

Combining Satellite Precipitation Products and Deep Learning to Increase Lead Times in Real-Time Riverine Flood Risk Forecasting

Cristiane Girotto^{1,2}, Farzad Piadeh², Kourosh Behzadian^{1,3}, Massoud Zolgharni¹

School of Computing and Engineering, University of West London, UK
Centre for Engineering research, School of Physics, Engineering and Computer Science University of Hertfordshire, UK
Dept of Civil, Environmental and Geomatic Engineering, University College London, UK

Research objective:

Increase lead times of real-time flooding risk forecasts

Land-based instruments limitations

70°

74°

76°

70°

76°

710

75°

Research opportunity:

Integration of Satellite Precipitation Products (SPPs) and Deep Learning (DL) for flood risk forecasting

- Coverage: Global
- Spatial resolution: 0.1° x 0.1°
- Temporal resolution: 30 min
- NRT data latency: at least 4hs

DL - LSTM model

- Flexible, fast processing, easy to adjust and automate.
- Requires fewer input variables
- Extracts spatio-temporal features automatically
- Able to model long-range spatial connections across multiple timescales
- Demands large volumes of data

Validation: LSTM forecasts with historical data (no latency)

Results: real-time predictions

Local rain-gauge data

Results: LSTM event-based

performance per lead time

Lead times are of **'at least'** 6.5hs as

considers a top efs = 60 Km/h

	Event 2022 - RMSE (mm)				Event 2023 - RMSE (mm)				
		NRT Pix	NRT Pix	NRT Pix		NRT Pix	NRT Pix	NRT Pix	
Lead time	Northolt gauge	8.75	8.65	8.55	Northolt gauge	8.75	8.65	8.55	
0.5 hs	13.38				, 13.18				
1 hs	20.25	•			21.71				
1.5 hs	29.58				31.09				
2 hs	36.43				42.70				
2.5 hs	41.68				55.38				
3 hs	46.55				67.91				
3.5 hs	50.15				81.09				
4 hs	53.24				95.11				
4.5 hs	56.69				109.68				
5 hs	61.52				123.98				
5.5 hs	67.07				138.23				
6 hs	72.41	<u> </u>		- · - · - · -	152.10	<pre>c</pre>		- · - · - · -	
6.5 hs	77.40	19.66	18.61	27.04	165.02	16.51	15.70	16.44	
7 hs	82.42	29.55	29.63	33.84	177.36	27.08	24.61	24.50	
7.5 hs	88.16	37.60	38.06	40.94	189.36	38.83	34.41	33.58	
8 hs	95.21	44.44	45.42	47.96	200.43	51.71	46.79	45.49	
8.5 hs	103.17	50.88	52.74	55.61	210.50	64.42	58.97	58.05	
9 hs	111.02	56.66	60.03	62.61	219.55	76.75	71.24	70.00	
9.5 hs	118.58	62.43	67.30	69.28	227.83	89.47	83.87	81.87	
10 hs	126.06	68.53	75.29	76.38	235.31	101.95	96.53	93.83	
10.5 hs	133.21	75.76	83.87	83.69	242.09	114.89	108.70	105.42	
11 hs	139.79	83.49	92.28	91.68	247.83	127.43	120.02	117.16	
11.5 hs	146.23	91.66	101.62	99.54	252.91	139.17	131.20	128.11	
12 hs	152.60	100.07	111.39	107.31	257.48	150.15	141.96	138.29	
12.5hs		108.40	121.58	115.39		160.59	152.63	148.12	
13.0hs		116.31	131.65	123.96		169.98	162.70	157.52	
13.5hs		124.33	141.62	132.75		178.56	171.99	166.58	
14.hs		132.93	151.28	141.34		186.88	180.91	175.20	
14.5hs		141.30	160.48	149.71		194.63	189.35	183.41	
15.0hs		147.69	167.30	158.70		201.60	197.59	191.05	
15.5hs		154.81	175.58	166.14		208.32	205.49	198.37	

	Data source		Metrics	Overall	October 2022	October 2023
Results: LSTM	Local rainfall data	Northolt RAF rain- gauge	RMSE	43.29	80.12	148.2
nerformance summary			MAE	26.55	43.14	105.0
perior mance summary		IMERG-Cranford pixel	RMSE	43.90	81.71	114.8
			MAE	27.71	41.76	77.0
	IMERG V07 Final Run product	pixels-group 8.75	RMSE	40.57	105.57	141.9
IMERG data validation			MAE	15.92	62.27	96.4
		pixels-group 8.65 pixels-group 8.55	RMSE	40.81	102.18	145.8
			MAE	16.50	61.56	104.5
Model training / testing	-		RMSE	41.74	121.85	128.4
			MAE	16.87	71.70	92.0
	IMERG V07 Early Run product	NRT pixels-group 8.75	RMSE	44.61	100.35	143.03
Real-time predictions			MAE	17.89	61.57	96.25
		NRT pixels-group 8.65	RMSE	47.22	116.88	138.7
Model's training time is approx			MAE	20.20	72.91	95.8
10 sec/epoch.		NRT pixels-group 8.55	RMSE	46.01	112.76	134.2
(GPU NVIDIA GeForce RTX 4090)			MAE	19.77	62.12	87.8

Conclusions

The LSTM algorithm showed great ability on detecting the spatiotemporal patterns between stream level variations and remote rainfall events represented in the IMERG V07 data.

> Models trained on historical datasets performed similarly when making predictions using NRT data.

While the dataset optimization allows for faster and effective processing, the main limitation of the IMERG V07 for real-time forecasting is the minimum four-hour latency of the NRT products.

Thank you!

Questions??

