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Abstract—Plasticity is key to the trainability of neural net-
works and has long been a focus in the field of brain-inspired
research. Currently, neuromorphic networks primarily achieve
plasticity through synaptic and myelin structures. However, these
two are often studied separately, limiting further enhancement
of neuronal node plasticity. This paper proposes a neuron
model that incorporates both synapses and myelin, designs the
corresponding neuronal circuit, and introduces a method for
quantifying its discharge characteristics. Through theoretical
analysis, simulations, and physical experiments, we validate the
effectiveness of this quantification method. Furthermore, we
summarize the formation mechanisms of synaptic and myelin
plasticity, clarify the differences in their respective plasticity
effects, and use the quantification method to compute the
response speed, power consumption, and spike firing frequency
of neuronal circuits. We also analyze the impact of synaptic
and myelin plasticity and their synergistic effects on these three
factors. Results demonstrate that the plasticity of synapses and
myelin, as well as their synergistic interaction, can significantly
optimize the performance of neuron nodes: the response duration
is reduced to 2.9% of its initial value, the energy consumption per
spike decreases to 38.4%, and the spike firing frequency increases
to 1982.6% of the baseline level. This synergy contributes to
improving the computational efficiency and energy management
capabilities of neuromorphic networks.

Index Terms—Neuromorphic networks, Memristor, Neurons,
Myelination, Synapse, Mathematical models

I. INTRODUCTION

NEUROMORPHIC computing architectures, inspired by
the working principles of the brain, have become a

key research direction for addressing the physical limits of
hardware integration density and overcoming the bottlenecks
of the Von Neumann architecture [1]–[4]. Development of
neuromorphic networks relies not only on a deeper understand-
ing of the working mechanisms of the human brain, but also
benefits from the continued advancement of large-scale spiking
neural networks (SNNs) of various types and hierarchical
levels, along with their supporting computing platforms [5]–
[9]. Plasticity is the core characteristic of neural networks,
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determining learning, memory, adaptability, and energy ef-
ficiency. Whether in the biological brain, artificial neural
networks, or neuromorphic computing, effectively utilizing
plasticity can enhance the system’s intelligence, making it
more adaptive, robust, and computationally efficient [10]–[14].
Therefore, improving plasticity is crucial for the development
of large-scale neuromorphic networks.

Similar to the brain, plasticity in neuromorphic networks
can be achieved through synaptic and myelin circuits. For
example, by using the nonlinear properties of memristors to
simulate synaptic functions, neuromorphic chips significantly
outperform the latest image processing units in terms of energy
efficiency and computation speed when handling images [15]–
[21]. Designing myelin structures can make it easier for neuron
circuit nodes to adjust spike emission frequencies and achieve
plasticity beyond synapses [22]–[26]. However, in the field
of neuromorphic networks, research on synaptic and myelin
plasticity is mostly conducted independently.

The effects of synapses and myelin on neuronal firing char-
acteristics are highly similar, but their underlying mechanisms
differ. Synaptic plasticity primarily regulates the connection
strength between pre- and postsynaptic neurons, thereby influ-
encing membrane current and determining neuronal response
speed, power consumption, and spike firing frequency [27]–
[30]. In contrast, myelin plasticity affects these characteristics
by altering the membrane capacitance and permeability of neu-
rons [31], [32]. Moreover, the segmented structure formed by
myelination not only reduces interference from adjacent neu-
rons but also significantly enhances the conduction speed of
spike signals [33], [34]. More importantly, synaptic and myelin
plasticity do not function independently but rather interact and
collaboratively regulate neuronal firing properties [35]–[37].
Therefore, in the design of neuromorphic networks, studying
synaptic or myelin plasticity in isolation may fail to fully
harness the computational potential of neurons. Considering
their synergistic effect comprehensively can further optimize
plasticity of network, improve computational efficiency, and
enhance energy efficiency.

Although the research on neuromorphic networks has ex-
plored the plasticity of synapses and myelin, there are still
two challenges in studying their synergistic effect. Firstly,
there is a lack of a neuron model that can simultaneously
describe the plasticity of both synapses and myelin. Classical
unmyelinated neuron models (such as the Hodgkin-Huxley
model, HH) and myelinated neuron models (such as the
Frankenhaeuser-Huxley model, FH) do not simultaneously
describe the plasticity of both synapses and myelin [38], [39].
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This limits the design of neuron circuit nodes that simultane-
ously incorporate synaptic and myelin structures for studying
the synergistic effect of their plasticity. Secondly, there is a
lack of computation methods for key characteristics of neuron
circuit nodes, such as response speed, power consumption,
and spike emission frequency. This hinders the analysis of the
synergistic effect between the plasticity of myelin and synaptic
structures in neuron circuit nodes.

To address the above challenges, this study establishes
a neuron model, designs the corresponding neuron circuit,
and conducts relevant analysis to clarify the differences and
synergistic effects between myelin and synaptic plasticity. The
specific contributions are as follows:

• We reviewed the physiological structure and function of
biological synapses and myelin. Based on the HH model,
we incorporated descriptions of synaptic and myelin
plasticity and proposed an adaptive growth neuron (AGN)
model.

• Based on the AGN model, we designed a neuron circuit
and proposed an analysis method for the response speed,
power consumption, and spike firing frequency of the
neuron circuit. The validity of the neuron circuit and
analysis method was verified through simulations and
physical experiments.

• We analyzed how synaptic and myelin structures influ-
ence the response speed, power consumption, and spike
firing frequency of neuron circuits, and explained the
synergistic effect between their plasticities. This provides
theoretical guidance for further enhancing the plasticity
of neuromorphic networks.

The rest of this paper is organized as follows. Section
II primarily introduces and analyzes the mechanisms under-
lying the growth and function of synaptic connections and
myelination in biological neurons. Section III introduces the
AGN model and neuron circuit and methods for calculating
neuronal circuit response speed, power consumption, and spike
firing frequency. Section IV validates the effectiveness of the
above methods through theoretical calculations, simulations,
and physical experiments. Section V discusses the differences
in the mechanisms of synaptic and myelin plasticity, as well
as their synergistic effects. Section VI is the conclusion.

II. SYNAPTIC PLASTICITY AND MYELIN PLASTICITY

In this section, we will outline the physiological structure,
function, and plasticity formation mechanisms of biological
synapses and myelin.

A. Synaptic plasticity

As shown in Fig. 1(a), a biological synapse consists of
a presynaptic and a postsynaptic component, which do not
directly touch but are separated by a synaptic cleft. After the
presynaptic neuron fires a spike, it releases neurotransmitters
into the synaptic cleft. The AMPA receptor ion channels on
the postsynaptic neuron then receive and activate in response.
Once the receptor ion channels open, cations, primarily sodium
ions, flow into the neuron, causing the membrane potential
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Fig. 1. The formation mechanism of biological neuronal plasticity. (a)
Synaptic plasticity; (b) Myelin plasticity.

to rise and ultimately firing a spike, thereby completing the
information transmission [40].

During neuronal signal transmission, the concentration of
neurotransmitters in the synaptic cleft and the density of
AMPA receptor ion channels on the postsynaptic neuron
collectively influence information transfer efficiency. The con-
centration of neurotransmitters is jointly regulated by the
ion concentrations inside and outside the presynaptic neuron,
as well as the spike morphology (such as frequency, time
intervals, etc.). This process is closely related to synaptic
plasticity, but it is difficult to form memory on its own.
Synaptic plasticity largely depends on the density of AMPA
receptor ion channels on the postsynaptic membrane [41]. The
higher the density, the greater the activation of AMPA receptor
ion channels, which leads to an increased conductance, thereby
amplifying the postsynaptic membrane current and making it
more likely to trigger spike firing in the postsynaptic neuron
[42].

In summary, to describe synaptic plasticity in the process
of neuron modeling, the focus should be on the changes in
synaptic weight caused by the variation in the density of
AMPA receptor ion channels.

B. Myelin plasticity

Myelin sheath is formed by Schwann cells or oligodendro-
cytes wrapping around the axons of neurons [43]. As shown in
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Fig. 1(b), its structure is segmented. The myelinated regions
provide electrical insulation, while the gaps between them are
called Nodes of Ranvier. This intermittent structure enables
saltatory conduction, allowing nerve signals to jump between
nodes, significantly increasing transmission speed [44]. The
effective thickness of the neuronal axonal membrane in the
myelinated region increases, reducing membrane capacitance.
Additionally, this region contains very few voltage-gated ion
channels, leading to decreased ion permeability, affecting the
neuron’s response speed and power consumption characteris-
tics [45]. It is worth noting that once the myelination process
is complete, it is generally irreversible unless affected by
pathological factors such as demyelinating diseases or other
pathological mechanisms.

Incorporating myelin functionality into neuron models re-
quires a comprehensive consideration of the enhancement
in signal conduction speed due to the myelin structure, as
well as the effects of the myelination process on reduced
membrane capacitance and decreased membrane permeability.
However, this study primarily focuses on the impact of synap-
tic plasticity, myelin plasticity, and their synergistic effect on
neuronal response speed, power consumption, and spike firing
frequency. Since synaptic plasticity does not directly affect
the transmission speed of neuronal signals, the enhancement
of signal transmission speed due to myelin structure is tem-
porarily not considered in the neuron model.

III. NEURON MODELING, CIRCUIT DESIGN, AND
CHARACTERISTIC QUANTIZATION

A. AGN model and neuron circuit

To investigate the synergistic effects of synaptic and myelin
plasticity, we propose an adaptive growth neuron (AGN)
model. Eq. (1) represents the AGN’s dynamics.

I(t) = Ic(t) +
∑
k

Ik(t), (1)

where Ic(t) and Ik(t) respectively correspond to the capaci-
tance effect and real-time ions flow through ion channels. I(t)
is the real-time total current through the axonal cell membrane.
Because of myelination and membrane potential changes, Ic(t)
can be further expressed as:

Ic(t) =
C(t) · dUM (t)

dt
, (2)

where, C(t) represents the real-time size of the membrane
capacitance, while dUM

dt denotes the rate of change of the
membrane potential. Since myelination causes changes in
membrane capacitance, the capacitance C(t) is designed as
a time-varying variable. Real-time currents flowing through
each ion channel are represented by Eq. (3).

∑
k

Ik(t)=gNa(t)·(UM (t)−UNa)+gK(t)·(UM (t)−UK)

+gr(t)·(UM (t)−UNa)+gL(t)·(UM (t)−UL),

(3)

where, gNa(t), gK(t) respectively represent the real-time con-
ductance of each ion channel. UNa, UK , UL, Ur correspond to
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Fig. 2. (a) Neuronal key organelle physical replacement; (b) Neuronal circuit.

the Nernst potentials generated by the concentration gradients
of various ions inside and outside the neuron. The UM

represents the real-time membrane potential of the neuron.
In Eq. (3), we introduce gr(t) to describe the activation
characteristics of AMPA receptor ion channels, where the
maximum conductance of gr(t) is used to measure synaptic
weight. Because the activation of AMPA receptor ion channels
primarily involves the inward flow of cations, with Na+ being
the dominant species, the Nernst potential corresponding to
gr(t) is UNa. The conductance of the leak channels represents
the membrane permeability of the neuron model in the resting
state, denoted as gL(t). Since myelination affects membrane
permeability, gL(t) is also designed to vary over time.

Before designing the neuron circuit, it is necessary to
determine the physical equivalent scheme for each organelle.
The activation of AMPA receptor ion channels depends on
their binding with neurotransmitters. Therefore, the control
terminal of a three-terminal device can be used to simulate this
activation characteristic. As shown in Fig. 2(a), we use a com-
bination of MOSFET transistors and memristors to simulate
AMPA receptor ion channels. The MOSFET transistor models
the channel’s switching behavior, representing the activation
mechanism triggered by neurotransmitter binding, while the
memristor simulates synaptic weight plasticity, reflecting long-
term memory functions.
Na+ and K+ channels are the primary channels responsible

for generating action potentials in neurons, both voltage-
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gated ion channels. Existing studies have employed threshold-
switching memristors to simulate their voltage-dependent ac-
tivation characteristics [46]–[48]. Since only the effects of
myelination on membrane capacitance and membrane perme-
ability are considered, a variable capacitor can be used to
simulate changes in membrane capacitance, and a variable
resistor can replace the leak channel to simulate changes
in membrane permeability [25]. As shown in Fig. 2(b), the
neuronal circuit is constructed based on the AGN model
and the physiological structure of the neuron. The potential
difference between the inside (EL1) and outside (EL2) of
the neuronal circuit is the membrane potential of the neuron,
denoted as UM .

The ion channels of real biological neurons exhibit com-
plex nonlinear dynamics, which poses challenges for circuit-
level implementation. Therefore, appropriate simplification is
necessary. In the ion channel design presented in this work,
only the essential threshold-switching characteristics are re-
tained—specifically, the rapid activation and inactivation of
sodium channels, the rapid activation and slow inactivation of
potassium channels, and the ligand-gated response of receptor
ion channels to neurotransmitters—while the modeling of
complex nonlinear behaviors is omitted.

B. Synapse and myelin circuit characteristic quantization
method

The plasticity of synapses and myelin can be reflected
through the neuronal response speed, power consumption,
and spike firing frequency. Therefore, an algorithm is needed
to quantify these three attributes to effectively evaluate the
plasticity of synapses, myelin, and their synergistic effect. The
response speed of a neuron typically refers to the time delay
between receiving the synaptic input signal and generating an
action potential. The power consumption of a neuron can be
evaluated based on the energy expended during the generation
of a single action potential, which is typically influenced
by spike firing frequency, membrane conductance, and ion
channel dynamics. The spike firing frequency is the number
of action potentials fired per unit time, usually expressed in
Hertz (Hz).

Time is a key parameter in calculating neuronal circuit
response speed, power consumption, and spike firing fre-
quency, with different attributes corresponding to different
time metrics. The response speed is typically determined
by the time from synaptic input to the neuron’s membrane
potential crossing the action potential firing threshold. The
quantization of power consumption and spike firing frequency
involves the duration of a single action potential and the
number of spikes emitted per unit of time.

However, during the generation of an action potential, mul-
tiple ion channels undergo different state transitions, leading
to variations in time calculation methods. Therefore, we divide
the action potential process into six stages based on the
state transitions of ion channels, as shown in both Fig. 3
and Table. I. From t0 to t1 is the first stage, denoted as
T0; from t1 to t2 is the second stage, denoted as T1; and
so on. t0 is an arbitrary starting point in the resting state.
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Fig. 3. The stages of an action potential.

t1 represents the moment of synaptic output stimulation. t2
represents the moment when the membrane potential reaches
the action potential firing threshold, at which point Na+

channels are activated. t3 represents the moment when the
membrane potential reaches its maximum value, at which
point the K+ channels are activated. t4 represents the moment
when Na+ channels become inactivated. t5 represents the
moment when the membrane potential reaches its minimum,
at which point K+ channels become inactivated. t6 represents
the moment when the membrane potential returns to the resting
potential, at which point the action potential is completed.

To simplify the equation, we first calculate the total con-
ductance of the neuronal circuit at each stage, denoted as σzi

(i = 0, 1, 2, 3, 4, 5).

σzi = σri + σLi + σNai + σKi, (4)

It is worth noting that the conductivities gr, gL, gNa, and
gK in Eq. (3), and σri, σLi, σNai, and σKi in Eq. (4), Eq.
(6) and Eq. (8), represent the same physical quantities—the
conductivities of the corresponding ion channels. The only
difference lies in the notation used in different contexts:
g denotes the continuous-time formulation, while σ repre-
sents the discretized (quantized) values at specific time steps
used in numerical simulations. Their values are equivalent
at corresponding moments in time. After determining the
corresponding moments of t0 and t1, ti (i = 2,3,4,5,6) can
be calculated using Eq. (5).

ti = ti−1 +
C(t) · ln(1− uni−uli

uhi−uli )

σzi
, (5)

where, C(t) represents the membrane capacitance varying over
time. σri, σLi, σNai and σKi represent the conductance of their
respective ion channels in the current state. σNai and σKi

can be obtained from Table I. σri and σLi are key variables
affecting synaptic and myelin sheath plasticity, which will be
listed separately in subsequent experiments. uni corresponds to
the membrane potential value at ti+1 moment. uli corresponds
to the membrane potential value at ti moment. The values of
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TABLE I
ACTIVATION STATES OF VARIOUS CHANNELS DURING CONTINUOUS SPIKE FIRING OF NEURON CIRCUIT.

No. Stage Time zone Ion Channel
ul un Ur UL UNa UKAMPA Na K Leak

0 T0 (t0, t1) Off(1MΩ) Off(1MΩ) Off(1MΩ) On(*) −71mV −71mV 55mV −71mV 55mV −77mV
1 T1 (t1, t2) On(*) Off(1MΩ) Off(1MΩ) On(*) −71mV −55mV 55mV −71mV 55mV −77mV
2 T2 (t2, t3) On(*) On(200Ω) Off(1MΩ) On(*) −55mV 20mV 55mV −71mV 55mV −77mV
3 T3 (t3, t4) On(*) On(200Ω) On(10Ω) On(*) 20mV −64.5mV 55mV −71mV 55mV −77mV
4 T4 (t4, t5) On(*) Off(1MΩ) On(10Ω) On(*) −64.5mV −74mV 55mV −71mV 55mV −77mV
5 T5 (t5, t6) On(*) Off(1MΩ) Off(1MΩ) On(*) −74mV −71mV 55mV −71mV 55mV −77mV

Note1 : Off(1MΩ) represents the ion channel in an inactivated state, and the value in parentheses is the resistance corresponding to the inactivated state.
Note2 : On(200Ω) represents the ion channel in an activated state, and the value in parentheses is the resistance corresponding to the activated state. On(*)
represents the resistance in the activated state as a variable.
Note3 : If only one spike is emitted, the state of AMPA receptor ion channel is “off” in the (t2, t6) interval.

uni and uli can be obtained from Table I. uhi represents the
final steady-state value of the membrane potential under the
current ion channel state. uhi can be calculated using Eq. (6).

uhi =
σri · Ur + σLi · UL + σNai · UNa + σKi · UK

σzi
, (6)

where, Ur, UL, UNa and UK represent the Nernst potentials
caused by the concentration gradients of different ions inside
and outside the neuron and their values can be obtained from
Table I.

The response time T1 of a neuron can be calculated using
Eq. (7).

T1 = t2 − t1. (7)

Real-time power consumption Pi(t) (i = 0, 1, 2, 3, 4, 5) of
the neuronal circuit is influenced by the instantaneous changes
in membrane potential and states of ion channel, and it can
be calculated using Eq. (8).

Pi(t) = σri · (UMi(t)− Ur)
2 + σLi · (UMi(t)− UL)

2+

σNai · (UMi(t)− UNa)
2 + σKi · (UMi(t)− UK)2,

(8)

where, UMi(t) (i = 0, 1, 2, 3, 4, 5) represents the real-time
membrane potential of each stage. Due to the different activa-
tion states of ion channels at each stage Ti (i = 0, 1, 2, 3, 4, 5)
of the action potential, the real-time membrane potential of
each phase must be calculated separately using Eq. (9).

UMi(t) = uhi − (uhi − uli) · exp(−
(t− ti) · σzi

C(t)
). (9)

The energy consumption Qi (i = 0, 1, 2, 3, 4, 5) correspond-
ing to each stage Ti (i = 0, 1, 2, 3, 4, 5) can be calculated using
Eq. (10).

Qi =

∫ ti+1

ti

Pi(t) dt. (10)

In T0 stage, neuron circuit is in a resting state and does
not belong to the action potential firing phase. Total energy
required Qz to fire one action potential can be calculated using
Eq. (11).

Qz = Q1 +Q2 +Q3 +Q4 +Q5. (11)

Since the parameters of the neuron circuit remain relatively
constant over a short period, the spike firing frequency F can
be estimated by the reciprocal of the total action potential
firing time, as shown in Eq. (12).

F =
1

t6 − t1
, (12)

IV. VERIFICATION OF NEURONAL CIRCUIT
CHARACTERISTICS COMPUTATIONAL METHODS.

In the previous section, we proposed methods for com-
puting the response speed, power consumption, and spike
firing frequency of neuronal circuits. This section will validate
the effectiveness of these methods through simulations and
physical experiments.

As mentioned earlier, time is a key parameter affecting
the response speed, power consumption, and spike firing
frequency of neurons, especially when calculating the spike
firing frequency, where the complete action potential duration
needs to be considered. Therefore, to verify the accuracy
of the quantization methods we proposed, we designed both
simulation and physical experiments, and validated them by
comparing the spike discharge frequencies from the theoretical
values, simulation results, and experimental data.

A. Setup for PSpice simulation experiments

Neuron circuit is constructed strictly in the simulation
according to the schematic diagram shown in Fig. 2(b). Na+

memristor dynamic model is given by Eq. (13), Eq. (14) and
Eq. (15). K+ memristor dynamic model is given by Eq. (13),
Eq. (15) and Eq. (16).

V (t) = (Roff − x ·∆R) · i(t), (13)

dx

dt
=


− q1 · kb1on · f(x) · i(t) ·∆R, V (t) > Vth1

0, Vth2 ≤ V (t) ≤ Vth1

q2 · kb2off · f(x) · i(t) ·∆R, V (t) < Vth2,

(14)

where, V (t) refers to the real-time voltage across the memris-
tor. i(t) is the real-time current flowing through the memristor.
Roff is the resistance value of the memristor in the high-
resistance state, Ron is the resistance value in the low-
resistance state, and ∆R is the absolute difference between the
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TABLE II
PARAMETERS OF THE MEMRISTOR MODEL.

No. Memristor Roff Ron Vth1 Vth2 q1 q2 Kon Koff b1 b2 n p
1 RNa 1MΩ 200Ω −110mV −119.5mV 1 1 4 4 10 10 − 10
2 RK 1MΩ 10Ω 97mV 7mV 1 1 2 2 20 10 −0.002 10

two. x is the coefficient that controls the resistance variation
of the memristor. q1, q2, b1, and b2 are coefficients primarily
used to control the switching speed of the memristor to match
the activation and inactivation speed of ion channels. Vth1 and
Vth2 are the switching thresholds of the memristor. f(x) is
a window function that primarily constrains the coefficient x
within the range [0, 1] to prevent the memristor resistance from
exceeding Roff or dropping below Ron.

f(x) =

{
1− x2p, V (t) > Vth1

1− (x− 1)2p, V (t) ≤ Vth2,
(15)

dx

dt
=


q1 · kb1on · f(x) · i(t) ·∆R, V (t) > Vth1

0 , Vth2 ≤ V (t) ≤ Vth1

− q2 · kb2off · f(x) · i(t)n ·∆R, V (t) < Vth2.

(16)

where, p is the key parameter controlling the nonlinear vari-
ation of the memristor, and n is a coefficient. Parameters of
each memristor are listed in Table II.

Since the plasticity of myelin and synapses can be ignored
when calculating the instantaneous spike firing rate of the
neuron, we use fixed resistors and capacitors to replace the
variable resistors and capacitors in Fig. 2(b) to simulate the
effects of synapses and myelin. RL is set to 3kΩ, and C is
set to 8µF . Rr is set to 6kΩ. The remaining parameters are
provided in Table I.

B. Setup for practical experimentation.

Consistent with the simulation experiment, the physical ex-
periment is also designed to measure the spike firing frequency
of the neuronal circuit, and the accuracy of the neuronal
characteristic quantization method is verified by comparing the
results with the theoretical values. The physical experimental
setup is shown in Fig. 4(a). The equivalent circuit of the
memristor is designed using a gated circuit to control a
bidirectional thyristor switch. Na+ and K+ memristor is
implemented by an equivalent circuit, as shown in Fig. 4(b).
Parameters and device models involved in the PCB circuit
are listed in Table III. RL is set to 3kΩ, and C is set to
4.4µF . Rr is set to 10kΩ. The circuit structure of the neuron
circuit in the practical experiment is essentially reproduced
from the simulation. The signal acquisition system is built
using LabView software and an NI 6002 data acquisition card.

C. Simulation and physical experimental results and analysis.

In the simulation, a DC voltage greater than 20mV is
sufficient to activate the synaptic channel and stimulate the
neuron simulation circuit to continuously emit spikes. In
the physical experiment, a DC voltage greater than 2V can
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Fig. 4. (a) Practical experiment involved the PCB neuron circuitry and
experimental environment; (b) PCB circuit schematic.

activate the synaptic channel and excite the neuron physical
circuit to continuously emit spikes. To ensure the accuracy of
spike frequency statistics, we recorded 30s of neuronal firing
waveforms in both the simulation and physical experiments.
The results of the simulation and physical experiments are
shown in Fig. 5(a) and Fig. 5(b). To ensure clarity, only the
first 400ms are displayed.

Table IV shows the simulation and physical experiments
results. Data analysis indicates that the deviation between
the simulation statistics and the theoretical calculations is
relatively small for spike firing frequency. In contrast, the
deviation between the physical experiment statistics and the
theoretical calculations is comparatively larger. From Fig. 5(b),
it can be observed that in the physical experiment results, the
neuronal circuit’s membrane potential enters a chaotic state
during the short interval between two spikes, affecting the
spike firing frequency. Both simulation and physical experi-
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TABLE III
PCB CIRCUIT PARAMETERS.

No. Device V alue Device V alue Device V alue Device V alue Device V alue
1 R1 2MΩ R2 100kΩ R3 1MΩ R4 200Ω R5 10kΩ
2 R6 1kΩ R7 1.5MΩ R8 510kΩ R9 2MΩ R10 1Ω
3 R11 2MΩ R12 200kΩ DC1 6.3V DC2 5V DC3 5.5V
4 DC4 9V DC5 5V DC6 5.5V DC7 7.7V DC8 7.1V
5 DC9 5.5V T1 MAC97A6 T2 MAC97A6 Q1 1N4007 Q2 1N4007
6 PMOS1 M2SJ142 PMOS2 M2SJ142 PMOS3 M2SJ142 NMOS1 M2K946 NMOS2 M2K946

TABLE IV
SIMULATION AND PHYSICAL EXPERIMENT RESULTS.

Parameter Simulation Physical experiment
Theory Statistics Theory Statistics

Spike frequency 78.0Hz 76.7Hz 53.1Hz 49.6Hz
Deviation 1.6% 6.6%

Note1 : Deviation = (Theoretical Value - Statistical Value) / Theoretical
Value.
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Fig. 5. (a) Simulation results; (b) Practical experiment results.

ment results indicate that the deviation between the theoretical
and statistical values of the spike firing frequency is less than
10%. This validates the accuracy of the calculated duration of
each stage in the neuronal circuit’s action potential process and
further confirms the reliability of using time-based calculations
for neuronal circuit response time, power consumption, and
spike firing frequency.

V. DIFFERENCES AND SYNERGISTIC EFFECTS BETWEEN
SYNAPTIC AND MYELIN PLASTICITY

This section will explore the effects of synaptic and myelin
plasticity on the discharge characteristics of neuronal circuits,
with a particular focus on their functional differences and
synergistic effects.

A. Differences in the Effects of Synaptic and Myelin Plasticity.

In the second subsection, we have already introduced
the differences in the formation mechanisms of myelin and
synaptic plasticity. Additionally, their roles in neuromorphic
networks also exhibit significant differences. To better illus-
trate the differences in their effects, we constructed a small
neuromorphic network and observed its response by adjusting
synaptic and myelin plasticity to analyze their distinct influ-
ences. As shown in Fig. 6, neurons No. 1, No. 2, and No. 3, as
presynaptic neurons, connect to the postsynaptic neuron No. 4
through synapses with three different weights. Parameters of

42

3

1Input 

Input 

Input 

Output

:Excitatory synaptic connection.

Basic parameters of Neurons No.1, No.2, and No.3 
are identical.

Fig. 6. Neuromorphic Network Structure Involved in Verifying the Differ-
ences Between Myelin and Synaptic Plasticity.

TABLE V
PARAMETERS OF NEURONS IN A NEUROMORPHIC NETWORK.

No. Rr RL C
1 5kΩ 2.7kΩ 8µF
2 5kΩ 2.7kΩ 8µF
3 5kΩ 2.7kΩ 8µF

4
Rr(1− 4) : 15kΩ Before myelination: 3kΩ

After myelination: 8kΩ
8µF
2µF

Rr(2− 4) : 9kΩ
Rr(3− 4) : 4kΩ

each neuron or memristor are given in Table I, Table II and
Table V. Simulation was conducted in PSpice, and simulation
results are shown in Fig. 7. Neurons No. 1, No. 2, and No. 3
are individually activated continuously by a 20mV DC voltage
(not activated simultaneously), and the simulation results are
recorded for 300ms, as shown in Fig. 7(a), Fig. 7(b) and Fig.
7(c). The parameter settings of Neurons No. 1, No. 2, and No.
3 are kept consistent, and they emit a spike sequence at the
same fixed frequency when continuously activated.

When the synaptic weight between neurons is low, the
presynaptic neuron continuously fires spikes at a low fixed
frequency, but it cannot activate the postsynaptic neuron to
generate spikes, as shown in Fig. 7(d) and Fig. 7(e). In this
case, changes in the synaptic weight will only cause the
postsynaptic membrane potential to rise, but it will not reach
the threshold needed to trigger a spike. When the synaptic
weight between neurons is high, even if the presynaptic
neurons continue to fire spikes at the same fixed frequency,
the postsynaptic neurons can be activated and generate spikes,
as shown in Fig. 7(f). Additionally, the synaptic weight only
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Fig. 7. Neuromorphic Network Structure Involved in Verifying the Differ-
ences Between Myelin and Synaptic Plasticity.

affects the information transfer efficiency between the pre- and
post-synaptic neurons, and does not change the information
transfer efficiency between the post-synaptic neuron and other
neurons. In other words, synaptic plasticity establishes a one-
to-one relationship in the neuromorphic network.

To better illustrate the difference between myelin plasticity
and synaptic plasticity, the degree of myelination of neuron
No. 4 is increased while keeping the structure of the neu-
romorphic network and synaptic weights unchanged, and the
above simulation process is repeated. Since the parameters
of neurons No. 1, No. 2, and No. 3 remain unchanged, the
simulation results are consistent with previous Fig. 7(a), Fig.
7(b) and Fig. 7(c). The output results of neuron No. 4 are
shown in Fig. 7(g), Fig. 7(h), and Fig. 7(j). Clearly, even
though the presynaptic neurons continue to spike at a fixed
frequency, the postsynaptic neurons are able to produce spikes
under all three different weight connections. In other words,
myelin plasticity establishes a many-to-one relationship in the
neuromorphic network. The myelinated neurons become more
sensitive to the stimuli from presynaptic neurons and even to
noise signals. Compared to before myelination, the membrane
potential fluctuations are larger under the same stimulus, and
spikes are more easily generated.

In summary, synaptic plasticity establishes a one-to-one
relationship in the neuromorphic network, while myelin plas-
ticity forms a many-to-one relationship.

B. Synergistic effect of synaptic and myelin plasticity on
response speed.

Previous sections have mentioned that adjusting synaptic
weight or the degree of myelination can influence the firing
characteristics of the neuronal circuit. This section explores
the synergistic effect between synaptic plasticity and myelin
plasticity by analyzing the neuronal circuit’s response speed,
power consumption, and variation patterns of spike firing fre-
quency. Since the synergistic effect between synaptic plasticity
and myelin plasticity is a continuous dynamic process, we

calculate the response speed, power consumption, and spike
firing frequency of the neuronal circuit under different synaptic
weights and degrees of myelination based on Eq. (5), Eq.
(7) and Eq. (11), to quantify their effects. To simulate the
continuous firing of action potentials in neurons, the excitatory
receptor ion channels are set to remain open by default during
computation, with their conductance regulated by Rr. Further-
more, Rr represents the equivalent total conductance when
all excitatory receptor ion channels in the neuronal circuit
are activated simultaneously, thus simulating the maximum
membrane current achievable through synaptic input.

The synergistic effect of synaptic plasticity and myelin
plasticity on the response speed of neuronal circuits is shown
in Fig. 8. When synaptic weight is low, even if receptor
ion channels remain open, the response time of the neuronal
circuit is still relatively long, as shown in Fig. 8(a). This is
because synaptic weight is positively correlated with postsy-
naptic membrane current. With a fixed degree of myelination,
a smaller synaptic weight results in a weaker postsynaptic
membrane current, thus prolonging the response time of the
neuronal circuit. This can be verified by observing the same
positions in Fig. 8(a) to Fig. 8(i). As the synaptic weight
gradually increases, the maximum membrane current that
synaptic input can reach continues to rise. It can be observed
that the effect of myelination on reducing the response time
of the neuronal circuit gradually weakens, as shown in Fig.
8(a) to Fig. 8(i). This is because the increase in membrane
current caused by synaptic input has a greater effect on com-
pressing response time than myelination, thereby diminishing
the relative contribution of myelination to enhancing neuronal
response speed.

As shown in Fig. 2, the neuronal circuit is essentially a rel-
atively complex RC circuit, whose time constant τ determines
the circuit response time and can be calculated by Eq. (17).

τ =R(t) · C(t)

=
C(t)

σzi
,

=
C(t)

(σri1 + σri2 + ...+ σrin) + σNai + σKi + σLi
,

(17)

where, τ is the time constant, R(t) is the total external-
to-internal resistance of the neuronal circuit, and σzi (i =
0, 1, 2, 3, 4, 5) is the total conductivity. C(t) is membrane ca-
pacitance, and σNai, σKi, σLi (i = 0, 1, 2, 3, 4, 5) are the con-
ductances corresponding to Na+, K+, and leak channels, re-
spectively. σrij (i = 0, 1, 2, 3, 4, 5andj = 0, 1, ..., n)represents
the conductance of receptor ion channels corresponding to
different synapses at various stages of the action potential.

In plotting Fig. 8, to clearly demonstrate the role of synaptic
plasticity in the neuromorphic network, we assume that all
synapses in the neuronal circuit are activated simultaneously
to simulate the maximum membrane current achievable by
synaptic input, thereby quantifying synaptic plasticity. How-
ever, since synaptic activation in the neuronal circuit is typi-
cally random, it is more difficult to regulate the response time
of the neuronal circuit through synaptic plasticity. Eq. (17)
clearly shows that the activation state of all synapses in the
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Fig. 8. The synergistic effect of synaptic plasticity and myelin plasticity on the response speed of neuronal circuits.

neuronal circuit affects the time constant, thereby influencing
the response time. To adjust the response time of a specific
node in the neuromorphic network through synaptic plasticity,
at least one synaptic weight must be adjusted, along with the
synaptic activation state. In contrast, through myelin plastic-
ity, only the membrane permeability (RL(t)) and membrane
capacitance (C(t)) of the neuronal circuit need to be adjusted.

In summary, firstly, although synaptic plasticity and myelin
plasticity can regulate the response time of neuronal circuits,
adjusting synaptic plasticity involves more parameters and is
more challenging, far exceeding the difficulty of regulating
through myelin plasticity. Secondly, during the training of
the neuromorphic network, by focusing on regulating myelin
plasticity and supplementing with synaptic plasticity adjust-
ments, the response speed of the neuronal circuit nodes can
be adjusted more quickly and precisely. Thirdly, the combined
regulation of synaptic and myelin plasticity helps further
expand the control range of neuronal circuit response time,
as demonstrated by comparing Fig. 8(a) and Fig. 8(i).

C. Synergistic effect of synaptic and myelin plasticity on
power consumption

Similar to biological neurons, the power consumption of the
neuronal circuit differs significantly between the resting state
and the action potential phase. In the resting state, receptor
ion channels (synapses), Na+ channels, and K+ channels
remain in an inactive state. In contrast, the activation state
of the leak channel is unaffected by action potentials and
remains continuously active. Since synapses are not activated
in the resting state, changes in synaptic weight do not directly
affect energy consumption in this state, as shown in Fig.
9(a), Fig. 9(b) and Fig. 9(c). After myelination of the neu-
ronal circuit, the conductance of the leak channels decreases
(corresponding to reduced membrane permeability), thereby
influencing energy consumption in the resting state. However,
if the change in leak channel conductance is small, its impact
on the overall conductance of the neuron may be limited,
making the effect of myelination on the energy consumption
of the resting state relatively minor. Nevertheless, over a long
timescale, even small changes in leak channel conductance
may lead to cumulative effects on energy consumption.

We evaluate the power consumption of neuronal circuit
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Fig. 9. The effects of synaptic plasticity and myelin plasticity on the power consumption of the neuronal circuit in resting state and action potential generation.

spike firing by calculating the energy required to generate
a single action potential. As shown in Fig 9(d), Fig 9(e),
and Fig 9(f), synaptic plasticity has a minimal impact on
the energy consumption of a single action potential in a
neuron. Calculating the power consumption of a neuronal
circuit requires considering the duration of a single action
potential and the membrane currents of various ion channels.
An increase in synaptic weight enhances the postsynaptic
membrane current, thereby accelerating the activation of ion
channels and shortening the duration of the action potential.
Although the increased synaptic current may lead to higher
instantaneous energy consumption, the reduction in action
potential duration offsets this effect. As a result, synaptic
plasticity has a relatively minor impact on the total energy
consumption of a single action potential.

As shown in Fig 9(d), Fig 9(e) and Fig 9(f), myelination
significantly affects the energy consumption of generating a
single action potential in a neuronal circuit. Compared to a
high degree of myelination, a neuronal circuit with lower
myelination has a larger membrane capacitance, which reduces
the rate of membrane potential changes in response to the same
input intensity. This prolongs the duration of the action poten-
tial, leading to increased energy consumption. Additionally, a
lower degree of myelination corresponds to higher membrane
permeability (i.e., higher leak channel conductance), resulting
in greater membrane current leakage. This further reduces
the rate of membrane potential changes, extends the action
potential duration, and increases energy consumption. This
phenomenon is particularly evident at low synaptic weights,
as shown in Fig 9(d).

In summary, Firstly, in the resting state of the neuronal cir-
cuit, synaptic plasticity and myelin plasticity have little direct
impact on circuit power consumption. Secondly, during the
action potential duration, an increase in synaptic weight raises
instantaneous power consumption but simultaneously shortens
the duration of the action potential. As a result, synaptic
plasticity has a minimal effect on the total energy consumption
of a single action potential. Thirdly, as the degree of myelina-
tion in the neuronal circuit increases, the energy consumption
per action potential significantly decreases. Furthermore, the
synergistic effect of synaptic plasticity and myelin plasticity
can reduce energy consumption while enabling the neuronal
circuit to generate action potentials within a shorter time.

D. Synergistic effect of synaptic and myelin plasticity on spike
firing frequency

As shown in Fig. 10(a) to Fig. 10(i), an increase in synaptic
weight leads to a higher spike firing frequency in neurons. For
the same reason that it compresses the response time of the
neuronal circuit, the increase in synaptic weight results in a
larger membrane current, which accelerates the rate of change
in the neuron’s membrane potential, thus increasing the spike
firing frequency. Similarly, the spike firing frequency of the
neuronal circuit is also determined by the time constant τ . In
neuromorphic networks, controlling the spike firing frequency
of nodes through synaptic weights is also challenging, as
it requires coordinating multiple synaptic weights and their
activation sequences, involving many parameters.

Myelination plasticity can also affect the time constant of
neuronal circuits. Compared to synaptic plasticity, myelination
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Fig. 10. The synergistic effect of synaptic plasticity and myelin plasticity on the spike firing frequency of neuronal circuits.

only requires adjustments to membrane capacitance and mem-
brane permeability, reducing the number of parameters to be
regulated and allowing for more precise tuning of the spike fir-
ing frequency at specific nodes in the neuromorphic network.
Additionally, myelination in neuronal circuits can enhance the
response of existing synaptic connections to input stimuli. The
synergistic effect of synaptic and myelin plasticity can further
expand the range of spike firing frequency adjustments in the
neuronal circuit, as shown in Fig. 10(a) and Fig. 10(i).

In summary, firstly, synaptic and myelin plasticity can
regulate the spike firing frequency of neural circuits. Secondly,
regulating through synaptic plasticity involves more param-
eters and is more difficult, while regulating through myelin
plasticity involves fewer parameters and results in more precise
adjustments. Finally, the synergistic effect of synaptic and
myelin plasticity can further expand the regulation range for
the spike firing frequency in neural circuits.

E. Potential challenges of circuit integration into neuromor-
phic networks

The existing analysis has sufficiently demonstrated that
synaptic and myelin plasticity can independently modulate the

firing behavior of neuronal circuits through distinct mech-
anisms, while also preliminarily revealing the potential for
their interactive effects. In the following sections, we will
further investigate their synergistic regulatory mechanisms,
focusing on their influence on neuronal response speed, energy
efficiency, and spike frequency modulation, as well as evaluat-
ing their potential significance in neuromorphic networks. By
comparing Fig. 8, Fig. 9 and Fig. 10 with Fig. 11, it is evident
that the synergistic interaction between synapses and myelin
significantly expands the regulatory capacity of neuronal cir-
cuits in terms of response time, energy consumption, and spike
firing frequency. Based on the current parameter settings for
synaptic weight and degree of myelination, their combined
modulation enables the neuronal response time to be reduced
to 2.9% of its initial value, the energy consumption per spike
to decrease to 38.4% of the original level, and the spike firing
frequency to increase to 1982.6% of the initial state.

Shortening the response time of neuron nodes can enhance
the neural network’s sensitivity to transient disturbances or
low-intensity signals, thereby broadening its effective sensing
range to some extent and improving perception accuracy.
Neuromorphic networks can adaptively regulate the energy
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Fig. 11. Schematic diagram illustrating the effects of synaptic and myelin
plasticity, and their interaction, on the firing characteristics of neuronal
circuits.

consumption of individual spikes at high-frequency firing
neuron nodes based on the plasticity of synapses and myelin
sheaths, as well as the neurons’ discharge history (including
count and frequency), thereby reducing the overall energy
consumption of the network. An increase in the baseline firing
rate of neurons implies that the network as a whole can
transmit and process information at a higher speed. Based
on the existing synaptic connectivity, modulating the baseline
firing rate of neuron nodes can lead to the formation of
new network functions or accelerate the processing speed of
existing functions.

Subthreshold oscillations (Fig. 12(b)) refer to small-
amplitude, aperiodic fluctuations of the membrane potential
below the firing threshold, driven by intermittent synaptic
inputs and dynamic ionic gradients across the neuronal mem-
brane. Neuron nodes in neuromorphic network exhibit per-
sistent threshold oscillations, posing challenges to the setting
of fundamental neuronal parameters. As shown in Fig. 12(a),
when a single isolated neuron is stimulated independently
by persistently opening AMPA receptor ion channels (shaded
region), the intervals between spikes in its continuous spike
train are relatively uniform, appearing as a single point in
Inter-Spike Interval (ISI) plot (Fig. 13). Introducing white
noise can induce sustained subthreshold oscillations in neuron
nodes, simulating their state within large-scale neuromorphic
networks. As shown in Fig. 12(b), the intervals between spikes
in the neuron’s spike train become irregular, and the single
concentrated point in the ISI plot disperses into a uniformly
distributed cloud of points. Neither myelination nor adjust-
ments to synaptic weights can eliminate this phenomenon;
they can only reduce the variability of spike intervals, thereby
narrowing the distribution range of points in the ISI plot. Fur-
thermore, under constant synaptic connectivity and weights,
the sensitivity of neurons to minor perturbations significantly
increases with the degree of myelination. Intermittent synaptic
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Fig. 13. ISI profiles of neurons with different degrees of myelination under
noisy environments.

inputs, which are initially insufficient to trigger firing, can be
amplified—when combined with dynamic fluctuations in ion
concentration gradients—to elicit spike generation, as shown
in Fig. 12(c).

Excessive myelination may lead to frequent firing of neuron
nodes, which not only disrupts information transmission and
processing within the network but also significantly increases
the system’s energy consumption. Therefore, when construct-
ing a neuromorphic network based on neuron circuit nodes,
the synaptic weights and myelination parameters should be
carefully designed according to the network scale, the inten-
sity of threshold oscillations at the nodes, and the intended
network function, in order to avoid the adverse effects of over-
modulation.
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VI. CONCLUSION

This paper proposes a neuron model that incorporates both
synapses and myelin, designs the corresponding neuronal
circuit, and introduces a method for quantifying its discharge
characteristics. Through theoretical analysis, simulation, and
physical experiments, we have validated the effectiveness of
this firing characteristic quantization method. We focused on
analyzing the impact of synaptic plasticity, myelin plasticity,
and their synergistic effects on the response speed, power
consumption, and spike firing frequency of neuronal circuits.
In the future, we will further investigate the role of myelin
plasticity in modulating spike signal transmission speed and
improve the analysis of the synergistic effects of synaptic and
myelin plasticity in neuromorphic networks.

REFERENCES

[1] D. Chen, P. Peng, T. Huang and Y. Tian, “Fully Spiking Actor Network
With Intralayer Connections for Reinforcement Learning,” IEEE Trans-
actions on Neural Networks and Learning Systems., vol. 36, no. 2, pp.
2881-2893, 2025.

[2] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, B. Kay, “
Opportunities for neuromorphic computing algorithms and applications,”
Nature Computational Science., vol. 2, no. 1, pp. 10-19, 2022.

[3] D. Ham, H. Park, S. Hwang, K. Kim, “Neuromorphic electronics based
on copying and pasting the brain,” Nature Electronics., vol. 4, no. 9, pp.
635–644, 2021.

[4] S. Yang, J. Wang, X. Hao, H. Li, X. Wei, B. Deng and K. A. Loparo,
“BiCoSS: Toward Large-Scale Cognition Brain With Multigranular Neu-
romorphic Architecture,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 33, no. 7, pp. 2801–2815, 2022.

[5] S. Yang, B. Deng, J. Wang, H. Li, M. Lu, Y. Che, X. Wei and K. A.
Loparo, “Scalable Digital Neuromorphic Architecture for Large-Scale
Biophysically Meaningful Neural Network With Multi-Compartment
Neurons,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 31, no. 1, pp. 148–162, 2020.

[6] M. Yao, O. Richter, G. Zhao, N. Qiao, Y. Xing, D. Wang, T. Hu,
W. Fang, T. Demirci, M. De Marchi, L. Deng, T. Yan, C. Nielsen,
S. Sheik, C. Wu, Y. Tian, B. Xu and G. Li, “Spike-based dynamic
computing with asynchronous sensing-computing neuromorphic chip,”
Nature Communications, vol. 15, no. 1, pp. 4464, 2024.

[7] N. Rathi, I. Chakraborty, A. Kosta, A. Sengupta, A. Ankit, P. Panda, and
K. Roy, “Exploring neuromorphic computing based on spiking neural
networks: Algorithms to hardware,” ACM Computing Surveys, vol. 55,
no. 12, pp. 243:1–243:49, 2023.

[8] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. Fonseca
Guerra, P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuromorphic
computing with Loihi: A survey of results and outlook,” Proceedings of
the IEEE, vol. 109, no. 5, pp. 911–934, 2021.

[9] Q. Deng, C. Wang, and G. Yang, “Chaotic dynamics of memristor-coupled
Tabu learning neuronal network,” International Journal of Bifurcation and
Chaos, vol. 35, no. 05, pp. 2550053, 2025.

[10] S. Schmidgall, R. Ziaei, J. Achterberg, L. Kirsch, S. P. Hajiseyedrazi,
J. Eshraghian, “Brain-inspired learning in artificial neural networks: A
review,” APL Machine Learning, vol. 2, no. 2, pp. 021501, June 2024.

[11] Q. Deng, C. Wang, and G. Yang, “Generalization and differentiation of
affective associative memory circuit based on memristive neural network
with emotion transfer,” Neural Networks, vol. 188, pp. 107502, 2025.

[12] S. Zhu, T. Yu, T. Xu, H. Chen, S. Dustdar, S. Gigan, D. Gunduz,
E. Hossain, Y. Jin, F. Lin, B. Liu, Z. Wan, J. Zhang, Z. Zhao, W.
Zhu, Z. Chen, T. S. Durrani, H. Wang, J. Wu, T. Zhang, and Y. Pan,
“Intelligent computing: The latest advances, challenges, and future,”
Intelligent Computing, vol. 2, pp. 0006, 2023.

[13] M. Saponati, M. Vinck, “Sequence anticipation and spike-timing-
dependent plasticity emerge from a predictive learning rule,” Nat Com-
mun., vol. 14, no. 1, pp. 4985, 2023.

[14] Y. Andrade-Talavera, A. Fisahn, A. Rodrı́guez-Moreno, “Timing to be
precise? An overview of spike timing-dependent plasticity, brain rhyth-
micity, and glial cells interplay within neuronal circuits,” Mol Psychiatry.,
vol. 28, no. 6, pp. 2177-2188, 2023.

[15] X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun, G. Zhou, Z. Wu, F. Ren, B.
Sun, “Memristor-Based Neuromorphic Chips,” Adv. Mater., vol. 36, pp.
2310704, 2024.

[16] S. Kumar, X. Wang, J. P. Strachan, Y. Yang, W. D.Lu, “Dynamical
memristors for higher-complexity neuromorphic computing,” Nat Rev
Mater., vol. 7, pp. 575–591, 2022.

[17] H. Ling, D. A. Koutsouras, S. Kazemzadeh, Y. van de Burgt, F. Yan,
p. Gkoupidenis, “Electrolyte-gated transistors for synaptic electronics,
neuromorphic computing, and adaptable biointerfacing,” Appl. Phys. Rev.,
vol. 7, pp. 011307, 2020.

[18] W. Yao, C.H. Wang, Y.C. Sun, S.Q. Gong, and H.R. Lin. “ Event-
triggered control for robust exponential synchronization of inertial mem-
ristive neural networks under parameter disturbance,” Neural Networks.,
vol. 164, pp. 67-80, 2023.

[19] Z. Deng, C. Wang, H. Lin and Y. Sun, “A Memristive Spiking Neural
Network Circuit With Selective Supervised Attention Algorithm,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems., vol. 42, no. 8, pp. 2604-2617, 2023.

[20] Q. Xia, J.J. Yang, “Memristive crossbar arrays for brain-inspired com-
puting,” Nat. Mater., vol. 18, pp. 309-323, 2019.

[21] Y. Peng, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang,
H. Qian, “Fully hardware-implemented memristor convolutional neural
network,” Nature., vol. 577, no. 7792, pp. 641-646, 2020.

[22] D. R. McNeal, “Analysis of a Model for Excitation of Myelinated
Nerve,” in IEEE Transactions on Biomedical Engineering, vol. BME-23,
no. 4, pp. 329-337, 1976.

[23] A. A. Verveen and H. E. Derksen, “Fluctuation phenomena in nerve
membrane,” in Proceedings of the IEEE, vol. 56, no. 6, pp. 906-916,
1968.

[24] E. Frede, H. Zadeh-Haghighi and C. Simon, “Optical Polarization Evo-
lution and Transmission in Multi-Ranvier-Node Axonal Myelin-Sheath
Waveguides,” in IEEE Transactions on Molecular, Biological, and Multi-
Scale Communications, vol. 10, no. 4, pp. 613-622, 2024.

[25] X. Li, J. Sun, W. Ma, Y. Sun, C. Wang and J. Zhang, “Adaptive
Biomimetic Neuronal Circuit System Based on Myelin Sheath Function,”
IEEE Transactions on Consumer Electronics, vol. 70, no. 1, pp. 3669-
3679, 2024.

[26] A. Chawla, S. Morgera, A. Snider, “On Axon Interaction and Its Role
in Neurological Networks,” IEEE/ACM Trans. Comput. Biol. Bioinform.,
vol. 18, no. 2, pp. 790–796, 2021.

[27] Z. Padamsey, D. Katsanevaki, N. Dupuy, N.L. Rochefort, “Neocortex
saves energy by reducing coding precision during food scarcity,” Neuron.,
vol. 110, no. 2, pp. 280-296, 2022.

[28] K. D. Longden, T. Muzzu, D. J. Cook, S. R. Schultz, and H. G. Krapp,
“Nutritional state modulates the neural processing of visual motion,” Curr
Biol., vol. 24, no. 8, pp. 890-895, 2014.

[29] H. H. Wong, A. J. Watt, P. J. Sjöström, “Synapse-specific burst coding
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