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Unravelling the impact of mycotoxins on gut health: 
implications for inflammatory bowel disease
Alessandra M Gasperini1,2,*, Danilo Faccenda1,3,* and  
Esther Garcia-Cela1

Consumption of mycotoxin-contaminated food is considered a 
main alimentary risk, with grave consequences on 
gastrointestinal function. Inflammatory bowel disease (IBD) is a 
complex, heterogeneous disorder of the gut, leading to severe 
abdominal pain, diarrhoea, and malnutrition. Similar indicators 
have been observed in foodborne mycotoxicosis. This review 
aims to elucidate the adverse effects of mycotoxin exposure on 
gut homeostasis and their correlation with IBD. We discuss 
latest research substantiating a role for mycotoxins in the 
pathogenesis of IBD, collating evidence of a crosstalk between 
mycotoxin-activated pathways and pathomechanisms of IBD. 
Considering the burden posed by IBD worldwide and the 
accelerating mycotoxin occurrence in global food commodities, 
we also propose future research directions to mitigate the 
harmful impact of mycotoxins on gut health.
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Contextual framework
Pathogenesis and epidemiology of inflammatory bowel 
disease
Inflammatory bowel disease (IBD) is a complex, het-
erogeneous disorder characterised by prolonged and 

recurrent inflammation of the gastro-intestinal tract, 
leading to immune-mediated intestinal mucosal damage. 
Disease complexity arises from the presence of multiple 
subtypes, with ulcerative colitis (UC) and Crohn’s dis-
ease (CD) being the major ones, and a multi-factorial 
aetiology, involving individual genetic vulnerability, 
disruption of the intestinal mucosal barrier (IMB), dys-
regulated immune responses, abnormal intestinal mi-
crobiota (dysbiosis), environmental factors, lifestyle, 
and diet.

The annual incidence (per 100 000 people) of IBD varies 
by region (0–39.4 in North America, 0.9–37.0 in Europe, 
and ∼1.4 in Asia), representing the fourth cause of gas-
trointestinal deaths in 2017 [1].

Although the clinical symptoms vary between subtypes, 
a constant feature of IBD is the abnormal interaction 
between the innate immune system and the gut micro-
biome. Both UC and CD are characterised by a com-
promised function and viability of intestinal epithelial 
cells (IECs), facilitating intramucosal bacterial colonisa-
tion and leading to overactivation of inflammatory and 
immune responses. While the main affected cells in UC 
are mucin-secreting goblet cells (GCs), resulting in ab-
normal mucus production and reduced protection from 
microbial invasion and toxin exposure, CD is often as-
sociated with Paneth cell (PC) dysfunction. PCs engage 
in the enteric innate mucosal system by secreting anti-
microbial peptides and inflammatory cytokines; there-
fore, their loss is a primary cause of gut inflammation and 
dysbiosis.

Other nonimmune cells in the intestinal mucosal sub-
epithelium involved in the pathogenesis of IBD are 
stromal cells, including fibroblasts, myofibroblasts, 
smooth muscle cells, endothelial cells, and perivascular 
pericytes. Enteric epithelial and stromal cells are directly 
involved in the activation of immune responses against 
microorganisms by releasing inflammatory and im-
munoregulatory chemokines. Through interaction with 
the gut microbiome and its metabolites, they regulate 
proper immune development, function, and homeostasis 
[2,3]. Balanced innate and adaptive immune responses 
are instrumental to support microbiome stability and 
limit pathogenic development. Alterations in the func-
tion of IECs or stromal cells can lead to abnormal 
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immune responses against the gut microbiota, causing 
severe IMB dysfunction and promoting chronic in-
flammatory states. Dysregulations in CD4+ T cell po-
pulations, with an increase in T helper 17 cells (Th17) 
and a decrease in regulatory T cells (Tregs) [4], also 
contribute to pro-inflammatory over immunosuppressive 
pathways, with activation of autoinflammatory and au-
toimmune mechanisms [5].

Dysbiosis is another critical concurrent cause of persis-
tent intestinal inflammation. IBD patients often show an 
overall reduction in microbial diversity and loss of gut 
homeostasis, accompanied by expansion of intestinal 
pathobionts or decreased Firmicutes/Bacteroidetes (F/B) 
ratio [6]. These changes decrease beneficial short-chain 
fatty acid synthesis, promote bacterial invasion of epi-
thelial and immune cells, and the release of toxins or 
other harmful compounds [7].

Finally, diet also plays a key role in regulating gut mi-
crobiome and inflammatory responses. Fibre-deficient 
diets and food contaminants are known to negatively 
influence the gut microbiota, promoting dysbiosis and 
aggravating IBD.

Mycotoxins and food safety
Mycotoxins are low-molecular-weight (0.3–0.7 kDa), 
highly stable secondary metabolites produced by fila-
mentous fungi belonging to Aspergillus, Fusarium, and 
Penicillium genera. These compounds show a wide array 
of chemical structures and toxicities, posing significant 
health risks, including teratogenic, mutagenic, carcino-
genic, nephrotoxic, hepatotoxic, and immunotoxic ef-
fects.

Mycotoxins can lead to chronic and continuous poi-
soning, often unrecognised due to absence of clear 
clinical symptoms and lack of connection to known ae-
tiological agents. Globally, it is estimated that 60% to 
80% of crops are contaminated with mycotoxins 
throughout the entire food chain [8]. Furthermore, co- 
contamination with other poisonous substances and 
pollutants can aggravate mycotoxin toxicity. For in-
stance, both cadmium and acrylamide have been re-
ported to enhance Ochratoxin A (OTA)-mediated 
impairment of the IMB function [9,10]. Additionally, 
plant defence mechanisms can conjugate mycotoxins 
into less toxic biopolymers (masked mycotoxins), which 
can be converted back into their toxic forms by the gut 
microbiota. Therefore, the real extent of mycotoxin ex-
posure and impact on gut health are underestimated on a 
global scale.

Indeed, chronic mycotoxin exposure can trigger oxida-
tive stress and have genotoxic consequences. While 
aflatoxin B1 (AFB1) is the only mycotoxin recognised as 
a genotoxic carcinogen, OTA also exhibits genotoxic 

properties, although its carcinogenic classification re-
mains under review. To protect consumer health from 
the effects of mycotoxins, health-based guidance values 
(HBGVs) for certain nongenotoxic mycotoxins are es-
tablished as the maximum daily intake levels that can be 
sustained over a lifetime without significant health risks 
(Table 1). These values are typically originated from 
toxicological studies that determine a no-observed-ad-
verse-effect level (NOAEL) or a lowest-observed-ad-
verse-effect level. Uncertainty factors (UFs) are applied 
to account for interspecies extrapolation (animal to 
human) and intraspecies variability (human population 
differences). A conventional approach involves applying 
a 100-fold UF, including a 10-fold factor for interspecies 
differences (animal–human) and a 10-fold factor for 
human variability (human–human) [11]. However, UF 
magnitudes vary across regulatory agencies, depending 
on adverse effect nature, exposure duration, NOAEL 
confidence, and variability extent. HBGVs are typically 
set for individual mycotoxins, neglecting potential sy-
nergistic effects of co-occurring mycotoxins in food. 
While mycotoxin regulations exist, dietary differences 
lead to varying individual exposures. The long-term 
health impacts of low-dose (subclinical) mycotoxin ex-
posure remain poorly understood and should not be 
underestimated.

The interplay between IBD and mycotoxins is a com-
plex and emerging area of study [19,20]. While a direct 
correlation between mycotoxin exposure and IBD ae-
tiology has not been proved yet, several studies have 
recently demonstrated how certain classes of mycotoxins 
can alter the IMB by changing the composition of the 
mucosal layer, influencing the microbiome and acti-
vating immunology and inflammatory pathways involved 
in both onset and progression of IBD (Figure 1).

Surveying current findings on mycotoxin-induced da-
mage in cellular and animal models to elucidate the 
potential association between mycotoxin exposure and 
the pathogenesis of IBD shows critical need for further 
research. Understanding the mechanisms by which my-
cotoxins affect gut integrity and microbiome composi-
tion, particularly in vulnerable populations such as IBD 
patients, is essential to mitigate their harmful impacts on 
intestinal health (Figure 2).

Mycotoxins interactions with the gut: 
mechanistic implications in inflammatory 
bowel disease
Mycotoxins and gut microbiota
The human gut microbiota is a complex and diverse 
community of microorganisms with symbiotic and mu-
tualistic relationship with the host [21]. Its diversity 
depends on several factors, including diet, human life-
style, age, and environment [22,23]. In the environment, 
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mycotoxins have been described as antimicrobial agents 
in addition to their inhibitory effects on bacterial 
quorum-based communication. To date, studies have 
reported that mycotoxins influence the microbial com-
munity, but their impact on the human gut microbiome 
is still poorly defined.

Several studies showed that AFB1 (5–400 µg/kg bw) de-
creases phylogenetic diversity in rats/mice, deox-
ynivalenol (DON; 2–120 µg/kg bw) alters microbiota 
composition affecting the F/B ratio, ochratoxin A (OTA; 
70–210 µg/kg bw) and zearalenone (ZEN; 1000 µg/kg bw) 
decrease microbiota diversity and changed dominant 
phyla, and fumonisin B1 (FB1) and B2 (FB2) induce 
microbiota imbalance in pigs [24]. At high doses, Patulin 
(PAT) also negatively impacts on the abundance of 
beneficial bacteria, such as Lactobacillus, Dubosiella, Mur-
ibaculaceae, Burkholderia-Caballeronia-Paraburkholderia, 
Escherichia-Shigella, Akkermansia, Muribaculum, Delftia and 
Streptococcus, favouring an increase in pathogenic Myco-
plasma. PAT has also been linked to disruption of tryp-
tophan metabolism and dysbiosis through reduction of 

tryptophan-degrading bacteria like Bacteroides and Lacto-
bacillus [25]. Furthermore, DON-contaminated diet fa-
vours overgrowth of Enterobacteriaceae in rats with 
exacerbated symptoms of colitis [26].

Sensitivities to mycotoxins vary across species and age 
groups, with young individuals being more sensitive 
due to incomplete organ development. As an example, 
interaction of the gut microbiota with OTA can alter 
its absorption rate between species, ranging from 56% 
in rabbits to 66% in pigs [27] and 98% in humans [28]. 
While ruminants show certain resistance to myco-
toxins due to the detoxifying role of the microbial 
population in the rumen [28], monogastric species are 
more susceptible to the toxic effects of mycotoxins in 
the gut microbiota. In children, exposure to AFs has 
been associated with gut dysbiosis, characterised by 
the dominance of the phylum Firmicutes over Actino-
bacteria [29]. Nevertheless, while the association be-
tween dysbiosis and IBD is clear, a causative role for 
mycotoxin–gut microbial interactions has not been 
determined yet.

Table 1 

HBGVs and EU maximum levels for mycotoxins in food. 

Mycotoxin HBGV (µg/kg bw) End point Authoritative 
reports

AFB1 ALARA principle Hepatotoxicity — leading to liver carcinogenicity, a BMDL10 

of 0.4 µg/kg bw/day was utilised for Margin of Exposure 
calculations (male Fischer rat study).

[12]

AFM1 ALARA principle Hepatotoxicity — leading to liver carcinogenicity, a NOAEL 
was determined at 0.1 mg total intake over 21 months (male 
Fischer rat study).

[12]

OTA ALARA principle Nephrotoxicity-leading to kidney carcinogenicity in rats [13]
PAT PMTDI: 0.4 Combined reproductive toxicity, long-term toxicity/ 

carcinogenicity study in Wistar rats. NOAEL: 0.1 mg/kg bw 
(administered three times weekly; equivalent to 43 µg/kg bw/ 
day), (UF = 100).

[14]

Sum T-2 & HT-2 PMTDI (T2+HT2): 0.06 Sub-acute (3 weeks) (leukopenia/reduced antibody 
production) LOEL; 0.029 mg/kg bw/day in pigs (UF = 500).

[15]
TDI (T2+HT2): 0.1
ARfD: 0.3 for T2 or HT2 Acute (emesis); BMDL10 of 2.97 µg/kg bw/day calculated for 

emetic effects in mink for ARfD; 0.3 µg T2 or HT2/kg bw
DON & the sum of DON+ 3-Ac  
DON+ 5-Ac DON + DON-3-glc

TDI: 1 Chronic (growth retardation) NOAEL; 0.1 mg/kg bw day in 
mice (UF = 100)

[16]

ARfD: 8 for DON and 
acetylated forms

Epidemiological data from mycotoxicoses NOAEL of 26 µg 
DON/kg bw per eating occasion for vomiting (default  
UF = 3.16 for toxicokinetic differences in the human 
population was needed)

ZEN and its modified forms* TDI: 0.25 EDC (pituitary adenomas) in male B6C3F1 mice. BMDL10 of 
6.39 mg/kg bw/day. NOAEL 10.4 µg/kg bw/day (UF = 40)

[17]

FB1 & the sum of FB1-4 TDI (FB2+FB3+FB4): 1 Hepatotoxicity: BMDL10 of 0.1 mg/kg bw/day calculated for 
megalocytic hepatocytes in mice (UF = 100).

[18]

T-2: T-2 Toxin; HT-2: HT-2 Toxin (a metabolite of T-2 toxin); 15-Ac DON: 15-Acetyl-Deoxynivalenol; 3-Ac DON: 3-Acetyl-Deoxynivalenol; FBs: 
Fumonisins (including FB1, FB2, and FB3); ZENGlcs, ZEN Sulfs; α α-ZEL; α-ZELGlcs; α-ZELSulfs; β-ZEL, β-ZELGlcs; β-ZELSulfs; ZAN; ZANGlcs 
and ZANSulfs; α-ZAL; α -ZALGlcs; α-ZALSulfs; β-ZAL, β -ZALGlcs; b-ZALSulfs; cis-ZEN; cis-ZENGlcs and cis-ZENSulfs; cis- α-ZEL; cis- α- 
ZELGlcs and cis- α-ZELSulfs; cis- β -ZEL; cis-β-ZELGlcs and cis- β-ZELSulfs (Glc: glucose; Sulf: sulphate). Relative potencies factor for phase I 
and Phase II ZEN metabolites are also proposed by the EFSA COMTAM Panel. ALARA: as low as reasonably achievable (principle to minimise 
exposure); BMDL10: benchmark dose lower confidence limit for a 10% response (used in risk assessment); PMTDI: provisional maximum tolerable 
daily intake; TDI: tolerable daily intake; ARfD: acute reference dose; LOEL: lowest observed effect Level; EDC: endocrine-disrupting chemical; 
SCF: Scientific Committee on Food (European Commission).
* References: [12–18].
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Mycotoxins and gut permeability
The intestinal epithelium selectively absorbs dietary 
nutrients, electrolytes, and water while preventing 
harmful substances from entering the body (Figure 1). 
IECs are interconnected by tight junctions (TJs), which 
regulate paracellular and transcellular transport, and se-
crete mucin, which prevent stress-induced damage and 
pathogen adhesion and invasion. Dysregulation of TJ 
proteins (e.g. claudins, occludin) and mucin depletion 
are hallmarks of IBD and are often accompanied by re-
duced GC numbers, permeability defects, and un-
controlled translocation of toxins and pathogens, 
exacerbating disease progression [30,31].

Recent reviews have examined the impact of single 
mycotoxin exposure on the intestinal physical and che-
mical barriers, highlighting their significant impact on 
IECs proliferation and viability, negatively affecting gut 
permeability [19,32,33] (Table 2). Exposure to AFB1, 
FB1, T2, and OTA significantly reduced cell viability in 
human colorectal adenocarcinoma cells, with varying 
cytotoxicity levels (IC50 values: 5.4, 9.4, 14.8, and 
21.2 µM, respectively) [19]. Beyond cytotoxicity, OTA, 
PAT, DON, and ZEN have been reported to induce 
apoptosis by promoting mitochondrial reactive oxygen 
species (ROS) generation [19], implicating oxidative 
stress as a key driver of mycotoxin-induced intestinal 
damage. Most mycotoxins decrease transepithelial elec-
trical resistance (TEER) in a time- and concentration- 

dependent manner, except for aflatoxin M1 (AFM1), 
which was tested at lower concentrations (up to 12 µM) 
[19,32]. Notably, most mycotoxins reduce TJ protein 
expression and distribution at low doses [32], although 
the specific mechanisms by which mycotoxins regulate 
TJ turnover and IEC integrity remain unclear.

Li et al. [34] suggested that DON (2 µM) induces en-
docytosis and degradation of claudins (CLDNs), occlu-
dins (OCLNs), and zonula occludens-1 (ZO-1) via 
cytoskeleton-dependent (CLDN-1, CLDN-3 and ZO-1) 
and cytoskeleton-independent pathways (OCLNs) 
(REFs). Moreover, subchronic exposure to AFM1 
(0.0152–6.095 µM) seems not to affect cell morphology 
and viability after 24-hour exposure, although TEER 
values decrease in a time and concentration-dependent 
way, enhancing cell mechanical stress, intestinal per-
meability, chronic inflammation, and tissue damage [35]. 
Interestingly, when exposed to plasma from CD pa-
tients, Caco-2 shows increased paracellular permeability 
via ZO-1/OCLN downregulation [36], mirroring myco-
toxin effects; however, to the best of our knowledge, 
mycotoxin in plasma of IBD patients has never been 
quantified.

Most of the studies on the impact of mycotoxins on gut 
health have primarily focused on Fusarium toxins in 
animals [19], reporting significant intestinal damage 
(DON, 2 mg/kg feed for 28 days), oxidative stress (ZEN, 

Figure 1  

Current Opinion in Food Science

Representation of healthy gut microbiota (left), IBDs (middle), and mycotoxin compromised gut (right) on the intestinal barrier, immune responses, and 
pathogen translocation. Healthy gut (left): an intact intestinal barrier, comprising a diversified gut microbiota, tightly packed IECs with intact TJs, and 
balanced immune cells (monocytes, T reg and T helper cells) is responsible for maintaining the immune tolerance and preventing intestinal 
inflammation. IBDs (middle): the inflamed intestinal barrier has a shift in microbiota composition leading to dysbiosis, MUC synthesis is reduced, IECs 
show disruption in TJ, an increased presence of pro-inflammatory cells (Th17, macrophages, dendritic cells) and cytokines, and paracellular and 
transcellular permeability. Decreased levels of TJ proteins (OCLN -3, -5, -8, and JAM-A) and increased levels of CLDN-2 lead to a weakened and more 
permeable barrier, allowing pathogens and antigens to penetrate the IMB. Mycotoxin-compromised gut (right): mycotoxins decrease the expression 
of MUC, and TJ proteins (CLDNs, OCLNs, JAMs, ZO-1) increasing intestinal permeability and the levels of pro-inflammatory cytokines and chemokine. 
Mycotoxins affect the microbiota causing overgrow of pathogenic bacteria. Abbreviations: SCFA: short-chain fatty acid; sIgA: secretory 
immunoglobulin A; Th17: T helper 17 cell; AMP: antimicrobial peptide; OCLN: occludin; CLND: claudin; JAM: junctional adhesion molecule; ZO-1: 
Zonula Occludens-1; F-actin: filamentous actin; IFN: interferon; TNF: tumour necrosis factor; IL: interleukin; CCL20: Chemokine (C-C motif) ligand 20; 
MUC (mucin). ↓indicates downregulation, and ↑ indicates upregulation. The figure was created with BioRender.com.  
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0.5–1.5 mg/kg feed for 10 days), TEER reduction (FB1, 
6 mg/kg feed for 9 days), and alterations in GC number 
(DON, 1.5 mg/kg feed for 28 days; FB1, 6 mg/kg feed for 
35 days). In contrast, low doses of DON and ZEN 
(< 1 mg/kg feed) exhibited no observable effects. Fu-
sarium mycotoxins also elicit dose-dependent alterations 
in intestinal permeability and epithelial integrity in 

piglets, though their effects on mucin synthesis and GC 
dynamics remain unclear.

In addition to affecting TJ integrity, mycotoxins modify 
both composition of mucin monosaccharides and ex-
pression of intestinal mucins in a dose-dependent 
fashion, further compromising the IMB [33,37]

Figure 2  

Current Opinion in Food Science

Crosstalk between mycotoxin and immunomodulatory/inflammatory signalling pathways activated in IBD. Different mycotoxins can interfere with both 
intestinal epithelial and immune cell function, activating or disrupting immunomodulatory and inflammatory pathways. This can lead to imbalanced 
immune responses and triggers gut inflammation. Some of these pathways also play a role in the pathogenesis of IBD. The JAK/STAT signalling 
pathway acts downstream of cytokine receptors and regulates all aspects of gut immunity, from supporting proper immune cell development and 
differentiation, to immune tolerance, inflammatory processes, and IMB function. The ERK and JNK pathways are regulated by receptor tyrosine 
kinases (RTKs) and G protein–coupled receptors (GPCRs) following binding of multiple ligands, including growth factors, chemokines complements, 
and prostaglandins. MAPK pathways control immune cell differentiation and function, from expression of pro-inflammatory cytokines to chemotaxis, 
adhesion, and bactericidal activity. NF-κB takes part in various signalling pathways, including responses to pathogens and endogenous danger 
molecules mediated by Toll-like receptors. NF-κB activation can also occur downstream of the JAK/STAT and MAPK pathways. The NF-κB pathway 
has a crucial role in immunity and inflammation by controlling immune cell differentiation and activation, chemotaxis and adhesion, production of 
inflammatory cytokines and IMB functions. ROS can have direct cytotoxic effects by activating harmful oxidative reactions damaging proteins, lipids, 
and nucleic acids. On the other hand, they engage in intracellular signalling cascades and play a key role in immune cell function by regulating immune 
cell receptor signalling, antigen presentation, chemotaxis, and cytokine production, as well as immune response termination and IMB function. 
Inflammasome assembly is an essential process in innate immunity. It activates macrophage pyroptosis in response to pathogens or during 
inflammatory reactions, leading to release of pro-inflammatory cytokines and antimicrobial molecules. It is also involved in inflammatory signalling. By 
inducing aberrant activation or function of all these signalling pathways, mycotoxins can exacerbate various pathomechanisms of IBD, contributing to 
the onset of chronic inflammation, autoimmune processes, immune cell dysfunction, and dysbiosis. The figure was created with BioRender.com.  
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(Table 2). Notably, inconsistencies between mucin 
mRNA levels and protein abundance suggest the in-
volvement of post-transcriptional regulatory mechan-
isms, such as protein degradation pathways or 
translational inhibition. Collectively, these findings de-
monstrate that mycotoxins disrupt the IMB function by 
modulating mucin gene expression, protein synthesis, 
and compositional integrity [33,37].

Furthermore, co-exposure to multiple mycotoxins 
(e.g. AFM1+OTA, DON+OTA, T2+HT2) seems to 
amplify cytotoxicity and IMB disruption compared to 
single toxins [38-40]. This information highlights the 
potential risks of mycotoxin co-occurrence through diet, 
which can aggravate the disruption of IMB integrity in 
individuals with compromised epithelial function.

Mycotoxins and immune/inflammatory responses
Mycotoxins can play a significant role in the aggravation 
of intestinal symptoms in individuals with IBD. Recent 
studies on Fusarium toxins showed their potential to 
exacerbate inflammation- and immune-mediated epi-
thelial damage by altering multiple disease pathways 
activated in IBD. Among them is Janus kinase (JAK) and 
signal transducer and activator of transcription (STAT) 
signalling, which controls immune and stromal gut cell 
homeostasis. In this regard, DON (3 µg/mL) has been 
linked to apoptosis activation through inhibition of the 
JAK2/STAT-3 signalling axis, promoting inflammation 
in porcine IECs (IPEC-J2) [376. Furthermore, ZEN (5 
mg/kg feed for 14 days) was shown to trigger severe 
colon damage via the STAT and interferon stimulated 
gene 15 (ISG) pathway in rats [41]. Interestingly, over-
expression of ISG15 has been observed during active 
intestinal inflammation in IBD patients [42]. Ad-
ditionally, variants in genes of the JAK/STAT family 
have been associated with increased risk of IBD [43,44].

Other immunomodulatory pathways frequently dysre-
gulated in IBD are the nuclear factor kappa-light-chain- 
enhancer of activated B cells (NF-κB) and the mitogen- 
activated protein kinase (MAPK) pathways [45–47]. 
Activation of both pathways was observed in IPEC-J2 
cells in response to DON (0.5–3 µg/ml), leading to dys-
regulated cytokine production [39,48–51]. Corroborating 
the adverse effects of Fusarium toxins on intestinal im-
mune homeostasis, overactivation of the NF-κB and 
MAPK signalling pathway was also confirmed by in vivo 
studies. Increased extracellular signal-regulated kinase 
(ERK) and c-Jun N-terminal kinase (JNK) protein levels 
have been correlated with impaired T cell function in 
mice treated with either 20 µM ZEN or 1 µM DON [52]. 
Activation of JNK was also detected in Drosophila mela-
nogaster upon chronic exposure to 20 µM ZEN, along 
with intestinal inflammation and mucosal damage [53]. 
Furthermore, short-term administration of ZEN (40 mg/ 
kg feed for 12 days) was linked to inflammation and 

elevated NF-kB expression in the intestine of treated 
mice [54], while chronic exposure to ZEN (3 mg/kg feed 
for 32 days) was shown to induce upregulation of the B 
cell receptor signalling pathway, acting upstream of both 
ERK and NF-κB in piglets [55].

Another important pathomechanism in IBD concerns 
activation of oxidative stress-mediated signalling path-
ways, promoting dysbiosis and mucosal release of in-
flammatory mediators [56,57]. Emerging evidence 
advocates for a correlation between ROS exposure and 
inflammation in IECs. Chronic exposure to mycotoxins 
can participate in the pathogenesis of IBD by altering 
intestinal redox homeostasis. A study conducted in 
IPEC-J2 cells demonstrated how DON-mediated in-
flammation is intimately linked to elevation in cellular 
ROS levels [50]. Similarly, oxidative stress–dependent 
prostaglandin and pro-inflammatory cytokine release was 
observed in human colorectal adenocarcinoma cell lines 
upon exposure to 1 µM DON and 5 µM OTA [10,58]. 
Furthermore, impaired intestinal ROS detoxification was 
reported in ZEN-treated D. melanogaster [53].

Mycotoxins also exhibit bidirectional immunotoxicity, 
whereby low doses can stimulate immunity and cause 
inflammatory processes, while high doses can impair 
immune function [59]. Studies highlighted their direct 
involvement in immune dysregulation, which poses 
people with pre-existing chronic inflammatory condi-
tions at elevated risk of symptom aggravation and dis-
ease progression. Although little is still known about 
mycotoxin-induced immunotoxicity in the context of 
intestinal immunity and IBD, fusarotoxins have been 
reported to disrupt both adaptive and innate immune 
responses, which can have grave consequences on 
maintenance of the homeostatic environment across the 
gut. Payros et al. [26] uncovered a link between ex-
posure to DON (8 mg/kg feed for 28 days), alteration in 
the Th17/Treg balance and exacerbation of dextran 
sulphate sodium–induced colitis in a rat model of UC, 
favouring intestinal and systemic inflammation and a 
significant reduction in the Th17/Tregs ratio, a common 
feature of preclinical IBD [4,60,61]. Disrupted activated 
T cell proliferation and immune-related function were 
also reported in mice treated with 20 µM ZEN and 1 µM 
DON, with extensive reduction in the number of anti- 
inflammatory Treg [52]. Lee et al. [62] found that ZEN 
can inhibit innate immune responses by impairing 
macrophage immune function through repression of in-
flammasome activation, which can compromise the in-
testinal defences against enteric pathogens and 
opportunistic pathobionts [63]. Another fusarotoxin, T-2, 
has been linked to intestinal toxicity and inflammation 
in mice (0.5 mg/kg T-2 exposure for 28 days) through 
activation of Endoplasmic Reticulum stress and the in-
ositol-requiring enzyme type 1 (IRE1)/X-box binding 
protein 1 (XBP1) pathway [64]. Interestingly, 
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Endoplasmic Reticulum stress is a recognised con-
tributing factor in intestinal inflammation [65,66]. Acti-
vation of the IRE1/XBP1 pathway, in combination with 
increased mitochondrial ROS levels and oxidative stress, 
has also been shown to play a key role in induction of 
cytokine production by group 3 innate lymphoid cells 
[67], which are dysregulated in IBD [68].

Conclusions and future directions
IBD pathogenesis is characterised by IMB dysfunction, 
dysbiosis and dysregulated immune responses, which 
synergistically drive disease progression. Emerging evi-
dence implicates mycotoxins as potential exacerbating 
factors in IBD through their capacity to disrupt gut 
barrier integrity, modulate the composition of the in-
testinal microbiota, and trigger aberrant immune and 
inflammatory responses. Collectively, the reviewed stu-
dies offer mechanistic insights into their potential role in 
the exacerbation of IBD. However, a direct correlation 
between mycotoxin exposure and IBD aetiology has yet 
to be properly established. Therefore, future research 
should focus on elucidating the mechanisms by which 
mycotoxins influence gut health, the role of diet in 
modulating these effects, and dietary interventions or 
therapeutic approaches to protect against mycotoxin-in-
duced damage. Furthermore, there is a need for stan-
dardised protocols to assess the harmful effects of 
mycotoxins on gut homeostasis and facilitate comparison 
across studies. Additionally, it is essential to assess the 
impact of low-dose mycotoxin exposure and co-con-
tamination to mimic real-world chronic exposure sce-
narios more accurately.

This is of relevance considering the global rise in my-
cotoxin occurrence in food products documented in the 
past decade, which places mycotoxin exposure as a sig-
nificant threat to food safety and public health. 
Considering the challenges in producing mycotoxin-free 
food, protective strategies are also essential. Probiotics, 
prebiotics, and postbiotics are known to support gut 
health, with postbiotics offering antioxidant, im-
munomodulatory, and epithelial barrier-enhancing ef-
fects [69], as well as ability to inactivate potential 
mycotoxins through biotransformation or cell wall ab-
sorption [24], as developed for piglets [70]. Anti-
mycotoxin additives are frequently used in animal feed 
to reduce exposure, while probiotics and mycotoxin- 
degrading enzymes show potential for human gut health 
due to their specificity and minimal nutritional impact 
[71]. Antioxidant phytochemicals could also help miti-
gate mycotoxin-induced gut damage. To date, over 30 
plant-derived bioactive compounds have been shown to 
scavenge ROS and boost antioxidant enzyme synthesis 
[72], making them promising dietary interventions for 
those at risk of chronic inflammatory conditions. In-
tegrating these approaches into preventive strategies 

holds significant promise for mitigating mycotoxin-in-
duced damage and supporting overall intestinal health in 
both humans and animals.
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