain familiarity with this new notation we provide several pre-existing formulae for the one
and two-loop integrands in graphical notation, including the chamber, Kermit and chiral box
expansions of the one-loop integrand, together with the fibration formula for the two-loop
integrand. In section 5 study the negative ladders in loop space. It is in this section we
present the main result of this paper: the formula (5.14) for all ladders in loop space for any
number of particles. In section 6 we conclude with an outlook to future research directions.
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2 Kinematics

We will be working in the dual-momentum space R2,2 with signature (+, +,−,−). The
scattering data for n-point massless amplitudes is given by a set of n four-dimensional
momenta pµ

i , i = 1, . . . , n, µ = 1, 2, 3, 4, subject to momentum conservation

n∑
i=1

pµ
i = 0, (2.1)

and the massless on-shell condition p2 = 0. The momentum conservation condition can be
trivialised by introducing dual momentum coordinates xµ

i defined as

pµ
i := xµ

i+1 − xµ
i . (2.2)

Through this relation the inflowing momenta of the scattering process specify the edges of a
polygon in R2,2 with vertices x := (x1, . . . , xn) whose consecutive vertices xi and xi+1 are null
separated. We denote the set of all null polygons in R2,2 with n vertices as Pn such that x ∈ Pn.
The definition of the dual momentum coordinates is invariant under a global translation and
it is convenient to make the choice x1 = 0 allowing us to invert relation (2.1) to find

xµ
j =

j−1∑
i=1

pµ
i . (2.3)

Given a point x ∈ R2,2 we can split R2,2 into points null separated (y − x)2 = 0, positively
separated (y − x)2 > 0 and negatively separated (y − x)2 < 0 from x where the distance
between two points x and y is given by

(x − y)2 = (x1 − y1)2 + (x2 − y2)2 − (x3 − y3)2 − (x4 − y4)2. (2.4)

A concept which will play an important role when coming to study the structure of the
amplituhedron is the notion of quadruple cut points. Given four points xi, xj , xk and xl

generically there exist two points q±ijkl, which we refer to as quadruple cut points, satisfying
the quadruple cut conditions

(q±ijkl − xi)2 = (q±ijkl − xj)2 = (q±ijkl − xk)2 = (q±ijkl − xl)2 = 0, (2.5)

where the two solutions are distinguished by the following equation

sgn
∣∣∣∣∣ 1 1 1 1 1
xi xj xk xl q±ijkl

∣∣∣∣∣ = ±1. (2.6)

As our focus will be on MHV integrands it is useful to introduce the notation
ℓ∗ij = q+

ii+1jj+1, , |i − j| > 1,

ℓ̃∗ij = q−ii+1jj+1 , |i − j| > 1,

ℓ∗ii+1 = ℓ̃∗ii+1 = xi+1 .

(2.7)
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The massless on-shell condition, p2 = 0, can be resolved via the introduction of spinor-helicity
variables as

pαα̇ =
(

p0 + p2 p1 + p3

−p1 + p3 p0 − p2

)
= λαλ̃α̇, (2.8)

where α = 1, 2, α̇ = 1, 2, and λ, λ̃ are real variables defined up to the little group rescaling
λ → tλ, λ̃ → t−1λ̃ for t ∈ R. Therefore, in the spinor-helicity formalism, each scattering
process is determined by a pair of 2 × n matrices (λ, λ̃) constrained to be orthogonal to one
another λλ̃T = 0 due to momentum conservation. We denote the set of all such pairs (λ, λ̃)
as Kn. In the spinor-helicity formalism the following brackets appear frequently

⟨ij⟩ := λ1
i λ2

j − λ2
i λ1

j , [ij] := λ̃1̇
i λ̃2̇

j − λ̃2̇
i λ̃1̇

j . (2.9)

3 Amplituhedron review

Throughout this paper we will use the definition of the loop momentum amplituhedron
Mn,k,L directly in the split signature dual momentum space R2,2, as defined in [10]. At
tree-level the momentum amplituhedron Mn,k,0, whose precise definition we do not need but
can be found in [8], is defined as a subset of the spinor-helicity kinematic space Mn,k,0 ⊂ Kn.
Using relations (2.3) and (2.8) points (λ, λ̃) ∈ Kn can be mapped to the space of null
polygons Pn in R2,2 as

Kn ∋ (λ, λ̃) 7→ x(λ,λ̃) ∈ Pn. (3.1)

We will be interested in the subset of null polygons obtained as images of points (λ, λ̃) ∈ Mn,k,0
which are relevant to the N(k−2)MHVn amplitude. We denote the set of null polygons obtained
as images of (λ, λ̃) ∈ Mn,k,0 as Pn,k. As described in [10] the set of null polygons Pn,k can
be characterised without reference to the definition of the momentum amplituhedron as
follows: for fixed (λ, λ̃) ∈ Kn such that

• all consecutive brackets of λ are positive ⟨ii + 1⟩ > 0,

• and the sequences of brackets

{⟨i i + 1⟩, ⟨i i + 2⟩, . . . , ⟨i i − 1⟩},

have k − 2 sign flips for all i = 1, . . . , n,

a null polygon x(λ,λ̃) is inside Pn,k if its vertices satisfy the following conditions:

• all non-consecutive vertices of x(λ,λ̃) are positively separated

(xi − xj)2 > 0 for all |i − j| > 1, (3.2)

• and the sequences of distances

{⟨i + 1 i + 2⟩(xi − ℓ∗i+1 i+2)2, ⟨i + 1 i + 3⟩(xi − ℓ∗i+1 i+3)2, . . . , ⟨i + 1 i− 2⟩(xi − ℓ∗i+1 i−2)2},

have k − 2 sign flips for all i = 1, . . . , n. We pick up a factor of (−1)k−1 for ⟨ij⟩ when
j > n due to the twisted cyclic symmetry.
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At loop level, points inside the momentum amplituhedron Mn,k,L [9] are specified by a point
(λ, λ̃) ∈ Mn,k,0 together with a collection of L loop momenta ℓa. After translating into dual
momentum space, the loop momentum amplituhedron is specified by points (λ, x), where x is
a null polygon x ∈ Pn,k, together with a collection of loop dual momenta ya, for a = 1, . . . , L,
satisfying additional positivity constraints:

• for each ya, the distances between ya and all vertices xi of the null polygon are non-
negative

(ya − xi)2 ≥ 0, for all i = 1, . . . , n , (3.3)

• for each ya, the sequences

{⟨i i + 1⟩(ya − ℓ∗i i+1)2, ⟨i i + 2⟩(ya − ℓ∗i i+2)2, . . . , ⟨i i + n − 1⟩(ya − ℓ∗i i+n−1)2} , (3.4)

have k sign flips for all i = 1, . . . , n.

• for each pair of loop momenta ya and yb the distance between them is non-negative

(ya − yb)2 ≥ 0, for all a, b = 1, . . . , L . (3.5)

3.1 Chambers

In this paper, we focus solely on MHV amplitudes which fixes k = 2 in the remaining sections.
The definition of the momentum amplituhedron simplifies in this case. In particular, to define
points in the momentum amplituhedron Mn,2,L, the matrix λ is a 2 × n positive matrix, i.e.
all its 2 × 2 minors are positive which implies all distances (xi − ℓ∗jk)2 are positive. Viewing
the tree-level data as fixed the loop momentum amplituhedron constrains each loop variable
ya, a = 1, 2, . . . , L to a compact region ∆(x) ⊂ R2,2 which we refer to as the one-loop fiber.
The combinatorial structure of the one-loop fibers were studied in [10] for arbitrary helicity,
however, we will be interested only in the k = 2 case where it was found, independent of
the tree-level data chosen, that the vertices of ∆(x) are given by the vertices xi of the null
polygon together with the quadruple cut points ℓ∗ij for 1 < i < j < n. Also, in [10] explicit
expressions for the canonical forms of the one-loop fibers were provided resulting in a novel
re-writing of the one-loop integrand which was referred to as a fibration over tree-level as

Ωx;y1 [Mn,2,1] = Ωx [Mn,2,0] ∧ Ωy1 [∆(x)] , (3.6)

where Ωx;y1 [Mn,2,1] denotes the canonical form of the one-loop momentum amplituhedron,
Ωx [Mn,2,0] is the canonical form of the tree-level momentum amplituhedron and Ωy1 [∆(x)]
denotes the canonical form for the one-loop fiber. We leave detailed expressions for the
canonical form of the one-loop fiber until the next section.

Recently, this fibration formula was extended to the two-loop integrand in [12]. At two
loops, again viewing the tree-level data as fixed, the loop momentum amplituhedron consists
of two points y1 and y2 both constrained to the one-loop fiber ∆(x), and positively separated
from each other. If we further fix y1 ∈ ∆(x) then the point y2 is constrained to a subregion
∆+(x; y1) of the one-loop fiber ∆(x) which is positively separated from y1. We refer to the
subregion ∆+(x; y1) to which y2 is constrained as the positive two-loop fiber. It is important

– 6 –
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to note that two points y1, y′1 ∈ ∆(x) can result in positive two-loop fibers ∆+(x; y1) and
∆+(x; y′1) whose combinatorial structures differ. This is in contrast to the case of tree-level
MHV amplitudes where, independent of the tree-level data chosen, the combinatorial structure
of the one-loop fiber remains unchanged. This observation motivated [12] to introduce the
notion of one-loop chambers cα, defined as subregions of the one-loop fiber for which any
two-points y1, y′

1 ∈ cα lead to positive two-loop fibers with the same combinatorial structure.
We introduce the notation ∆+

α (x; y1) for the positive two-loop fiber associated to the one-loop
chamber cα. As was also pointed out in [12], there exists an alternative definition of one-loop
chambers. Given a point y1 ∈ ∆(x) we can compute the set of signs for the distances
sgn(y1 − ℓ∗ij)2, for 1 < i < j < n. Then two points y1, y′1 ∈ ∆(x) are in the same one-loop
chamber if they produce the same sign pattern. Therefore, the problem of determining the
set of one-loop chambers reduces to the problem of determining the set of all possible sign
patterns for the sgn(y1 − ℓ∗ij)2. This decomposition is closely related to the decomposition of
the m = 2 amplituhedron and the hypersimplex, as explained in [13]. Importantly, the set of
one-loop chambers are known to be counted by the Eulerian numbers nC = E3,n−1. Using
the decomposition of the one-loop fiber into one-loop chambers, the two-loop momentum
amplituhedron can be written in the following fibration of fibration form

Ωx;y1y2 [Mn,2,1] = Ωx [Mn,2,0] ∧
∑

α∈[nC]
Ωy1 [cα] ∧ Ωy2 [∆+

α (x; y1)]. (3.7)

As we will see in the next section a detailed knowledge of the chamber structure is not
needed in order to write down any of the forms we present in this paper, therefore, we do
not present explicit expressions for their forms.

An interesting question to ask is how this fibration of fibration picture can be extended
to higher loop geometries. Whereas we expect this to be a difficult task in general, there exist
a simpler set of geometries, which we refer to as ladders in loop space, defined by relaxing or
flipping positivity constraints between the loop momenta, which provide a perfect application
for the fibration of fibration picture. We will define the ladder geometries in detail in the next
section, for now we introduce the three-loop positive ladder which is defined by relaxing the
positivity constraint (y1 − y3)2 in the definition of the momentum amplituhedron. Recall that
in order to find explicit canonical forms for two-loop momentum amplituhedron we decompose
the one-loop fiber into one-loop chambers and multiply each chamber by its corresponding
positive two-loop fiber. Now, in order to extend this idea to three-loop positive ladder, we
decompose each positive fiber ∆+

α (x; y1) into one-loop chambers cβ and multiply each chamber
by its corresponding positive fiber ∆+

β (x; y2) = {y3 ∈ ∆(x) : (y3 − y2)2 > 0} which reads2

y1 y2 y3
=

∑
α∈[nC]

Ωy1 [cα] ∧
∑

β∈[nC]
Ωy2 [∆+

α (x; y1) ∩ cβ ] ∧ Ωy3 [∆+
β (x; y2)]. (3.8)

We now move on to study this procedure in detail for ladder geometries at all loops. We
begin by introducing a graphical notation for the ladder geometries and one-loop chambers.
This will include formulae for the one and two-loop momentum amplituhedron forms, as
well as the positive and negative two-loop fibers in terms of chiral boxes. As was already

2For the remainder of the paper we have stripped of the tree-level factor Ωx[Mn,2,0] from all forms.
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emphasised, we will not need the full knowledge of the chamber structure in order to write
any of the canonical forms.

4 Graphical notation

The positivity constraints between loop momenta play an important role in the definition of
the amplituhedron. As such, it is useful to introduce a notation that keeps track of them.
With this in mind we follow the notation originally introduced in the negative geometries
literature [14]. For each loop momentum ya we introduce a circular vertex which represents
the conditions constraining the loop momentum to the one-loop fiber. In other words the
canonical form of the one-loop fiber is represented as

ya

= Ωya [∆(x)] . (4.1)

To encode positivity (ya − yb)2 > 0 or negativity (ya − yb)2 < 0 between loop momenta
we introduce a green or red edge between vertices ya and yb respectively such that the
L-loop amplithuedron form is represented by the complete graph on L vertices with all green
edges. We follow the terminology introduced in [15] and refer to graphs constructed in this
way as graphs in loop space. As an example, the two-loop momentum amplituhedron form
corresponds to the two-loop positive ladder

y1 y2
= Ωy1y2 [{y1, y2 ∈ ∆(x) : (y1 − y2)2 > 0}]. (4.2)

We now wish to extend this notation further as to include the notion of a one-loop chamber.
Recall, the one-loop chambers are defined by fixing a sign pattern for the distances (ya − ℓ∗ij)2.
Therefore, in order to encapsulate these additional constraints, we introduce square vertices
for each of the ℓ∗ij , where positivity/negativity of the distance (ya − ℓ∗ij)2 is again encoded by
a green/red edge between the vertices ya and ℓ∗ij such that we have for example3

ya ℓ∗ij

= Ωya [{ya ∈ ∆(x) : (ya − ℓ∗ij)2 > 0}],

ya ℓ∗ij

= Ωya [{ya ∈ ∆(x) : (ya − ℓ∗ij)2 < 0}]. (4.3)

We note that square vertices are used for the ℓ∗ij to indicate that these are viewed as fixed
points and as such the above is not a canonical form in these variables. In the remainder of
the paper we will refer to square vertices as being frozen. Since the one-loop chambers cα are
defined by fully fixing the sign pattern for all distances (y−ℓ∗ij)2 it is useful to introduce the sets

V+
α = {ℓ∗ij | for all y ∈ cα we have (y − ℓ∗ij)2 > 0} ∪ {x1, . . . , xn},

V−
α = {ℓ∗ij | for all y ∈ cα we have (y − ℓ∗ij)2 < 0}, (4.4)

3Since the loop momenta automatically satisfy (y − xi)2 > 0 we omit the vertices labelled by the xi.
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and for n > 4 the sets4

V+ = {ℓ∗ij} ∪ {x1, . . . , xn}, V− = {ℓ∗ij}. (4.5)

In order to simplify our graphical notation, we allow frozen vertices to be labelled by sets of
points. If a vertex is labelled by a set of points U ⊂ V±

α , then any green/red link attached
to this vertex indicates that all vertices ℓ∗ij ∈ U are positively/negatively separated from
the point labelling the other end of the link. With this notation the canonical form for
the one-loop chambers are depicted as

Ωya [cα] =
ya

V+
α

V−
α

. (4.6)

It is important to note that in the next section we will see instances of graphs where one of
the loop momenta become frozen, for example the canonical forms for the positive two-loop
fibers of the last section are represented as

Ωy2 [∆+
α (x; y1)] = Ωy2 [{y1 ∈ cα, y2 ∈ ∆(x) : (y1 − y2)2 > 0}] =

V+
α

V−
α

y1 y2
. (4.7)

Here y1 is treated as a fixed point inside the one-loop chamber cα and hence the above
is a canonical form only in y2. As a final piece of notation we introduce the following
subset of chambers

C±
ij = {α ∈ [nC] : ℓ∗ij ∈ V±

α }, (4.8)

namely C+
ij (resp. C−

ij) contains all chambers for which ℓ∗ij is positively (resp. negatively)
separated from all points in a chamber. A frequently used trick that will be used throughout
the paper will be to perform the following reorganisation of sums∑

α∈[nC]

∑
ℓ∗

ij∈V
±
α

=
∑

ℓ∗
ij∈V±

∑
α∈C±

ij

. (4.9)

4.1 One-loop geometries

To gain familiarity with this new notation it is useful to see various known formulae for the
one-loop integrand in this notation. We begin with the chamber decomposition presented
in [12] which reads

y
=

∑
α∈[nC]

V+
α

V−
α

y
. (4.10)

The terms appearing on the right hand side of (4.10) are the one-loop chamber forms.
Importantly, we will not need their explicit expressions in this paper. Next, we consider

4For n = 4 we have V+ = {x1, . . . , x4} and V− = {ℓ∗
13, ℓ∗

24}.
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the Kermit expansion of [17] which reads

y
=

∑
1<i<j<n

K+
1ij

K−
1ij

y
. (4.11)

where the sum runs over the so-called Kermit cells, and the subsets K±
1ij are defined as

K+
1ij = {ℓ∗13 . . . ℓ∗1i} ∪ {ℓ∗1j+1 . . . ℓ∗1n} ∪ {x1, . . . , xn},

K−
1ij = {ℓ∗1i+1 . . . ℓ∗1j}. (4.12)

Expressions for the canonical forms of the Kermit cells can be found in [17]. Finally, the
last expansion we wish to introduce a graphical notation for is the chiral box expansion
of [18]. For this we introduce the notation

y
=
∑
xi xi ∗ y

+
∑
ℓ∗

ij ℓ∗ij
∗ y

, (4.13)

where ∗ is an arbitrary point in dual-momentum space and we have defined the chiral box
integrands as

xi ∗ y
:= 4(xi−1 − xi+1)2(xi − ∗)2

(y − xi−1)2(y − xi)2(y − xi+1)2(y − ∗)2 ,

ℓ∗ij
∗ y

:=
4Sxixi+1xjxj+1(y − ℓ̃∗ij)2(ℓ∗ij − ∗)2

(y − xi)2(y − xi+1)2(y − xj)2(y − xj+1)2(y − ∗)2 , (4.14)

where

Sxixi+1xjxj+1 = (xi − xj+1)2 + (xi+1 − xj)2 − (xi − xj)2 − (xi+1 − xj+1)2. (4.15)

Importantly, we do not color the links in graphs in (4.14) since they rather provide a label
for a chiral pentagon differential form and do not correspond to any geometry defined by
positive/negative distances.

4.1.1 Four points

To get a better understanding of the formulae above, it is useful to look at a couple of
low point examples, starting with four points. At four-point the one-loop region is covered
by a single chamber leading to

V+ = V+
1 = {x1, x2, x3, x4}, V− = V−

1 = {ℓ∗13, ℓ∗24}, (4.16)

where, importantly, the set V+ does not contain any quadruple cut points. This results
in the following graphical identity

y1
=

ℓ∗
ij

y1
, (4.17)

for (ij) = (13) or (ij) = (24). It is equivalent to the statement that all points in the one-loop
fiber are negatively separated from both quadruple cut points ℓ∗13 and ℓ∗24.
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4.1.2 Five points

At five-points we begin to see the generic behaviour due to the appearance of chambers. In
this case we have 11 chambers which come in three-cyclic classes defined by

V+
1 = {x1, . . . , x5} ∪ {ℓ∗13, ℓ∗24} V−

1 = {ℓ∗35, ℓ∗14, ℓ∗25},

V+
6 = {x1, . . . , x5} ∪ {ℓ∗13} V−

6 = {ℓ∗24, ℓ∗35, ℓ∗14, ℓ∗25},

V+
11 = {x1, . . . , x5} V−

11 = {ℓ∗13, ℓ∗24, ℓ∗35, ℓ∗14, ℓ∗25}. (4.18)

Then, the chamber decomposition of the one-loop fiber can be written as

y
=


ℓ∗

13
ℓ∗

24
ℓ∗

35
ℓ∗

14
ℓ∗

25

y
+

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y
+ cyc

+

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y
. (4.19)

Explicit expressions for the chamber forms can be found in [12]. Alternatively the one-loop
integrand can be expanded into Kermit cells which for the case of five-points reads

y
= ℓ∗

13
ℓ∗

14y
+

ℓ∗
13

ℓ∗
14y

+
ℓ∗

13

ℓ∗
14y

. (4.20)

4.2 Two-loop geometries

At two loops the momentum amplituhedron is defined as the set of points y1 and y2, both
constrained to the one-loop fiber ∆(x), with the additional mutual positivity constraint (y1 −
y2)2 > 0. In terms of our graphical notation this corresponds to the two-loop positive ladder

y1 y2
= Ωy1y2 [{y1, y2 ∈ ∆(x) : (y1 − y2)2 > 0}]. (4.21)

Given that we have a decomposition of the one-loop fiber into chambers cα it is natural
to consider whether this can also be used to decompose the two-loop positive ladder. To
achieve this we can define the regions where y1 is constrained to the one-loop chamber cα

and y2 is left unconstrained to range over the entire one-loop fiber ∆(x). By definition these
regions are non-overlapping and cover the entire space of the two-loop positive ladder such
that summing over one-loop chambers we find

y1 y2
=

∑
α∈[nC]

V+
α

V−
α

y1 y2
. (4.22)

We refer to this procedure as performing a one-loop chamber decomposition with respect to y1.
Remarkably, in [12] it was found that the terms appearing on the right hand side factorise as

V+
α

V−
α

y1 y2
=

V+
α

V−
α

y1
∧

V+
α

V−
α

y1 y2
, (4.23)
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where the first factor is the canonical form for the one-loop chamber Ωy1 [cα], and the second
factor, which we refer to as the positive two-loop fiber, is a form in y2 with y1 treated
as a fixed point inside the chamber cα as indicated by the frozen vertex. In [12] explicit
expressions for the canonical forms of the positive two-loop fibers were provided as a sum
over chiral box integrands as

V+
α

V−
α

y1 y2
=

∑
ℓ∗

ij∈V
+
α ℓ∗ij

y1 y2
. (4.24)

Substituting these results into (4.22) and using (4.9) the two-loop positive ladder can be
written as

y1 y2
=

∑
ℓ∗

ij∈V+ y1 ℓ∗ij

∧
ℓ∗ij

y1 y2
, (4.25)

where we have used the fact that

y1 ℓ∗ij

=
∑

α∈C+
ij

V+
α

V−
α

y1
. (4.26)

As shown in [12] the canonical forms for these regions have simple expressions as sums of
lower-point one-loop fibers

y1 ℓ∗ij

= Ωy1 [∆(xij)] + Ωy1 [∆(xji)] , (4.27)

where we have defined Ωy1 [∆(xij)] and Ωy1 [∆(xij)] as the canonical forms for the one-loop
fiber evaluated on points xij and xji respectively with

xij = {xi+1, . . . , xj , ℓ∗ij}, xji = {xj+1, . . . , xi, ℓ∗ij}. (4.28)

This argument can be repeated for the two-loop negative ladder. We begin by performing a
chamber decomposition with respect to y1 which again factorises term-wise as

y1 y2
=

∑
α∈[nC]

V+
α

V−
α

y1
∧

V+
α

V−
α

y1 y2
. (4.29)

The canonical forms for the negative two-loop fibers can also be expressed as a sum over
chiral box integrands as

V+
α

V−
α

y1 y2
=

∑
ℓ∗

ij∈V
−
α ℓ∗ij

y1 y2
, (4.30)

which when substituted into (4.29) results in the following form for the two-loop negative ladder

y1 y2
=

∑
ℓ∗

ij∈V
+
α

y1 ℓ∗ij

∧
ℓ∗ij

y1 y2
, (4.31)
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where

y1 ℓ∗ij

= Ωy1 [∆(x)] − Ωy1 [∆(xij)] − Ωy1 [∆(xji)], (4.32)

is again written in terms of canonical forms of one-loop fibers.
With the simplification (4.17) for n = 4, the canonical form for the one-loop fiber can

be factored out of the two-loop positive/negative ladders as

y1 y2
=

y1
∧
∑

xi∈V+ xi y1 y2
,

y1 y2
=

y1
∧

∑
ℓ∗

ij∈V− ℓ∗
ij

y1 y2
. (4.33)

No simplifications occur for n > 4 and the two-loop positive and negative integrands are
given by the general formulae (4.25) and (4.31), respectively.

5 General ladders in loop space

We now move on to study how the two-loop positive and negative results of (4.25) and (4.31)
generalise to arbitrary ladders in loop space. As a demonstrative example we consider the
all negative ladder

. . .
y1 y2 yL+1

= Ωy1...yL+1

[
{y1, . . . , yL+1 ∈ ∆(x) : (ya+1 − ya)2 < 0 for all a ∈ [L]}

]
.

Our starting point will be to consider the (L+1)-loop negative ladder expanded over one-loop
chambers with respect to yL which in analogy to the two-loop example can be written in
the following term-wise factorised form

. . .
y1 y2 yL yL+1

=
∑

α∈[nC]

. . .
y1 y2 yL

V+
α

V−
α

∧
V+

α

V−
α

yL yL+1
. (5.1)

We notice the factor on the right is nothing other than the negative two-loop fiber which
already appeared in the two-loop result (4.29). Using the same steps as before, expanding
the canonical forms for the negative two-loop fibers in terms of chiral boxes, and reorganising
the sum, this can be written as

. . .
y1 y2 yL yL+1

=
∑

ℓ∗
ij∈V−

. . .
y1 y2 yL ℓ∗ij

∧
ℓ∗ij

yL yL+1
. (5.2)

Next we consider the coefficients multiplying each chiral box expanded in terms of one-loop
chambers, this time with respect to yL−1, which can be written as

. . .
y1 y2 yL ℓ∗ij

=
∑

α∈[nC]

. . .
y1 y2 yL−1

V+
α

V−
α

∧
V+

α

V−
α

yL−1 yL ℓ∗ij

. (5.3)
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The new factors appearing on the right hand side are the canonical forms of the subset of
the negative two-loop fiber that satisfies the additional constraint (y2 − ℓ∗ij)2 < 0. Along
with its (y2 − ℓ∗ij)2 > 0 counterpart these two objects decompose each negative two-loop
fiber into two regions as

V+
α

V−
α

yL−1 yL

=
V+

α

V−
α

yL−1 yL ℓ∗ij

+
V+

α

V−
α

yL−1 yL ℓ∗ij

. (5.4)

To continue we now wish to perform an expansion of the terms appearing on the right hand
side of (5.4), analogous to the expansion (4.24) of the positive/negative two-loop fibers in
terms of chiral boxes. While it is not obvious that such an expansion exists, remarkably, we
find that it can indeed be constructed and takes a simple form

V+
α

V−
α

yL−1 yL ℓ∗ij

=
∑

ℓ∗
kl
∈V+

α ℓ∗kl
yL−1 yL ℓ∗ij

,

V+
α

V−
α

yL−1 yL ℓ∗ij

=
∑

ℓ∗
kl
∈V−

α ℓ∗kl
yL−1 yL ℓ∗ij

. (5.5)

The terms appearing in the summation above split the chiral box integrand for point ℓ∗kl into
a positive and negative part with respect to ℓ∗ij such that we have

ℓ∗kl
yL−1 yL

=
ℓ∗ijℓ∗kl

yL−1 yL

+
ℓ∗ijℓ∗kl

yL−1 yL

. (5.6)

There are five formulae depending on how ij and kl are distributed:

• ij and kl are crossing chords of the n-gon

ℓ∗klℓ∗ij
ya yb

= 0,

ℓ∗klℓ∗ij
ya yb

=
ℓ∗ij

ya yb

. (5.7)

• ij and kl are non-crossing chords

ℓ∗klℓ∗ij
ya yb

=
ℓ∗ij

ya yb

,

ℓ∗klℓ∗ij
ya yb

= 0. (5.8)
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• ij and jk are kissing chords such that in the cyclic order they appear as jki

ℓ∗jkℓ∗ij
ya yb

=
4Sxixi+1xjℓ∗

jk
(yb − q−ii+1jℓ∗

jk
)2(ya − ℓ∗ij)2

(yb − xi)2(yb − xi+1)2(yb − xj)2(yb − ℓ∗jk)2(yb − ya)2 ,

ℓ∗jkℓ∗ij
ya yb

=
4Sxixi+1ℓ∗

jk
xj+1(yb − q+

ii+1ℓ∗
jk

j+1)2(ya − ℓ∗ij)2

(yb − xi)2(yb − xi+1)2(yb − ℓ∗jk)2(yb − xj+1)2(yb − ya)2 . (5.9)

• ij and jk are kissing chords such that in the cyclic order they appear as jik

ℓ∗jkℓ∗ij
ya yb

=
4Sxixi+1ℓ∗

jk
xj+1(yb − q−ii+1ℓ∗

jk
j+1)2(ya − ℓ∗ij)2

(yb − xi)2(yb − xi+1)2(yb − ℓ∗jk)2(yb − xj+1)2(yb − ya)2 ,

ℓ∗jkℓ∗ij
ya yb

=
4Sxixi+1xjℓ∗

jk
(yb − q+

ii+1jℓ∗
jk

)2(ya − ℓ∗ij)2

(ya − xi)2(yb − xi+1)2(yb − xj)2(yb − ℓ∗jk)2(yb − ya)2 . (5.10)

• ij and kl coincide

ℓ∗ijℓ∗ij
ya yb

=
4(xi − xj+1)2(ya − ℓ∗ij)2

(yb − xi)2(yb − ℓ∗ij)2(yb − xj+1)2(yb − ya)2

+
4(xi+1 − xj)2(ya − ℓ∗ij)2

(yb − xi+1)2(yb − ℓ∗ij)2(yb − xj)2(yb − ya)2 ,

ℓ∗ijℓ∗ij
ya yb

= −
4(xi − xj)2(ya − ℓ∗ij)2

(yb − xi)2(yb − ℓ∗ij)2(yb − xj)2(yb − ya)2

−
4(xi+1 − xj+1)2(ya − ℓ∗ij)2

(yb − xi+1)2(yb − ℓ∗ij)2(yb − xj+1)2(yb − ya)2 . (5.11)

Inserting these results into (5.3) and reorganising the sums we find the following recursion
for the coefficients of the chiral box

. . .
y1 y2 yL ℓ∗ij

=
∑

ℓ∗
kl
∈V−

. . .
y1 y2 yL−1 ℓ∗kl

∧
ℓ∗ijℓ∗kl

yL−1 yL

. (5.12)

It is useful to define the following factor for a < b

. . .
ℓ∗kl

ya ya+1 yb ℓ∗ij

=
∑

ℓ∗
pq∈V−

. . .
∑

ℓ∗
mn∈V− ℓ∗pqℓ∗kl

ya ya+1
∧ . . . ∧

ℓ∗ijℓ∗mn
yb−1 yb

,

(5.13)

such that inserting the recursion (5.12) into the formula (5.2) for the (L + 1)-loop negative
ladder we arrive at our main result

. . .
y1 y2 yL+1

=
∑

ℓ∗
kl
∈V−

∑
ℓ∗

ij∈V− y1 ℓ∗kl

∧ . . .
ℓ∗kl

y1 y2 yL ℓ∗ij

∧
ℓ∗ij

yL yL+1
, (5.14)
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where all terms appearing on the right hand side have been defined in (4.32), (4.14), (5.7)–
(5.11) and (5.13). We have checked the formula (5.14) is symmetric under exchanging
ya ↔ yyL−a+2 at four loops up to six points, and at three loops up to eight points, which serves
as a non-trivial consistency check of our result. The formula for an arbitrary mixed ladder
can be obtained by simultaneously flipping red edges to green edges, and the corresponding
sum range from V− to V+, in formula (5.14). As an example at four loops we have the
following formula for a mixed ladder

y1 y2 y3 y4
=

∑
ℓ∗

kl
∈V−

∑
ℓ∗

jk
∈V+

∑
ℓ∗

ij∈V− y1 ℓ∗kl

∧
ℓ∗jkℓ∗kl

y1 y2
∧

ℓ∗ijℓ∗jk
y2 y3

∧
ℓ∗ij

y3 y4
.

(5.15)

5.1 Examples

It is useful to see how this formula behaves in the simplest cases beginning at four-points.
Recall, the four-point case is drastically simplified due to the one-loop region being covered
by a single sign pattern (i.e. one-loop chamber) such that we have the graphical identities

ℓ∗
ij

y1
=

y1
,

ℓ∗klℓ∗ij
yb ya

=
ℓ∗ij

yb ya

. (5.16)

This means that for example the four-loop negative ladder can be written as

y1 y2 y3 y4
=

y1
∧

∑
ℓ∗

ij∈V− ℓ∗
ij

y1 y2
∧

∑
ℓ∗

kl
∈V− ℓ∗

kl
y2 y3

∧
∑

ℓ∗
mn∈V− ℓ∗

mn
y3 y4

. (5.17)

This matches the results for the four-point ladders originally found in [14]. Interestingly, in
this case, the above formula can be immediately generalised to arbitrary trees in loop space,
and any ladder can be written solely using chiral pentagons.

At five-points and three-loops we begin to see the general structure. The three-loop
negative ladder at five-points is given by [16]

y1 y2 y3
=

∑
ℓ∗

jk
∈V−

∑
ℓ∗

ij∈V− y1 ℓ∗jk

∧
ℓ∗ijℓ∗jk

y1 y2
∧

ℓ∗ij
y2 y3

. (5.18)

Writing out the first term explicitly we have

y1 y2 y3
=

y1 ℓ∗13

∧
(

ℓ∗13ℓ∗13
y1 y2

∧
ℓ∗13

y2 y3
+

ℓ∗24ℓ∗13
y1 y2

∧
ℓ∗24

y2 y3

+
ℓ∗35ℓ∗13

y1 y2
∧

ℓ∗35
y2 y3

+
ℓ∗14ℓ∗13

y1 y2
∧

ℓ∗14
y2 y3

+
ℓ∗25ℓ∗13

y1 y2
∧

ℓ∗25
y2 y3

)
+ . . . , (5.19)

where the remaining four terms can be obtained by cyclic symmetry. The prefactor appearing
in (5.19) is referred to as a leading singularity in [16]. This leading singularity is related

– 16 –



J
H
E
P
0
6
(
2
0
2
5
)
1
2
4

to the chambers appearing in (4.19) as

y1 ℓ∗13

=

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y1
+

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y1
+

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y1
+

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y1

+

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y1
+

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y1
+

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y1
+

ℓ∗
13

ℓ∗
24

ℓ∗
35

ℓ∗
14

ℓ∗
25

y1
. (5.20)

It is useful to compare our formula to (3.17) of [16] which in our notation takes the fol-
lowing form

y1 ℓ∗13

=
y1

−
ℓ∗

13

ℓ∗
14y1

. (5.21)

At six-points no new phenomena occur and the three-loop negative ladder can be written
as a sum over 9 leading singularities.

5.2 Alternative expansion

There exists an alternative expansion of the ladder where instead of performing the recur-
sion (5.12) at one end of the ladder we instead perform the recursion at both ends until
reaching some loop momentum ya in the middle. The solution to this recursion provides
the following alternative form for the negative ladder

. . .
y1 y2 yL+1

=
∑

ℓ∗
pq∈V−

∑
ℓ∗

mn∈V− y1 y2 ℓ∗pq

∧ . . .
ℓ∗pq

y2 ya−1 ya ℓ∗mn

∧
ℓ∗mn

ya ℓ∗kl

∧

∑
ℓ∗

kl
∈V−

∑
ℓ∗

ij∈V−

. . .
ℓ∗kl

ya ya+1 yL ℓ∗ij

∧
ℓ∗ij

yL yL+1
, (5.22)

where we have defined the factors for a > b similar to (5.13) as

. . .
ℓ∗ij

yb ya−1 ya ℓ∗kl

=
∑

ℓ∗
pq∈V−

. . .
∑

ℓ∗
mn∈V− ℓ∗mn

yb+1ybℓ∗ij

∧ . . . ∧
ℓ∗kl

yaya−1ℓ∗pq

,

(5.23)

and the canonical forms of the new factors appearing on the vertex ya are given explicitly by

yaℓ∗kl ℓ∗ij

=
∑

ℓ∗
mncross ℓ∗

kl ℓ∗ijℓ∗mn ℓ∗kl
ya

, (5.24)

where the sum is over all chords mn of the n-gon which cross kl. The expansion of the
form (5.22) is a crucial ingredient required to find integrated finite quantities, as explained
in [16].
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6 Conclusion and outlook

In this paper we have studied the geometries associated to ladders in loop space defined
by relaxing mutual positivity constraints between loop momenta in the definition of the
momentum amplituhedron for MHVn scattering amplitudes in planar N = 4 SYM. Our
main result (5.14) is a formula for an arbitrary positive/negative ladder in loop space for any
multiplicity n. Remarkably, just as was the case for the two-loop positive ladder, already
studied in [12], we find that the canonical form can be written in a term-wise factorised form
extending the idea of fibrations of fibrations to all loop orders for ladder type geometries.

There is a number of interesting future research directions to pursue. The ladder
geometries studied in this paper are the simplest family of graphs in loop space and it would
be interesting to see how our results extend to more general topologies. In particular, the
next simplest case to consider would be arbitrary trees in loop space. At four-points the
extension of the ladder results to general trees is known [14], however, we expect additional
complications for n > 4. As opposed to the case of ladders where each loop variable is
connected to at most two other loops, for general tree graphs one needs to consider vertices
with higher valency. We believe that the fibration of fibration idea will provide a good starting
point for general trees, however, in order to find contributions from higher valency vertices in
loop space, the canonical forms for all one-loop chambers, currently unknown, will be required.

In this paper we have considered the negative ladders only at the level of the integrand,
however, recent progress has been made towards integrating these objects at four and five-
points [14–16]. It is therefore a natural next step to integrate the expressions that we wrote
in formula (5.14) over L − 1 loop points, that compute an n-point Wilson loop with one
Lagrangian insertion. As for the case of four and five points, this quantity is finite, but
for n > 5 it will start depending on non-trivial cross-ratios of external kinematics, leading
to a plethora of new interesting structures. Integrated negative geometries have also been
studied for four points in the ABJM theory [3, 19–21], and it would be interesting to find
an application of the results from this paper also in this case.
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