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Abstract

In classical mechanics, an integrable system is a model that admits a complete set of

integrals of motion that are in involution. This notion can be extended to include classical

integrable field theories. A natural question is how to lift these notions to the quantum

setting. Despite the extensive literature on the subject, these models are still not very well

understood. As an example, in the first section of this work, we present a new class of inte-

grable quantum field theories which develop an unusual behaviour that may be interpreted

as a Hagedorn transition.

The principal reason for the enigmatic nature of these models is the absence of a uni-

versal mathematical framework to describe them. One potential solution may be provided

by quantum affine Gaudin models, which we examine in greater detail in the second part

of this work. In particular, we introduce the first non-trivial Hamiltonian of quartic or-

der for the affine sl2 Gaudin model, as well as the next-to-leading order expression for all

higher Hamiltonians. Furthermore, we provide new insights into the double-loop version

of the Feigin-Frenkel homomorphism, which is expected to be a crucial component in the

construction of the Bethe ansatz for these models.
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Introduction

The importance of being integrable. Since the early days of classical mechanics,

the problem of solving the equations of motion of a system has always been of central

importance, and culminated in the 19th century with the remarkable theorem by Liouville

[Lio55], later generalised by Arnold [Arn74], which clarifies under which conditions one

can hope to find explicit solutions, i.e. when the system under consideration is integrable.

This result, despite being extremely powerful and profound, is not of simple applicability.

It was only one century later, prompted by the study of fluid mechanics, non-linear partial

differential equations and classical field theory, in particular by the study of the Korteweg-

de Vries equation [GGKM67], that people came up with new methods, now collectively

known as the classical inverse scattering program [Lax68, AKNS73, ZS79, AS81], whose

central object of study is the classical r matrix, which has to satisfy certain equations known

as classical Yang-Baxter equations.

Quantum theories. With the advent of quantum mechanics, the question of whether

it was possible to extend the concept of integrability to that setting arose. One of the first

and most remarkable example was provided within the study of Ising-type magnets, with

the work of Bethe on the exact solution of the Heisenberg spin chain [Bet31], described by

the nearest-neighbour Hamiltonian

H = −J
N∑

n=1

S(n) · S(n+1),

where S(i) are the sl2 spin operators at site i = 1, . . . , N and S(N+1) = S(1), J being

the coupling constant. In his work he devised a new method, now known as coordinate

Bethe ansatz, by assuming that the wave function of the system could be expressed as

the superposition of free waves by adding some phase shifts, which have to satisfy certain

compatibility conditions known as Bethe equations.

As pointed out in [Skl92] the quantum inverse scattering program emerged as the syn-

thesis of the two currents, one stemming from the work of Bethe and expanded by many

others after him, and the aforementioned machinery from the classical setting. The idea goes

as follows: one first introduces a certain associative algebra A, where the quantum analogue

of the r matrix, called the (quantum) R matrix, appears in the commutation relations of

the generators of A. This R matrix has to satisfy the (quantum) Yang-Baxter equation.

Given this data, one can consider a certain representation of A. Finally, one can address

1



2 INTRODUCTION

the central problem of diagonalising the commuting charges, finding their eigenvalues and

eigenvectors. One possible way to do that is to use a generalisation of the idea proposed

by Bethe, known as algebraic Bethe ansatz. It is worth mentioning that the development

of the mathematical framework of the quantum inverse scattering led to the introduction of

interesting algebraic objects such as Yangians and quantum groups [Dri85, Jim85].

Quantum integrable field theories. In the context of (1+1)-dimensional quantum

field theories, the presence of an infinite number of conserved quantities introduces a series

of constraints on the scattering matrix of the theory. As shown in the seminal work [ZZ79],

it is indeed possible to compute it exactly, modulo some overall scalar factor. Moreover,

from physical considerations, it follows that the scattering matrix has to satisfy the Yang-

Baxter equation. For this reason, this represents a natural setting to apply the quantum

inverse scattering program mentioned above. Another remarkable approach was proposed

in [Zam89], based on the idea of regarding integrable quantum field theories as certain

relevant deformation of conformal field theories, preserving integrability. These procedures

gave rise to a plethora of examples of exact asymptotic scattering theories [AFZ79, CM89,

BCDS90, FOZ93].

One can also proceed in the opposite way. Once the asymptotic scattering matrix is

given, one can get information on the finite-size effects of the theory using the so-called

thermodynamic Bethe ansatz [YY69, Zam90]. This allows, for example, to extract the

central charge of the underlying conformal field theory, whose integrable deformations would

give rise to the massive theory under study.

A question we raise in the first part of this work is the following: are the exact S-

matrices constructed as above valid at all energy scales? Indeed, there exist well-known

examples of higher dimensional theories which undergo a phase transition, resulting in cer-

tain divergencies of the thermodynamic quantities. An example is given by the Hagedorn

transition within the standard model, which can be interpreted as the point at which the

hadronic description of matter has to be replaced with the quark model [Hag65]. A similar

behaviour has been described in string theories [AW88].

Phase transitions of the Hagedorn type have been recently described in integrable quan-

tum field theories in two dimensions [SZ17, CNST16]. These theories are obtained by

deforming integrable theories which are well-defined at all scales. The deforming irrelevant

operators are constructed from the components T and T of the energy momentum tensor

(and its descendants), and are known as TT -deformed theories. At the level of the S-matrix,

this results in the appearance of overall scalar factors, called CDD factors, which are ulti-

mately responsible for the appearance of the singularity at a certain scale. It is worth noting

that in these cases the singularity is somehow “apparent”, since under a fine tuning of the

deformation parameters the phase transition is completely removed and one can recover a

UV-complete theory [AL22].
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In this thesis, we present the first example of integrable scattering theories with Hagedorn-

like singularity which are minimal, i.e. not obtained as a deformation of a UV-complete

integrable quantum field theory. In this case, the divergence is more “fundamental”, as it is

a particular feature of the theory that cannot be removed.

These, apart from being an interesting class of theories per se, also show how rich, and

still not very well understood, integrable models are in the quantum field theory setting.

Indeed, a complete and universal description of such models is still missing.

Two frameworks for classical models. At this point it is useful to make a step back

and consider once again classical integrable field theories. In recent years, two descriptions,

which are ultimately related, have found numerous and fruitful applications.

The first one in given by 4D semi-holomorphic Chern-Simons theories with defects

[CY18]. This interpretation has roots in the idea that the algebraic structure of integrable

models can be recovered by considering 4-dimensional gauge theories [Cos14, CWY18a,

CWY18b]. The idea is to consider a 4-dimensional space M = Σ × CP1, where Σ will

ultimately represent the space-time of the two-dimensional theory with coordinates (x, t),

while CP1 is the Riemann sphere with coordinate z, which will be the interpreted as the

spectral parameter of the theory. The theory is described by the action

S(A) =
i

4π

∫
M

ω ∧ CS(A),

where A(x, t; z, z̄) is the gauge field of the theory and CS(A) = tr
(
A ∧ dA+ 2

3A ∧A ∧A
)

is the Chern-Simons term. Here ω = φ(z)dz is a meromorphic 1-form, depending on the

function φ(z), which is a rational function with certain poles z ⊂ CP1 and zeros ζ ⊂
CP1, both with certain multiplicities. The advantage of this approach is that by imposing

boundary conditions of the field at the poles of ω, the theory localises to a 2 dimensional

integrable field theory on Σ. Using this procedure, many examples and deformations thereof

were found [DLMV19]. More recently, it has been shown that this procedure can be

obtained by a more general 6 dimensional holomorphic Chern-Simon theory on twistor space

[CCHL+23].

The other approach, that we explore in this thesis, is that of Gaudin models. Histori-

cally, they were first introduced to describe integrable quantum spin chains with long range

interactions [Gau76], called the Gaudin magnets, described by the quadratic Hamiltonians

Hi =

N∑
j=1
j ̸=i

Ia,(i)I
(j)
a

zi − zj
.

where {z1, . . . , zN} are a set of points on the Riemann sphere and can be thought as the

sites of the model. As in the Heisenberg chain, Ia,(i) are the spin operators of sl2 at site

i = 1, . . . , N and 1/(zi − zj) is the coupling constant. It was later shown that this system is

always integrable for any choice of finite-dimensional semi-simple Lie algebra g [Gau14].
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In the seminal paper [FFR94], it was shown that the Gaudin models admit higher

conserved charges and that they can be diagonalised with an elegant form of Bethe ansatz,

based on the construction of Wakimoto modules at the critical level. The study of quantum

finite Gaudin models culminated with the remarkable correspondence between the space of

commuting charges and the algebra of functions on the space of certain differential operators

called Lg-opers with regular singularities [Fre05a], which initiated a new line of research in

the context of the geometric Langlands correspondence applied to physical systems [Fre05b,

CT06, FH18].

In more recent years, people have come up with several generalisations of the Gaudin

models, for example by considering arbitrary multiplicities [FFTL10], by introducing cer-

tain automorphism of g, called cyclotomic Gaudin models [VY16, LV18] or by imposing

reality conditions to obtain dihedral Gaudin models [Vic20].

Affine Gaudin models. Another possible direction, which is the main focus in this

thesis, is obtained by replacing the finite-type Lie algebra with one of untwisted affine type.

To motivate the study of such generalisation, it is worth recalling the classical limit of

these models, which are better understood. As before, consider a set of points on the Rie-

mann sphere. One introduces the phase space, which has a Poisson structure defined by the

so-called Kirillov-Kostant bracket. One can then define a Lax matrix and the corresponding

r matrix. The quadratic Hamiltonians defining the models can be obtained as certain clas-

sical limits of those above, as well as the other higher conserved charges (for more details

see [Lac18]). Also in this setting one can consider the generalisation to the affine setting.

The remarkable result from [Vic20] is that dihedral, i.e. cyclotomic real, classical affine

Gaudin models provide a universal language to describe a large class of classical integrable

field theories with twist function, i.e. whose r matrix has the form

r(z1, z2) = r0(z1, z2)φ(z2)
−1,

where r0(z,z2) can be thought as a “standard” non-twisted r matrix and φ(z) is a rational

function called the twist function. A series of explicit examples have been worked out

explicitly for example in [Lac23]. This function is precisely the same rational function

entering the definition of the 1-form ω in the 4 dimensional Chern-Simons formulation.

Indeed, as mentioned above, it is known that these two languages are in fact related [Vic21].

For these reasons, the quantisation of classical affine Gaudin models is of central im-

portance as the expectation is that it could provide a powerful tool to study a large class of

integrable quantum field theories [FF07].

Unfortunately, unlike their finite-type counterparts, quantum affine Gaudin models are

still not well understood. For example, there is still no explicit description of the space of

commuting charges, but only some conjectures [FF07, LVY18] and there is no analogue of

the Bethe ansatz construction with Wakimoto modules.
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In the second part of this thesis, we touch some of these open problems. For example, we

provide the explicit construction of the first non-trivial higher Hamiltonian for the ŝl2 Gaudin

model and concerning the Bethe ansatz construction, we introduce a novel generalisation of

the Feigin-Frenkel homomorphism, which might play a central role in the construction of

Wakimoto modules.

***

This thesis is organised as follows.

In chapter 1 we introduce some ideas from the theory of classical and quantum inte-

grability. First, in section 1.1 we state the Liouville-Arnold theorem and we recall the Lax

formalism. We show how the classical r-matrix appears in this context and in particular how

the classical Yang-Baxter equation follows by imposing certain conditions. In section 1.2

we move to the quantum setting. Following the approach by Zamolodchikov, we proceed to

summarise the theory of the S-matrix with a particular focus on 1+1 dimensional theories.

The result of having a two-dimensional theory with an infinite number of conserved charges

imposes a series of constraints on the scattering processes, as we describe in section 1.2.4.

These give rise to the quantum Yang-Baxter equation for the S-matrix. We end the chapter

by recalling additional properties that the scattering matrix has to satisfy, and we introduce

the bootstrap method.

In chapter 2 we provide the construction of a new class of integrable scattering theories

with quantum group Uq(su2) symmetry. This is done by constructing explicit minimal S-

matrices, starting from the quantum group R-matrices in the spin s representation, which

automatically satisfy the Yang-Baxter equation and imposing crossing symmetry and uni-

tarity. These theories present two distinct regimes: an attractive one, where the theory

admits bound states, and a repulsive one. In section 2.2 we focus on the latter, and we

perform thermodynamic Bethe ansatz to obtain information on the finite-size effects of the

theory. In section 2.3, we proceed to study the TBA equations with numerical methods.

Quite remarkably and unexpectedly, we find that these new theories develop singularities at

a certain energy scale.

In chapter 3, we recall the theory of quantum Gaudin models of finite-type. We give

some general definition and we describe the Bethe ansatz construction. The second part of

the chapter focuses on the Feigin-Frenkel-Reshetikhin construction introduced in [FFR94].

To do this, we first describe the appropriate language which is customarily used in these

contexts, which is the theory of vertex algebras. We describe the space of commuting

Hamiltonians, or Gaudin/Bethe subalgebra, in terms of coinvariants. In section 3.4, we

end the chapter by recalling the Feigin-Frenkel homomorphism of vertex algebras and how

this can be used to construct Wakimoto modules, and ultimately to describe a new way to

reproduce the Bethe ansatz.
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In chapter 4 we describe the explicit construction of the first non-trivial higher Hamil-

tonian for the ŝl2 Gaudin model, of quartic order. To do this, we follow the conjecture

proposed in [LVY18]. We do this by explicitly requiring that the new charge commutes

with the generators of the Lie algebra and with the other known Hamiltonians of the model.

In section 4.5 we also provide a next-to-leading order expression for all other higher charges

of order n ≥ 5.

In chapter 5 we focus on the Feigin-Frenkel homomorphism. For any finite-dimensional

Lie algebra g, it provides a map of vertex algebras, relating the vacuum Verma module at

critical level with the Fock module for the βγ-system of free fields. This map has a central

role in the construction of the Wakimoto modules as described in section 3.4. Following

[You21], we attempt a generalisation of this map to the case where g is of untwisted affine

type. By doing this, we observe that divergent quantities appear. To deal with this problem,

in section 5.2 we introduce a new space with the structure of a vertex Lie algebra, whose

higher products depend on a regulation parameter z. Inspired by standard techniques in

physics, we proceed by introducing, in section 5.3, a regularisation procedure to “cure” the

infinities. This allows us to show in section 5.4 the suggestive fact that first products are all

vanishing on the nose.



CHAPTER 1

Quantum integrability and the S-matrix program

1.1. Classical integability

In section 1.1.1 we are going to briefly recall the notion of classical integrability, the

fundamental Liouville-Arnold theorem and in section 1.1.2 the Lax formalism. We will

describe how the latter can be utilised to study integrability in classical field theories. Using

this formalism, in we will see how the classical r-matrix naturally arises and we proceed to

study its main properties.

1.1.1. Poisson structure and Liouville theorem. In classical mechanics, a state

in a n-dimensional system is described by a point on a 2n-dimensional manifold M, called

the classical phase space. It has the structure of a Poisson manifold, meaning that the

commutative algebra of smooth function C∞(M) is a Poisson algebra, known as the algebra

of classical observables. This implies the existence of a non-degenerate bilinear map {·, ·} :

C∞(M)× C∞(M)! C∞(M), called the Poisson bracket, with the following properties

• Skew-symmetry : {f, g} = −{g, f};
• Jacobi identity : {f, {g, h}} = {{f, g}, h}+ {g, {f, h}};
• Leibniz rule: {fg, h} = f{g, h}+ {f, h}g.

Time evolution is determined by the choice of a function H ∈ C∞(M), called the

Hamiltonian of the system. The Hamiltonian flow parametrised by t ∈ R of an observable

f ∈ C∞(M) on the phase space is computed using the Poisson bracket, namely

{f,H} = ∂tf. (1.1)

Locally, there always exists a set of coordinates {pi, qi}i=1,...,n on M, with {pi, qj} = δij

and {pi, pj} = {qi, qj} = 0, such that one can express the Poisson bracket as

{f, g} =

n∑
i=1

∂f

∂pi
∂g

∂qi
− ∂g

∂pi
∂f

∂qi
, (1.2)

for any two functions f, g ∈ C∞(M). In this case, the Hamiltonian flow is described by the

famous Hamilton’s equations

∂tp
i =

∂H

∂qi
, ∂tqi = −∂H

∂pi
. (1.3)

for all i = 1, . . . , n.

A quantity that Poisson-commutes with the Hamiltonian is an integral of motion, i.e.

it is conserved along the flow.

7



8 1. QUANTUM INTEGRABILITY AND THE S-MATRIX PROGRAM

We say that a n-dimensional system is Liouville-integrable if there are n independent1

conserved quantities Qi, i = 1, . . . , n that are in involution, i.e.

{Qi, Qj} = 0 for all i, j = 1, . . . , n. (1.4)

Note that the Hamiltonian itself has to be a combination of the Qi. These charges are called

the higher Hamiltonians of the system, and each of them can be picked to generate a time

flow on M.

An important result, known as the Liouville-Arnold theorem, states that the equations of

motion of a Liouville-integrable system can always be solved by quadratures, i.e. straightfor-

ward integration, by re-parametrising the system using the so-called action-angle variables.

This method, while being very powerful when dealing with simple classical systems such as

the harmonic oscillator, Kepler’s problems, and many more (see e.g. [BBT03] for other

examples), becomes impractical when dealing with classical field theories, which by nature

are described by an infinite number of degrees of freedom.

1.1.2. Classical integrable field theories. Consider a 2-dimensional Minkowski space

Σ = R × R or Σ = R × S1. A field on Σ is a collection of functions ϕi : Σ ! C for some

i ∈ Z≥1. If the space coordinate is taken to be on the infinite line R, they need to satisfy

the asymptotic conditions ϕi(t, x) ! 0 when x ! ±∞, while if we take it on the circle S1

we need to specify periodicity, i.e. ϕi(t, x) = ϕi(t, x + 2π). The reason we focus on two-

dimensional theories is that, as a consequence of the Coleman-Mandula theorem [CM67],

at the quantum level it is known that integrable field theories in more than two dimensions

have trivial scattering, as we will describe in more detail in section 1.2.2.

By naively extending the notion of Liouville integrability to this setting, the expectation

is that one would have to find an infinite number of conserved independent charges in

involution. Doing this by direct inspection is clearly impossible, so new tools are needed.

1.1.2.1. Lax pairs. Consider two matrices L and M valued in the Lie subalgebra g of

the Poisson algebra of smooth functions C∞(Σ), which depend on an additional parameter

z, called the spectral parameter. They form a Lax pair for a classical system if the equations

of motion can be written in the form [Lax68, BBT03]

∂tL(t, x; z)− ∂xM(x, t; z) = [M(x, t; z),L(x, t; z)], for all z ∈ C. (1.5)

At this point one can introduce the path ordered exponential, sometimes called the

transfer matrix from x to y

T (t, x, y; z) = P
 −
exp

(∫ y

x

L(t, u; z)du
)
. (1.6)

By some manipulations (see e.g. [Tor16]), one can find that eq. (1.5) can be rewritten as

∂tT (t, y, x; z) = T (t, y, x; z)M(t, y; z)−M(t, x; z)T (t, y, x; z). (1.7)

1This means that the one forms dQi are linearly independent.
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Suppose we are working with a field theory on the real line R. One can define the

monodromy matrix as

T (t, z) = T (t,∞,−∞; z). (1.8)

If we impose that the Lax matrix satisfies the fall-off condition M(t, x; z)! 0 as x! ±∞,

from eq. (1.7) we obtain that

∂tT (t, z)
n = 0 for any n ∈ Z≥1. (1.9)

This means that powers of the transfer matrix are conserved in time, i.e. they form a family

of integrals of motions. In the case when the space direction is compactified on the circle

S1, one can repeat a similar argument finding that now the powers of the traces of the

monodromy matrix are conserved charges,

∂t tr(T (t, z)
n) = 0 (1.10)

1.1.2.2. Classical Yang-Baxter equation. The Lax formulation gives a direct construc-

tion of a tower of conserved charges. In order to check Liouville integrability, one also has

to ensure that they Poisson-commute.

It turns out that there is a sufficient condition for this to be verified, which is determined

by the particular form of the Poisson bracket of the Lax matrix L with itself, called the non-

ultralocal Maillet bracket [Mai85, Mai86]

{L1(t, x; z1),L2(t, y; z2)} = [r12(z1, z2),L1(t, x; z1)]δ(x− y)

− [r21(z2, z1),L2(t, y; z2)]δ(x− y)− (r12(z1, z2) + r12(z2, z1))∂xδ(x− y)

(1.11)

where we introduced the notation X1 = X ⊗ id and X2 = id⊗X, for any X ∈ g and for

some matrix r(z1, z2) ∈ g⊗ g depending on two spectral parameters z1, z2.

When r is skew-symmetric the term proportional to the non-local term, i.e. the one

involving the derivative of δ(x − y), vanishes and the rest reduces to a simpler expression,

known as ultralocal Sklyanin bracket [Skl82].

It is straightforward to check that the bracket in eq. (1.11) is skew-symmetric if and

only if r is. In order to satisfy the Jacobi identity one has to impose extra conditions on the

matrix r. The constraint is known as the classical Yang-Baxter equation (CYBE)

[r12(z1, z2), r13(z1, z3)] + [r12(z1, z2), r23(z2, z3)] + [r32(z3, z2), r13(z1, z3)] = 0, (1.12)

which is understood as an identity on a triple tensor product, i.e. r12(zi, zj) := ϕ12(r(z1, z2)),

where ϕ12 : g ⊗ g ! g ⊗ g ⊗ g is the map defined as follows ϕ12(a ⊗ b) = a ⊗ b ⊗ 1, with

a, b ∈ g and similarly for the other terms r13(z1, z2) and r23(z1, z2). The matrices satisfying

these relations are called classical r-matrices.

When r(z1, z2) is meromorphic in the spectral parameters and det r(z1, z2) ̸= 0, it can

be shown that the r matrix is a function of the difference u := z1 − z2, or it can be recast



10 1. QUANTUM INTEGRABILITY AND THE S-MATRIX PROGRAM

in such form [BD83]. Under these assumptions, Belavin and Drinfel’d [BD82] showed that

the poles of r(u) are all simple and form a lattice Γ ⊂ C. This allows for a classification

of such matrices: if rankΓ = 0, r(u) depends rationally on u, if rankΓ = 1, r(u) depends

trigonometrically on u and if rankΓ = 2, r(u) depends elliptically on u.

1.1.2.3. Towards quantisation. The existence of the classical r matrix satisfying the

above properties implies the existence of a (quasi)-triangular bialgebra structure on g [Dri83].

The idea behind quantisation is replacing the commutative algebra of observables, with a

non-commutative one. This is obtained by deforming the Lie bialgebra structure on g un-

derlying the classical theory. This structure is known as quantum group, which has the

structure of a quasi-triangular Hopf algebra. A complex parameter q ∈ C controls the de-

formation, in such a way that in the limit q! 1 one recovers the classical Poisson structure.

To each case of the classification mentioned above, one can construct the corresponding

deformation, obtaining the Yangian in the rational case [Dri85], the quantum affine algebra

in the trigonometric case [Dri85, Jim85] and the elliptic quantum group in the elliptic case

[Skl82, Fel94].

In this context, one can define the universal R matrix of the quantum group satisfying,

the quantum Yang-Baxter equation

R12(z1, z2)R13(z1, z3)R23(z2, z3) = R23(z2, z3)R13(z1, z3)R12(z1, z2). (1.13)

where we are using the same notation as above.

By defining R = id⊗ id+iℏr + O(ℏ2), one finds that this relation at leading order

reduces to the classical Yang-Baxter equation in (1.12). This particular algebraic structure

can be recovered from physics arguments, as we will describe in the next section.

1.2. Quantum integrability

In this section, we are going to describe the general theory of the scattering matrix in

quantum field theories. We will illustrate the fundamental no-go Coleman-Mandula theorem

[CM67], which states that under certain mild physical assumptions, non-trivial scattering

processes are not allowed in theories in 1 + d dimensions, with d > 1. However, in the 1 + 1

setting, the scattering can still be non-trivial. Moreover, we will describe how, by imposing

certain properties and using the symmetries of the system, the S-matrix can be defined

exactly, following the so-called bootstrap program.

1.2.1. The S-matrix. In order to describe scattering processes, we need to assume

that the interactions happen in a small region of space, so that away from it the particles

are essentially described by free theories. We introduce the vacuum state |0⟩ ∈ H where H
is the Hilbert space of the theory, and we define the so-called asymptotic states

|Aa1(p1) . . . Aan(pn)⟩ = Aa1(p1) . . . Aan(pn) |0⟩ , n ∈ Z≥1, (1.14)
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where the symbols Aai
(pi) can be thought as creation operators of particles with internal

quantum numbers ai and momenta pi in the infinite past or in the infinite future.

In our conventions, the scattering matrix is defined as the operator on H transforming

out states in the infinite future in incoming states in the infinite past

|Aa1
(p1) . . . Aan

(pn)⟩in

=

∞∑
m=1

∑∫
b,p′

Sb1,...,bm
a1,...,an

(p1, . . . , pn; p
′
1, . . . , p

′
m) |Ab1(p

′
1) . . . Abm(p′m)⟩out , (1.15)

where on the right-hand side one has to sum over the internal quantum numbers bi and

integrate over all outgoing momenta p′i, with i = 1, . . . ,m, m being the number of outgoing

particles.

1.2.1.1. General properties of the S-matrix. Any initial state can be expressed in the

basis of final states via the S-matrix, from which it follows that the probability for a super-

position of initial states to evolve into a superposition of final states is 1. This implies that

the S-matrix is a unitary operator

S†S = SS† = id . (1.16)

In relativistic scattering theories we also need to impose Lorentz invariance, i.e. we

require physical observables measured in different reference frames to be equal. This implies

that the scattering matrix can depend on the momenta only through Lorentz scalars, i.e.

combinations of the scalar products of momenta. Other properties are marocausality and

analyticity, see [Mus10].

1.2.2. Coleman-Mandula theorem. Consider a unitary operator U on the Hilbert

space H of the system. Assume that it transforms one-particle states into one-particle states

U |Aa(p)⟩ = |Aa′(p′)⟩ , (1.17)

and it acts on multi-particle states as if they were tensor products of one-particle states, as

follows

U |Aa1(p1)Aa2(p2)⟩ = (id⊗U + U ⊗ id) |Aa1(p1)⟩ ⊗ |Aa2(p2)⟩ . (1.18)

Moreover, in order to preserve the probabilities under the symmetry transformation, it has

to commute with the scattering matrix

[U, S] = 0. (1.19)

The question is what kind of symmetry groups, which include the Poincaré group as

a subgroup, are allowed in this context. It was shown in [CM67] that under some mild

physical assumption2, the structure of the symmetry group of the theory becomes quite

2The assumptions are: 1) the particle content has finite non-zero masses; 2) elastic scattering amplitudes

are analytic functions of the Mandelstam variables s and t; 3) except for a finite set of values of the center

of mass energy s, the scattering always occurs.
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trivial, as the only symmetry groups allowed are those in the form

G = P × U, (1.20)

where P is the Poincaré group and U a group of internal symmetries.

Famous workarounds to these assumptions are supersymmetric theories, where the

Poincaré algebra is replaced with a supersymmetry algebra, and conformal field theories,

where the particles are massless. Another possible way to relax the Coleman-Mandula theo-

rem is to modify the rule of how generators of the symmetry act on multiparticle states, i.e.

replacing the trivial co-multiplicative structure in eq. (1.18) with a non-trivial one. As we

have mentioned in section 1.1.2.3, this feature is naturally present in two-dimensional quan-

tum integrable models whose underlying symmetry structure is that of a quantum group,

which has a non-trivial co-multiplication [BL91].

1.2.3. Scattering theories in 1 + 1 dimensions. For the rest of the chapter, we

focus on two-dimensional relativistic quantum field theories. A particle with mass ma and

momentum pa has to satisfy the on-shell condition3 (pa)
µ(pa)µ = m2

a . It is customary to

parametrise the momenta in terms of rapidities, by introducing the variable θ ∈ R

(pa)
0 = ma cosh θa, (pa)

1 = ma sinh θa. (1.21)

In this setting, considering the scattering process 1 + 2 ! 3 + 4, the Maldestam variables

can be expressed as

s = (p1 + p2)
2 = m2

1 +m2
2 + 2m1m2 cosh(θ1 − θ2),

t = (p1 − p4)
2 = m2

1 +m2
4 − 2m1m4 cosh(θ1 − θ4),

u = (p1 − p3)
2 = m2

1 +m2
3 − 2m1m3 cosh(θ1 − θ3). (1.22)

It becomes evident that Lorentz invariance translates into the dependence of s, t and u only

on the differences θi − θj . They are related by the following relation

s+ t+ u =
4∑

i=1

m2
i . (1.23)

Recall that for an incoming state, there are no further interactions for t ! −∞: for

particles moving on a line, this means that the fastest particle is on the left while the slowest

is on the right. For outgoing states, the situation is similar but reversed, as there are no

more interactions for t!∞; therefore

|A1(θ1) . . . An(θn)⟩in , θ1 > θ2 > · · · > θn,

|A1(θ1) . . . An(θn)⟩out , θ1 < θ2 < · · · < θn. (1.24)

3We are using the following convention for the metric (+,−).
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1.2.4. Conserved charges and Parke’s theorem. Having an infinite number of

conserved charges inevitably imposes constraints on the theory, as observed in [SW78].

However, showing their existence is often a rather challenging task.

Quite remarkably, it was shown by Parke [Par80] that the existence of just two local

conserved charges which transform as tensors of rank higher than 2 under Lorentz transfor-

mation (i.e. they are not scalars or vectors), is enough to show the following properties of

the S-matrix

• there is no particle production: the number of initial particles is the same after the

collision;

• the momenta are preserved : the set of incoming momenta is the same as the outgoing

ones;

• the scattering is factorised : any scattering of n ! n particles can be decomposed into

2! 2 particle processes, i.e. it can be described in terms on the 2-body S-matrix

S : H⊗H! H⊗H, (1.25)

where H denotes the Hilbert space of the asymptotic particles.

We will not present explicit and detailed proof of these results, which can be found in the

original papers and in many reviews [Mus10, Dor97, Bom16]. The idea is to employ the

conserved charges, whose action on a localised wave function is that of moving the particle

in space, by an amount proportional to their momentum.4

1.2.4.1. Yang-Baxter equation. The first direct consequence is related to the scattering

of more than two particles. The first non-trivial example is given by the 3 ! 3 scattering

process. In fig. 1.1 we see three different possible situations: the first two only differ by

the chronological order of the collisions and are ultimately factorised in 2 ! 2 successive

scattering collisions; the third case instead cannot in general be expressed in terms of the two-

body data. However, in the present case, the existence of higher conserved charges simplifies

the calculations. Indeed, the action of the conserved charges on the initial asymptotic states

has the effect of shifting the trajectories of the particles and therefore one can obtain any of

the diagrams from the others. This feature is encoded in the famous Yang-Baxter equation∑
α,β,γ

Sαβ
a1a2

(θ12)S
b1γ
αa3

(θ13)S
b2b3
βγ (θ23) =

∑
α,β,γ

Sβα
a2a3

(θ23)S
γb3
a1α(θ13)S

b1b2
γβ (θ12), (1.26)

where we used the notation θij = θi − θj .

It is natural to ask what kind of constraints are imposed on a general n! n scattering

process. It turns out that the Yang-Baxter equation (1.26) is a sufficient and necessary

condition for factorisation.

4In the case of the momentum operator, the particles are all shifted by the same amount, independently

of their momenta. This is why higher rank charges are required.
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a1 a2 a3

b1b3 b2

α
β

γ

(a)

a1 a2 a3

b1b3 b2

α
β

γ

(b)

a1 a2 a3

b1b3 b2

(c)

Figure 1.1. Equivalent amplitudes of the 3 ! 3 scattering process in the presence of

higher spin conserved charges.

1.2.5. Other properties of the 2-body S-matrix. The goal is to be able to com-

pletely fix, up to an overall factor, the structure of the scattering matrix. In order to do

that, one has to impose additional constraints on the S-matrix, given by discrete symmetries,

unitarity and crossing symmetry.

1.2.5.1. Discrete symmetries. If the theory is invariant under charge conjugation C, it
means that the scattering process involving the charge-conjugated particles is equivalent to

the original process

Scd
ab(θ) = (C ⊗ C)Scd

ab(θ)(C ⊗ C) = S c̄d̄
āb̄(θ), (1.27)

where we denoted with ■̄ the charge-conjugated to ■.

Parity transformation P flips the direction of the space coordinate. If the S-matrix is

parity invariant, it means that the process obtained by mirroring the Feynman diagram in

fig. 1.2 along the vertical direction is physically equivalent to the original process, i.e.

Scd
ab(θ) = Sdc

ba(θ), (1.28)

Applying time reversal T to the scattering process in fig. 1.2 results in looking at the

Feynman diagram in the opposite direction (top to bottom), which results in the following

additional constraint

Scd
ab(θ) = Sba

dc (θ). (1.29)

1.2.5.2. Unitarity, crossing, and analytic considerations. Recall from section 1.2.3 the

definition of the Mandelstam variables. Since we have no particle production and the set of

initial and final momenta are the same, u = 0 and we have

t = m2
1 +m2

2 − 2m1m2 cosh(θ1 − θ2) = 2m2
1 + 2m2

2 − s, (1.30)

which follows from the fact that s+ t+ u =
∑4

i=1 m
2
i . Hence, there is only one independent

variable and from now on we will just express all amplitudes in terms of s. Since the
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difference θ1 − θ2 must be real, from eq. (1.22) we conclude that s ≥ (m1 +m2)
2, which is

the energy threshold for production of particles in the s-channel.

In order to express one channel in terms of the other, one needs to consider an analytic

continuation of the S-matrix by extending the Mandelstam variables to the whole complex

plane. From eq. (1.30) it is clear that the t-channel is obtained by the transformation

t(θ) = s(iπ − θ), (1.31)

which can be interpreted geometrically as the rotation of the Feynman diagram on the

plane, see fig. 1.2. In this channel, we have another threshold in the s plane, namely for

s ≤ (m1−m2)
2. From eq. (1.31), it follows that the s-channel and the t-channel are related,

and it is possible to continuously move on the s plane from one to the other, a property

known as the crossing symmetry

Scd
ab(θ) = Scb̄

d̄a(iπ − θ). (1.32)

Aa(θ1) Ab(θ2)

Ac(θ1)Ad(θ2)

θ12

Ad(θ2)

iπ − θ12

s-
ch
a
n
n
el

t-channel

Figure 1.2. 2 ! 2 scattering process. Time flows in the vertical direction. The s-

channel and t-channel are obtained by a rotation.

As we will see below, there are branch cuts propagating from the particle production

thresholds in the two channels. What we obtain is the the so-called physical sheet, depicted

in fig. 1.3. Physical values are s + iϵ, for ϵ ! 0+, in the region right above the right cut:

this is equivalent to the Feynman prescription for causal propagators.

At this point, one can impose that the amplitudes obtained from S and S† are opposite

boundary values of the same analytic function [Oli62, Mir99]. This property is known as

Hermitian analyticity of the S-matrix and ultimately it can be expressed as

Scd
ab(s

∗) = [Sba
dc (s)]

∗. (1.33)

If the theory has additional time-reversal symmetry then the S-matrix is real analytic, i.e.

it takes complex-conjugate values at complex-conjugate points

Scd
ab(s

∗) = [Scd
ab(s)]

∗. (1.34)
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Using these properties, we can rewrite the unitarity condition in eq. (1.16) as follows

lim
ϵ!0

Sij
ab(s+ iϵ)Scd

ij (s− iϵ) = δcaδ
d
b , (1.35)

which signals the presence of the anticipated cut along the real axis.

Re(s)

Im(s)

(m1 +m2)
2

(m1 −m2)
2

Figure 1.3. The complex s-plane and the physical sheet. Unitarity transformation

(green) maps values above the cut to the corresponding ones below. Crossing sym-

metry (purple) identifies points above the right cut to points below the left cut.

Following [ZZ79], the relation s = m2
a + m2

b + 2m1m2 cosh(θa − θb) can be inverted to

obtain

θa − θb = log

(
s−m2

a −m2
b +

√
(s− (ma +mb)2)(s− (ma −mb)2)

2mamb

)
, (1.36)

which allows to transform the physical sheet into the so-called physical strip on the complex

θ-plane, defined for 0 ≤ Im θ ≤ π, where θ, as usual, stands for a difference of rapidities.

The right branch point is mapped to the origin, while the left one to iπ. Different Riemann

sheets of the s-plane correspond to different strips in the θ plane.

Re θ

Im θ
iπ

0

Figure 1.4. The complex θ-plane and the physical strip. Unitarity transformation

(green) maps θ ! −θ. Crossing symmetry (purple) maps θ ! iπ − θ.
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With this change of variable, the S-matrix results analytic on the images of the branch

cuts. Since integrability ensures that there are no other cuts corresponding to the creation

of other particles, we can conclude that the S-matrix is a meromorphic function in θ. In

this variable, the real analyticity condition translates into

Scd
ab(θ) = [Scd

ab(−θ∗)]∗, (1.37)

which implies that the S-matrix takes real values on the imaginary θ-axis. Similarly, uni-

tarity takes the following form

Sjk
ab (θ)S

cd
jk(−θ) = δcaδ

d
b , (1.38)

where there is an implicit sum over the internal indices. All these conditions are enough to

determine the functional structure of the S-matrix, up to an overall factor.

1.2.6. Poles and bootstrap principle. In the discussion above we have not men-

tioned bound states, which can arise whenever the total energy of the state is lower than

the sum of the single energies of the colliding particles. Although we will not deal with

them in the present work, we want to mention that they are identified with points along

the imaginary θ direction, which in the s-plane correspond to the points that lie between

the two branch points and they are the poles of the S-matrix5. Let iunab be a pole of the

S-matrix, corresponding to the creation of a bound state or breather from the scattering

process of two particles. The total energy of the process gives the mass of the bound state,

s = m2
n = m2

a +m2
b + 2mamb cos(u

n
ab), (1.39)

which has a nice geometrical interpretation using Carnot’s theorem for triangles, and leads

to the so-called fusing angle relation [Zam89]. The scattering matrix element can be written

as

Scd
ab(θ) ≃

Γn
abRnΓ

cd
n

θ − iunab
(1.40)

where Rn is the residue at iunab and Γn
ab are the projector of the single particles Aa(θa) and

Ab(θb), with θ = θ1 − θ2, onto the bound state Bn(θ), see fig. 1.5.

One can assume that the bound state particles are part of the spectrum of the theory,

i.e. they must be treated as fundamental particles, on the same footing as all the asymptotic

states.

As we did for Yang-Baxter equation, considering the action of higher charges on the

wave packets describing these particles, leads to the equality of the processes in fig. 1.6.

This identification can be described by to the so-called bootstrap equation.

Γn
abS

dn′

cn (θ) = Sc′a′

ca (θ − iūb̄an̄)S
db′

c′b (θ + iūābn̄)Γ
n′

a′b′ , (1.41)

where we introduced the notation ū = π − u.

5In complete generality, these only represent stable bound states. It is possible to have unstable bound

states, that correspond to poles which do not appear on the physical sheet, but on different Riemann sheets.
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a b

n

c d

b

d

n

a

c

Figure 1.5. Production of a bound state in the t (left) and s channel (right).

For this equation to be satisfied, one might have to add extra poles to the S-matrix.

These can be again interpreted as bound states, for which one can impose the bootstrap

equations. When this iterative procedure ends, one “closes” the bootstrap, finding the

complete spectrum of the theory [Zam89].

a b

iun
ab

iub
n̄a iua

bn̄

c

d

θ

n′

n

a b

c

d

n′

θ − iūb̄
an̄

θ + iūā
bn̄

Figure 1.6. These two processes have to be considered equal if assuming the bootstrap

principle. The dashed line represents the bound state. Here we introduced the notation

ū = π − u.



CHAPTER 2

Scattering theories with Hagedorn singularities

In this chapter, we are going to see all the machinery described above in action. In

section 2.1 we will explicitly construct new 2-body minimal S-matrices which are unitary,

crossing symmetric and satisfy all additional properties described before. The finite size

effects of these new theories are studied via thermodynamic Bethe ansatz in section 2.2. In

the last section, we perform a numerical analysis of these models. We observe that they

present singular behaviours, which might be of Hagedorn type.

This chapter is based on the article [AFR24], written in collaboration with Changrim

Ahn and Francesco Ravanini.

2.1. Scattering theories with Uq(sl2) symmetry

The idea behind the S-matrix program is that of fixing the structure of the S-matrix by

imposing the properties we described in the previous chapter. In 1+1 dimensional theories it

often turns out that these conditions together with the bootstrap principle are enough to do

it, modulo multiplicative factors which satisfy unitarity and crossing symmetry and which

do not spoil the analyticity condition, called CDD factors [CDD56]. They can ultimately

change the physics of the theory described by the scattering matrix since they can introduce

additional poles, which must be regarded as additional bound states. They also appear as

the result of certain integrable deformations [SZ17, CNST16, CFLN+21].

In this section, we will proceed with the construction of a family of minimal S-matrices,

by simply imposing all the defining relations and without adding extra CDD factors.

2.1.1. Exact S-matrices with sl2 symmetry. To set the scene, we recall the con-

struction for S-matrices with sl(2,C) symmetry. In the next section we will generalise this

to quantum group symmetry.

Consider the Lie algebra sl2 with non-degenerate symmetric invariant bilinear form κ,

generated by {J±, J3} obeying the commutation relations

[J3, J±] = ±J±, [J+, J−] = 2J3. (2.1)

A particular element of the universal enveloping algebra is the quadratic Casimir element

C = J+J− + J−J+ + 2J2
3 (2.2)

which is independent of the choice of basis, and commutes with all elements of the Lie

algebra. It is known that finite dimensional representations Hs of this algebra are labelled

19
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by a positive integer or half-integer number s ∈ 1
2Z≥0, called the spin of the representation

with dimension 2s+ 1.

Using the notation introduced in section 1.2.1, we denote asymptotic on-shell multiplets

of spin s as the collection of 2s + 1 particles Am(θ) of same mass m, where m = −s,−s +
1, . . . , s− 1, s is the label of the internal quantum number, sometimes called the “magnetic”

quantum number, in analogy with the theory of angular momentum. Here we are using the

rapidity variables introduced in section 1.2.3.

If the scattering theory is integrable, the S-matrix factorises, cfr. section 1.2.4, i.e.

multi-particle scattering amplitudes are decomposed into two-particle elastic S-matrix ele-

ment S
m′

1m
′
2

m1m2 (θ1 − θ2), which can be graphically depicted as in fig. 1.2. This two-particle

S-matrix has to satisfy the Yang-Baxter equations (1.26) together with unitarity (1.38) and

crossing symmetry (1.32).

If we use the standard notation |J,M⟩ for the basis of the total spin J representation with

internal quantum numbers M = −J, . . . , J , we can decompose the two-particle S-matrix as

described in [KRS81] as follows

S(θ) = P
2s∑

J=0

f [J](θ)P[J], (2.3)

where P is the permutation operator, f [J](θ) are some θ-dependent rational scalar functions

and P[J] are the projectors onto the spin-J representation,

P[J] =

J∑
M=−J

|J,M⟩⟨J,M |, J = 0, . . . , 2s, (2.4)

which satisfies the usual properties

2s∑
J=0

P[J] = id, and
(
P[J]

)2
= P[J]. (2.5)

Their matrix elements can be written in terms of the Clebsch-Gordan coefficients

P[J]m
′
1m

′
2

m1m2
=

J∑
M=−J

⟨s,m′
1; s,m

′
2|J,M⟩⟨J,M |s,m1; s,m2⟩. (2.6)

where |s,m′
1; s,m

′
2⟩ is a basis for the tensor product of two particles of spin s.

Following the construction from [KRS81], the Yang-Baxter equation constrains the

scalar functions to have the form

f [J](θ) = S0(θ)

J∏
k=1

iπk − θ

iπk + θ
, (2.7)

up to an overall function S0(θ) which can be fixed by imposing unitarity and crossing

symmetry. These are the S-matrices constructed and studied in [AM94].
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2.1.2. Exact S-matrices with Uq(sl2) symmetry. We extend these rational S-

matrices to the trigonometric ones, by introducing certain interactions expressed in terms

of a coupling constant which is related to a deformation parameter q ∈ C of the quantum

symmetry algebra Uq(sl2), generated by {J±, q±J3} and satisfying the following relations

qJ3J±q
−J3 = q±1qJ3 , [J+, J−] = [2J3]q, (2.8)

where we introduced the following notation, called the q-number

[λ]q :=
qλ/2 − q−λ/2

q1/2 − q−1/2
. (2.9)

The Casimir operator can be found in [Kir91]1, and it is defined as follows

Cq = J−J+ +
q1/2qJ3 + q−1/2q−J3

(q1/2 − q−1/2)2
. (2.10)

For a generic value of q, i.e. not a root of unity, the Lusztig-Rosso theorem [Lus88,

Ros88] states that the irreducible representations of the Uq(su2) are in one to one corre-

spondence to those of su2, and labelled by integer or half-integer s ∈ 1
2Z≥0. As before, the

asymptotic states of mass m form a spin-s representation of Uq(su2).

By generalising the expression of the S-matrix from (2.3), we have

S(θ) = P
2s∑

J=0

f [J]q (θ)P[J]
q , (2.11)

for some trigonometric scalar functions f
[J]
q (θ) and q-deformed projectors P[J]

q of Uq(su2).

Following the same ideas as above, all these ingredients of the S-matrices will be determined

completely by imposing constraints such as the Yang-Baxter equation, unitarity, and crossing

symmetry.

2.1.2.1. q-deformed projectors. The tensor products of two irreducible quantum group

representations are decomposed into a direct sum of other irreducible ones in a similar way

to the usual addition of two angular momenta in su2 described in the previous section. As

before, we have the change of basis

|J,M⟩ =
s∑

m1,m2=−s

⟨s,m1; s,m2|J,M⟩q |s,m1; s,m2⟩ , J = 0, . . . , 2s, (2.12)

where the coefficients are now the quantum Clebsch-Gordan coefficients, from which it is

possible to construct the quantum-deformed projectors:

P[J]
q

m′
1m

′
2

m1m2
=

J∑
M=−J

⟨s,m′
1; s,m

′
2|J,M⟩q⟨J,M |s,m1; s,m2⟩q. (2.13)

1In the rest of the chapter, we follow [Rue90]. To match notation and conventions with [Kir91], one

should rescale q to q4, and identify q±J3/2 with K±1 and J± with X±.
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The explicit expression of the q-deformed Clebsh-Gordan coefficients were found in

[Rue90, Kir91, AS94], and are defined as follows

⟨s,m1; s,m2|J,M⟩q = f(J) · q(2s−J)(2s+J+1)/4+s(m2−m1)/2

×
√
[s+m1]![s−m1]![s+m2]![s−m2]![J +M ]![J −M ]! (2.14)

×
∑
ν≥0

(−1)ν
q−ν(2s+J+1)/2

Dν
,

with

Dν = [ν]![2s− J − ν]![s−m1 − ν]![s+m2 − ν]![J − s+m1 + ν]![J − s−m2 + ν]!,

f(J) =

{
[2J + 1]q([J ]!)

2[2s− J ]!

[2s+ J + 1]!

}1/2

, (2.15)

where we are using the following convention for the q-factorial

[n]! = [n]q[n− 1]q · · · [1]q for n ∈ Z≥1, [0]! = 1, [−n]! = ∞. (2.16)

The infinite sum appearing in eq. (2.14) always truncates to a finite one. In fact, one

can always find a ν̄ big enough so that at least one of the factors in the definition of Dν

remains negative for ν ≥ ν̄, which implies that Dν≥ν̄ = ∞.

From these expressions, one can construct the q-projectors straightforwardly. As an

example, we present the q-projectors for the quantum group Uq(su2) in the spin s = 1/2

representation

P[0]
q =


0 0 0 0

0 q
q+1 −

√
q

q+1 0

0 −
√
q

q+1
1

q+1 0

0 0 0 0

 , P[1]
q =


1 0 0 0

0 1
q+1

√
q

q+1 0

0
√
q

q+1
q

q+1 0

0 0 0 1

 . (2.17)

Remark. All these formulae are valid when q is a generic value. When instead it is a

root of unity, i.e. q = e2πim/n for some n ∈ Z>0 and m = 0, 1, 2, . . . , n − 1, one can see

that any multiple k of n is trivially zero [k]q = 0. This can lead to ill-defined quantities in

formulae (2.14) and (2.15). In this case, it was shown in [HHM92] that the Clebsh-Gordan

coefficients can still be defined by a careful choice of normalization of the states and they

can be computed by introducing a limiting procedure from a generic to a root of unity value.

Using this procedure, the expression for q root of unity can be obtained from that of generic

q in a continuous manner and the formulae below are still valid for any value of q on the

unit circle.

2.1.2.2. Construction of the scattering matrices. Similarly to the previous section, the

Yang-Baxter equation forces the scalar functions f
[J]
q (θ) in (2.11) to have the following form

f [J]q (θ) = S0(θ)

J∏
k=1

qk − qθ/2πi

qkqθ/2πi − 1
, J = 0, 1, . . . , 2s, (2.18)
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where the function S0(θ) can be found by imposing crossing symmetry and unitarity.

It was shown in [BL90] in the case of sine-Gordon that the definition in eq. (2.11) does

not provide an S-matrix satisfying the crossing symmetry equation. To fix this issue, the

authors introduced the gauge transformation

σ = qJ3 θ1/2πi ⊗ qJ3 θ2/2πi. (2.19)

where θ1, θ2 are the rapidities of the incoming particles. This generalises to higher spin

S-matrices, therefore we have

S(θ) = σ

(
P

2s∑
J=0

f [J]q (θ)P[J]
q

)
σ−1. (2.20)

In addition to crossing symmetry, this S-matrix is also invariant under charge conjuga-

tion C, parity P, and a time reversal T as in eqs. (1.27)–(1.29).

We can find the relation between the deformation parameter of the quantum group and

the coupling constant γ of the theory by looking at the known cases of the sine-Gordon

(s = 1/2) and sausage models (s = 1), and it is given by

q = e2πiγ , γ ∈ R, (2.21)

and with this choice, the scalar function can be expressed as

f [J]q (θ) = S0(θ)

J∏
k=1

sinh [γ(ikπ − θ)]

sinh [γ(ikπ + θ)]
, J = 0, 1, · · · , 2s. (2.22)

By requiring unitarity and crossing symmetry, this function has to satisfy

S0(θ)S0(−θ) = 1, (2.23)

S0(iπ − θ) =

2s∏
k=1

sinh [γ(i(k + 1)π − θ)]

sinh [γ(ikπ + θ)]
S0(θ). (2.24)

In order to fix the scalar function S0, we follow the same steps of [ZZ79]. One starts

with a first ansatz for S0(θ) which solves the equation, depending on some new unknown

function of θ that has to be fixed by the unitarity condition (2.23). To satisfy this, one

needs to introduce a new function that must satisfy crossing and so on. This gives rise

to a recursive definition of the overall factor, that eventually can be written as an infinite

product of terms

S0(θ) = −
2s∏
k=1

[
sinh [γ(iπk + θ)]

sinh [γ(iπk − θ)]

( ∞∏
ℓ=1

sinh [γ(iπ(k + ℓ)− θ)] sinh [γ(iπ(k − ℓ)− θ)]

sinh [γ(iπ(k + ℓ) + θ)] sinh [γ(iπ(k − ℓ) + θ)]

)]
.

(2.25)

When s is an integer, i.e. even 2s, many simplifications take place in this infinite

product, and one ends up with the finite product

S0(θ) = −
s∏

m=1

sinh [γ(i2mπ + θ)]

sinh [γ(i2mπ − θ)]
. (2.26)
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The S-matrix element Sss
ss describing scattering between two particles of with internal quan-

tum number s is

Sss
ss(θ) = −

s∏
m=1

sinh [γ(i(2m− 1)π − θ)]

sinh [γ(i(2m− 1)π + θ)]
. (2.27)

This correctly reproduces the S++
++ element of the sausage model for s = 1 obtained in

[FOZ93].

For a half-integer s, i.e. odd 2s, one can convert the infinite products of hyperbolic

functions into products of Γ-functions using the identity sinh(πx) = −iπ[Γ(ix)Γ(1− ix)]−1

repeatedly, obtaining

S0(θ) =−
2s∏

m=1

{
1

iπ
sinh [γ(θ + imπ)] Γ

[
1− γ(m− 1) +

iγθ

π

]
Γ

[
1− γm− iγθ

π

]

×
∞∏

n=1

[
R

[s,m]
n (θ)R

[s,m]
n (iπ − θ)

R
[s,m]
n (0)R

[s,m]
n (iπ)

]}
, (2.28)

where we introduced

R[s,m]
n (θ) =

Γ
[
γ(4sn− 4s+ 2m− 1)− iγθ

π

]
Γ
[
1 + γ(4sn− 2m+ 1)− iγθ

π

]
Γ
[
γ(4sn− 2s+ 2m− 1)− iγθ

π

]
Γ
[
1 + γ(4sn− 2s− 2m+ 1)− iγθ

π

] . (2.29)

The S-matrix element between top-spin s particles is

Sss
ss(θ) =−

2s∏
m=1

{
1

iπ
sinh [γ(θ − imπ)] Γ

[
1− γ(m− 1) +

iγθ

π

]
Γ

[
1− γm− iγθ

π

]

× Γ[γm]

Γ[1− γ(m− 1)]

∞∏
n=1

[
R

[s,m]
n (θ)R

[s,m]
n (iπ − θ)

R
[s,m]
n (0)R

[s,m]
n (iπ)

]}
. (2.30)

Remarkably, even if the two expressions for integer or half-integer spin look rather

different, they can be recast in the same integral Fourier form, for any spin s,

Sssss(θ) = − exp

∫ ∞

−∞

dω

ω

sinh(πωs) sinhπω(s− 1
2γ )

sinh πω
2γ sinhπω

eiωθ. (2.31)

Note that for s = 1/2, this integral expression reduces to the famous pre-factor of the

sine-Gordon S-matrix found in [ZZ79]. From this representation, one can notice that

Sss
ss(0) = −1 when γ =

1

2s
, (2.32)

which can be thought of as a kind of free point.

By factoring out the top-spin component, the S-matrix can be written as

S(θ) = Sss
ss(θ) · Smat(θ) (2.33)

where

Smat(θ) := σ

(
P

2s∑
J=0

[
2s∏

k=J+1

sinh [γ(ikπ + θ)]

sinh [γ(ikπ − θ)]

]
P[J]
q

)
σ−1. (2.34)
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In the interval

0 ≤ γ ≤ 1

2s
(2.35)

the S-matrix does not present any pole in the physical strip 0 ≤ Imθ ≤ π for any s, i.e. there

are no bound states. We will refer to this range of the coupling constant as the repulsive

regime. For γ > 1/2s the S-matrix will develop poles in the physical strip, signalling the

presence of bound states, or breathers: we call this the attractive regime. In this work, we

focus on the former case.

We present the full expression of the s = 3/2 S-matrix. The asymptotic particles are

denoted by the symbols Am with m = 3/2, 1/2,−1/2,−3/2 with C(Am) = Am = A−m.

Denoting these particles with index 1, 2, 3, 4, hence 1̄ = 4, 2̄ = 3, the non-vanishing S-matrix

elements are given by the prefactor in (2.31) multiplied by the following terms

S11
11 = 1, S12

12 =
(0)

(3)
, S21

12 =
s3
(3)

, S13
13 =

(0)(−1)

(2)(3)
, S22

13 =
s2
√
s3/s1(0)

(2)(3)
,

S31
13 =

(s1s4 + 2s2)(0)

(2)(3)
, S22

22 =
f1

(2)(3)
, S14

14 =
(0)(−1)(−2)

(1)(2)(3)
, S23

14 =
s3(0)(−1)

(1)(2)(3)
,

S32
14 =

s2s3(0)

(1)(2)(3)
, S41

14 =
s1s2s3

(1)(2)(3)
, S23

23 =
(0)f1

(1)(2)(3)
, S32

23 =
s2f2

(1)(2)(3)
, (2.36)

and those related by C,P, T transformations given in eqs. (1.27)–(1.29). Here we have

introduced the following notations

(n) := 2 sinh [γ(θ − iπn)] , sn = 2 sinh(inπγ),

f1 = 2 cosh [γ(2θ − iπ)] +
s10
s5

− 2
s2
s1
, f2 = 2

s2
s1

cosh [γ(2θ − iπ)] + s22 − 2s21 − 4.

2.2. Thermodynamic Bethe ansatz

In the previous section, we constructed the R matrix of the quantum group Uq(su2)

for different spin s representations, which automatically satisfies the Yang-Baxter equation.

We then imposed the other constraints, such as unitarity and crossing symmetry. We found

a family of minimal matrices without poles in the physical strip satisfying all the axioms

and therefore representing well-defined S-matrices describing the scattering of asymptotic

particles belonging to multiplets of iso-spin s. For s = 1/2 and s = 1, they correctly

reproduce the known cases of the sine-Gordon and sausage models, respectively.

In this section, we aim at exploring the ultraviolet behaviour of these theories. To do

that we employ the thermodynamic Bethe ansatz (TBA) technique, which first appeared in

[YY69] and was later generalised to the relativistic case by Al. Zamolodchikov in a series of

papers [Zam90, Zam91a, Zam91b, Zam91c] and further studied by [KM90, KM91].

We will first recall the main ideas behind the TBA analysis, to then apply it to the

family of theories introduced in the previous section.
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2.2.1. TBA, in a nutshell. Consider a 1+1 relativistic quantum field theory in its

Euclidean formulation on a torus generated by the two circles of radius R and L. There are

two equivalent ways to quantise the system, one where the time direction is chosen to be

along the circle of radius L and one where it is chosen to be along the circle of radius R.

If we send L ! ∞, in the first case we obtain a theory on a cylinder of radius R

with the time flowing in the L direction, while in the second case, we obtain a theory on

an infinite line, with compactified time R, which can be interpreted as a finite (inverse)

temperature. The partition function of the first theory in the large L limit is dominated by

the ground state energy while in the second theory, the limit L!∞ can be interpreted as

the thermodynamic limit and the partition function can be expressed in terms of the free

energy per unit length. They are expressed respectively as follows

Z ≃ e−LE0(R), Z ≃ e−LRf(R). (2.37)

Since these two quantisation procedures have to be equivalent, we obtain the following

equivalence

E0(R) = Rf(R). (2.38)

Following [BCN86], the ground state energy of the theory can be expressed as follows

E0(R) = −πc̃(r)
6R

, (2.39)

with r = R/Rc, Rc being the largest correlation length of the theory, Rc ∼ 1/m, where m

is the lightest mass of the theory. The function c̃(r) is called the scaling function of the

theory and in the limit r ! 0, the ultraviolet regime, which corresponds to the conformal

(massless) limit, it is related to the central charge of the underlying conformal field theory.

At this point, we can consider a gas of N particles on the infinite line, in a configuration

such that they are far enough to prevent interactions: this is the typical setting where

one can use Bethe ansatz techniques, as we will see below. In this configuration, the wave

functions are essentially those of free particles. If two particles become close enough, they

can scatter and all the information of the process is contained in the asymptotic S-matrix

of the theory. For simplicity, consider a diagonal scattering theory with just one type of

particle of mass m, so that the S-matrix is given by some scalar function S(θ). A particle

doing a full revolution around the circle will scatter with all other particles of the gas. By

imposing periodic boundary conditions one finds the so-called Bethe-Yang equations

eiLm sinh θi

N∏
j=1
j ̸=i

S(θi − θj) = 1, i = 1, . . . , N, (2.40)

where we are using the rapidity variables introduced in section 1.2.3.

In the thermodynamic limit, one can compute the free energy of the gas of particles

at temperature T , defined as F = E − TS where E and S are the energy and entropy

of the system, respectively. By minimising the free energy, keeping the relation (2.40) as
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a constraint on the rapidities, one can find the so-called TBA equations, whose solutions

can be used to compute thermodynamical quantities at equilibrium, as well as the scaling

function in the ultraviolet regime.

As we will show in the next section, the TBA equations are a system of non-linear

integral equations whose exact solution is in general a quite challenging task. Only in

special cases, a closed solution can be found, while in all other situations, one has to rely on

numerical solutions.

2.2.2. Non-diagonal scattering theories. The S-matrices we constructed in the

previous sections have a major difference from those used in the example above, which

makes the TBA analysis technically more difficult, which is that they are not diagonal. This

follows from the fact that particles of the same mass but different internal quantum numbers

can both transmit or reflect. For this reason, we need to consider the following family of

objects labelled by j = 1, . . . ,N , N being the number of particles in the gas, called the

colour transfer-matrices,

Tj(θi, . . . , θN )
m′

1,··· ,m
′
N

m1,··· ,mN = S
n2m

′
1

n1m1 (θ1 − θj)S
n3m

′
2

n2m2 (θ2 − θj) · · ·S
n1m

′
N

nNmN (θN − θj), (2.41)

with an implicit sum over all internal quantum numbers. This object describes all the

scattering processes of one of the particles of the gas with all the others. These operators

can be diagonalised simultaneously, and the eigenvalues Λj(θi, . . . , θN ) are precisely those

functions entering the Bethe-Young equation for the non-diagonal case

eiLm sinh θjΛj(θ1, . . . , θN ) = 1. (2.42)

The study of the eigenvalues and eigenvectors of these operators without an explicit form

of the wave function of the system is the main object of interest of the inverse scattering

program. To do that, the most common method is the algebraic Bethe ansatz, which has the

effect of introducing a number of non-physical parameters λj , j = 1, . . . ,M , called the Bethe

roots, which in this context can be interpreted as fictitious massless particles called magnons.

These additional particles have to satisfy auxiliary equations called Bethe equations.

In our setting, the matrix part of the colour transfer matrices is formally equivalent to

the transfer matrices of the higher spin XXZ spin chain models studied in [KR87], with the

addition of inhomogeneities at each site which can be understood as the rapidities of the

particles.

Taking into account also the prefactor from eq. (2.33), the resulting Bethe-Yang equa-

tions with the eigenvalues of Tj for j = 1, . . . ,N are given by

eiLm sinh θj

N∏
k=1
k ̸=j

Sss
ss(θj − θk)

M∏
ℓ=1

sinh γ(λℓ − θj + iπs)

sinh γ(λℓ − θj − iπs)
= 1. (2.43)
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As anticipated, the Bethe roots λℓ, ℓ = 1, . . . ,M , must satisfy the Bethe equations

N∏
j=1

sinh γ(θj − λℓ − iπs)

sinh γ(θj − λℓ + iπs)

M∏
k=1,k ̸=ℓ

sinh γ(λℓ − λk − πi)

sinh γ(λℓ − λk + πi)
= 1. (2.44)

2.2.3. Bethe strings. A remarkable fact is that in the thermodynamic limit, defined

by sending L ! ∞ and N , M ! ∞ keeping their ratios M/L and N/L finite, the Bethe

roots start to populate the complex plane and organise into strings of length n ∈ Z≥1 and

parity v = +,−. They repeat in the imaginary direction with a certain periodicity, which

ultimately follows from the periodicity of eq. (2.44), given by iπp0 with p0 = 1/γ. They are

defined as follows

λ
(n),+
j,α = λ

(n)
j +

iπ

2
(n+ 1− 2α), α = 1, 2, . . . , n, (2.45)

λ
(n),−
j,α = λ

(n)
j +

iπ

2
(n+ 1− 2α) +

iπ

2
p0, α = 1, 2, . . . , n. (2.46)

It turns out that in order to ensure the normalisability of the wave function of the

system, one has to impose some constraining relations on the orders n and parities v of

the strings. The general procedure to define which strings are allowed after imposing these

relations was first introduced by Takahashi and Suzuki [TS72], and we now proceed to recall

it. One starts by introducing the following series of numbers

p1 = 1, bi = ⌊pi/pi+1⌋, pi+1 = pi−1 − bi−1pi, i ≥ 1, (2.47)

y−1 = 0, y0 = 1, y1 = b0, yi+1 = yi−1 + biyi, i ≥ 0, (2.48)

m0 = 0, m1 = b0, mi+1 = mi + bi, i ≥ 0, (2.49)

where the values bi arise from the continued fraction decomposition of p0

p0 := [b0, b1, b2, . . . ] = b0 +
1

b1 +
1

b2+...

, pi/pi+1 := [bi, bi+1, . . . ]. (2.50)

One can then introduce the so-called Takahashi-Suzuki variables, which describe the

allowed length na and parities va for the Bethe strings, with a taking values in the Takahashi

zones defined by the {mi} series, as follows

na = yi−1 + (a−mi)yi, mi ≤ a < mi+1, (2.51)

va := vna
= exp

{
iπ

⌊
na − 1

p0

⌋}
, a ̸= m1, vm1

:= −1. (2.52)

It is clear that the structure of these strings deeply depends on the fraction decomposi-

tion of p0. If p0 is an irrational number, the b-series is infinite and it will lead to strings of

any length. It p0 = p/q with p, q ∈ Z≥1 the series becomes finite, but it will lead to Bethe

strings whose components are not equispaced and therefore still quite difficult to study (see

e.g. [Tat95] for an example of this situation in the sine-Gordon model). When p0 ∈ Z≥1,

the number of Bethe strings is finite, and their internal structure is very regular.
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For this reason from now on we will focus on the latter case, by setting

γ =
1

N
, which implies p0 = N, with N ∈ Z≥2s+1, (2.53)

which corresponds to the repulsive regime of the theory, since, as explained above, the S-

matrix has no poles in the physical strip in this range of values of the coupling constant.2

In this setting, the continued fraction decomposition (2.50) truncate at b0 = N and m0 = 0,

m1 = N are the only non-zero values of the m-series. The y series is given by y−1 = 0,

y0 = 1, y1 = N . This leads to two Takahashi zones, namely 0 ≤ a < N and a = N . The

Takahashi numbers then read

na = y−1 + (a−m0)y0 = a, va = (−1)⌊(a−1)/N⌋ = 1, for 0 ≤ a < N,

nN = y0 = 1, vN = −1.
(2.54)

The strings of type + can be of length n = 1, . . . , N − 1 while the string of type − are only

of length 1, see e.g. fig. 2.1 for an explicit example with p0 = 5.

Reλ

Imλ

iπp0/2

−iπp0/2

Figure 2.1. Allowed strings in the complex λ palne for γ = 1/5, p0 = 5. We see that

only (na, va) = (1,+), (2,+), (3,+), (4,+) and (1,−) are allowed by Takahashi-Suzuki

constraints.

As a consequence, in the string limit, all products over the number of auxiliary particles

can be expressed as products over the string components

M∏
ℓ=1

−!
N∏

a=1

Ma∏
ℓ=1

na∏
α=1

(2.55)

where the first product is over the N allowed strings, the second one over the multiplicity

Ma of a given string of length na (as defined in eq. (2.54)) and the last one over its na

internal components.

Substituting the expressions for the strings into eqs. (2.43) and (2.44), will lead to

a system of equations which remarkably only depends on the centres. To see that, we

substitute the expression of the string in eq. (2.44), then take the product over the nb

2In the case of the sine-Gordon model one should consider N > 2.
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elements of the string

N∏
j=1

nb∏
β=1

f2s(θj − λ
(nb),β
ℓ,vb

)︸ ︷︷ ︸
S0b

N∏
a=1

Ma∏
k=1

nb∏
β=1

na∏
α=1

f2(λ
(nb),β
ℓ,vb

− λ
(na),α
k,va

)︸ ︷︷ ︸
Sab

= 1, (2.56)

for b = 1, . . . , N , ℓ = 1, . . . ,Mb and where we have introduced the functions

fα(x) =
sinh γ(x− iπα/2)

sinh γ(x+ iπα/2)
. (2.57)

These products can be now further simplified as follows

Sab(λ
(nb),β
ℓ,vb

− λ
(na),α
k,va

) =gvavb,|nb−na|(λ
(nb)
ℓ − λ

(na)
k )gvavb,na+nb

(λ
(nb)
ℓ − λ

(na)
k )

×
min(na,nb)−1∏

i=1

gvavb,|nb−na|+2i(λ
(nb)
ℓ − λ

(na)
k )2 (2.58)

and

S0b(θj − λ
(nb)
ℓ,vb

) =

min(nb,2s)∏
i=1

gvb,|nb−2s|+2i−1(θj − λ
(nb)
ℓ )−1 (2.59)

where

gv,α(x) =


sinh[γ(x− iπα/2)]

sinh[γ(x+ iπα/2)]
= fα(x) when v = +

cosh[γ(x− iπα/2)]

cosh[γ(x+ iπα/2)]
when v = −

(2.60)

In a similar way, one can use eq. (2.55) in Bethe-Yang equations (2.43), obtaining

eiLm sinh θj

N∏
k=1
k ̸=j

Sss
ss(θj − θk)

N∏
a=1

Ma∏
ℓ=1

na∏
α=1

f−2s(λ
(na),α
ℓ,va

− θj)︸ ︷︷ ︸
S0a

= 1 (2.61)

and use eq. (2.59) to simplify the product further.

This allows us to write the equations in the following more suggestive form

eimL sinh θj

N∏
k=1
k ̸=j

S00(θj − θk)

N∏
a=1

Ma∏
ℓ=1

S0a(θj − λ
(a)
ℓ ) = 1, (2.62)

N∏
k=1

Sa0(λ
(a)
j − θk)

N∏
b=1

Mb∏
i=1
i ̸=j

Sab(λ
(a)
j − λ

(b)
i ) = 1, a = 1, . . . , N, (2.63)

which crucially only depend on the centres of the strings. The various functions appearing in

the products can be thought as particle-particle scattering (S00), particle-magnon scattering

(S0a) and magnon-magnon scattering (Sab), where we introduced the notation

S00(θ) = Sssss(θ). (2.64)
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2.2.4. The TBA equations. Having simplified the products in the equations, we can

now proceed in the standard way to obtain the TBA equations. The first step is to consider

the thermodynamic limit, defined by sending the volume L!∞, and the particle numbers

N ,M !∞, keeping their ratios N/L and M/L finite. In this limit, one can introduce the

density of particles or magnons

σa(θ) =
1

L

dna
dθ

, a = 0, 1, . . . , N, (2.65)

where by dna we denote the number of particles (a = 0) or magnons (1 ≤ a ≤ N) which

carry a rapidity between θ and θ + dθ. Similarly, one can introduce the densities of holes

σ̃a, which are defined in a similar way and describe unoccupied states.

Therefore, taking the logarithm on both sides of eqs. (2.62) and (2.63) and differentiat-

ing, one finds the raw TBA equations for the densities

σa(θ) + σ̃a(θ) = δa,0
m

2π
cosh θ + νa

N∑
b=0

(Kab ⋆ σb)(θ), a = 0, 1, · · · , N, (2.66)

where we introduced

νa =

1, a = 0, N

−1, a = 1, · · · , N − 1
(2.67)

and a standard convolution notation

(f ⋆ g)(θ) =

∫ ∞

−∞
f(θ′)g(θ − θ′)dθ′, (2.68)

along with the kernels defined by

Kab(θ) =
1

2πi

d

dθ
lnSab(θ), a, b = 0, . . . , N. (2.69)

Equations (2.66) are a system of non-linear integral equations for the densities of par-

ticles and holes. They are particularly intricate since for each particle type a, there appear

“interaction terms” with every other particle of the system.

A remarkable fact is that this system of equations can be drastically simplified by taking

into consideration certain identities of the Fourier transforms of the kernels.

2.2.5. Kernels’ identities. We will now show that there are highly non-trivial iden-

tities among the kernels appearing in the TBA equations. For this reason, we proceed to

explain the derivation of such identities in detail.

We introduce

ϕv,a(x) =
1

2πi

d

dθ
log gv,α(x) = v

γ

π

sin(nπγ)

cosh(2γθ)− v cos(nπγ)
(2.70)

Using these functions, the identities (2.58) and (2.59) for the kernels Kab read

K0a(x) = Ka0(x) = −
min(na,2s)∑

i=1

ϕva,|na−2s|+2i−1(x), a = 1, . . . , N (2.71)

Kab(x) = Kba(x) = ϕvavb,|na−nb|(x) + ϕvavb,na+nb
(x)
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+ 2

min(na,nb)−1∑
i=1

ϕvavb,|na−nb|+2i(x), a, b = 1, . . . , N (2.72)

We now introduce the following notation for the Fourier transform,

f̂(ω) =

∫ ∞

−∞
eiωθf(θ)dθ, f(θ) =

∫ ∞

−∞
e−iωθf̂(ω)

dω

2π
. (2.73)

For the function ϕ(x), with γ = 1/N , we obtain

ϕ̂v,α(ω) =


sinh(πω(N − α)/2)

sinh(πωN/2)
v = +1

sinh(πωα/2)

sinh(πωN/2)
v = −1

(2.74)

Using these, we can compute the Fourier transforms of the kernels defined in eq. (2.69),

for all possible values of a and b, namely

K̂00(ω) =
sinh ((N − 2s)πω/2) sinh (sπω)

sinh(πω) sinh (Nπω/2)
, (2.75)

K̂NN (ω) =
sinh ((N − 2)πω/2)

sinh (Nπω/2)
, (2.76)

K̂0N (ω) = K̂N0(ω) =
sinh (sπω)

sinh (Nπω/2)
, (2.77)

K̂N−1,N (ω) = K̂N,N−1(ω) = − sinh ((N − 2)πω/2)

sinh (Nπω/2)
, (2.78)

K̂0a(ω) = K̂a0(ω) = − sinh (aπω/2) sinh ((N − 2s)πω/2)

sinh (Nπω/2) sinh (πω/2)
, 1 ≤ a < 2s, (2.79)

K̂0a(ω) = K̂a0(ω) = − sinh (sπω) sinh ((N − a)πω/2)

sinh (Nπω/2) sinh (πω/2)
, 2s ≤ a ≤ N − 2, (2.80)

K̂aN (ω) = K̂Na(ω) = −2 sinh (aπω/2) cosh (πω/2)

sinh (Nπω/2)
, 1 ≤ a ≤ N − 2, (2.81)

K̂ab(ω) = K̂ba(ω) =
sinh ((N − a)πω/2) sinh (bπω/2) sinh(πω)

sinh2 (πω/2) sinh (Nπω/2)
− δab, 1 ≤ b ≤ a ≤ N − 1.

(2.82)

The kernel K̂00(ω) can be directly read off from (2.31). We introduce the following function

called the universal kernel, which plays a central role in the derivation of the final form of

the TBA equations,

p(θ) =
1

2π cosh θ
, (2.83)

whose Fourier transform is

p̂(ω) =
1

2 cosh
(
1
2πω

) . (2.84)

We found that the following functional relations are satisfied for all 1 ≤ b ≤ N ,

K̂ab(ω) = p̂(ω)(ηa1K̂a−1,b(ω) + ηa,N−1K̂a+1,b(ω))
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+ p̂(ω)(ηa,1δa−1,b + ηa,N−1δa+1,n − δa,N−2δb,N ), 1 ≤ n ≤ N − 1, (2.85)

K̂0b(ω) = −p̂(ω)K̂2s,b(ω) + p̂(ω)(−δ2s,b + δ2s,N−1δb,N ), (2.86)

K̂Nb(ω) = −p̂(ω)K̂N−2,b(ω)− p̂(ω)δN−2,b, (2.87)

K̂00(ω) = p̂(ω)2(K̂2s,2s(ω) + 1), (2.88)

where we have used the short notation ηab = 1− δab.

2.2.6. Universal TBA equations. We can simplify the TBA equations (2.66) using

the identities found above. Consider for example the equation for a = 1. If we substitute in

the simplified expression for the kernels, we obtain

σ1(θ) + σ̃1(θ) = −
N∑
b=0

(K1b ⋆ σb)(θ) = −(K10 ⋆ σ0)(θ)−
N∑
b=1

(K1b ⋆ σb)(θ)

= −(p ⋆ (−K2s,1 − δ2s,1) ⋆ σ0)(θ)−
N∑
b=1

(p ⋆ (K2,b + δ2,b − δ3,Nδb,N ) ⋆ σb)(θ).

(2.89)

At this point, using again the kernel identities, we can express −K2s,1 = −p⋆ (K2s,2+δ2,2s),

which is nothing but K0,2. Therefore, we have

σ1(θ) + σ̃1(θ) = −p ⋆ (K2,0 ⋆ σ0 +

N∑
b=1

K2,b ⋆ σb)(θ) + p ⋆ (δ2s,1σ0 − σ2 − δ3,NσN )(θ).

(2.90)

We recognise the term in the first bracket on the right-hand side to be precisely σ2(θ)+σ̃2(θ).

Simplifying the various terms leads to

σ1(θ) + σ̃1(θ) = (p ⋆ σ̃2)(θ) + δ1,2s(p ⋆ σ0)(θ) + δ3,N (p ⋆ σN )(θ). (2.91)

Following similar steps, one can simplify all raw TBA equations, obtaining for 1 ≤ a ≤
N − 1

σa(θ) + σ̃a(θ) = p ⋆ (ηa1σ̃a−1 + ηa,N−1σ̃a+1 + δa,N−2σN + δa,2sσ0) (θ) (2.92)

while for a = N , we get

σN (θ) + σ̃N (θ) = p ⋆ σ̃N−2(θ) + δN−1,2sp ⋆ σ0(θ), (2.93)

and from (2.86) and (2.88), for a = 0, we get

σ0(θ) + σ̃0(θ) =
m

2π
cosh θ + p ⋆ (σ̃2s − δ2s,N−2σN )(θ), (2.94)

We introduce the following functional, describing the free energy of the gas of particles

at temperature 1/R with the equations for the densities (2.92)– (2.94) as constraints,

Φ[σi, σ̃i, ξ, µi] =

∫
dθmR cosh θσ0(θ)−

N∑
n=0

∫
dx
(
[σn + σ̃n] log(σn + σ̃n)− σn log(σn)− σ̃n log(σ̃n)

)
+ ξ
[
− σ0(θ)− σ̃0(θ) +

m

2π
cosh θ + p ⋆ (σ̃2s − δ2s,N−2σN )(θ)

]
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+

N∑
m=1

µm

[
− σa(θ)− σ̃a(θ) + p ⋆ (ηa1σ̃a−1 + ηa,N−1σ̃a+1 + δa,N−2σN + δa,2sσ0) (θ)

]
,

(2.95)

where we introduced the Lagrange multipliers ξ, µa with 1 ≤ a ≤ N . Here the first integral

represents the total energy of the system while the second one is the entropy, where we are

using the Fermi-Dirac statistics since Sssss(0) = −1.

The equilibrium condition is obtained by minimising this functional. This procedure

leads to the universal TBA equations,

ϵa(θ) = δa,0mR cosh θ −
N∑
b=0

Iab p ⋆ log
(
1 + e−ϵb

)
(θ), a = 0, 1, . . . , N, (2.96)

where we have introduced the pseudo-energies

ϵ0(θ) = log
σ̃0
σ0
, ϵa(θ) = log

σa
σ̃a
, a = 1, . . . , N − 1, ϵN (θ) = log

σ̃N
σN

, (2.97)

and p is the universal kernel introduced in eq. (2.83). Here Iab are the matrix elements of

the incidence matrix3 of the graphs in figs. 2.2 and 2.3 when 2s < N − 1 and 2s = N − 1,

respectively.

1 2 2s− 1

0

2s 2s+ 1

N − 3

N − 2

N − 1

N

Figure 2.2. Dynkin-like structure of the TBA equations for 2s < N − 1. Note that the

graph is a proper DN+1 Dynkin diagram only for 2s = 1 and an extended one D̂N+1 for

2s = 2.

1 2

N − 3

0

N − 2

N − 1

N

Figure 2.3. Structure of the TBA equations of 2s = N − 1.

3Consider a graph described by nodes and link between them. The incidence matrix is the matrix

whose element a, b is 1 when the nodes a and b are connected and 0 otherwise.
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At finite temperature T = 1/R, the free energy per unit length is obtained by the

pseudo-energy ϵ0 using

f(T )

T
= −

∫ ∞

−∞

m

2π
cosh θ ln

(
1 + e−ϵ0(θ)

)
dθ. (2.98)

It is important to notice that this universal TBA is possible thanks to a remarkable

relation (2.88) between the minimal scalar factor S0 and other scattering amplitudes of the

magnons. If a CDD factor is added, this relation is not valid anymore and the TBA cannot

be written in the universal fashion.

2.3. Numerical analysis

Finding a solution to the TBA equations is a renowned difficult task. Some analytic

results can be found in very particular situations, but in general, it is more common to rely

on numerical solutions. In this section, we are going to address this problem. In particular,

we will see that, even if the TBA equations do not present any particular new feature for

higher spin theories, they actually hide some divergencies in the thermodynamical quantities,

signalling a potential (second order) phase transition.

2.3.1. Sine-Gordon and sausage central charges. Recall the relation between the

ground state energy and the free energy of the system from eq. (2.38). Using eq. (2.98) and

the parametrisation with the scaling function eq. (2.39), we obtain

c̃(r) =
3

π2

∫ ∞

−∞
r cosh(θ)L0(θ)dθ (2.99)

where L0(θ) = log
(
1 + e−ϵ0(θ)

)
and r = mR is the dimensionless scale. In the limit r ! 0,

the ultraviolet (UV) limit, this function encodes all the relevant data of the underlying

conformal field theory, since

lim
r!0

c̃(r) = c− 24∆min, (2.100)

where c is the central charge and ∆min is the lowest eigenvalue of the zero-th Virasoro

generator. As we stressed in the previous sections, the TBA equations (2.96) are a system

of non-linear integral equations for which is in general very difficult to find an analytical

closed solution.

Sometimes, however, it is possible to do so. For example, it is possible that as r ap-

proaches 0, the functions log
(
1 + e−ϵ(θ)

)
, develop a plateau region. In this case, it is possible

to express the central charge in terms of dilogarithmic functions, depending on the plateau

values of the pseudo energies of the system (2.96) when r ! 0, which can be obtained by

solving the algebraic equations

xi =

N∏
j=0

(1 + x−1
j )−Iij/2, i = 0, . . . , N, (2.101)

where we have introduced xi = eϵ(0) and I is the incidence matrix of the graphs of figs. 2.2

and 2.3.
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Figure 2.4. The functions L0(θ) for spin s = 1/2 (left) and s = 1 (right) with γ = 1/7,

for different values of r. One can see that for smaller values of r the plateau starts to

form.

In the family of scattering theories we have introduced above, we have two well-known

examples of this behaviour: the sine-Gordon model, corresponding to spin s = 1/2, and the

sausage model for s = 1. In these cases, the plateaus start to form for small values of r,

see e.g. fig. 2.4, and therefore one can explicitly compute the value of the central charge

using dilogarithms obtaining c = 1 and c = 2, respectively, independently from the value of

γ = 1/N .

2.3.2. Higher spin theories and Hagedorn singularity. As pointed out above, it

is usually difficult to find a closed solution for generic r: for this reason, it becomes very

useful to perform numerical analysis to study the ultraviolet behaviour of these theories.

The method that has proven to be more effective is by solving the system of equations via

successive iterations. The idea is to start from the initial guess ϵ
(0)
n = (r cosh θ, 0, . . . , 0) for

n = 0, . . . , N and then define the k-th iterative solution, with k ≥ 0, as

ϵ(k+1)
n (θ) = δn,0r cosh(θ)−

N∑
m=0

Inm(p ∗ L(k)
m )(θ), n = 0, 1, . . . , N, (2.102)

where L
(k)
n (θ) = log

(
1 + e−ϵ(k)

m (θ)
)
. This process allows us to find with arbitrarily high

accuracy the values of the pseudo-energies and the corresponding Ln(θ) for any given r. An

extensive study of this convergence problem has been done in [HR20]. Ultimately, these

results can be used to compute numerically the integral (2.99) at different values of r, finding

the value of the scaling function and, possibly, the rough value of the central charge of the

underlying conformal theory. The cases of s = 1/2 and s = 1 are shown in fig. 2.5.

Having a natural generalisation of the S-matrix for higher values of the spin and of the

corresponding TBA equations, it is natural to ask what kind of theories they describe in

the ultraviolet regime. Performing the same iterative procedure as above, we observe an

unexpected behaviour as the ground state energy E0(r) diverges at a positive finite value r∗



2.3. NUMERICAL ANALYSIS 37

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2.5. Scaling functions for spin s = 1/2 (left) and s = 1 (right).

and, correspondingly, that the functions Ln(θ) do not develop a plateau, but rather become

more peaked around θ = 0 as they approach the singular value, as shown in fig. 2.6.
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Figure 2.6. Left: the vacuum energy E0(r) as it approaches the singular point r∗ =

0.21628(2); right: the kernel L0(θ) at different values of r. Both were obtained for

s = 5/2 and N = 12.

Extending the numerical analysis to different values of the spin and of the coupling

constant, we observe that the critical value r∗ is a function of both s and N = 1/γ. Some

values of r∗ are listed in table 2.1.

Moreover, as can be seen from fig. 2.7, the critical values r∗ seem to converge to non-zero

values even for vanishing coupling constant γ = 1/N ! 0 for s ≥ 3/2. This means that the

singularity does occur also at the su(2) symmetric points, obtained by sending γ ! 0, i.e.

q! 1, and the UV limit does not exist even in those cases.

A similar behaviour has been recently studied in TT -deformed theories with detailed

numerical analysis [CNST16]. In this case, the vacuum energy develops a square root

behaviour,

E0(r) ∼r!r∗ c0 + c1/2
√
r − r∗, (2.103)



38 2. SCATTERING THEORIES WITH HAGEDORN SINGULARITIES

s = 3/2 s = 2 s = 5/2 s = 3

N = 4 0.06024(4) - - -

N = 5 0.01683(2) 0.22505(9) - -

N = 6 0.00722(5) 0.09996(5) 0.40380(3) -

N = 7 0.00392(8) 0.05976(6) 0.21628(2) 0.57301(7)

N = 8 0.00248(7) 0.04195(5) 0.14665(8) 0.34110(6)

N = 9 0.00174(9) 0.03255(2) 0.11269(7) 0.24773(3)

N = 10 0.00132(7) 0.02699(9) 0.09349(6) 0.19958(2)

N = 11 0.00106(6) 0.0234(5) 0.08157(4) 0.17123(0)

N = 12 0.00089(4) 0.02106(7) 0.07367(8) 0.15307(2)

Table 2.1. Selected values of the critical scale r∗ for different values of s and γ = 1/N .
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Figure 2.7. Value of the singular point r∗, for different values of spin and coupling

constant γ = 1/N . The values are computed with precision to the 6th decimal digit.

The r∗-axis is log-scaled.

so that its first derivative diverges at the critical value, signalling a phase transition. In

this setting, the singularity ultimately appears as a consequence of the presence of a CDD

factor and it has been regarded as the appearance of a Hagedorn-like phase transition.

Remarkably, it has been shown that by finely tuning the parameters of the deformation, one

can ultimately remove it [AL22].

The theories we have introduced in this work present some similar aspects, but they

are crucially different. Indeed, the S-matrices we consider are not obtained as deformations

of some known theory but are genuinely obtained by imposing the defining properties of a
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scattering theory in two dimensions, as explained in section 2.1.2. As a result, this singularity

is in a sense more “fundamental”, as it cannot be removed by a fine-tuning of the parameters.

We analysed the behaviour of these models close to the singularity, for different values

of the spin, at different values of the coupling constant. More explicitly, we have generated

several points in a close neighbourhood of width ∼ 1% of the singular points of table 2.1.

Using these data we fitted the curves, as shown in fig. 2.8 with a fitting function given by

Efit
0 (r) = b(r − r∗)a + c0. (2.104)
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Figure 2.8. Examples of fitting for s = 3/2 and N = 4 (left) and N = 5 (right).

In table 2.2 we present the results of the critical exponent a obtained from the numerical

analysis, and in fig. 2.9 we show a fit of these points. The main source of error in the exponent

a is a sensitive dependence on the initial guesses used in the fitting algorithm. We performed

the fit for different initial guesses to estimate the average value of a and the associated error

which is around 2%.

N

4 5 6 7 8 9 10 11 12 13 14 15

s = 3/2 0.495 0.501 0.498 0.497 0.492 0.487 0.486 0.497 0.486 0.485 0.488 0.482

s = 2 — 0.504 0.502 0.501 0.501 0.491 0.499 0.504 0.509 0.508 0.497 0.500

s = 5/2 — — 0.507 0.507 0.500 0.502 0.499 0.499 0.497 0.493 0.494 0.508

s = 3 — — — 0.489 0.498 0.491 0.504 0.499 0.493 0.495 0.508 0.501

Table 2.2. Values of the fitted exponent a, for different values of s and N .

Remarkably, we observe that it becomes independent of the value of the coupling con-

stant and the spin, approaching a universal value of ∼ 1/2, compatible with a square root

behaviour. Similarly, in table 2.3 we present the fitted values of the parameters b and c0,

only for the case s = 3.
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Figure 2.9. Fitted value of the exponent a, for different values of the spin.

N

4 5 6 7 8 9 10 11 12 13 14 15

b — — — 17.81 44.09 82.45 127.59 167.71 219.89 264.01 298.47 341.50

c0 — — — -7.58 -15.57 -24.23 -32.92 -41.24 -48.94 -55.95 -62.25 -67.85

Table 2.3. Values of the fitted parameters b and c0, for spin s = 3.

These features, however, need a more careful analysis since it is extremely difficult and

computationally challenging to study the data in the close vicinity of the critical value r∗,

as the iterative procedure becomes extremely slow. Clearly, the best way to overcome this

problem is to find clever ways to solve the TBA equations (2.96) analytically, so that one

would be able to make a more quantitative analysis of these models.
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2.3.3. Simplified TBA equations with a toy kernel. Since we do not have a closed

analytical solution of the TBA system (2.96), we now present a similar system that is highly

simplified but develops the same singularity. We know that the main difference with other

theories that are known to converge up to the conformal point is that the Ln(θ) functions

become more and more peaked instead of developing a plateau. In order to implement this

feature, we consider a different integral kernel, given by4

p(θ) =
1

2
δ(θ). (2.105)

We now consider a system of TBA equations similar to the one we obtained above, i.e.

whose structure is described by the same graphs. The particular form of the kernel allows

us to greatly simplify the equations, namely

ϵn(θ) = δn,0r cosh θ −
1

2

N∑
m=0

Inm log
[
1 + e−ϵm(θ)

]
, n = 0, 1, · · · , N, (2.106)

and has the advantage that it can be expressed as a set of algebraic equations

xn(θ) = e−r cosh θδn,0

N∏
m=0

[1 + xm(θ)]
Inm/2

, xn(θ) := e−ϵn(θ), (2.107)

for each value of θ. These are now algebraic equations, which can be analysed analytically. In

particular, those TBA equations whose graph is shown above in fig. 2.3 are exactly solvable

with a computer5 for N = 2s+ 1 with s = 3/2 and s = 2 in terms of a = e−r cosh θ,

x
[2s=3]
0 (a) = −5

2
+

1

2a2
− a− (1 + a)2

2a2
√
1− 4a, (2.108)

x
[2s=4]
0 (a) = −3

2
+

1

2a
− a− (1 + a)

2a

√
1− 8a. (2.109)

All other exact expressions for xn’s are also found but we will not put them here since they

are much more complicated and not relevant in further discussions.

These results show that the pseudo-energies can be real if

e−r cosh θ ≤ 1

4
for 2s = 3; e−r cosh θ ≤ 1

8
for 2s = 4, (2.110)

for any value of θ. Therefore, the critical values r∗, which are the maximum values of r for

them to remain all real, are found by considering θ = 0, namely,

r∗s=3/2 = log 4 = 1.3862943 . . . , r∗s=2 = log 8 = 2.0794414 . . . . (2.111)

For other values of s and N , we can solve only numerically to find r∗. We list them for

different values of N in table 2.4. It is interesting to notice that the critical values r∗ where

the solutions turn into complex numbers, depend only on the spin s and not on the coupling

constant N = 1/γ. This feature is definitely due to the exceptionally simplified kernel. For

s = 1/2, 1 no singularity occurs, as the numerical result is < 10−4.

4The normalisation is chosen to match the same normalisation of the (integrated) universal kernel

eq. (2.83).
5Exact solutions for higher values of s are beyond our computational ability.
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N

4 5 6 7 8

s = 3/2 1.386294 1.386294 1.386294 1.386294 1.386294

s = 2 — 2.079441 2.079441 2.079441 2.079441

s = 5/2 — — — 2.574781 2.574781

Table 2.4. r∗ for various s and N . r∗ depends on s only and it is independent of N .

The above exact solutions of the simplified TBA can be used to analyse the free energy

using (2.98). For 2s = 3, one finds

f(T )

T
= −

∫ ∞

0

m

π
cosh θ ln

[
−3

2
+

1

2a2
− a− (1 + a)2

2a2
√
1− 4a

]
dθ, a = e−r cosh θ,

(2.112)

Although this expression is given in terms of relatively simple integrals, it can not be ex-

pressed analytically. Instead, we perform this numerically and the plot in fig. 2.10 which

show qualitatively similar behaviours as fig. 2.8.
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Figure 2.10. Toy TBA with s = 3/2, N = 4 (left) and s = 2, N = 5 (right).



CHAPTER 3

Gaudin models of finite type

Gaudin models were first introduced in [Gau76] to describe sl2 integrable spin chains

with long-range interactions and later generalised to any semi-simple finite Lie algebra

[Gau14]. They are a very powerful tool to describe a large class of integrable systems

and they provide a mathematical framework to study their properties. A complete descrip-

tion of the space of commuting charges of the model was first proposed in [FFR94], in terms

of singular vectors in the vacuum Verma module over the affine algebra at critical level. A

central question is the diagonalisation problem, i.e. finding the joint spectrum of eigenval-

ues and eigenvectors for these charges. This has been done by performing different types

of Bethe ansatz [Gau76, BF94], but perhaps the most elegant one is the one proposed

by Feigin, Frenkel and Reshetikhin in [FFR94], based on the construction of Wakimoto

modules over the affine algebra at critical level.

This chapter is a short review of some aspects of Gaudin models of finite type; it mainly

serves as a motivation for the various generalisations that we are going to discuss in the next

chapters.

3.1. Generalities

Consider a simple finite-dimensional Lie algebra g̊ =C n̊−⊕ h̊⊕ n̊+, where h̊ is the Cartan

subalgebra and n̊+, n̊− are the subalgebras corresponding to the positive and negarive root

spaces. Let U (̊g) be the corresponding universal enveloping algebra. We introduce the one-

dimensional U (̊b+) representation Cvλ for any choice of weight λ ∈ h̊∗, where b̊ = h̊⊕ n̊+ is

the positive Borel subalgebra, defined as follows

Xvλ = 0, for all X ∈ n̊+, (3.1)

Xvλ = λ(X)vλ, for all X ∈ h̊, (3.2)

where λ(X) = ⟨X,λ⟩ is the canonical pairing between h̊ and its dual. One can introduce

a non-degenerate bilinear form on h̊ which can be extended to a non-degenerate symmetric

invariant bilinear form κ : g̊× g̊! C, normalised as in [Kac90]. By restricting κ to h̊, one

introduces the map ν : h̊∗ ! h̊, defined as follows: for each λ ∈ h̊∗, ν(λ) is the unique element

in h̊ such that λ(X) = κ(X, ν(λ)), for all X ∈ h̊. This can be used to define a non-degenerate

inner product on the space of roots, denoted by (·|·), as follows (α|β) = κ(ν(α), ν(β)), for

all α, β ∈ h̊∗.

43
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The Verma module of highest weight λ is defined as the induced module

Mλ := U (̊g)⊗U (̊b+) Cvλ ≃C U(n−)Cvλ, (3.3)

where the last identification follows from Poincaré-Birkhoff-Witt (PBW) theorem (see e.g.

[Dix74]). Moreover, if λ is an integral dominant weight, i.e. for any positive root α, (λ|α)
is a positive integer number, it is always possible to identify a submodule M ⊂ Mλ such

that the quotient Mλ/M is finite-dimensional.

We introduce a set of points on the Riemann sphere {z1, . . . , zN} ⊂ CP1, which can be

thought of as the sites of the model. To each of these points, we attach one of the modules

Mλi
with i = 1, . . . , N . The tensor product of modules

Mλ :=Mλ1
⊗ · · · ⊗MλN

, (3.4)

plays the role of the Hilbert space of the Gaudin model. Note that since any Verma module

Mλi
admits a highest weight vector vλi

, one can introduce a well-defined ground state, given

by

vλ := vλ1
⊗ · · · ⊗ vλN

. (3.5)

The algebra of the observables of the quantum Gaudin model is obtained by considering

the N -fold tensor product of copies of the universal enveloping algebra of g̊, one for each

site,

Obsz (̊g) = U (̊g)⊗N . (3.6)

We introduce the following notation for the operator acting on the i-th site with X ∈
U (̊g) and with the identity elsewhere,

X(i) = 1⊗ · · · 1⊗X ⊗ 1⊗ · · · ⊗ 1. (3.7)

By denoting with {Ia}a=1,...,dim g̊ a basis for the Lie algebra g̊, the quantum g̊-Gaudin

model is defined by the Gaudin Hamiltonians

Hi =

N∑
j=1
j ̸=i

κab
Ia,(i)Ib,(j)

zi − zj
, (3.8)

where there is an implicit sum over Lie algebra indices and κab is the non-degenerate sym-

metric invariant bilinear form on g̊. From the point of view of spin chains, Ia,(i) can be

thought as the spin degree of freedom at site i and the factor 1/(zi − zj) represents the

interaction term between the sites i and j.

This operator can be seen as descending from a more general object, which somehow

has a more natural interpretation when working with vertex algebras and coinvariants as we

will see shortly, which is the quadratic Hamiltonian

H(z) =
1

2
κabI

a(z)Ib(z), (3.9)
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where we introduced the following rational function

X(z) =

N∑
i=1

X(i)

z − zi
. (3.10)

depending on the auxiliary complex parameter z, called the spectral parameter. In fact, by

substituting this into eq. (3.9), it follows by partial fraction decomposition that

H(z) =

N∑
i=1

(
1

2

C(i)

(z − zi)2
+

Hi

z − zi

)
, (3.11)

where C(i) ∈ U (̊g)⊗N is the quadratic Casimir operator at site i defined as follows

C =

dim g̊∑
a,b=1

κabI
aIb. (3.12)

It is an element of the centre Z(Obsz (̊g)) of the algebra of observables and therefore by

definition it trivially commutes with the generators of g̊ and with all other Hamiltonians.

3.1.1. Diagonal action. There is a map ∆ : g̊ ↪! g̊⊕N , which is the diagonal embed-

ding of g̊ into the direct sum of N copies of g̊, defined as follows

∆x =

N∑
i=1

x(i), for all x ∈ g̊. (3.13)

It can be extended to an embedding of the corresponding enveloping algebras ∆ :

U (̊g) ↪! U (̊g⊕N ) ≃ U (̊g)⊗N . It is a Lie algebra homomorphism, since for all x, y ∈ g̊

[∆x,∆y] =

N∑
j=1

N∑
ℓ=1

[x(j), y(ℓ)] =

N∑
j=1

[x, y](j) = ∆[x, y], (3.14)

where in the second-to-last step we used the fact that operators at different sites always

commute, i.e. [x(j), y(ℓ)] = δjℓ[x, y](j). Given any state w1 ⊗ · · · ⊗ wN ∈ Mλ, there is a

well-defined action of (3.13) on it,

∆x(w1 ⊗ · · · ⊗ wN ) = (x · w1 ⊗ · · · ⊗ wN ) + · · ·+ (w1 ⊗ · · · ⊗ x · wN ), (3.15)

called the diagonal action of the Lie algebra. The g̊-symmetry of the Gaudin model is

ensured by requiring that the Hamiltonians commute with the diagonal action of g̊. For

example, for the Gaudin Hamiltonians in eq. (3.8),

[∆Ix,Hi] =

N∑
ℓ=1

N∑
j=1
j ̸=i

κab
[Ix,(ℓ), Ia,(i)Ib,(j)]

zi − zj

=

N∑
ℓ=1

N∑
j=1
j ̸=i

κab
δℓif

xa
c Ic,(i)Ib,(j) + δℓjf

xb
c Ia,(i)Ic,(j)

zi − zj

=

N∑
j=1
j ̸=i

(κabf
xa
c + κcaf

xa
b )

Ic,(i)Ib,(j)

zi − zj
= 0. (3.16)
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In the last line, the term in brackets vanishes identically by the invariance of the bilinear

form.

3.1.2. Bethe ansatz: case of sl2. As we have anticipated in the introduction to this

chapter, one of the central questions is the joint diagonalisation of the conserved charges of

the model. For the case of sl2, algebraic Bethe ansatz was used to construct eijgenvalues

and eigenvectors [Gau76, Gau14, Skl89]. Consider the standard basis {E,F,H} for this

algebra. The vacuum state (3.5) is an eigenvector of the quadratic Hamiltonians. Indeed,

one can explicitly write the Casimir operator and Gaudin Hamiltonian as follows

C(i) = (H(i)H(i) + E(i)F (i) + F (i)E(i)) = H(i)H(i) + 2H(i) + 2F (i)E(i),

Hi =

N∑
j=1
j ̸=i

1

zi − zj
(H(i)H(j) + F (i)E(j) + E(i)F (j)). (3.17)

Recalling from eqs. (3.1) and (3.2) the action of the generators on a highest weight vector,

we obtain the following vacuum eigenvalue relation

H(z)vλ =

 N∑
i=1

1

2

λi(H)2 + 2λi(H)

(z − zi)2
+

N∑
i=1

N∑
j=1
j ̸=i

λi(H)λj(H)

(zi − zj)(z − zi)

 vλ (3.18)

3.1.2.1. Higher excitations. The idea behind algebraic Bethe ansatz is to create excita-

tions by applying the operator F on the ground state a certain number of times. In the spin

chain picture, if the ground state is a ferromagnet, i.e. all spins are up, this is equivalent to

“flipping arrows”, creating excitations of the spin chain. One can introduce

F (w) =

N∑
i=1

F (i)

w − zi
, (3.19)

where we introduced a new auxiliary parameter w, not equal to z1, . . . , zN . The Bethe vector

is constructed by acting with this operator on the ground state vector [Gau76],

|w1, . . . , wM ⟩ := F (w1) · · ·F (wM )vλ (3.20)

One can explicitly compute the action of the quadratic Hamiltonians (3.9) on these states,

obtaining

H(z) |w1, . . . , wM ⟩ = s(z) |w1, . . . , wM ⟩

+

M∑
j=1

f (j)

z − wj
|w1, . . . , wj−1, z, wj+1, . . . , wM ⟩ , (3.21)

where s(z) is some rational function defined as follows

sM (z) =
1

4
χM (z)2 − 1

2
∂zχM (z), (3.22)
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where

χM (z) =

N∑
i=1

λi
z − zi

−
M∑
j=1

2

z − wj
, (3.23)

while the functions f (j), for j = 1, . . . ,M depend on the marked points and the levels λj .

Clearly, to obtain a genuine eigenvalue relation from eq. (3.21) with sM (z) as the eigenvalue,

it has to happen that all factors f (j) vanish. These constraints are the Bethe equations,

f (j) :=

N∑
i=1

λi
wj − zi

−
M∑
k=1
k ̸=j

2

wj − wk
= 0, j = 1, . . . ,M, (3.24)

which can be seen as a set of consistency equations for the auxiliary parameters, called Bethe

roots.

It is easy to imagine that finding the explicit expression for the eigenvalues for an

arbitrary Lie algebra g̊ can become extremely complicated. A possible generalisation has

been proposed in [BF94], but it can be practically used for the quadratic Hamiltonians

only; applying this construction to the higher Hamiltonians, which we have not described

yet, is extremely complex.

3.2. Vertex algebras

Before moving to the description of the higher Hamiltonians and their diagonalisation, in

this section we introduce the theory of vertex algebras. They provide a natural language to

describe conformal field theories and, as we will see below, they turn out to be an extremely

valuable tool in the study of Gaudin models. This section is mainly based on the references

[Kac01, FBZ04].

3.2.1. Definition and properties.

Definition 3.2.1. Given a graded vector space V =
∑

k∈Z V
(k) over a field K, a vector

|0⟩ ∈ V called the vacuum, a map T ∈ End(V) called translation, and a map called the

state-field correspondence Y : V ! EndV[[x, x−1]], a 7! Y (a, x) :=
∑

k∈Z a(k)x
−k−1, with

a(k) ∈ EndV of degree deg(a) − k − 1, i.e. a(k)V
(n) ⊂ V(n+deg(a)−k−1), a vertex algebra is

the quadruple (V, |0⟩ , T, Y (•, x)) satisfying the following axioms

i) Vacuum axiom: Y (|0⟩ , x) = idV;

ii) Creation axiom: for all a ∈ V, Y (a, x) |0⟩ ∈ V[[x]] and Y (a, x) |0⟩
∣∣∣
x=0

= a;

iii) Translation axiom: T |0⟩ = 0 and for all a ∈ V, [T, Y (a, x)] = ∂xY (a, x);

iv) Borcherds’ identities: for all a, b ∈ V,

resx−y ιy,x−yf(x, y)Y (Y (a, x− y)b, y) =

resx ιx,yf(x, y)Y (a, x)Y (b, y)− resx ιy,xf(x, y)Y (b, y)Y (a, x), (3.25)

where f(x, y) is a rational function with poles at most at x = 0, y = 0 or x− y = 0

and ιx,y denote the formal power series expansion in the domain |x| > |y|.



48 3. GAUDIN MODELS OF FINITE TYPE

The state-field correspondence can be interpreted as the generating function of an infinite

number of products, called the n-th products, V× V! V, (a, b) 7! a(n)b for all n ∈ Z, such
that a(n)b = 0 for sufficiently large n, where a(n) ∈ EndV is called the n-th mode of a.

It is possible to rephrase the axioms in terms of modes as follows

i’) Vacuum axiom: for all n ∈ Z, |0⟩(n) a = δn,−1a;

ii’) Creation axiom: for all a ∈ V, n ∈ Z≥0, a(n) |0⟩ = 0 and a(−1) |0⟩ = a;

iii’) Translation axiom: for all a ∈ V, n ∈ Z, [T, a(n)] = −na(n−1);

iv’) Borcherds’ identities: for all a, b ∈ V, n,m ∈ Z,
∞∑
j=0

(
m

j

)
(a(n+j)b)(m+k−j) =

∞∑
j=0

(
n

j

)(
(−1)ja(m+n−j)(b(k+j))

− (−1)j+nb(n+k−j)(a(m+j))
)
. (3.26)

where for any m ∈ Z,
(
m
k

)
= 1

k!m(m− 1) . . . (m− k+1) for all k > 0 and
(
m
0

)
= 1.

Let us now discuss some particular cases of Borcherds’ identities. Setting n = 0 in the

last identity, we find the so-called commutator formula for the modes,

[a(m), b(k)] =

∞∑
j=0

(
m

j

)
(a(j)b)(m+k−j). (3.27)

If we express this in terms of state-field map, we obtain the locality formula,

(x− y)N [Y (a, x), Y (b, y)] = 0, for N big enough. (3.28)

This relation is often used as one of the vertex algebra axioms, replacing Borcherds’ identi-

ties.

Instead, for m = 0 we obtain the associativity formula, which can be seen as a recursive

formula for the composition of modes,

(a(n)b)(k) =

∞∑
j=0

(
n

j

)(
(−1)ja(n−j)(b(k+j))− (−1)j+nb(n+k−j)(a(j))

)
. (3.29)

In terms of state-field maps, this identity reads

Y (a(n)b, y) = resx ιx,yY (a, x)Y (b, y)(y − x)n − resx ιy,xY (b, y)Y (a, x)(y − x)n. (3.30)

In particular, setting n = −1 one gets

Y (a(−1)b, y) = Y (a, y)+Y (b, y) + Y (b, y)Y (a, y)−, (3.31)

where

Y (a, x)+ :=
∑
k<0

a(k)x
−k−1, Y (a, x)− :=

∑
k≥0

a(k)x
−k−1. (3.32)

This can be generalised to define the so-called normal ordering of fields,

◦
◦Y (a, x)Y (b, y) ◦

◦ :=
∑
n∈Z

∑
m<0

a(m)b(n)x
−m−1 +

∑
m≥0

b(n)a(m)x
−m−1

 y−n−1. (3.33)
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where the effect of the ordering is to move positive modes to the right, which in a field

theory context can be interpreted as “annihilation operators act first”. This operation is

right-associative, i.e. ◦
◦Y (a, x)Y (b, y)Y (c, z) ◦

◦ = ◦
◦Y (a, x) ◦

◦Y (b, y)Y (b, z) ◦
◦

◦
◦.

From these axioms, it is possible to show that Y (a, x)b = exTY (b,−x)a for all a, b ∈ V.

In the language of modes, this gives rise to the so-called skew-symmetry formula for the

products,

a(n)b =

∞∑
j=0

(−1)n+j

k!
T j(b(n+j)a). (3.34)

3.2.1.1. Operator product expansion. One of the main applications of vertex algebras in

theoretical physics is in the context of conformal field theories. The reason is that from

the associativity properties of the fields, one can rigorously introduce the notion of operator

product expansion (OPE) of fields.

Indeed, the locality property can be rephrased by requiring that for any a, b, c ∈ V,

Y (a, x)Y (b, y)c ∈ V((x))((y)), Y (b, y)Y (a, x)c ∈ V((y))((x)),

Y (Y (a, x− y)b, y)c ∈ V((y))((x− y)) (3.35)

are the expansions in their domains of the same function in V[[x, y]][x−1, y−1, (x− y)−1]. In

particular, this implies that

Y (a, x)Y (b, y)c =
∑
n∈Z

Y (a(n)b, y)(x− y)−n−1c, (3.36)

where each side has to be expanded as above.

Moreover, we have the following fundamental result, due to Kac (cfr. [Kac01, Theorem

2.3]), that given two state-field maps, we have

[Y (a, x), Y (b, y)] =

N−1∑
k=0

Ck(y)

k!
∂ky δ(x− y). (3.37)

for some fields Ck(y), k = 0, . . . , N − 1. In particular, this implies that

Y (a, x)Y (b, y) =

N−1∑
k=0

ιx,y
1

(x− y)k+1
Ck(y) + ◦

◦Y (a, x)Y (b, y) ◦
◦, (3.38)

Y (b, y)Y (a, x) =

N−1∑
k=0

ιy,x
1

(x− y)k+1
Ck(y) + ◦

◦Y (a, x)Y (b, y) ◦
◦ . (3.39)

Putting together eqs. (3.36) and (3.38), we obtain the operator product expansion for-

mula for a vertex algebra,

Y (a, x)Y (b, y) =

N−1∑
k=0

ιx,y
Y (a(k)b, y)

(x− y)k+1
+ ◦

◦Y (a, x)Y (b, y) ◦
◦ (3.40)

and similarly for eq. (3.39). In particular, the singular behaviour of this product is completely

determined by the non-negative k-products only. The terms ◦
◦Y (a, x)Y (b, y) ◦

◦ are regular on

the diagonal x = y, and are sometimes just referred to as the “regular terms”.
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3.2.1.2. Conformal vertex algebras. We now recall a special class of vertex algebras that

play an important role in conformal field theories, called conformal vertex algebras.

Definition 3.2.2. A vertex algebra V =
∑

k∈Z V
(k) is called conformal of central charge

c, if there exists a non-zero vector ω ∈ V(2), whose corresponding vertex operator is

Y (ω, x) := ω(x) =
∑
n∈Z

Lnx
−n−2. (3.41)

In particular, the modes Ln must generate a copy of the Virasoro algebra with central charge

c,

[Lm, Ln] = (m− n)Lm+n + c
m3 −m

12
δm+n,0, (3.42)

and L−1 = T and L0

∣∣∣
V(n)

= n idV.

Alternatively, this implies that the OPE of the field associated with the conformal vector

with itself is given by

ω(x)ω(y) =
c/12

(x− y)4
+

2ω(y)

(x− y)2
+
∂yω(y)

x− y
+ regular terms. (3.43)

3.2.2. An example: the Heisenberg vertex algebra. We now review an example

of vertex algebra, which will appear in the construction of Wakimoto modules in section 3.4.

The Heisenberg vertex algebra is an example of a vertex algebra associated with an

infinite dimensional Lie algebra. First, define the Heisenberg Lie algebra as the central

extension of the commutative algebra of formal Laurent series,

0 −! C1 −! H −! C((t)) −! 0, (3.44)

where for any f, g ∈ C((t)) the cocycle is defined as follows

ω(f, g) = − rest=0 fdg. (3.45)

This algebra has a topological basis given by bn = tn, n ∈ Z with central extension given by

1. Explicitly, the cocycle reads

ω(bm, bn) = − rest=0 t
mdtn = − 1

2πi

∮
t=0

ntm+n−1dt = −nδm+n,0. (3.46)

Therefore, for any m,n ∈ Z the commutation relations are given by

[bm, bn] = mδm+n,01, [1, bm] = 0. (3.47)

We can consider a formal completion Ũ(H), whose elements are possibly infinite sums∑
k≥0 bk, where bk ∈ U(H), which truncate to finite ones when working modulo the left ideals

generated by tNC[t], N ∈ Z. Any representation V of H is automatically a representation of

Ũ(H) if we require smoothness, i.e. for any v ∈ V, bNv = 0 for some N ∈ Z big enough. The

quotient of Ũ(H) by the two-sided ideal generated by (1− 1), where we identify the action

of the central element with the unit in Ũ(H), is called the Weyl algebra Weyl(H) or more

concisely H̃.
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Let Ũ(H)+ be the subalgebra generated by non-negative modes bj ∈ Ũ(H). We introduce

the one-dimensional representation defined by imposing that bjv0 = 0 for all j ∈ Z≥0 and

where we identify 1 with k ∈ C, called the level. The Fock representation at level k is defined

as the induced module

πk = Ũ(H)⊗Ũ(H)+
Cv0 ≃C Ũ(H)−v0. (3.48)

where Ũ(H)− is generated by strictly negative modes b−j , j ∈ Z>0. For clear reasons, the

operators bj≥0 are called “annihilation operators” while bj<0 “creation operators”. This

vector space has a natural gradation πk =
⊕

n≥0 πk[n], where the state bk1 · · · bknv0 has

degree −
∑n

i=1 ki. Here we are using the square bracket notation to denote the grading. It

can be graphically depicted as in fig. 3.1.

v0
πk[0]

πk[1]

πk[2]

b−1v0

b−2v0

b−1b−1v0

Figure 3.1. Graphical representation of the vector space πk =
∑

n≥0 πk[n].

We can introduce the translation map T ∈ EndV, whose action on the generators is

[T, bk] = −kbk−1 and T v0 = 0. This automatically satisfies axiom (iii).

We now introduce the state-field map. We assign Y (v0, x) = idπk
, so that axiom (i) is

satisfied. We define

Y (b−1v0, x) := b(x) =
∑
k∈Z

bkx
−k−1. (3.49)

which satisfies the creation axiom (ii). By acting on this state with the translation map, we

find

Y (b−kv0, x) =
1

(k − 1)!
∂k−1
x b(x). (3.50)

For arbitrary states, one has to introduce the normal ordering of fields which allows to

avoid divergent sums (see e.g. [FBZ04, Section 2.2.1]). The final general formula is

Y (b−k1
b−k2

· · · b−kn
v0, x) =

1

(k1 − 1)! · · · (kn − 1)!
◦
◦ ∂k1−1

x b(z) · · · ∂kn−1
x b(z) ◦

◦ . (3.51)

The only remaining axiom that has to be checked is locality. Explicitly, one has

[b(x), b(y)] =
∑
m∈Z

∑
n∈Z

[bm, bn]x
−m−1y−n−1

=
∑
m∈Z

[bm, b−m]x−m−1ym−1 = k
∑
m∈Z

mx−m−1ym−1 = k∂yδ(x− y) (3.52)
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where in the last step we have used properties of the δ distribution

δ(x− y) =
∑
m∈Z

x−m−1ym. (3.53)

In particular, we have the following property

(x− y)k+1∂ky δ(x− y) = 0, for any k ∈ Z>0. (3.54)

This means that by multiplying eq. (3.52) by (x− y)2 we obtain

(x− y)2[b(x), b(y)] = 0. (3.55)

Therefore, we can conclude that πk has the structure of a vertex algebra. The operator

product expansion of two fields is given by

b(x)b(y) =
k

(x− y)2
+ regular terms. (3.56)

These vertex algebras admit a family of conformal vectors parametrised by λ ∈ C,

ω =

(
1

2
b−1b−1 + λb−2

)
v0 ∈ πk[2]. (3.57)

The central charge of the corresponding Virasoro algebra is c = 1− 12λ2.

A special case is given by π0, which has the structure of a commutative vertex algebra.

Indeed, setting k = 0 in eq. (3.52), locality is always satisfied, i.e. formula (3.28) holds for

any N ,

[b(x), b(y)] = 0. (3.58)

More generally, for a commutative vertex algebra, using the second part of axiom (ii)

we find that

Y (a, x)b = Y (a, x)Y (b, y)v0
∣∣
y=0

= Y (b, y)Y (a, x)v0
∣∣
y=0

. (3.59)

Using now the first part of axiom (ii), we know that Y (a, x)v0 has only positive powers

in x. This implies that Y (a, x)b ∈ π0[[x]] for all a, b ∈ π0. Conversely, if the fields of a

vertex algebra only have positive powers, it follows that [Y (a, x)Y (b, y)] = 0. This gives an

alternative definition of commutative vertex algebra, as the vertex algebra whose fields only

have positive powers in the formal variable x, i.e. they are regular at x = 0.

3.2.3. Another example: Kac-Moody vertex algebras. Consider a finite-type

simple Lie algebra g̊. The affine Kac-Moody algebra g is the central extension by the one-

dimensional centre Ck of the corresponding loop algebra L̊g = g̊⊗C((t)). As a vector space

g ≃C L̊g ⊕ Ck. Introducing a basis Ian = Ia ⊗ tn, a = 1, . . . ,dim g̊, n ∈ Z, we have the

following commutation relations

[Iam, I
b
n] = [Ia, Ib]n+m − nkδm+n,0κ(I

a, Ib), (3.60)

where κ is the non-degenerate symmetric invariant bilinear form.
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We define the one-dimensional representation Cvk where g̊⊗C[[t]]vk = 0 and kvk = kvk,

where k ∈ C is called the level of the representation. The vacuum Verma module is the

induced module

Vg̊,k
0 = U(g)⊗U (̊g⊗C[[t]]⊕Ck) Cvk. (3.61)

As a vector space, this is isomorphic to U (̊g⊗t−1C[t−1])vk. It has a natural depth gradation,

that in the following we will denote as follows

Vg̊,k
0 =

⊕
k≥0

Vg̊,k
0 [k]. (3.62)

By construction, Vg̊,k
0 [0] ≃ C and Vg̊,k

0 [1] ≃ g̊.

One can introduce the translation map [T, Ian] = −nIan−1 and T vk = 0, as well as the

fields

Y (vk, x) = idVg̊,k
0

(3.63)

Y (Ia−1vk, x) := Ia(x) =
∑
n∈Z

Ianx
−n−1 (3.64)

Y (Ia1

−k1
· · · Ian

−kn
vk, x) =

1

(k1 − 1)! · · · (kn − 1)!
◦
◦ ∂k1−1

x Ia1(z) · · · ∂kn−1
x Ian(z) ◦

◦ . (3.65)

This space has the structure of a vertex algebra [FBZ04, Theorem 2.4.5]. The OPE of

this vertex algebra is

Ia(x)Ib(y) =
kκ(Ia, Ib)

(x− y)2
+

[Ia, Ib](y)

x− y
+ regular terms. (3.66)

This class of vertex algebras admits a natural conformal vector when k ̸= −h∨, i.e.
away from the critical level,

ω =
1

(k + h∨)
S (3.67)

where h∨ is the dual Coxeter number of g̊ and state S is called the Segal-Sugawara vector,

S =
1

2
κabI

a
−1I

b
−1vk. (3.68)

The conformal vector ω defines a copy of the Virasoro algebra with central charge

ck =
k dim g̊

k + h∨
. (3.69)

3.2.4. Vertex Lie algebras. We now proceed to define vertex Lie algebras, which will

be the main object of interest in chapter 5.

Definition 3.2.3. Given a graded vector space L =
∑

k∈Z L
(k) over a field K, a

vector |0⟩ ∈ L called the vacuum, a map T ∈ End(L) called translation, and a map

Y− : L ! Hom(L, x−1L[[x−1]]), a 7! Y (a, x) :=
∑

k≥0 a(k)x
−k−1, with a(k) ∈ End(L) of

degree deg(a)− k− 1, i.e. a(k)L
(n) ⊂ L(n+deg(a)−k−1), a vertex Lie algebra is the quadruple

(L, |0⟩ , T, Y−(•, x)) satisfying the following axioms

i) a(n) |0⟩ = 0 for n large enough;



54 3. GAUDIN MODELS OF FINITE TYPE

ii) Translation axiom: (Ta)(n)b = −na(n−1)b;

iii) Skew-symmetry axioms: a(n)b = −
∑

k≥0
(−1)n+k

k! T k(b(n+k)a);

iv) Borcherds’ identities: for all a, b ∈ L,

∞∑
j=0

(
m

j

)
(a(j)b)(m+n−j)c = a(m)b(n)c− b(n)a(m)c (3.70)

It is clear that the polar part of a vertex algebra, obtained by forgetting about all terms

with positive powers xn, n ≥ 0, in the state-field map Y (•, x), gives rise to a vertex Lie

algebra.

To any vertex Lie algebra, one can associate a Lie algebra which is the Lie algebra of

its modes, namely

Lie(L) = L⊗ C((t))/ Im(T ⊗ 1 + id⊗∂t). (3.71)

with commutation relations given by

[A[m], B[n]] =
∑
k≥0

(
m

k

)
(A(k)B)[m+n−k], (3.72)

where by A[n] we identify the image of A ∈ L in Lie(L). It is also possible to define the

left-adjoint functor as the one sending a vertex algebra to its polar part (for more detail cfr.

[FBZ04]). It consists of defining the universal enveloping vertex algebra

V(L) := U(Lie(L))⊗U(Lie(L))+ C, (3.73)

which has the structure of a vertex algebra.

3.3. Local higher Hamiltonians and coinvariants

In this section, we are going to recall the coinvariant construction through which it is

possible to identify the higher Hamiltonians with the space of singular vectors of the vacuum

Verma module at critical level. This section is mainly a summary of the results from the

first part of [FFR94].

3.3.1. Local action. Consider the affine Lie algebra g associated with g̊. It can be

realised as the one-dimensional central extension Ck of the formal loop algebra g̊⊗ C((t)),

g ≃C g̊⊗ C((t))⊕ Ck. (3.74)

As a vector space, g =C g− ⊕ g+ ⊕ Ck, where g− = g̊ ⊗ t−1C[t−1] is the polar, or singular,

part and g+ = g⊗ C[[t]] is the positive, or regular, part.

Consider the finite set of the N ∈ Z≥1 sites on the model {z1, . . . , zN} on the Riemann

sphere CP1 with global coordinate t, such that for any neighbourhood of zi we have the



3.3. LOCAL HIGHER HAMILTONIANS AND COINVARIANTS 55

local coordinate1 t− zi. To each of these points, we can define a g̊-module Mλi
as we did in

the previous section (cfr. eq. (3.3)), and define Mλ as in eq. (3.4).

For each site i, we can introduce a copy of the formal loop algebra in the local coordinate

(t − zi), g̊zi := g̊ ⊗ C((t − zi)) and its central extension g̊ ⊗ C((t − zi)) ⊕ Cki. This can be

thought as the local algebra of functions attached to the point zi. For any two functions

f, g ∈ g̊zi , the commutation relations are

[f + λki, g + µki ]̊gzi
⊕Cki = [f, g]̊gzi

+ ω(f, g)ki, (3.75)

for some complex coefficients λ, µ. The cocycle ω is defined as follows

ωi(f, g) =
1

2πi

∫
t−zi

fdg = rest−zi fdg. (3.76)

The module Mλi
can be regarded as a module over this algebra, denoted by Mki

λi
, by

declaring

g̊⊗ (t− zi)C[[t− zi]]M
k
λ = 0, (3.77)

kiM
ki

λi
= kiM

ki

λi
, (3.78)

where ki ∈ C is the level of the representation. One then defines the Verma module as the

induced module

Mki

λi
= U (̊gzi ⊕ Cki)⊗U (̊g⊗C[[t−zi]])⊕Cki) M

ki

λi
. (3.79)

One can consider the direct sum of these algebras g̊N :=
⊕N

i=1 g̊zi and extend it by⊕N
i=1 Cki. We introduce the following quotient,(̊

gN ⊕
N⊕
i=1

Cki

)/
⟨ki − kj⟩i,j=1,...,N , (3.80)

where we identify all the central extensions. Denoting this single central extension by K, we

have

[f + λK, g + µK]̊gN⊕CK = [f, g]̊gN
+ ω(f, g)K, (3.81)

This algebra naturally acts on the tensor products of g̊zi -modules defined in eq. (3.79),

Mk
λ = Mk

λ1
⊗ · · · ⊗Mk

λN
, (3.82)

where we assigned a copy Mk
λi

at each point.

1The point at infinity could be chosen as one of the marked points. In this case, the local coordinate

is t−1 and we attach a copy of g̊⊗ C((t−1)) to it. In what follows, to keep the notation lighter, we will not

specify this every time.
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3.3.2. Global action. We now proceed to define the algebra of global functions on

the Riemann sphere, with poles at most at the marked points. This will provide a good

choice of complement to the local algebra of “positive modes”, and it will be of fundamental

importance in the coinvariant construction.

We denote by Cz(t), the space of rational function in t with poles at most at the marked

points {z1, . . . , zN}. It has the structure of an algebra over C. We introduce the space of

global functions vanishing at infinity,

C∞
z (t) := {f(t) ∈ Cz(t) s.t. f vanishes at infinity} . (3.83)

We have a global-to-local embedding, defined by taking the Laurent expansion of the

global function at each point

ι : C∞
z (t) ↪−! ⊕N

i=1C((t− zi)),

f(t) 7−! (ιt−zif(t), . . . , ιt−zN f(t)). (3.84)

Tensoring these spaces with the Lie algebra g̊, one defines the following map

id⊗ι : g̊⊗ C∞
z (t) ↪−!

N⊕
i=1

g̊⊗ C((t− zi)). (3.85)

We have the following important lemma,

Lemma 3.3.1. The cocycle in eq. (3.81) vanishes on the image of the map (3.85). There-

fore, the map can be lifted to an embedding

g̊⊗ C∞
z (t) ↪−! g̊N ⊕C CK. (3.86)

This follows from the fact that any collection of local functions obtained by Laurent-

expanding a global one, have to satisfy the strong residue theorem (see e.g. [VY16]), i.e.

N∑
i=1

rest−zi fiιt−zig = 0, for every g ∈ C∞
z (t), (3.87)

and as a consequence, the cocycle in eq. (3.81) vanishes.

Consider now the local function f ∈ C((t−zi)). By denoting by f− ∈ (t−zi)C[(t−zi)−1]

its polar part, which in particular can be regarded as a function in C∞
zi (t), we can always

decompose f = ιt−zif− + (f − ιt−zif−). The combination f − ιt−zif− is the Taylor part of

the expansion, as all poles have been removed. This can be extended to a collection of local

functions, obtaining the following isomorphism

N⊕
i=1

C((t− zi)) ≃C ι(C∞
z (t))⊕

N⊕
i=1

C[[t− zi]]. (3.88)

By considering the tensor product of this relation with g̊ and adding the central extension,

we obtain

g̊N ⊕ CK ≃C g̊⊗ ι(C∞
z (t))⊕

(̊
g⊗

N⊕
i=1

C[[t− zi]]⊕ CK

)
. (3.89)
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3.3.3. The space of coinvariants. Consider the decomposition

g̊N ⊕ CK ≃C

(
N⊕
i=1

g̊⊗ C[[t− zi]]⊕ CK

)
⊕ c (3.90)

where c is a choice of complement of
⊕N

i=1 g̊ ⊗ C[[t − zi]] ⊕ CK. For example, a possible

simple choice of complement is the polar subalgebra
⊕N

i=1 g̊⊗ (t− zi)−1C[(t− zi)−1]. A less

obvious choice is provided by eq. (3.89).

We define the space of c-coinvariants as the quotient

Mk
λ

/
c := Mk

λ

/
(cMk

λ). (3.91)

We have the following fundamental result, which will be crucial in the next sections

Lemma 3.3.2. There is an isomorphism of vector spaces,

Mk
λ

/
c ≃C Mλ. (3.92)

This follows from the fact that the decomposition (3.90) implies a factorisation of the

enveloping algebra U (̊gN ⊕ CK) ≃C U(
⊕N

i=1 g̊⊗ C[[t− zi]]⊕ CK)⊗C U(c). Therefore, as a

c-module,

Mk
λ ≃ U(c)⊗Mk

λ, (3.93)

from which eq. (3.92) follows, since Mk
λ ≃C Mλ.

3.3.4. The swapping procedure. We can now proceed to describe the swapping

procedure introduced in [FFR94].

First, we introduce one additional site, z ∈ CP1, distinct from the other sites of the

model. There is a copy of the local Lie algebra g̊⊗ C((t− z))⊕ CK in the local coordinate

t−z. To this point, we attach the vacuum Verma module at level k, Vg̊,k
0 , defined as follows.

One starts by defining the g̊-module Cv0, on which the action of g̊ is trivial. It can be made

into a g̊⊗ C[[t− z]]⊕ CK module by declaring

g̊⊗ C[[t− z]]v0 = 0, Kv0 = kv0. (3.94)

We finally construct the induced module,

Vg̊,k
0 := U (̊g⊗ C((t− z))⊕ CK)⊗U (̊g⊗C[[t−z]]⊕CK) Cv0 (3.95)

As vector spaces, we have the identification

Vg̊,k
0 ≃C U (̊g⊗ (t− z)−1C[(t− z)−1])v0, (3.96)

which means that Vg̊,k
0 is spanned by vectors

A1[−n1] · · ·Aℓ[−nℓ]v0, Ai ∈ g̊, i = 1, . . . , ℓ, ℓ ∈ Z≥1, (3.97)

where we used the standard notation

A[n] := A⊗ (t− z)n. (3.98)
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zi

Mk
λi

Mk
λj

Vk
0

z

zj

Figure 3.2. Graphical representation of the Riemann sphere, with modules Mk
λi

at-

tached to each marked point and a vacuum Verma module to the auxiliary point z.

We can consider the global algebra g̊⊗C∞
z,z(t), which is the algebra of rational functions

on CP1, with poles at most at the points {z1, . . . , zN} ∪ {z} and vanish at infinity.

Using the result (3.92), we can construct the space of coinvariants with respect to this

global algebra

(Mk
λ ⊗ Vg̊,k

0 )
/
(̊g⊗ C∞

z,z(t)) ≃C Mλ ⊗ Cv0 ≃C Mλ. (3.99)

This fact can be utilised to “swap” the data from one point to another. To clarify what

we mean by this, consider the case with just one site at z1. We attach the vacuum Verma

module at z. We can consider the element

f =
A

(t− z)
∈ g̊⊗ C∞

z,z(t), A ∈ g̊, (3.100)

which is a rational g̊-valued function with just a pole at t = z, and vanishes at infinity. We

can embed this function at z1 and z to obtain an element of the direct sum of algebras of

local functions, as follows

A

(t− z)
=

A

(z1 − z)

1

1− t−z1
z−z1

ιt−z1
↪−−−! −

∑
k≥0

A(t− z1)
k

(z − z1)k+1
∈ g̊⊗ C((t− z1)) (3.101)

A

(t− z)

ιt−z

↪−−!
A

(t− z)
∈ g̊⊗ C((t− z)). (3.102)

Now consider the state m ⊗ v ∈ Mk
λ ⊗ Vg̊,k

0 . There is a well-defined action of f on this

element, given by

f.(m⊗ v) =

−
∑
k≥0

A(t− z1)
k

(z − z1)k+1
m

⊗ v +m⊗
(

A

(t− z)
v

)
. (3.103)

Now, by taking the quotient (3.99), the term on the left-hand side is zero by definition and

we obtain the following identification of equivalence classes∑
k≥0

A(t− z1)
k

(z − z1)k+1
m

⊗ v

 =

[
m⊗

(
A

(t− z)
v

)]
. (3.104)
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As mentioned above, this can be interpreted as “swapping” the action of the local algebra

from the auxiliary point z to the site at z1, and vice versa.

More generally, consider the element

f =
A

(t− z)n
=

1

(n− 1)!

∂n

∂zn
A

t− z
∈ g̊⊗ C∞

z,z(t). (3.105)

By expanding at every site, we have the embedding

f
ιt−zi
↪−−−! fi := − 1

(n− 1)!

∂n−1

∂zn−1

∞∑
k=0

A(t− zi)
k

(z − zi)k+1
∈ g̊⊗ C((t− zi)), i = 1, . . . , N (3.106)

f
ιt−z

↪−−! f0 :=
A

(t− z)n
∈ g̊⊗ C((t− z)). (3.107)

Consider m⊗ v ∈ Mk
λ ⊗ Vg̊,k

0 , where m = m1 ⊗ · · · ⊗mN . Since by definition of coinvariant

space we have [f.(m ⊗ v)] = 0, where we mean f ↪! (f1, . . . , fN , f0), we obtain the most

general swapping formula:[(
N∑
i=1

1

(n− 1)!

∂n−1

∂zn−1

∞∑
k=0

A[k]

(z − zi)k+1
m

)
⊗ v

]
= [m⊗A[−n]v] , (3.108)

where as in eq. (3.98), we used the notation A[k] = A⊗ (t− zi)
k when referring to Mk

λ and

A[k] = A⊗ (t− z)k when referring to Vg̊,k
0 .

In particular, by regarding m as an element in Mλ, only the zero loop mode gives

contribution, cfr. relation (3.77), i.e.[
N∑
i=1

(
1

(n− 1)!

∂n−1

∂zn−1

A

z − zi

)
m⊗ v

]
= [m⊗A[−n]v] . (3.109)

Recall that a generic vector in X ∈ Vg̊,k
0 is expressed as in eq. (3.97). This is precisely

the form on the right-hand side of the equation above. This means that by applying the

swapping identity iteratively, one can always express [w ⊗X] as [w′ ⊗ v0].

This procedure defines an endomorphism for any X ∈ Vg̊,k
0

X(z) :Mλ −!Mλ, (3.110)

defined as follows

Mλ ↪!Mk
λ

⊗X
−−!Mk

λ1
⊗ Vg̊,k

0 ↠ (Mk
λ ⊗ Vg̊,k

0 )
/
(̊g⊗ C∞

z,z(t)) ≃C Mλ. (3.111)

More explicitly, we first regard the vector in Mλ as a vector in Mk
λ. Then, we consider the

tensor product of this with the element X in the vacuum Verma module. After that, we

employ the procedure just explained, to “remove” elements from Vg̊,k
0 by swapping them

onto Mk
λ. Lastly, one takes the quotient. By definition,

[X(z)m⊗ v0] = [m⊗X]. (3.112)
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3.3.5. Higher Hamiltonians. A vector X ∈ Vg̊,k
0 is singular if

A.X = 0, for all A ∈ g̊⊗ C[t], (3.113)

i.e. it behaves like a highest weight vector. The space of singular vectors is denoted with

Z(g), where g is the affine algebra defined in eq. (3.74). We have the following fundamental

result,

Proposition 3.3.1. [FFR94] Let Z1, Z2 ∈ Z(g). Then, for any pair of complex param-

eters u, v ∈ CP1, the corresponding linear operators on Mλ, Z1(u) and Z2(v), commute.

The idea behind the proof of this statement is that we can consider the space Mk
λ ⊗

Vg̊,−h∨

0 ⊗ Vg̊,−h∨

0 , where we attached two copies of the vacuum Verma module at the sites

at u and v, respectively. Then, by the considerations made above, one can always swap

the content from the vacuum Verma modules onto Mk
λ. There is only one small but crucial

difference that can easily understood with an example. Consider the equivalence class [m⊗
Z1⊗A1[−n1] · · ·Aℓ[−nℓ]v0], where we explicitly wrote Z2 = A1[−n1] · · ·Aℓ[−nℓ]v0, for some

Ai[−ni], i = 1, . . . , ℓ, ni ∈ Z≥1. We can now swap the leftmost factor A1[−n1] = A1 ⊗ (t−
v)−n1 onto the other terms, as follows

[m⊗Z1 ⊗A1[−n1] · · ·Aℓ[−nℓ]v0]

=

[(
1

(n− 1)!

∂n−1

∂zn−1

∞∑
k=0

A1[k]

(v − zi)k+1
m

)
⊗ Z1 ⊗A2[−n2] · · ·Aℓ[−nℓ]v0

]

+

[
m⊗

(
1

(n− 1)!

∂n−1

∂zn−1

∞∑
k=0

A1[k]

(v − u)k+1
Z1

)
⊗A2[−n2] · · ·Aℓ[−nℓ]v0

]
. (3.114)

This should clarify why Z1 and Z2 are needed to be singular vectors. Indeed, by definition

the term in the last line is always identically zero for the property (3.113). Keeping this in

mind, one can swap Z1 first and then Z2 or vice-versa,

[m⊗ Z1 ⊗ Z2] = [Z1(u)m⊗ v1 ⊗ Z2] = [Z2(v)Z1(u)m⊗ v0 ⊗ v0], (3.115)

[m⊗ Z1 ⊗ Z2] = [Z2(v)m⊗ Z1 ⊗ v0] = [Z1(u)Z2(v)m⊗ v0 ⊗ v0]. (3.116)

Since they define the same rational function (Z1, Z2)(u, v), the result follows.

The space of singular vectors is known to be extremely rich when k = −h∨ [FF92]. It

has the structure of a polynomial algebra in ∂nS(k+1), where ∂ is a derivative operator of

degree 1, n ≥ 0 and with k running over the finite set of exponents of the Lie algebra g̊, see

e.g. [FFR94, Proposition 3].

For any X ∈ Vg̊,−h∨

0 , the function X(u) depends rationally on u, with poles at the

marked points. Its Laurent coefficients are valued in U (̊g)⊗N , which is identified with the

algebra of observables of the Gaudin model, cfr. eq. (3.6).

In particular, when the chosen vector is a singular vector, Z ∈ Z(g), the coefficients of

the Laurent expansion form a subalgebra Zz (̊g), containing the centre Z (̊g) as a subalgebra,
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of the algebra of observables, which is the celebrated Gaudin/Bethe subalgebra [FFR94,

MTV06]. By construction, it is spanned by commuting elements which can be identified

with the Hamiltonians of the Gaudin model.

3.3.6. The quadratic Hamiltonian. Consider a finite semi-simple Lie algebra g̊,

with basis {Ia}a=1,...,dim g̊ and symmetric invariant bilinear form κ. There is a non-trivial

singular vector,

S =
1

2
κabI

a[−1]Ib[−1]v0 ∈ Vg̊,−h∨

0 [2], (3.117)

which is the Segal-Sugawara vector introduced in eq. (3.68). This singular vector is the one

with lowest degree, corresponding to the exponent k = 1. It can be defined for any Lie

algebra g̊ and corresponds to the existence of the Gaudin Hamiltonians (3.8), as we will now

show.

Introducing a state m = m1⊗· · ·⊗mN ∈Mλ ↪!Mk
λ, we can use the swapping procedure

(3.109), as follows

[
m⊗

(1
2
κabI

a[−1]Ib[−1]v0
)]

=

[(
N∑
i=1

Ia,(i)

z − zi
m

)
⊗
(
1

2
κabI

b[−1]v0

)]

=

 N∑
j=1

N∑
i=1

1

2
κab

Ib,(j)Ia,(i)

(z − zj)(z − zi)
m

⊗ v0

 . (3.118)

We clearly see that the swapping procedure defines a map

S(2)(z) =

N∑
j=1

N∑
i=1

1

2
κab

Ib,(j)Ia,(i)

(z − zj)(z − zi)
, (3.119)

which is precisely the expression of the quadratic Hamiltonian in eq. (3.9). By partial

fraction decomposition, one can write it as in eq. (3.11). As argued above, the coefficients

of this expansion are precisely commuting operators in the Gaudin/Bethe subalgebra: one

is trivial, being the quadratic Casimir and the other are the Gaudin Hamiltonians (3.8).

3.4. Wakimoto modules and Bethe ansatz

In this section, we are going to introduce Wakimoto modules, as certain bosonic free

field realisations of the Lie algebra g̊. This will allow us to construct the eigenvectors and

eigenvalues of the Gaudin Hamiltonians and the Bethe equations will arise as certain con-

sistency conditions from this procedure. To do this we will use the language of coinvariants

introduced in the previous section. This section is mainly a summary of the main results

from the second part of [FFR94].
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3.4.1. Feigin-Frenkel-Wakimoto homomorphism. For any finite-dimensional sim-

ple Lie algebra g̊ = n̊− ⊕ h̊⊕ n̊+ there is a Lie algebra homomorphism

ρ : g̊! DerO(̊n+) (3.120)

realising the Lie algebra as differential operators on the algebra of polynomial functions

O(̊n+) on the unipotent group U ≃ N+ ≃ exp(̊n+) ≃ n̊+. This follows from considering the

right action of the group G, whose Lie algebra is g̊, on the open subset U ⊂ B−\G, called
the big cell, which is isomorphic to N+, which itself is isomorphic to n̊+ via the exponential

map. This gives rise to a left action of G on the space of functions on B−\G, which gives

rise (infinitesimally) to a realisation of g̊ as vector fields on U . Choosing coordinates Xα on

U , labelled by the positive roots, α ∈ ∆̊+, then O(̊n+) = C[Xα]α∈∆̊+
. Explicitly,

Eα 7!
∑

β∈∆̊+

P β
α (X)Dβ , Hα 7! −

∑
β∈∆̊+

β(Hα)X
βDβ , Fα 7!

∑
β∈∆̊+

Qβ
α(X)Dβ , (3.121)

for P,Q ∈ C[Xα]α∈∆̊+
such that degP β

α = β − α and degQβ
α = β + α. For example, in sl2

one finds the well-known realisation

E 7! D H 7! −2XD F 7! −X2D, (3.122)

where E,F and H are the Chevalley-Serre generators and X,D are the generator of the

Weyl algebra Weyl(sl2) with commutation relations [D,X] = 1.

The main fact underpinning the Wakimoto construction is that this homomorphism can

be promoted to a homomorphism of vertex algebras, as follows. First, consider the affine

algebra

g ∼=C g̊[t, t−1]⊕ Ck⊕ Cd, (3.123)

where k is the central element and d is the derivation in the homogeneous gradation, i.e.

d = t∂t. It has g+ := g̊ ⊗ C[t] ⊕ Ck as a subalgebra. We define C |0⟩k the one-dimensional

representation of g+ in which C[t] acts trivially and the central element acts as multiplication

by k ∈ C, called the level of the representation. The vacuum Verma module at level k is the

induced module

Vg̊,k
0 = U(g)⊗U(g+) C |0⟩k .

This space has the structure of a vertex algebra (cfr. [FBZ04, theorem 2.4.5]).

On the other hand, one can define the Fock module for the βγ-system on n̊+, M(̊n+), as

the induced module generated by the vector |0⟩ for the Heisenberg algebra H(̊g) generated

by βα[M ], γα[M ] and 1, with α ∈ ∆̊+, M ∈ Z, with the following relations

[βα[M ],ββ [N ]] = 0 [γα[M ],γβ [N ]] = 0 (3.124)

[βα[M ],γβ [N ]] = δM+N,0δ
β
α1. (3.125)

Here we are using the notation (3.98) for the vertex algebra modes (this will be helpful

in the next sections to distinguish it from the additional loop parameter). Recalling the

natural grading in the vacuum Verma module, cfr. eq. (3.62), we can identify g ≃ Vg̊,k
0 [1],
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O(̊n+) ≃ M(̊n+)[0] and DerO(̊n+) ⊕ ΩO(̊n+) ≃ M(̊n+)[1]. One can construct the following

map of vector spaces

Vg̊,k
0 [≤ 1]! M(̊n+)[≤ 1], (3.126)

identifying the corresponding vacuum vectors and mapping

A[−1] |0⟩ 7!
∑

α∈∆̊+

Pα
A(γ[0])βα[−1] |0⟩ . (3.127)

Crucially, this map is not a map of vertex algebras, as it does not preserve non-negative

products.

This problem can be solved by adding extra terms, as shown in [FF90, Fre07]. For-

mally, there exists a linear map

ϕ : g̊! ΩO(̊n+), (3.128)

where ΩO(̊n+) is the space of 1-forms, such that

ρ+ ϕ : g̊! DerO(̊n+)⊕ ΩO(̊n+) (3.129)

can be lifted to a map of vertex algebras,

θ : Vg̊,−h∨

0 ! M(̊n+), (3.130)

where, crucially, the level has to be set to the critical level −h∨, h∨ being the dual Coxeter

number of g̊. In the case of sl2, eq. (3.122) is lifted to the vertex algebra map

E[−1] |0⟩ 7! β[−1] |0⟩ H[−1] |0⟩ 7! −2γ[0]β[−1] |0⟩

F [−1] |0⟩ 7! −γ[0]γ[0]β[−1] |0⟩ − 2γ[−1] |0⟩ .
(3.131)

Analogously, one can also repeat the same construction to define a right action of G on

the big cell. It will give rise to a map from n̊+ to the space of derivation, defined as

Eα 7! Gα :=
∑

β∈∆̊+

Rβ
α(X)Dβ , (3.132)

for certain polynomials R ∈ C[Xα]α∈∆̊ with degRβ
α = β − α. Similar expressions can be

obtained for the other generators of g̊, however for our discussions below we just need a

realisation of n̊+. This action commutes with the left action introduced above. One can

define the vacuum Verma module for this algebra in the same way as above.

3.4.2. Wakimoto modules. At this point, one can consider the loop algebra L̊h =

h̊⊗C((t)) of the Cartan subalgebra h̊ of g̊. A basis for this algebra is bi[n] := bi ⊗ tn, where

{bi}i=1,...,dim h̊ is a basis for h̊. One can define the induced Fock module

π0 = U(L̊h)⊗U (̊h⊗C[[t]]) C |0⟩ ≃C U (̊h⊗ t−1C[t−1]) |0⟩ , (3.133)
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in which bi[k] |0⟩ = 0 for any k ≥ 0. As described in section 3.2.2, the module π0 has the

structure of a commutative vertex algebra, called the Heisenberg vertex algebra, whose fields

are

bi(x) = Y (bi[−1] |0⟩ , x) =
∑
k<0

bi[k]x
−k−1. (3.134)

By slightly modifying the construction of the map illustrated above, one obtains a new

homomorphism of vertex algebras,

θW : Vg,−h∨

0 ! M(n+)⊗ π0 =: W0, (3.135)

which makes W0 into a smooth g-module. This map, which underlies the famous Waki-

moto construction [Wak86], is a realisation of the Lie algebra g in terms of the free fields

β(x),γ(x) and an additional boson b(x). For example, the map (3.131) becomes

E[−1] |0⟩ 7! β[−1] |0⟩ H[−1] |0⟩ 7! −2γ[0]β[−1] |0⟩+ b[−1] |0⟩

F [−1] |0⟩ 7! −γ[0]γ[0]β[−1] |0⟩ − 2γ[−1] |0⟩ − γ[0]b[−1] |0⟩ .
(3.136)

There is another class of similar modules. Consider an h̊∗-valued Laurent series χ(t) ∈
h̊∗ ⊗ C((t)). Define C |0⟩χ the one-dimensional h̊⊗ C((t)) module, where

f |0⟩χ =
1

2πi

∮
t=0

χ(f) |0⟩χ , (3.137)

for any h̊-valued Laurent series f , where χ(f) denotes the pairing between h̊ and its dual.

The Wakimoto module of highest weight χ is

Wχ := M(n+)⊗ C |0⟩χ , (3.138)

which is also a smooth g-module by the homomorphism (3.135). We denote the vacuum

state as w0 := |0⟩ ⊗ |0⟩χ. A crucial feature that will be important later is that the zero-th

graded component Wχ[0] ≃C C[γα[0]]α∈∆̊w0 is stable under the action of the Lie algebra

g̊ ⊂ g and as a g̊-module it is isomorphic to the contragredient Verma module2 M∗
χ0
, with

highest weight χ0 := rest=0 χ(t).

Note that the main difference between W0 and Wχ is that the former is induced in both

H (̊g) and h̊⊗ C((t)), while the latter one only in the first tensor factor.

Before discussing how Bethe ansatz can be performed using the coinvariant language,

we need the following

2The contragredient Verma module M∗
λ , with λ ∈ h̊∗ is obtained as the restricted dual space of the

Verma module Mλ. It has the structure of a g̊ module, defined via Cartan anti-involution, i.e. for any

v ∈ Mλ and ω ∈ M∗
λ one has (Xω)(v) = ω(ι(X).v), for any X ∈ g̊, where ι sends E to F and vice versa,

and leave H invariant.



3.4. WAKIMOTO MODULES AND BETHE ANSATZ 65

Lemma 3.4.1 ([FFR94]). Let αk be a simple root. Consider the Wakimoto module Wχ,

whose highest weight is given by the following special form

χ(t) = −αk

t
+
∑
n≥0

χ(n)tn, χ(n) ∈ h̊∗. (3.139)

The state Gαk
[−1]w0 ∈ Wχ is a singular vector, where Gαk

is defined in eq. (3.132) if and

only if (αk, χ
(0)) = 0.

3.4.3. Local and global actions, revisited. Consider the Riemann sphere CP1,

with pairwise distinct marked points at z = {z1, . . . , zN}, N ∈ Z>0 representing the

sites of the Gaudin model and additional auxiliary marked points at w = {w1, . . . , wM},
M ∈ Z≥0, the Bethe roots. Collectively, we introduce the tuple x := {x1, . . . , xp} =

{zi, . . . , zN , w1, . . . , wM}.
In the same spirit as the previous section, denoted by t the global coordinate on the

Riemann sphere, for each point we introduce the local Heisenberg algebra Hxi
(̊g), which is

isomorphic to a copy of (̊n+ ⊕ n̊∗+)⊗C((t− xi)), centrally extended by the one-dimensional

centre C1, where we identify

βα[k] = Eα ⊗ (t− xi)
k, γα[k] = Eα ⊗ (t− xi)

k−1, (3.140)

where {Eα}α∈∆̊ is a basis for n̊+ and {Eα}α∈∆̊ its dual [FF91]. We denote Hp(̊g) =⊕
xi∈x Hxi(g)⊕ C1, where all central extensions are identified.

We can also introduce the Lie algebra of global functions, Hx(t) = (̊n+⊗C∞
x (t))⊕ (̊n∗+⊗

C∞
x (t)), where C∞

x (t) is the algebra of global rational function in t vanishing at infinity

introduced in section 3.3.2. As above, there is an embedding of global into local since also

in this case the cocycle is trivial, defined by Laurent-expanding at each point

ι : Hx(t) ↪−! Hp(̊g). (3.141)

Similarly, one can define the local algebra

h̊p :=

p⊕
i=1

h̊⊗ C((t− xi)), (3.142)

and the global algebra

h̊x(t) = h̊⊗ C∞
x (t). (3.143)

Again, there is the embedding of global into local

ι : h̊x(t) ↪−! h̊p. (3.144)

To the points x we can assign the Wakimoto modules Wχi , i = 1, . . . , p. There is a well

defined action of the local algebras Hp(̊g)⊕ h̊p on the tensor product
⊗p

i=1Wχi
, as well as

an action of the global algebra Hx(t) := Hx(t)⊕ h̊x(t) obtained by the embeddings above.

At this point, we can construct the space of coinvariants with respect to the global

action Hx(t). One finds



66 3. GAUDIN MODELS OF FINITE TYPE

Proposition 3.4.1 ([FFR94]). The space of coinvariants
⊗p

i=1Wχi

/
Hx(t) is one di-

mensional if and only if at each point xi ∈ x, the highest weight χi are the expansion of the

same global function χ(t) ∈ h̊∗⊗C∞
x (t). If not, the space of coinvariants is zero-dimensional.

3.4.4. The Bethe equations. Consider the tuple c = {c(1), . . . , c(M)} of colours of

the Bethe roots, where c(i) is a node of the Dynkin diagram I̊ of the Lie algebra g̊. Consider

the special global function

λ(t) =

N∑
i=1

λi
t− zi

−
M∑
j=1

αc(j)

t− wj
, λi ∈ h̊∗. (3.145)

We denote the expansion of this function at each point as

ι(λ(t)) := (χ1, . . . , χN , µ1, . . . , µM ). (3.146)

In particular, if we expand λ(z) around t − wk, k = 1, . . . ,M , we find that the explicit

expression of µk is given by

µk = ιt−wk
λ(t) = −

αc(k)

t− wk
+

 N∑
i=1

λi
wk − zi

−
M∑
j=1
j ̸=k

αc(j)

wk − wj

+O(t− wk). (3.147)

Now consider the tensor product of Wakimoto modules Wλ :=
⊗N

i=1Wχi

⊗M
j=1Wµj ,

attached to the points xi, i = 1, . . . , p, where the highest states are given by the expressions

in eq. (3.146) and denote its vacuum state by w⊗p
0 :=

⊗p
i=1 w

(i)
0 .

For each of the auxiliary marked points wj , j = 1, . . . ,M , we can consider to have the

states Gc(j)[−1]w
(j)
0 ∈ Wµj , for some c(j) ∈ I̊, where Gc(j) is defined in eq. (3.132). By

Lemma 3.4.1, we can conclude that this vector is singular if and only if

N∑
i=1

(αc(j), λi)

wk − zi
−

M∑
j=1
j ̸=k

(αc(j), αc(j))

wk − wj
= 0, j = 1, . . . ,M. (3.148)

This is precisely the generalisation of the Bethe equations in eq. (3.24) for arbitrary g̊.

In the next section, we will show how this condition naturally arises in the construction of

eigenvectors and eigenvalues.

3.4.5. Schechtman-Varchenko vector. With the special choice of highest weight

vectors (3.146), by proposition Proposition 3.4.1, we can conclude that the space of coin-

variants Wλ

/
Hx(t) is one dimensional.

This implies that there exists a unique3 Hx(t)-invariant linear functional

τ =Wλ −! C. (3.149)

3It is unique up to normalisation, which can be fixed by requiring that τ(w⊗p
0 ) = 1.
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By “saturating” the lastM slots of this map by inserting the states Gc(j)[−1]w
(j)
0 ∈Wµj

j = 1, . . . ,M we can define a map

τ(·, Gc(1)[−1]w
(1)
0 , . . . , Gc(M)[−1]w

(M)
0 ) :

N⊗
i=1

Wχi
−! C. (3.150)

As mentioned above, by restricting this functional to the zero-depth component, we have

the identification Wχi
[0] ≃g̊ M

∗
λi
, where λi = rest=zi χi,

ψ :

N⊗
i=1

M∗
λi
−! C. (3.151)

This map takes a product of dual vectors in the contragredient Verma modules and maps

it to the field C, hence it naturally defines a vector in Mλ. This object is the Schechtman-

Varchenko vector from [SV91]. We will now show that it is an eigenvector for the Gaudin

Hamiltonians.

3.4.6. Eigenvalues and eigenvectors. We introduce an additional site at z, and to

it we attach the H(̊g)⊕ h̊⊗C((t− z))-module W0 with a local coordinate t− z. Recall that

W0 = M(̊n+) ⊗ π0, where π0 ≃C U(bi[−n]) |0⟩, n ∈ Z>0 is a commutative vertex algebra

with translation map T ∈ Endπ0 defined by Tbi[−n] = nbi[−n− 1].

Let C∞
x,z(t) be the algebra of global functions which vanish at infinity and have poles at

most at the marked points and z.

One has the homomorphism of differential algebras

r : (π0, T ) −! (C∞
x,z(t), ∂z), (3.152)

defined as follows

r(bk[−1] |0⟩) =
N∑
i=1

(λi, α
∨
k )

z − zi
−

M∑
j=1

(αc(j), α
∨
k )

z − wj
. (3.153)

Recalling the definition (3.145), we have

r(bk1
[−n1] · · · bkp

[−np] |0⟩) =
p∏

ℓ=1

1

(nℓ − 1)!

∂nℓ−1

∂znℓ−1
λ(z)(Hkℓ

). (3.154)

At this point, we can consider a singular vector Z ∈ Z(g) ⊂ Vg̊,−h∨

0 , which from the

previous section it has been identified with the space of the higher Gaudin Hamiltonians.

Thanks to the homomorphism (3.135) we can map it to θW (Z) ∈ W0. Constructing the

space of coinvariants considering the extra site allows one to define a linear functional in a

similar manner as in eq. (3.149), and one has

τ(ω, Gc(1)[−1]w
(1)
0 , . . . , Gc(M)[−1]w

(M)
0 , θW (Z)). (3.155)

for some ω ∈M∗
λ. There are two ways to evaluate this quantity.

First, as we did in the previous section, we can “swap” from z to the other points. The

result of the swapping onto the auxiliary points Gc(j)[−1]w
(j)
0 , j = 1, . . . ,M , is trivial only
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if the vectors Gc(j)[−1]w
(j)
0 are singular. Thanks to Lemma 3.4.1, we know that this is the

case when the Bethe ansatz equations are satisfied, as explained in section 3.4.4. Therefore,

we only get a contribution from swapping onto the sites of the model. As a result, we have

τ(ω, Gc(1)[−1]w
(1)
0 , . . . ,Gc(M)[−1]w

(M)
0 , θW (Z))

= τ(Z(z)ω, Gc(1)[−1]w
(1)
0 , . . . , Gc(M)[−1]w

(M)
0 ,w0)

= τ(Z(z)ω, Gc(1)[−1]w
(1)
0 , . . . , Gc(M)[−1]w

(M)
0 )

= ψ(Z(z)ω) = (ι(Z(u))ψ)(ω), (3.156)

where ι is the Cartan involution (see footnote 2) and we introduced the rational function

Z(z) as in eq. (3.110).

At the same time, recall that a state in π0 has the following from bk1 [−n1] · · · bkp [−np] |0⟩,
ki ∈ I̊, ni ∈ Z>0, i = 1, . . . , p. Therefore using eq. (3.152), one finds that for a state

bk[−n]w ∈ W0

τ(ω, Gc(1)[−1]w
(1)
0 , . . . , Gc(M)[−1]w

(M)
0 , bk[−n]w)

= r(bk[−n] |0⟩)τ(ω, Gc(1)[−1]w
(1)
0 , . . . , Gc(M)[−1]w

(M)
0 ,w). (3.157)

Remarkably, it is known from [FFR94] that θW (Z(g)) ⊂ π0. This implies that the

image θW (Z) can be expressed as a polynomial in bk[−n], and applying the formula (3.157)

iteratively one finds

τ(ω, Gc(1)[−1]w
(1)
0 , . . . , Gc(M)[−1]w

(M)
0 , θW (Z))

= r(θW (Z))τ(ω, Gc(1)[−1]w
(1)
0 , . . . , Gc(M)[−1]w

(M)
0 )

= r(θW (Z))ψ(ω). (3.158)

Finally, these considerations lead to the following

Theorem 3.4.1 ([FFR94]). If the Bethe ansatz equations (3.148) are satisfied, the

Schechtman-Varchenko (3.151) is an eigenvector of the operators ι(Z(u)) for any Z ∈ Z(g)

with eigenvalue r(θW (Z)),

ι(Z(u))ψ = r(θW (Z))ψ. (3.159)



CHAPTER 4

Gaudin models of affine type

In this chapter, we start by recalling the definition of Gaudin models of affine type,

describing some of their properties. We will continue by outlining the conjecture proposed

by [FF07, LVY18] on the form that the higher Hamiltonians should have. The main part

of the chapter is then occupied by the construction of the first non-trivial Hamiltonian for

the ŝl2-Gaudin model. We conclude by computing all other higher Hamiltonians up to

next-to-leading order for this model.

The content of this chapter is mainly based on the paper published in collaboration with

Charles Young [FY23].

4.1. Introduction

Given a finite Lie algebra g̊, one defines the loop algebra as the algebra of Laurent series

in a formal variable t with coefficient in g̊,

L(̊g) = g̊⊗ C((t)). (4.1)

One considers the extension

0 −! Ck −! g −! L(̊g) −! 0, (4.2)

where the one-dimensional element k is central, i.e. [k, ·] = 0.

The affine Kac-Moody algebra is defined by adjoining to this algebra a one-dimensional

derivation,

g = g̊⊗ C((t))⊕ Ck⊕ Cd, (4.3)

which obeys [d, k] = 0 and d = id⊗t∂t.
Consider a set of points {z1, . . . , zN}, N ∈ Z≥1 as the sites of the model. The algebra

of observables is now given by

Obs(g) := Ũ(g)⊗N , (4.4)

where Ũ(g) is a completion of the completed N -fold tensor product of the universal en-

veloping algebra U(g). The Hilbert space of the model is still defined as the tensor product

of Verma modules with highest weights {λ1, . . . , λN}. However, in order to obtain a well-

defined action of the algebra of observables on it, we need to require that its factors are

smooth g-modules, i.e.

g̊⊗ tnC[[t]]m = 0, (4.5)

69
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for any m ∈Mλ and sufficiently large n > 0.

The models are defined by their Gaudin Hamiltonians

Hi =

N∑
j=1
j ̸=i

k(i)d(j) + d(i)k(j) + κab
∑

n∈Z I
a(i)
−n I

b(j)
n

zi − zj
, i = 1, . . . , N, (4.6)

where we are using the notation Ian = Ia ⊗ tn, {Ia}a∈dim g̊ being a basis for g̊.

The analogue of the Bethe ansatz construction described in section 3.1.2 can be per-

formed also in this setting (for more details, cfr [Lac18]). To do that one can introduce

a set of auxiliary parameters w1, . . . , wM , distinct from the marked points, their colours

c(1), . . . , c(M) whose values k = 0, . . . , rank g̊ are the vertices of the Dynkin diagram, and

the Schechtman-Varchenko vector introduced in section 3.4.5. This vector turns out to

be an eigenvector for the Gaudin Hamiltonians if the same Bethe ansatz equations from

section 3.4.4 are satisfied. Up to this point, modulo minor technical changes, there are not

many differences from the finite-type case. However, as we will describe in the next sections,

things do become more intricate in the affine one, when one considers the construction and

diagonalisation of higher Hamiltonians.

4.1.1. Higher Hamiltonians as hypergeometric integrals. The natural question

one might ask is if also in the affine case it is possible to define higher Hamiltonians and,

if yes, how to characterise and diagonalise them. It turns out that both questions are

still unanswered to this day, as it is still not known how to generalise the Feigin-Frenkel-

Reshetikhin construction to this setting.

Nevertheless, some conjectures were put forward in the seminal work [FF07]. In order

to understand where they come from, we need to go back to the finite case. In the previous

chapter we have seen how the Bethe ansatz construction can be obtained by considering

restrictions of a certain functional on the tensor product of Wakimoto modules. There is

an even stronger result, which states that the spectrum of the Gaudin Hamiltonians can

be identified with the algebra of functions on the space of monodromy-free Lg̊-opers on the

Riemann sphere [Fre05a, MTV09, Ryb16].

The idea proposed in [FF07] is to assume that the spectrum of higher Hamiltonians in

the affine case can be again described by suitable functions on a space of affine opers. Some

further conjectures of how this might work, at least for the local Hamiltonians, were made in

[LVY18], where it was conjectured that the eigenvalues of higher local Hamiltonians of the

affine Gaudin models, as well as the Hamiltonians themselves, are given by hypergeometric-

type integrals on the spectral plane, namely

Q̂γ
n =

∫
γ

P(z)−n/2ςn(z)[0]dz, (4.7)

where n lives in a (multi)set of indices given by the exponents of the affine algebra g, P is

a certain multi-valued function defined by the data of the levels ki of the modules attached
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to the marked points zi, γ is a Pochhammer contour in the spectral plane around any two

of these points (see e.g. fig. 4.1) and ςn(z)[0] can be thought as the Hamiltonian density.

•
zj

•
zi

γ

Figure 4.1. An example of Pochhammer contour γ around any two marked points.

The key step in computing the higher Hamiltonians is to characterize these Hamiltonian

densities, which are obtained by defining a suitable state ςn(z) ∈ V for each given exponent n.

In order to do that, it is possible to exploit the general properties consistent Hamiltonians

must obey: they have to commute with the generators {Iαn }
α=1,...,dim g̊
n∈Z of the algebra g

defining the model as well as amongst themselves, where as usual g̊ denotes the underlying

finite algebra. As we will see in section 4.4.7, there requirements can be recasted in the more

convenient vertex algebra language, as follows

∆Iαn≥0ςm(z) = 0 mod twisted derivatives,

ςn(z)(0)ςm(z) = 0 mod twisted derivatives and translates,
(4.8)

where ∆Iαn≥0 represents the diagonal action of the positive modes of the generators of the

algebra g from section 3.1.1 and ςn(z)(0) is a vertex algebra zero-th product, as defined in

section 3.2.1.

As we will see in section 4.4.4, working up to twisted derivatives in the context of

hypergeometric integrals has a similar meaning to working up to total derivatives are in

the context of standard integration. Moreover, we work modulo translates since the zero-th

mode of a translate is by definition always zero (cfr. iii’).

The general expectation is that there exists a state ςm(z), for every exponent m of the

affine algebra g, and that it takes the following form

ςm(z) = ti1,...,im+1I
i1
−1(z) · · · I

im+1

−1 (z) |0⟩+ quantum corrections, (4.9)

where I(z) is as in eq. (3.10) and t is a certain symmetric invariant tensor of g̊. This

particular structure is justified by the semi-classical counterpart of these models, which

have been thoroughly studied [EHMM99, Eva01, LMV17]. In the very simplest cases,

including the cubic Hamiltonian in type ŝlM≥3, there are no quantum corrections needed

[LVY20].

Already in this case of the exponent n = 3, i.e. of quartic Hamiltonians, the direct

computations needed are very lengthy. This is especially true of the computations needed
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to show the mutual commutativity of the Hamilonians. For higher exponents n ≥ 5, direct

calculations become computationally difficult even with the aid of computer algebra. In

the last part of this chapter we will compute explicitly the next-to-leading order quantum

corrections of the leading term.

4.2. Vacuum Verma modules for ŝl2

In this section, we repeat some of the definitions from the previous chapter adapted to

the particular case of g = ŝl2.

4.2.1. Loop realization of ŝl2. We define the loop algebra L(sl2) = sl2 ⊗ C((t)) as

the algebra of Laurent series in a formal variable t with coefficient in the finite-dimensional

Lie algebra sl2. The Lie brackets on this algebra are given by

[a⊗ f(t), b⊗ g(t)] = [a, b]sl2 ⊗ f(t)g(t), (4.10)

where f(t) and g(t) are arbitrary Laurent series.

Let κ : sl2 × sl2 ! C denote the canonically normalized symmetric invariant bilinear

form on sl2. The extension by a one-dimensional central element Ck, gives rise to the affine

Lie algebra ŝl2, whose commutation relations are

[a⊗ f(t), b⊗ g(t)] = [a, b]sl2 ⊗ f(t)g(t)− (res tfdg)κ(a, b)k, (4.11)

[k, ·] = 0. (4.12)

We shall use the notation

an := a⊗ tn, for a ∈ sl2 and n ∈ Z, (4.13)

so that the commutation relations can be equivalently written as

[am, bn] = [a, b]n+m − nδn+m,0κ(a, b)k. (4.14)

We can add to this algebra a one-dimensional derivation d, such that [d, k] = 0 and [d, a ⊗
f(t)] = a⊗ t∂tf(t), for all a ∈ sl2 and f(t) ∈ C((t)). It is possible to show that this algebra

is isomorphic to the Kac-Moody algebra over C of type A
(1)
1 , see e.g. [Kac90, ch. 7].

4.2.2. ŝl2 as a Kac-Moody algebra. The Cartan matrix for the Kac-Moody algebra

of type A
(1)
1 is defined as A = (ai,j)

1
i,j=0 = (2δi,j − δi+1,j − δi−1,j)

1
i,j=0,

A =

(
2 −1

−1 2

)
. (4.15)

The Cartan decomposition is given by g = n−⊕h⊕n+. The Chevalley-Serre generators

are {ei}1i=0 ⊂ n+, {fi}1i=0 ⊂ n− while {α̌i}1i=0 ⊂ h and {αi}1i=0 ⊂ h∗ are respectively a basis

for the Cartan subalgebra of simple coroots of g and a basis for the dual Cartan subalgebra
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of simple roots of g. The latter are related via the canonical pairing between the Cartan

algebra and its dual, ⟨·, ·⟩ : h∗ × h! C

⟨αi, α̌j⟩ = ai,j . (4.16)

The fundamental commutation relations in g are

[x, ei] = ⟨αi, x⟩ei, [x, fi] = −⟨αi, x⟩fi,

[x, x′] = 0, [ei, fj ] = α̌iδij ,
(4.17)

where x, x′ ∈ h and i, j = 0, 1, together with the Serre relations

(adei)
1−aijej = 0, (adfi)

1−aijfj = 0. (4.18)

The Kac-Moody algebra g has a central element k =
∑1

i=0 α̌i, which spans a one-

dimensional centre. A basis for the Cartan subalgebra h is given by the coroots {α̌i}1i=0

together with the derivation element d, which by definition satisfies

⟨αi, d⟩ = δi,0. (4.19)

If we remove the zero-th row and column from A, we obtain the Cartan matrix corresponding

to the finite dimensional Lie algebra sl2, A = 2. This subalgebra of g is generated by e1 ∈ n+,

f1 ∈ n− and α̌1 ∈ h.

4.2.3. Local completion and vacuum Verma modules. For any k ∈ C, let us

define Uk(ŝl2) as the quotient of the universal enveloping algebra U(ŝl2) of ŝl2 by the two-

sided ideal generated by k − k. For each n ∈ Z≥0, let us introduce the left ideal Jn =

Uk(ŝl2) · (sl2 ⊗ tnC[t]). The inverse limit

Ũk(ŝl2) = lim −
n

Uk(ŝl2)
/
Jn (4.20)

is a complete topological algebra, called the local completion of Uk(ŝl2) at level k. With

this definition, the elements of Ũk(ŝl2) are possibly infinite sums of the type
∑

m≥0 am of

elements am ∈ Uk(ŝl2) which do truncate to finite sums when working modulo any Jn.

A module M over ŝl2 is said to be smooth if, for all a ∈ sl2 and all v ∈ M, anv = 0 for

sufficiently large n. A module M has level k if k−k acts as zero on M. Any smooth module

of level k over ŝl2 is also a module over the completion Ũk(ŝl2).

We can identify the subalgebra of positive modes sl2 ⊗ C[[t]]⊕ Ck ⊂ ŝl2 and introduce

the one-dimensional representation C |0⟩k defined by

(k− k) |0⟩k = 0, an |0⟩k = 0 for all n ≥ 0, a ∈ sl2. (4.21)

We define Vsl2,k
0 , the vacuum Verma module at level k, as the induced smooth ŝl2-module

Vsl2,k
0 = U(ŝl2)⊗U(sl2⊗C[[t]]⊕Ck) C |0⟩k (4.22)

This vector space is spanned by monomials of the form ap · · · bq |0⟩k, with a, . . . , b ∈ sl2 and

strictly negative mode numbers p, . . . , q ∈ Z<0. We call these vectors states.
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Let us denote by [T, ·] the derivation on Uk(ŝl2) defined by [T, an] = −nan−1 and

[T, 1] = 0. By setting T (X |0⟩k) = [T,X] |0⟩k for any X ∈ Uk(ŝl2), one can interpret T as a

translation operator T : Vsl2,k
0 ! Vsl2,k

0 . This space has the structure of a vertex algebra,

as described in section 3.2.3.

4.3. Construction of higher Hamiltonians

4.3.1. The algebra of observables. Let us introduce a set of complex numbers k =

{ki}Ni=1, where N ∈ Z>0 and ki ̸= −2 for all i = 1, . . . , N . Consider the following tensor

product of vacuum Verma modules

Vsl2,k
0 = Vsl2,k1

0 ⊗ · · · ⊗ Vsl2,kN

0 . (4.23)

This space can be interpreted as a module over the direct sum of N copies of ŝl2. Let us

denote by A(i) ∈ ŝl
⊕N

2 the copy of A ∈ ŝl2 in the ith direct summand.

Let us denote by C |0⟩k the one-dimensional vacuum representation of the “positive

modes” Lie subalgebra (sl2 ⊗ C[[t]] ⊕ Ck)⊕N ⊂ ŝl
⊕N

2 , defined by (k(i) − ki) |0⟩k = 0 and

a
(i)
n |0⟩k = 0 for all n ≥ 0, a ∈ sl2 and i = 1, . . . , N . Therefore Vsl2,k

0 is the induced

ŝl
⊕N

2 -module, namely

Vsl2,k
0 = U(ŝl

⊕N

2 )⊗U(sl2⊗C[[t]]⊕Ck)⊕N C |0⟩k . (4.24)

Repeating similar arguments to those of the previous sections, we can define Uk(ŝl
⊕N

2 )

as the quotient of U(ŝl
⊕N

2 ) by the two-sided ideal generated by k(i) − ki for all i = 1, . . . , N .

We have the isomorphism

Uk(ŝl
⊕N

2 ) ∼= Uk1
(ŝl2)⊗ Uk2

(ŝl2)⊗ · · · ⊗ UkN
(ŝl2). (4.25)

Again, we can introduce the left ideals JN
n ∈ Uk(ŝl

⊕N

2 ) generated by a
(i)
r for all r ≥ n,

a ∈ sl2 and i = 1, . . . , N . Let Ũk(ŝl
⊕N

2 ) = lim −Uk(ŝl
⊕N

2 )/JN
n be the inverse limit. This space

is a complete topological algebra and

Ũk(ŝl
⊕N

2 ) ∼= Ũk1
(ŝl2)⊗̂ · · · ⊗̂ŨkN

(ŝl2), (4.26)

where ⊗̂ denotes the completed tensor product. This space Ũk(ŝl
⊕N

2 ) is called the algebra

of observables of the Gaudin model.

The tensor product Vsl2,k
0 is again a vertex algebra. The state-field map Y (·, x) :

Vsl2,k
0 ! Hom(Vsl2,k

0 ,Vsl2,k
0 ((x))) is defined as in eqs. (3.63)–(3.65) but decorated with

the extra index (i).

Recall from section 3.1.1 the map ∆ : ŝl2 ↪! ŝl
⊕N

2 , which is the diagonal embedding of

ŝl2 into ŝl
⊕N

2 , defined as

∆x =

N∑
i=1

x(i), for all x ∈ ŝl2. (4.27)
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It extends to an embedding of the enveloping algebras, ∆ : U(ŝl2) ↪! U(ŝl
⊕N

2 ) ∼= U(ŝl2)
⊗N .

It is easy to check that

[∆Xm,∆Yn] = ∆[X,Y ]n+m − nδn+m,0κ(X,Y )

N∑
i=1

k(i), (4.28)

where κ is the non degenerate symmetric invariant bilinear form.

Therefore ∆ descends to an embedding of the quotients ∆ : U|k|(ŝl2) ↪! Uk(ŝl
⊕N

2 ),

where |k| =
∑N

i=1 ki, and hence of their completions

∆ : Ũ|k|(ŝl2) ↪! Ũk(ŝl
⊕N

2 ). (4.29)

4.3.2. sl2-invariant tensors. Let {Ia}3a=1 be a basis of sl2, and let {Ia}3a=1 be its

dual basis with respect to the non-degenerate symmetric invariant bilinear form. Let fabc

denote the structure constants, so that

[Ia, Ib] = fabcI
c. (4.30)

Here and in what follows we employ the summation convention on Lie algebra indices.

Thanks to the non-degeneracy of the bilinear form, we may suppose our basis is chosen in

such a way that

κ(Ia, Ib) = δab. (4.31)

By doing this, we no longer have to distinguish between upper and lower indices. The

structure constants are then

fabc = fabc = i
√
2ϵabc, (4.32)

where ϵabc is the usual Levi-Civita symbol. Concretely, in the defining representation we

have

I1 =
1√
2

(
0 1

1 0

)
I2 =

1√
2

(
0 −i
i 0

)
I3 =

1√
2

(
1 0

0 −1

)
. (4.33)

It is easy to check that eq. (4.31) holds, where κ(a, b) = tr(ab).

Recall that for any finite-dimensional Lie algebra g̊, a tensor t : g̊ × · · · × g̊ ! C is

invariant if

t([a, x], y, . . . , z) + t(x, [a, y], . . . , z) + · · ·+ t(x, y, . . . , [a, z]) = 0, a, x, y, z ∈ g̊, (4.34)

or equivalently, if its components ta1...an := t(Ia1 , . . . , Ian) satisfy

f ca1
bt

ba2...an + f ca2
bt

a1b...an + · · ·+ f can
bt

a1a2...b = 0, (4.35)

where the indices take values from 1 to dim g̊. In the case of sl2, the ring of invariant tensors

is generated by δab and fabc. We shall need the following syzygy relations between them:

fabcf cde = 2(δaeδbd − δadδbe), fabcfabd = −4δcd,

fabcδde − f bcdδae + f cdaδbe − fdabδce = 0.
(4.36)
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Note in particular the last of these, which will play a crucial role in the explicit calculations

of the next sections. It can also be generalized to higher rank tensors (see e.g. §369 F from

[NS93]).

4.4. Quartic Hamiltonian

4.4.1. Meromorphic states. Let us introduce a set {z1, . . . , zN} of N ∈ Z>0 points

zi ∈ C in the complex plane, chosen to be pairwise distinct, zi ̸= zj whenever i ̸= j. For

any element A ∈ ŝl2 we introduce the ŝl
⊕N

2 -valued meromorphic functions

A(z) :=

N∑
i=1

A(i)

z − zi
. (4.37)

We are allowed to take derivatives of such functions, which will be denoted by A′(z) or, in

general, for each p ≥ 0,

A[p](z) :=

(
d

dz

)p

A(z) =

N∑
i=1

(−1)pp!
A(i)

(z − zi)p+1
. (4.38)

Considering two of these functions with different spectral parameters, we obtain the following

commutation relations

[A[p](z), B[q](w)] =(−1)p+1(p+ q)!
[A,B](z)− [A,B](w)

(z − w)p+q+1

+

p∑
k=1

(−1)p+1−k

(
p

k

)
(p+ q − k)!

[A,B][k](z)

(z − w)p+q+1−k

−
q∑

k=1

(−1)p+1

(
q

k

)
(p+ q − k)!

[A,B][k](w)

(z − w)p+q+1−k
.

(4.39)

By taking the limit w ! z, we get the commutation relations for the same spectral param-

eter, namely

[A[p](z), B[q](z)] = − p!q!

(p+ q + 1)!
[A,B][p+q+1](z). (4.40)

We see that these A[p](z), for A ∈ ŝl2 and p ≥ 0, span a Lie algebra of ŝl
⊕N

2 -valued mero-

morphic functions of z with poles at the marked points.

It is helpful to be able to treat this as an abstract Lie algebra. Thus, let L denote the

Lie algebra over C with basis consisting of I
a[p]
n (z) and k[p](z), for n ∈ Z, p ∈ Z≥0 and

a ∈ {1, 2, 3} with the non-vanishing Lie brackets given by

[Ia[p]m (z), Ib[q]n (z)] = − p!q!

(p+ q + 1)!
(fabc I

c[p+q+1]
m+n (z)− nδabδm+n,0k

[p+q+1](z)). (4.41)

Let L+ denote the subalgebra generated by I
a[p]
n (z) for n ≥ 0, p ∈ Z≥0 and a ∈ {1, 2, 3},

and let

V := U(L)⊗U(L+) C |0⟩ (4.42)

denote the module over L induced from the trivial one-dimensional module C |0⟩ over L+.

We call V the space of meromorphic states. It is again a vertex algebra, with the same
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state-field map as above. For each z ∈ C \ {z1, . . . , zN}, one has the homomorphism of Lie

algebras L ! ŝl
⊕N

2 given by evaluating at z. It gives rise to a map V ! Vsl2,k
0 of vertex

algebras.

There is a bi-gradation of L in which X
[p]
−n(z) (for any X ∈ sl2) has weight (n, p + 1)

and k[p](z) has weight (0, p+ 1). This yields a bi-gradation of V

V =
⊕

n≥0,p≥0

Vn,p. (4.43)

For each n, let Vn := Vn,n denote the subspace of grade (n, n). We call elements of Vn

homogeneous meromorphic states of degree n.

4.4.2. Diagonal action of the zero modes of ŝl2. There is an evident diagonal

action of the Lie algebra ŝl2 on the L-module V, defined in the same way as the action on

Vsl2,k
0 in eq. (4.27). In particular, for any X ∈ sl2, the zero modes stabilize each subspace

Vn,p, namely

∆X0 : Vn,p ! Vn,p. (4.44)

An important fact is that every state in Vn properly contracted with an sl2-invariant

tensor vanishes under the diagonal action of the zero modes. This follows directly from the

defining property of invariant tensors in eq. (4.35). Let us denote with Vsl2
n the invariant

subspace. We can characterize this space for small n:

• for n = 0, Vsl2
0 = V0 = C |0⟩.

• for n = 1, Vsl2
1 = {0}. Indeed, elements of V1 are of the form taI

a
−1(z) |0⟩. Such an

element is in Vsl2
1 if and only if ta are the components of an sl2-invariant tensor of

rank 1. But there are no nonzero such tensors.

• for n = 2, Vsl2
2 has dimension 1 and it is spanned by the state

ς1(z) = δabI
a
−1(z)I

b
−1(z) |0⟩ . (4.45)

• for n = 3, Vsl2
3 has dimension 2 and it is spanned by the states

fabcIa−1(z)I
b
−1(z)I

c
−1(z) |0⟩ =fabc

1

2
(Ia−1(z)I

b
−1(z)− Ib−1(z)I

a
−1(z))I

c
−1(z) |0⟩

=− 1

2
fabcfabdId′−2(z)I

c
−1(z) |0⟩

=2Ic′−2(z)I
c
−1(z) |0⟩ ,

(4.46)

and

Ic−2(z)I
c
−1(z)k(z) |0⟩ . (4.47)
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• for n = 4, Vsl2
4 has dimension 14. Below, we will make use of the following explicit

choice of basis:

v1 := δ(abδcd)Ia−1(z)I
b
−1(z)I

c
−1(z)I

d
−1(z), v2 := fabcIa−2(z)I

b′
−1(z)I

c
−1(z),

v3 := Ia′′−3(z)I
a
−1(z), v4 := Ia−3(z)I

a′′
−1(z), v5 := Ia′′−2(z)I

a
−2(z),

v6 := Ia′−3(z)I
a′
−1(z), v7 := Ia′−2(z)I

a′
−2(z), v8 := Ia−3(z)I

a
−1(z)k

′(z),

v9 := Ia−2(z)I
a
−2(z)k

′(z), v10 := Ia′−3(z)I
a
−1(z)k(z),

v11 := Ia−3(z)I
a′
−1(z)k(z), v12 := Ia′−2(z)I

a
−2(z)k(z),

v13 := Ia−3(z)I
a
−1(z)k(z)

2, v14 := Ia−2(z)I
a
−2(z)k(z)

2.

(4.48)

Note that to write these terms we have to choose an ordering prescription. Here we sort level

first in ascending order from left to right and after that, for a given level, we sort derivatives

in descending order from left to right. For example fabcIa−2I
b′′
−2I

c′
−3 = fabcIc′−3I

b′′
−2I

a
−2 +

terms obtained from commutations.

4.4.3. Top terms. We can see from the above construction that in the case n = 2 and

n = 4, there is a particular state, that we will call top term, which is the state in Vsl2
n that

contains exactly n generators:

δabI
a
−1(z)I

b
−1(z) |0⟩ , δ(abδcd)I

a
−1(z)I

b
−1(z)I

c
−1(z)I

d
−1(z) |0⟩ . (4.49)

We do not have such state for n = 3, because we can always use the commutation relations

to reduce the number of generators, as shown in eq. (4.46). This pattern continues. Indeed,

notice that the universal enveloping algebra U(L) has an increasing filtration

F0U(L) ⊆ F1U(L) ⊆ · · · ⊆ U(L), (4.50)

in which the generators I
a[p]
n (z) count as +1 and the generators k[p](z) count as 0, cf. the com-

mutation relations of L in eq. (4.41). For example Ia−1(z)I
a′
−2(z) ∈ F2, and I

a
−1(z)I

a′
−2(z)k(z) ∈

F2 as well. It gives rise to a corresponding filtration, F0V ⊆ F1V ⊆ · · · ⊆ V, on the space V
of meromorphic states.

Observe that if v ∈ VN then v ∈ FNVN . We see that

v ≡ ti1...iN I
i1
−1(z) . . . I

iN
−1(z) |0⟩ mod FN−1VN ,

≡ t(i1...iN )I
i1
−1(z) . . . I

iN
−1(z) |0⟩ mod FN−1VN , (4.51)

for some sl2 tensor ti1,...,iN , where the brackets around the indices denote the operation of

symmetrization,

t(i1,...,in) =
1

n!

∑
σ∈Sn

tσ(i1)...σ(in), (4.52)

(and we may symmetrize without loss of generality because the non-symmetric pieces fall

into FN−1, as for example in eq. (4.46)). Let us call t(i1...iN )I
i1
−1(z) . . . I

iN
−1(z) |0⟩ the top term

of the state v ∈ VN .
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If this state v ∈ V is sl2-invariant, v ∈ Vsl2 , then t(i1...iN ) is a symmetric invariant tensor.

Nonzero such tensors exist only in even degrees, and up to rescaling they are, explicitly,

ti1,i2 = δi1i2

ti1,i2,i3,i4 = δ(i1i2δi3i4)

ti1,i2,i3,i4,i5,i6 = δ(i1i2δi3i4δi5i6)

. . .

In what follows, our interest is in meromorphic states v ∈ Vsl2 that have nonzero top

term (in other words states whose principal symbol has maximal degree) and that are sl2-

invariant.

4.4.4. Singular vectors up to twisted derivative. Let us define the twisted deriv-

ative operator of degree j ∈ Z with respect to the spectral parameter z,

D(j)
z =

(
∂z −

j

2
k(z)

)
. (4.53)

Note that this operator sends Vn,p ! Vn,p+1 in the bigradation we introduced above.

We will say that a vector v ∈ Vsl2
n is singular up to twisted derivatives if for all x ∈ sl2

we have

∆xmv = 0 modD(n−1)
z Vn−m,n−1. (4.54)

for all non-negative modes xm, m ≥ 0. This defines a subspace

Vsing
n ⊂ Vsl2

n (4.55)

of vectors singular up to twisted derivatives.

Proposition 4.4.1. The space of singular vectors Vsing
2 is spanned by the quadratic

state ς1(z) defined in (4.45).

Proof. We need to show that

∆Irkς1(z) = 0 mod D(1)
z Gr

k(z), (4.56)

for some meromorphic states Gr
k ∈ V2−k,1, for all k ≥ 0 and r = 1, 2, 3. For k = 0 there is

nothing to check since ∆Ir0 ς1(z) = 0 identically, by the definition of Vsl2
2 . It is enough to

check the action of the first modes Ir1 , since any higher modes can be expressed in terms of

their brackets, i.e. Ir2 = − 1
4f

rbc[Ib1, I
c
1 ] etc. From direct calculations we get that

∆Ir1 ς1(z) = D(1)
z Gr

1(z), (4.57)

where

Gr
1(z) = −4Ir−1(z) |0⟩ . (4.58)

□

More non-trivially, for n = 4 we have the following result.
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Proposition 4.4.2. The space of singular vectors Vsing
4 is of dimension 7. A choice of

basis is given by the state

ς3(z) =
[
δ(abδcd)I

a
−1(z)I

b
−1(z)I

c
−1(z)I

d
−1(z) +

20

3
fabcI

a
−2(z)I

b′
−1(z)I

c
−1(z)

+
40

9
Ia−3(z)I

a′′
−1(z)−

20

3
Ia′′−2(z)I

a
−2(z) +

40

9
Ia′−3(z)I

a′
−1(z)

− 10

3
Ia′−2(z)I

a′
−2(z)−

20

3
Ia−3(z)I

a
−1(z)k

′(z)
]
|0⟩ ,

(4.59)

together with the double translate state

T 2
(
Ia′′−1(z)I

a
−1(z) |0⟩ − Ia′−1(z)I

a′
−1(z) |0⟩ −

3

4
Ia−1(z)I

a
−1(z)k

′(z) |0⟩
)

(4.60)

and the following twisted derivative states

D(3)
z

(
Ia−3(z)I

a′
−1(z) |0⟩

)
, D(3)

z

(
Ia′−3(z)I

a
−1(z) |0⟩

)
, D(3)

z

(
Ia′−2(z)I

a
−2(z) |0⟩

)
, (4.61)

D(3)
z

(
Ia−3(z)I

a
−1(z)k(z) |0⟩

)
, D(3)

z

(
Ia−2(z)I

a
−2(z)k(z) |0⟩

)
.

Proof. Let s(z) ∈ Vsl2
4 . We may write it in our basis (4.48),

s(z) =

14∑
i=1

ξivi(z) (4.62)

for some coefficients ξi ∈ C with i = 1, . . . , 14, and ask what conditions the requirement of

being singular up to twisted derivatives, (4.54), places on these coefficients. It is enough to

demand that

∆Irks(z) = 0 mod D(3)
z Gr

k(z) (4.63)

for some meromorphic states Gr
k(z) ∈ V4−k,3, for all k ≥ 0 and r = 1, 2, 3. For zero modes

there is nothing to check since ∆Ia0 s(z) = 0 exactly, by definition of Vsl2
4 . It is then enough

to check the action of first modes, Ir1 , since any higher modes can be expressed in terms of

their brackets, Ir2 = − 1
4f

rbc[Ib1, I
c
1 ] etc. So we are to check under what conditions

∆Ir1s(z) = D(3)
z Gr

1(z) (4.64)

for some Ga
1(z) ∈ V3,3. By direct calculation, one finds that solutions exist precisely if the

coefficient ξi obey the relations

ξ2 =
20

3
ξ1, ξ3 =

20

3
ξ1 − ξ4 + 2ξ5 + ξ6 − 2ξ7, ξ9 = −5

4
ξ1 −

3

8
ξ5 +

3

8
ξ7 −

2

3
ξ14,

ξ10 =
5

3
ξ1 +

3

2
ξ4 −

3

2
ξ5 −

3

2
ξ6 +

3

2
ξ7 + ξ8, ξ11 =

55

3
ξ1 −

3

2
ξ4 +

3

2
ξ5 −

3

2
ξ7 + ξ8,

ξ12 = −15

2
ξ1 −

3

4
ξ5 −

3

4
ξ7 −

4

3
ξ14, ξ13 = −55

4
ξ1 −

9

8
ξ5 +

9

8
ξ7 −

3

2
ξ8.

(4.65)
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When they do obey these relations, the required functions Gr
1(z) are given by

Gr
1(z) =

[
ρ1I

(a
−1(z)I

r
−1(z)I

a)
−1(z)

+ frab
(
ρ2I

a
−2(z)I

b′
−1(z) + ρ3I

a′
−2(z)I

b
−1(z) + ρ4I

a
−2(z)I

b
−1(z)k(z)

)
+ ρ5I

r
−3(z)k(z)

2 + ρ6I
r
−3(z)k

′(z) + ρ7I
r′
−3(z)k(z) + ρ8I

r′′
−3(z)

]
|0⟩ ,

(4.66)

where

ρ1 = −8

3
ξ1, ρ2 =

20

3
ξ1 − ξ4 + ξ5, ρ3 = ξ4 − ξ5 − ξ6 + 2ξ7,

ρ4 = −55

6
ξ1 −

3

4
ξ5 +

3

4
ξ7 − ξ8 −

4

3
ξ14 ρ5 =

55

6
ξ1 +

3

4
ξ5 −

3

4
ξ7 + ξ8, ρ6 = ξ4,

ρ7 = 5ξ1 − ξ4 +
3

2
ξ5 + ξ6 −

3

2
ξ7 +

8

3
ξ14, ρ8 = −100

9
ξ1 −

4

3
ξ5 −

2

3
ξ7.

The basis reported in the proposition can be obtained by the one defined by the restrictions

(4.65) by a change of basis. □

The proposition above is in agreement with the calculation of the quartic Hamiltonian

density S4(z) (the analogue of our ς3(z)), recently presented in [KLT24]. In the present

conventions, the latter is given by

S4(z) =
[
δ(abδcd)Ia−1(z)I

b
−1(z)I

c
−1(z)I

d
−1(z) +

20

3
fabcIa−2(z)I

b′
−1(z)I

c
−1(z)

− 40

9
Ia′′−3(z)I

a
−1(z)−

140

9
Ia′′−2(z)I

a
−2(z) +

40

3
Ia′−3(z)I

a′
−1(z)

− 10

3
Ia′−2(z)I

a′
−2(z) + 5Ia−2(z)I

a
−2(z)k(z)

2
]
|0⟩

(4.67)

and it does1 indeed lie in the space Vsing
4 .

4.4.5. Hamiltonian densities. Now, to state the main result of the paper, we need

two reintroduce rational functions of two different spectral parameters, z and w, cf. eq. (4.39)

and eq. (4.40).

Recall the Lie algebra L ≡ L(z) over C from section 4.4.1. Let L(z,w) be the Lie algebra

with generators I
a[p]
n (z), I

a[p]
n (w), k[p](z) and k[p](w) for a = 1, 2, 3, n ∈ Z and p ∈ Z≥0 and

1To match conventions, note that for us

δ(abδcd) =
1

3
(δabδcd + δacδbd + δadδbc) (4.68)

and in [KLT24] the tensor called τabcd3 is given by

τabcd3 =
1

16
(δabδcd + δacδbd + δadδbc) . (4.69)

We thank Sylvain Lacroix for clarifying discussions on this point.
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commutation relations

[Ia[p]m (z), Ib[q]n (w)] =(−1)p+1(p+ q)!
fabc (Icm+n(z)− Icm+n(w))− nδm+n,0δ

ab(k(z)− k(w))

(z − w)p+q+1

+

p∑
j=1

(−1)p+1−j

(
p

j

)
(p+ q − j)!

fabc I
c[j]
m+n(z)− nδn+m,0δ

abk[j](z)

(z − w)p+q+1−k

−
q∑

k=1

(−1)p+1

(
q

k

)
(p+ q − k)!

fabc I
c[j]
m+n(w)− nδn+m,0δ

abk[j](w)

(z − w)p+q+1−k
,

(4.70)

together with eq. (4.41) for the generators with parameter z and the analogue with parameter

w. This Lie algebra L(z,w) and its modules are defined over the ground ring C[(z − w)−1]

of polynomials in (z − w)−1. We have the vertex algebra V(z,w) defined analogously to

eq. (4.42) and the two obvious embedding maps of vertex algebras V ↪! V(z,w), which we

write as v 7! v(z) and v 7! v(w).

Moreover, there is a natural notion of “expanding around z = w”. Namely, there is a

homomorphism L(z,w) ! L(z)((w − z)) of Lie algebras over C[(z − w)−1] defined by

Ia[p]m (w) = Ia[p]m (z) + Ia[p+1]
m (z)(w − z) +

1

2
Ia[p+2]
m (z)(w − z)2 + . . . (4.71)

which is motivated by considering the Taylor expansion ιw−zA(w) of the function A(w) from

eq. (4.37). This gives rise to a map V(z,w) ! V(z)((w − z)). We say a state v ∈ V(z,w) is

regular at z = w modulo translates if there exists Z ∈ V(z,w) such that the image of v− TZ

under this map has no singularities in (z − w).

Recall from eqs. (4.45) and (4.59) the definitions of the quadratic state ς1 ∈ Vsing
2 and

of the vector ς3 ∈ Vsing
4 , respectively.

Theorem 4.4.1. The elements ς1 ∈ Vsing
2 and ς3 ∈ Vsing

4 obey the relations

ς1(z)(0)ς1(w) = (D(1)
z −D(1)

w )A1,1(z, w) + TB1,1(z, w), (4.72a)

ς1(z)(0)ς3(w) = (3D(1)
z −D(3)

w )A1,3(z, w) + TB1,3(z, w), (4.72b)

ς3(z)(0)ς1(w) = (D(3)
z − 3D(1)

w )A3,1(z, w) + TB3,1(z, w), (4.72c)

ς3(z)(0)ς3(w) = (3D(3)
z − 3D(3)

w )A3,3(z, w) + TB3,3(z, w), (4.72d)

where Ai,j(z, w) and Bi,j(z, w) are elements of V(z,w). Moreover, Ai,j(z, w), i, j ∈ {1, 3}, are
regular at z = w modulo translates.

Proof. The two statements of the theorem follow from direct calculations. In partic-

ular, when m = n = 1, we get

A1,1(z, w) =
8

z − w
Ia−2(z)I

a
−1(w) |0⟩ , B1,1(z, w) =

8

(z − w)2
Ia−1(z)I

a
−1(w) |0⟩ . (4.73)

We have computed A1,3(z, w), B1,3(z, w), A3,3(z, w) and B3,3(z, w) explicitly, with the aid

of the computer algebra system FORM [Ver13, KUVV13]. The expressions for A1,3(z, w)
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and B1,3(z, w), are given in appendix A. The expressions for A3,3(z, w) and B3,3(z, w) are

extremely lengthy (more that 500 terms in total), and we do not reproduce them here.

Once the expression of ς1(z)(0)ς3(w) is known, i.e. the functions A13(z, w) and B13(z, w)

are found, it can be shown that the theorem is automatically satisfied for the product

ς3(z)(0)ς1(w). This comes from the property of the nth product between two states a, b of a

vertex algebra, namely

a(n)b = −
∞∑
k=0

1

k!
(−1)k+nT k(b(n+k)a). (4.74)

Therefore, by swapping two states in a zeroth product, we obtain A31(z, w) = −A13(w, z)

and a series of terms which are nothing but translates and therefore can be absorbed in the

definition of B31(z, w) = −B13(w, z) +
∑∞

k=0(−1)kT k(ς1(w)(k+1)ς3(z)).

To prove the second part of the theorem one can expand according to eq. (4.71) and the

result follows from direct calculation. □

Having established this statement for the particular choice of quartic density ς3, we

automatically get the following property for any element of Vsing
4 . It is a slightly weaker

property, because the condition on the twisted derivative terms on the right hand side is

less rigid. As we shall see in section 4.4.7 below, it is sufficient for defining consistent

Hamiltonians.

Corollary 4.4.1. For any element v3 ∈ Vsing
4 , one has

ς1(z)(0)v3(w) = D(1)
z AI

1,3(z, w) +D(3)
w AII

1,3(z, w) + TB1,3(z, w), (4.75)

v3(z)(0)ς1(w) = D(3)
z AI

3,1(z, w) +D(1)
w AII

3,1(z, w) + TB3,1(z, w), (4.76)

v3(z)(0)v3(w) = D(3)
z AI

3,3(z, w) +D(3)
w AII

3,3(z, w) + TB3,3(z, w). (4.77)

where AI,II
i,j (z, w) and Bi,j(z, w) are elements of V(z,w). Moreover, AI,II

ij (z, w), i, j ∈ {1, 3},
are regular at z = w modulo translates.

Proof. We already know from Theorem 4.4.1 that there exists an element, ς3(z), sat-

isfying these relations. But we saw in Proposition 4.4.2 that every element v3(z) of Vsing
4 is

proportional to ς3(z) up to the addition of certain translates and twisted derivatives.

It follows from the property (4.74) that if we add to ς3(z) any translate then the state-

ment of Theorem 4.4.1 still holds, the only difference being a re-definition of the states

B(z, w). And it is evident that, if we add to ς3(z) any linear combination of the twisted

derivatives in eq. (4.61) then the resulting vector v3(z) still obeys the weaker relations given

above. (One might worry about introducing singularities at z = w, but note that for any

meromorphic states a(z) and b(z), the product a(z)(0)b(w) is regular at z = w, as is manifest

if we expand b(w) about w = z in the spectral plane before taking the vertex-algebra product:

a(z)(0)b(w) = a(z)(0) (b(z) + (w − z)b′(z) + . . . ) = a(z)(0)b(z)+(w−z)a(z)(0)b′(z)+ . . . . □
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4.4.6. Gaudin Hamiltonian. Let us define the following state at non-critical level,

i.e. ki ̸= −2,

s1(z) =
1

2

(
ς1(z) + 4D(1)

z ω(z)
)
∈ Vsl2,k

0 , (4.78)

where ς1(z) is now the image in Vsl2,k
0 of the density defined in (4.45) and where

ω(z) :=

N∑
i=1

1

z − zi

(
1

2(ki + 2)
κabI

a(i)
−1 I

b(i)
−1 |0⟩k

)
, (4.79)

the term in the brackets being the normalised Segal-Sugawara vector at site i, as defined in

eq. (3.67).

It is possible to show (see [LVY20]), that the operator (s1(z))(0) is the image in

Ũk(ŝl
⊕N

2 ) of
N∑
i=1

C(i)

2(z − zi)2
+

N∑
i=1

Hi

z − zi
∈ Ũ(sl⊕N ), (4.80)

where

C(i) := 2(k(i) + 2)d(i) + I
a(i)
0 I

a(i)
0 + 2

∑
n>0

I
a(i)
−n I

a(i)
n (4.81)

is the ith copy of the quadratic Casimir operator of g in Ũ(g⊕N ) andHi are the Hamiltonians

in (4.6). This is nothing but the generalisation of the operator (3.9) to the affine setting.

Theorem 4.4.2. Given the images in Vsl2,k
0 of the densities ςi, i ∈ {1, 3}, we have

s1(z)(0)ςi(w) = −1

2
D(1)

w A1,i(z, w) + T
(1
2
B1,i(z, w) + 2D(1)

z

ςi(w)

z − w

)
, (4.82)

with A1,i(z, w) and B1,i(z, w) being the images in Vsl2,k
0 of the meromorphic states in The-

orem 4.4.1.

Proof. The result follows from direct calculations, using the definitions of A1,1, B1,1,

A1,3, B1,3 in (4.73) and appendix A, respectively. □

As we will see in the next section, this requirement is sufficient to ensure the commu-

tativity of local Hamiltonians, arising from the densities ς1(z) and ς3(z), with the usual

quadratic Gaudin Hamiltonians which define the model.

4.4.7. Commuting Hamiltonians. In this section, we will simply recall the ideas

presented in [LVY18]. Consider two states X,Y ∈ Vsl2,k
0 and their formal zero modes

X(0), Y(0) ∈ Ũk(ŝl
⊕N

2 ). We have the following commutator formula, coming from eq. (3.27)

by setting m, k = 0,

[X(0), Y(0)] = (X(0)Y )(0). (4.83)

This means that if one is able to find a family of operators whose zeroth product vanishes

(or that can be expressed as a translation, since (TZ)(0) = 0 by definition), then their formal

zero modes form a commutative subalgebra of the algebra of observables Ũk(ŝl
⊕N

2 ).
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The meromorphic function which is obtained by acting with k(z) on the module Vsl2,k
0 ,

i.e. setting the central elements to numbers,

k(z) =

N∑
i=1

ki
z − zi

, (4.84)

has a special role and it is called the twist function of the model. Let us define also

P(z) :=

N∏
j=1

(z − zj)
kj . (4.85)

The function P is multi-valued. It becomes single-valued on a certain multi-sheeted cover of

C \ {z1, . . . , zN}. Let γ be any closed contour in this cover. For example, γ could be the lift

to this cover of a Pochhammer contour in C \ {z1, . . . , zN} around any two of the marked

points. Then Pn/2, for any integer n, is single-valued along γ, and one can compute the

following hypergeometric integral ∫
γ

P(z)−n/2f(z)dz. (4.86)

We have the following result from [LVY18]

Lemma 4.4.1. For any meromorphic function f(z) which is non-singular along γ∫
γ

P(z)−n/2D(n)
z f(z)dz =

∫
γ

d

dz
(P−n/2f(z))dz = 0, (4.87)

where D
(n)
z is the twisted derivative operator from eq. (4.53).

Let us now define the following object in Ũk(ŝl
⊕N

2 ),

Qγ
n =

∫
γ

P(z)−n/2ςn(z)(0)dz, (4.88)

for n = 1, 3, where ςn(z) are now the images in Vsl2,k
0 of the densities we have defined in the

previous section.

Proposition 4.4.3. The operators Qγ
n ∈ Ũk(ŝl

⊕N

2 ) commute amongst themselves, with

the generators of ŝl2, and with the quadratic Hamiltonians Hi.

Proof. We can use eq. (4.83) to compute

[Qγ
m, Q

η
n] =

∫
γ

∫
η

P(z)−m/2P(w)−n/2[ςm(z)(0), ςn(w)(0)]dzdw

=

∫
γ

∫
η

P(z)−m/2P(w)−n/2(ςm(z)(0)ςn(w))(0)dzdw,

(4.89)

where we used the commutator formula eq. (3.27). We know from Theorem 4.4.1 that the

zeroth product between those states can be expressed as a sum of twisted derivatives and

translations. It is now straightforward to check that the result of the commutator is zero:

on one side because (TX)(0) = 0 for every state X ∈ Vsl2,k
0 , on the other because of the

property (4.87).
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To show the second statement, consider the generators {Ian}3a=1 with n ∈ Z. Recalling

that Ian = (Ia−1 |0⟩
k
)(n) and the commutator formula from (3.27), we get

[Ian, Q
γ
m] =

∫
γ

P(z)−m/2[Ian, ςm(z)(0)]dz

=

∫
γ

∑
k≥0

(
n

k

)
P(z)−m/2(Iak ςm(z))(n−k)dz.

(4.90)

It is now straightforward to check that the result is zero, by using property (4.54), described

in the relevant cases in Propositions 4.4.1 and 4.4.2, and the property (4.87).

Using similar arguments, given the result from Theorem 4.4.2, one can show that the

charges also commute with the Gaudin Hamiltonians.

□

4.4.7.1. Fourier modes. Even though the operators Qγ
m we have just defined have all

the right characteristics to be well-defined Hamiltonians as pointed out in Proposition 4.4.3,

there is one last subtlety about these objects, related to the fact that we want their action

on highest weight modules to be diagonalisable. In fact, considering X
(i)
n ∈ Ũ(ŝl

⊕N

2 ) such

that degX
(i)
n = −n and setting deg(|0⟩k) = 0, induces a Z≥0 gradation on the product of

vacuum Verma modules, called the homogeneous gradation,

Vsl2,k
0 =

⊕
n≥0

Vsl2,k
0 [n]. (4.91)

Therefore if X ∈ Vsl2,k
0 [k], i.e. it has degree deg(X) = k, from Definition 3.2.1 the

degree of its modes is deg(X(m)) = k −m − 1. The objects we have constructed ςn(z), by

definition, have deg(ςn(z)) = n+ 1, therefore deg(ςn(z)(0)) = n.

This shows that in the homogeneous gradation these operators have non-zero degree:

this means that if we consider a module over U(ŝl
⊕N

2 ) which has a trivial subspace of grade

n for large n, then the operator
∫
γn

P(z)−n/2ςn(z)(0)dz has a non-zero eigenvalue.

A way to overcome this issue is to consider the notion of Fourier mode X[n] ∈ Ũ(ŝl
⊕N

2 ) of

the state X ∈ Vsl2,k
0 : they have the property that we are looking for, namely deg(X[n]) = n.

Additionally, they satisfy a similar relation to (4.83),

[X[0], Y[0]] = (X(0)Y )[0], (4.92)

with (TX)[0] = 0. One has (x
(i)
−1 |0⟩

k
)[n] = xn for x ∈ sl2 and it is possible to show that the

following recursive formula holds:

(A(−n)B)[m] = ((A⊗ f(t))B)[m] +
∑
k>0

ckA[−k]B[k+m] +
∑
k≤0

ckB[k+m]A[−k], (4.93)

where f(t) is the Taylor series in t := u− v given by

f =
1

(n− 1)!
(−∂u)n−1

( 1

u− v
− ιu−v

ev

eu − ev

)
. (4.94)
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and where the coefficients ck are defined by the requirement that
∑

k>0 ck(
z
w )k and−

∑
k≤0 ck(

z
w )k

are the expansions, for |z| < |w| and |w| < |z| respectively, of the function

1

(n− 1)!
(−w∂w)n−1 z

w − z
. (4.95)

The first relevant examples are

(A(−1)B)[m] =
1

2
(A(0)B)[m] −

1

12
(A(1)B)[m] + . . .

+
∑
k>0

A[−k]B[k+m] +
∑
k≤0

B[k+m]A[−k]

(4.96a)

(A(−2)B)[m] =
1

12
(A(0)B)[m] −

1

240
(A(2)B)[m] + . . .

+
∑
k>0

kA[−k]B[k+m] +
∑
k≤0

(−k)B[k+m]A[−k]

(4.96b)

where A,B ∈ Vsl2,k
0 . These formulae are the Fourier-analogue of the normal ordered product

formula eq. (3.31), and they allow one to compute by recursion the Fourier modes of a general

state X ∈ Vsl2,k
0 .

Property (4.92) means that if the vertex algebra zeroth product of X and Y vanishes

their Fourier zero-modes generate a commutative subalgebra, in homogeneous degree zero,

of Ũ(ŝl
⊕N

2 ). We let

Q̂γ
n =

∫
γ

P(z)−n/2ςn(z)[0]dz, (4.97)

for n = 1, 3. By the same logic as for Proposition 4.4.3, we have the following.

Proposition 4.4.4. The operators Q̂γ
n ∈ Ũk(ŝl

⊕N

2 ) have homogeneous degree 0 and they

commute amongst themselves, with the generators of ŝl2, and with the quadratic Hamiltoni-

ans Hi.

4.5. Higher local Hamiltonians to sub-leading order

In the previous section, we have shown that it is possible to define quartic local Hamil-

tonians which commute among themselves and with the quadratic ones, together with the

generators of sl2. Following the same steps, one could in principle try to construct the Hamil-

tonians for every exponent of ŝl2. However, the direct calculation (already lengthy in the

case of ς3(z)(0)ς3(w), as we noted above) becomes computationally very demanding. What

we shall do instead is work to next-to-leading order in a certain semiclassical limit, which

will at least give a strong consistency check on the existence of the expected Hamiltonian

densities.

Thus, let us introduce a formal parameter ℏ and work over C[[ℏ]]. In particular, all

vector spaces above are now to be regarded as modules over C[[ℏ]]. We consider the following

rescaled generators:

Ia −! Ĩa := ℏIa,
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k −! k̃ := k. (4.98)

With this re-scaling the commutation relations become

[Ĩa[p]m (z), Ĩb[q]n (z)] = − p!q!

(p+ q + 1)!
(ℏfabc Ĩ

c[p+q+1]
m+n (z)− ℏ2nδabδm+n,0k̃

[p+q+1](z)). (4.99)

At this point we can identify the various quantum corrections by their ℏ dependence and

work grade by grade. We shall work at next-to-leading order, i.e. the next order beyond

the usual semi-classical calculation of Poisson brackets. Thus, we consider the densities

of Hamiltonians up to and including the leading quantum corrections at order ℏ, and we

compute commutators up to and including terms of order ℏ2.

Remark. It is worth remarking that the classical limit, eq. (4.98), that we take is not

quite the standard one which recovers the usual classical Gaudin model (cf. [KLT24] for

a very complete discussion of that limit). From our present perspective this is simply for

computational convenience – this limit produces the simplest possible non-trivial check, and

had we rescaled the central charges there would be more potential quantum correction terms

already at next-to-leading order. But it might be interesting to consider this classical limit

in its own right.

Having introduced the formal parameter ℏ, there is a gradation on the enveloping alge-

bras in which Ĩa and ℏ have grade one and k̃ has grade zero. Recall that Vn denotes the

space of homogeneous meromorphic states of degree n, eq. (4.43). Let now Ṽn ⊂ Vn denote

the subspace consisting of states that are also of grade n in this new gradation (i.e. which

are sums of terms having exactly n factors of Ĩa or ℏ).

Proposition 4.5.1. Modulo terms of order ℏ2 there is, up to rescaling, exactly one state

ς̃2n−1 ∈ Ṽsl2
2n , n ∈ Z≥1, such that, for all x ∈ sl2 and m ∈ Z≥0,

∆xmς̃2n−1 = 0 mod ℏ2D(2n−1)
z V2n−m,2n−1, mod ℏ3V2n−m,2n. (4.100)

Explicitly, modulo terms in ℏ2V2n,

ς̃2n−1(z) = ti1,...,i2n Ĩ
i1
−1(z)Ĩ

i2
−1(z) · · · Ĩ

i2n
−1 (z) |0⟩

+ ℏ
n(2n+ 1)(2n− 2)

(2n− 1)
ti1,...,i2n−4

fabcĨa−2(z)Ĩ
b′
−1(z)Ĩ

(c
−1(z)Ĩ

i1
−1(z) · · · Ĩ

i2n−4)
−1 (z) |0⟩ .

(4.101)

Proof. Given the basis {Ir}3r=1 for sl2, we need to show that there exist a function

Gm(z) such that

∆Irmς̃2n−1(z) = D(2n−1)
z Gr

m(z) +O(ℏ3). (4.102)

For m = 0, this is always true thanks to the invariance of the tensor (4.35). For the same

reasons explained in the previous section, the only relevant check that one needs to make is
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the one for m = 1. From direct calculation, we get

Gr
1(z) = − 4n

(2n− 1)
ℏ2ti1,...,i2n−2

Ĩ
(r
−1(z)Ĩ

i1
−1(z) · · · Ĩ

i2n−2)
−1 (z) |0⟩ . (4.103)

Note that this result is in accordance with the exact ones obtained for the quadratic (n = 1)

and the leading order of quartic (n = 2) states, cf. eqs. (4.58) and (4.66). □

(Observe that this is consistent with Proposition 4.4.2 because the vectors in eqs. (4.60)

and (4.61) all come with factors of ℏ2 in the limit.)

We can now state the following theorem

Theorem 4.5.1. Let ς̃n(z) be as in eq. (4.101) above, for all odd m,n ∈ Z≥1. We have

ς̃m(z)(0)ς̃n(w) = (nD(m)
z −mD(n)

w )Am,n(z, w) + TBm,n(z, w) +O(ℏ3), (4.104)

where Am,n(z, w),Bm,n(z, w) ∈ Ṽ(z,w) are given by

Am,n(z, w) =ζm,n
ℏ2

z − w
ti1,...,im−1tj1,...,jn−1

× T
(
Ĩ
(a
−1(z)Ĩ

i1
−1(z) . . . Ĩ

im−1)
−1 (z)

)
Ĩ
(a
−1(w)Ĩ

j1
−1(w) . . . Ĩ

jn−1)
−1 (w) |0⟩+O(ℏ3),

(4.105)

Bm,n(z, w) =ζm,n
ℏ2

(z − w)2
ti1,...,im−1tj1,...,jn−1

× Ĩ
(a
−1(z)Ĩ

i1
−1(z) . . . Ĩ

im−1)
−1 (z)Ĩ

(a
−1(w)Ĩ

j1
−1(w) . . . Ĩ

jn−1)
−1 (w) |0⟩+O(ℏ3),

(4.106)

where

ζm,n =
2(m+ 1)(n+ 1)

mn
. (4.107)

Moreover, Am,n(z, w) is a regular function for z = w modulo translates and modulo terms

proportional to ℏ3.

Proof. The zeroth mode of ςm(z) ∈ Ṽm+1 can be inferred from a purely combinatorial

reasoning. Let us start with the top term ς̃TT
m (z) of (4.101). We know that computing the

zeroth mode, the number of generators in any term we get does not change, but the result

will be a state of total depth m and therefore we know there must be at least one generator

with a positive mode. We can also use the fact that we are working at leading order in ℏ,
therefore we could get at least one Ĩ0, one Ĩ1 or a term with two Ĩ0, every other term will be

O(ℏ3). The only thing to fix is the combinatorial factor describing the number of possible

ways to write such terms. The result is

ς̃TT
m (z)(0) = ti1,...,im+1

[ (m+ 1)!

(m− 1)!
Ĩi1−2(z)Ĩ

i2
−1(z) . . . Ĩ

im
−1(z)Ĩ

im+1

1 (z)

+
(m+ 1)!

(m)!
Ĩi1−1(z) . . . Ĩ

im
−1(z)Ĩ

im+1

0 (z)

+
(m+ 1)!(m− 1)

2(m− 1)!
Ĩi1−2(z)Ĩ

i2
−1(z) . . . Ĩ

im−1

−1 (z)Ĩim0 (z)Ĩ
im+1

0 (z)
]
+O(ℏ3).
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With similar arguments we can compute the zeroth mode of the correction term ς̃Cm(z) of

(4.101), the result reads

ς̃Cm(z)(0) =− ℏξ(m− 2)!ti1,...,im−3
fabcĨa−2(z)Ĩ

(b
−1(z)Ĩ

i1
−1(z) . . . Ĩ

im−3)
−1 (z)Ĩc0(z)

+ ℏξ2(m− 2)(m− 3)!ti1,...,im−3
fabcĨa−2(z)Ĩ

b′
−1(z)Ĩ

(i1
−1(z) . . . Ĩ

im−3)
−1 (z)Ĩc0(z)

+ ℏξ(m− 2)(m− 3)(m− 3)!ti1,...,im−5
fabcĨa−2(z)Ĩ

b′
−1(z)

× Ĩ
(c
−1(z)Ĩ

d
−1(z)Ĩ

i1
−1(z) . . . Ĩ

im−5)
−1 Ĩd0 (z)

− ℏξ(m− 2)(m− 3)(m− 3)!ti1,...,im−5
fabcĨd−2(z)Ĩ

a′
−1(z)

× Ĩ
(b
−1(z)Ĩ

d
−1(z)Ĩ

i1
−1(z) . . . Ĩ

im−5)
−1 (z)Ĩc0(z) +O(ℏ3)

where ξ = (m+2)(m+1)(m−1)
2m . At this point, acting with what we have obtained on ςn(w) and

using repeatedly the commutation relations (4.39), we obtain eq. (4.104). □



CHAPTER 5

Wakimoto construction for double loop algebras

and ζ-function regularisation

As we have seen in section 3.4, Wakimoto modules play a central role in the description

of the Bethe ansatz of Gaudin models of finite type. At the core of this construction, there

is the Feigin-Frenkel homomorphism of vertex algebras which allows one to realise an affine

Lie algebra in terms of free fields, also known as Wakimoto construction.

In this chapter, we are going to study a possible generalisation of the Feigin-Frenkel ho-

momorphism to the case of double-loop algebras. Following an observation made in [You21],

we will construct a vertex algebra depending on some parameter z, with the role of a regu-

lator. This will allow us to introduce a “renormalisation procedure” for the n-th products

of this space.

This chapter is entirely based on the recent paper [Fra24].

5.1. The Feigin-Frenkel homomorphism in the affine case

As we have described in section 3.4.1, one can introduce a free field realisation of an

affine Lie algebra in terms of a Heisenberg algebra. This was first proposed by Wakimoto

[Wak86] in the case of ŝl2, and later generalised to any affine Lie algebra by Feigin and

Frenkel in the untwisted case [FF90] and by Szczesny in the twisted one [Szc01].

For any simple Lie algebra g of finite type, this realisation can be mathematically for-

mulated as a vertex algebra homomorphism between the vacuum Verma module at critical

level over the corresponding untwisted affine algebra ĝ and the Fock space for the βγ-system

of free fields [FBZ04, Fre07],

θ : Vg,−h∨

0 −! M(n+). (5.1)

It is natural to ask whether this construction generalises to the case where g itself is

an untwisted affine algebra. Perhaps surprisingly, as shown in [You21], much of it does, as

follows.

The algebra g still admits a triangular decomposition, where the various subalgebras are

now infinite-dimensional and in general not nilpotent, namely g ∼= n− ⊕ h⊕ n+. We denote

by g̊ ∼= n̊− ⊕ h̊ ⊕ n̊+ the corresponding underlying finite-type Lie algebra, with ∆̊ its space

of roots. A basis of g is given by

{k, d} ∪ {Ja,n}a∈I;n∈Z, (5.2)

91
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where Ja,n := Ja ⊗ tn and I := (∆̊ \ {0}) ∪ {1, . . . , rank g̊}. Defining the index set A :=

{(a, 0)}a∈∆̊+
∪ (I × Z≥1), a basis for n+ is given by {Ja,n}(a,n)∈A.

Following [Kum02], one can define the pro-nilpotent algebra ñ+ =
∏

α∈∆+
gα. More

explicitly, this space can be defined as the inverse limit of a system of nilpotent Lie algebras

n+/n≥k, where

n≥k =
⊕

α∈∆+

ht(α)≥k

gα

is the ideal containing elements with degree higher than k. Here ht denotes the grade

of a root in the homogeneous gradation, i.e. ht(δn + α) = n, for n ∈ Z, where δ ∈ h∗

is the imaginary root, defined as the sum of all roots multiplied by their corresponding

Dynkin label. Therefore, elements of this completion are possibly infinite sums of the form∑
α∈∆+

xα, with xα ∈ gα, provided they truncate to finite sum modulo n≥k for any k.

Via the exponential map, one can similarly define the pro-group U as the inverse limit of

the groups exp(n+/n≥k), where the multiplicative structure is given by the Baker-Campbell-

Hausdorff formula and whose elements are infinite products of the form
∏

(a,n)∈A exp(x
a,nJa,n)

with xa,n ∈ C, provided they truncate to finite ones modulo terms exp(n+/n≥k) for any

k ∈ Z≥0.

One introduces a set of coordinatesXa,n : U ! C on U , such that for g =
∏

(a,n)∈A exp(xa,nJa,n),

Xa,n(g) = xa,n, which define the C-algebra of polynomial functions on U ,

O(n+) = C[Xa,n](a,n)∈A. (5.3)

In this setting, the Weyl algebra is the free unital C-algebra generated by Xa,n and

Da,n, quotiented by the relations

[Xa,n, Xb,m] = 0 = [Da,n, Db,m], [Da,m, X
b,n] = δbaδ

n
m. (5.4)

The space of derivations on O(n+), DerO(n+), is a subalgebra of the Weyl algebra with

elements of the form
∑

(a,n)∈A P
a,n(X)Da,n, where P

a,n(X) ∈ O(n+), where only a finite

number of terms is non-zero; the respective completion D̃erO(n+), is the algebra where this

last restriction is lifted.

There is a continuous homomorphism of Lie algebras

ϱ : g −! D̃erO(n+)

A 7−!
∑

(a,n)∈A

P a,n
A (X)Da,n (5.5)

The case of ŝl2 has been explicitly worked out in [You21]; as a novel example, consider

the Cartan-Weyl basis for sl3 given by {E±α}α∈∆̊+
where ∆̊+ = {α1, α2, α1 +α2}, together

with the Cartan generators {Hi}i=1,2. An explicit matrix representation is given in terms

of 3× 3 matrices, by the identification Eα1
7! e12, Eα2

7! e23, Eα1+α2
7! e13, E−α1

7! e21,

E−α2 7! e32, E−α1−α2 7! e31 and H1 7! e11 − e22, H2 7! e22 − e33, where eij is the matrix

with a 1 in position (i, j) and zero elsewhere.
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One finds for example

ϱ(Jα1,1) =Dα1,1 −
∑
k≥2

Xα2,k−1Dα1+α2,k −
∑
k≥3

X−α1,k−1D1,k

+
∑
k≥3

X−α1−α2,k−1Dα2,k + 2
∑
k≥3

X1,k−1Dα1,k −
∑
k≥3

X2,k−1Dα1 k (5.6)

+ (−X−α2,2Xα2,1 + . . . )Dα1,4 + (−X−α1−α2,2Xα2,1 + . . . )D1,4

+ (−X−α1−α2,2Xα2,1 + . . . )D2,4 + (X1,2Xα2,1 + . . . )Dα1+α2,4 + . . .

In appendix B we present more examples of this realisation.

5.1.1. The widening gap subalgebra. Let us now briefly comment on the general

structure of the terms in eq. (5.6). For each basis element Ja,n ∈ g one finds that

ϱ(Ja,n) = f c
ab

∑
k≥N

Xb,k−nDc,k +
∑

(b,m)∈A

Rb,m
Ja,n

(X)Db,m. (5.7)

for some N ∈ Z≥0 depending on a, b, c and n. Here, the first term is a quadratic infinite sum

in the generators and will be of central importance in the sections below. Indeed, this kind

of sums will be the main source of problems when trying to lift the homomorphism of Lie

algebras to one of vertex algebras. The second term is part of a subalgebra of D̃erO(n+),

of derivations of O(n+) with widening gap, DerO(n+). We will give a precise definition in

section 5.2.4, but roughly speaking these are those possibly infinite sums where the loop

degree of each X factor in the polynomial R grows “slower” than the loop degree of the

corresponding D, creating a gap between them that eventually widens. For example in the

case of ŝl3, the polynomial part of Rα1,7
Jα1,0

(X)Dα1,7 is

Rα1,7
Jα1,0

(X) =X−α2,2X−α1,2Xα1+α2,3 + 4X1,3(X1,2)2

− 4X2,2X1,3X1,2 + (X2,2)2X1,3

− 4(X1,1)2X−α1,2Xα1,3 − (2X1,1)2X−α1−α2,2Xα1+α2,3

− 8X1,3X1,2(X1,1)2 + . . . (5.8)

and one sees that each of these terms is a product of monomials with loop degree strictly

less than ⌊7/2⌋; this is part of a pattern, and the gap, n − n/2 = n/2 grows unboundedly

with n. We define the map

ν : g −! D̃erO(n+)

Ja,n 7−! f c
ab

∑
k≥max(0,n)

Xb,k−nDc,k,
(5.9)

where f c
ab are the structure constants of g̊.1

1From the definition, if a ∈ ∆̊+, Xa,0 is part of the coordinate system on U , while if a ∈ ∆̊− or

a ∈ {1, . . . , rank g}, it is not. In order to keep this fact into account, one should really consider as the lower

bound of the sum in eq. (5.9) the expression max(η(b), n + η(a)), where η : (∆̊ ∪ {1, . . . , rank g}) ! {0, 1},
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The following theorem makes this observation more precise, showing that apart from

the leading monomial in each P a,n
Ja,n

(X), the remaining part always has widening gap:

Theorem ([You21]). For all (a, n) ∈ I × Z,

ϱ(Ja,n)− ν(Ja,n) =:
∑

(b,m)∈A

Rb,m
Ja,n

(X)Db,m ∈ DerO(n+), (5.10)

where R ∈ O(n+).

It is important to stress that the widening gap part may contain finite sums and in par-

ticular, because of definition eq. (5.9), finite sums of quadratic terms of the form Xa,nDa,n.

5.1.2. Vertex algebras and splitting map. Following the finite-type construction,

the next natural step would be to consider the corresponding vertex algebras and repeat the

same construction as above. As before, one can define the vacuum Verma module over the

central extension by K of the loop algebra of g, g ⊗ C[s, s−1], which naturally carries the

structure of a vertex algebra. We denote it by Vg,K
0 , where Vg,K

0 [1] ≃ g, where we are using

the notation from eq. (3.62).

In what follows we use the following convention: the loop mode of the original untwisted

affine algebra g is always written as a subscript, while the double loop mode, i.e. the vertex

algebra mode, is in square brackets. We have used a similar notation in eq. (3.98).

Similarly to the finite-type construction, one also defines the Fock module for the βγ-

system on n+, M(n+), which has the structure of a vertex algebra. Having in mind the idea

of embedding expressions like the one in eq. (5.6), we need to enlarge this space by allowing

infinite sums, hence we have to work in a certain completion of this space, M̃(n+).

As before, from (5.5) one can introduce a map of vector spaces

ϑ : Vg,K
0 ! M̃(n+), (5.11)

from the vacuum Verma module over the double loop algebra of g at level K. As in the

finite-type case it turns out that non-negative products are not preserved. Nevertheless, the

remarkable result from [You21], is that also in the affine setting there exists an analogue of

the splitting map (3.128), namely

φ : g! ΩO(n+), (5.12)

where ΩO(n+) is the space of 1-forms. It maps

Ja,n 7!
∑

(b,m)∈A

QJa,n;b,m(X)dXb,m. (5.13)

It has the property that the map

ϱ+ φ : g! D̃erO(n+)⊕ ΩO(n+), (5.14)

defined as η(∆̊+) = 0, η(∆̊−) = 1, η({1, . . . , rank g}) = 1. In order to keep the notation cleaner, we will

implicitly assume this below.
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can be lifted to a linear map

ϑ : Vg,0
0 ! M̃(n+), (5.15)

from the vacuum Verma module over the loop algebra of g, i.e. at zero level, so that the

zeroth products of generators are preserved (cfr. [You21, Theorem 33]):

ϑ(Ja,n[−1] |0⟩)(0)ϑ(Jb,m[−1] |0⟩) = ϑ(Ja,n[−1] |0⟩(0) Jb,m[−1] |0⟩) (5.16)

Unfortunately, the space M̃(n+) is not a vertex algebra. For example, the would-be first

products may result in ill-defined divergent sums. Consider the state a =
∑

a∈I,k≥0 γ
a,k[0]βa,k[−1] |0⟩;

the first product of this element with itself would be

a(1)a =
∑

a∈I,k≥0

γa,k[0]βa,k[−1] |0⟩(1)
∑

b∈I,j≥0

γb,j [0]βb,j [−1] |0⟩

=
∑

a∈I,k≥0

∑
b∈I,j≥0

γa,k[1]βa,k[0]γ
b,j [0]βb,j [−1] |0⟩ =

∑
a∈I

∑
k≥0

1 |0⟩ , (5.17)

which clearly diverges. The quadratic infinite sums we saw above also suffer from this

problem. In the next sections, we solve this problem by suitably “renormalising” these

products.

5.2. The vertex Lie algebra M̂z[≤ 1]

In order to define a regularisation procedure to cure the expressions above, we need to

define the appropriate space we will work with. To do this, we now proceed by introducing

a regulating parameter in the commutation relations of the algebra. The Fock module over

this algebra has the structure of a vertex algebra. Finally, we will suitably complete this

space to obtain the vertex Lie algebra M̂z[≤ 1], which is our object of interest.

5.2.1. Heisenberg algebra and Fock module. Let g be an affine Kac-Moody al-

gebra with triangular decomposition g ≃ n− ⊕ h ⊕ n+, whose underlying finite algebra is

denoted by g̊. Let A = {(a, 0)}a∈∆̊+
∪ (I × Z≥1) be an index set indexing a basis of n+,

where ∆̊+ is the set of positive roots of g̊ and I = (∆̊ \ {0}) ∪ {1, . . . , rank g̊}.
Let z be a formal parameter. We denote by C[z], the polynomial ring in z with complex

coefficients. Given M,N ∈ Z and (a,m) ∈ A, consider the free unital associative algebra Hz

generated by βa,m[M ], γa,m[N ] and 1, quotiented by the ideal generated by the commutation

relations
[βa,m[M ],βb,n[N ]] = 0, [γa,m[M ],γb,n[N ]] = 0,

[βa,m[M ],γb,n[N ]] = zmδN+M,0δ
b
aδ

n
m1.

(5.18)

This algebra can be seen as a “deformation” of the Heisenberg algebra H, that can be

recovered by taking the limit z ! 1. We introduce the parameter z with the role of regulator :

its meaning will be clear in the following sections.

In this section, unless otherwise stated, we work over the ring C[[z]] of formal power

series. As we will see, in certain special cases we can work over C[z] or C(z).
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This algebra represents a system of free fields as it can be decomposed into Hz
∼=

H+
z ⊗ H−

z , where

H−
z ≃C {γa,m[N ],βa,m[N − 1]}(a,m)∈A;N≤0, (5.19)

H+
z ≃C {γa,m[N ],βa,m[N − 1]}(a,m)∈A;N>0, (5.20)

are called the creation and annihilation subalgebras, respectively.

Introducing a vacuum vector |0⟩, we call Mz the induced Hz-module annihilated by H+
z ,

on which 1 |0⟩ = |0⟩.
Denoting by Q the root lattice of g, there is the Z×Q gradation of Hz and consequently

ofMz, in which βa,n[N ] has grade (N,α) and γa,n[N ] has grade (N,−α), whenever Ja,n ∈ gα

and |0⟩ has degree (0, 0). The natural depth gradation of Mz is given by

Mz =

∞⊕
i=0

Mz[i] (5.21)

and a corresponding filtration Mz[≤K] =
⊕K

i=0 Mz[i] for K ≥ 0.

More explicitly, the space Mz[0] is spanned by elements of the form R(γ[0]) |0⟩, while
Mz[1] by finite linear combinations of elements of the form

P (γ[0])βa,m[−1] |0⟩+Q(γ[0])γa,m[−1] |0⟩ (5.22)

where P,Q,R are polynomials in C[γa,n[0]](a,n)∈A.

5.2.2. Vertex algebra structure on Mz. The space Mz is called the Fock module of

the βγ-system of free fields and it has the structure of a vertex algebra over C[z], as defined
in section 3.2.1. The state-field-map Y is

Y : Mz ! EndMz((x)), A 7! Y (A, x) :=
∑
k∈Z

A[k]x−k−1 (5.23)

satisfying the axioms i–iv, where the kth-mode is the map in End(Mz) denoted by

Mz ! EndMz, a 7! a[k], k ∈ Z. (5.24)

The fields are

βa,n(x) :=
∑
k∈Z

βa,n[k]x
−k−1, γa,n(x) :=

∑
k∈Z

γa,n[k]x−k, (5.25)

where βa,n[k] := (βa,n[−1] |0⟩)(k) and γa,n[k] := (γa,n[0] |0⟩)(k−1). Composite fields are

obtained by using iteratively eq. (3.29). The translation map is defined as follows

Tγa,n[N ] |0⟩ = −(N − 1)γa,n[N − 1] |0⟩ , Tβa,n[N ] |0⟩ = −Nβa,n[N − 1] |0⟩ . (5.26)

for N ∈ Z≤0 and T |0⟩ = 0.
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5.2.3. Completion of the Fock module. Having in mind to lift the homomorphism

in eq. (5.5) to the vertex algebra case, we also need to be able to work with certain infinite

sums.

This is achieved by working in a suitable completion of the space Mz. This means that

infinite sums will be allowed provided they truncate to finite ones, modulo terms containing

βa,m and zm, for m big enough.

The explicit construction goes as follows. Let us denote by H−
z,≥k the two-sided ideal in

H−
z generated by {βa,m[N ] : m ≥ k,N ∈ Z}. Let

Iz[≤M ]k := Mz[≤M ] ∩ (H−
z,≥k |0⟩), (5.27)

for someM ∈ Z≥0. Therefore, Iz[≤M ]k is the subspace of Mz[≤M ] spanned by monomials

of depth less or equal toM in the creation operators with some factor βa,m[N ], with m ≥ k,

N ∈ Z. One has

Iz[≤M ]0 ⊃ Iz[≤M ]1 ⊃ Iz[≤M ]2 ⊃ . . . (5.28)

with
⋂∞

i=0 Iz[≤M ]i = {0}. One defines the completed subspaces

M̃z[≤M ] := lim −
k

Mz[≤M ]/Iz[≤M ]k. (5.29)

To give an element of this inverse limit means to give an element of each space of the

inverse system, in a manner compatible with the inclusion maps between them. In this

sense one allows infinite sums: every element of the sum is well-defined because each of its

truncations is well-defined. Finally, one can consider a completion in the depth direction,

from the system of inclusions

M̃z[0] ⊂ M̃z[≤ 1] ⊂ . . . (5.30)

by taking the direct limit

M̃z := lim−!
M

M̃z[≤M ]. (5.31)

Any element of M̃z is therefore a well-defined element in M̃z[≤ M ] for some M . We have

the following result:

Proposition 5.2.1. The space (M̃z[≤ 1], |0⟩ , T, Y (•, x)) is a vertex Lie algebra.

Proof. The results follows from the fact that each space Mz[≤ 1]/Iz[≤ 1]k has the

structure of a vertex Lie algebra over C[z]/zkC[z], with k ∈ Z≥0. Therefore, the inverse

limit eq. (5.29) defines a vertex algebra over the inverse limit of rings C[z]/zkC[z], which is

the ring of power series C[[z]]. □

For example, for p(z), q(z) ∈ C[[z]], one would get

(p(z)
∑
k≥1

γa,k−1[0]βb,k[−1] |0⟩)(1)q(z)
∑
j≥0

γa,j+1[0]βb,j [−1] |0⟩
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= p(z)q(z)
∑
k≥1

∑
j≥1

γa,k−1[1]βb,k[0]γ
c,j+1[0]βd,j [−1] |0⟩

= −δadδcbp(z)q(z)
∑
k≥1

z2k−1 |0⟩ , (5.32)

whose k-truncations are all well defined over C[z]/zkC[z], k ∈ Z≥0.

From this simple example we see the fact mentioned above: when z ! 1, the vertex

algebra structure breaks down since ill-defined quantities start to appear.

5.2.4. States with widening gap. We now restrict the space M̃z, by excluding all

those sums that give rise to infinite power series in z, in such a way that the vertex algebra

structure is preserved. This follows by extending the idea of widening gap introduced in

[You21] to this setting.

A family of polynomials {P a,n}(a,n)∈A in C[γb,m](b,m)∈A has widening gap if for all

K ≥ 1, there exists a n ∈ Z>0, such that for all n ≥ n

P a,n(γ) ∈ C[γb,m : m < n−K, b ∈ I]. (5.33)

Define Mz ⊂ M̃z, as the space spanned by sums of the form∑
(ai,mi)i=1,...,n∈A

P a1,m1(γ) · · ·P an,mn(γ)βa1,m1
[−N1] · · ·βan,mn

[−Nn] |0⟩ (5.34)

where Ni ∈ Z>0, i = 1, . . . , n and the polynomials P ai,mi(γ) have widening gap. By

construction, we have that Mz ⊂ Mz, since any finite sum has obviously a widening gap.

We have the following useful result,

Lemma 5.2.1. Given a collection of polynomials with widening gap {P b,m(γ)}(b,m)∈A,

βa,n[N ]P b,m(γ) |0⟩ = zn
∂P b,m(γ)

∂γa,n[−N ]
|0⟩ (5.35)

is again a collection of polynomials with widening gap, with (a, n) ∈ A and N ∈ Z≥0.

The following statement characterises the space of states with widening gap

Lemma 5.2.2. The space (Mz[≤1], |0⟩ , T, Y (•, z)) is a vertex Lie algebra.

The proof is essentially the same of [You21, Lemma 21], with the addition of the

regulator which is this setting does not produce any particular difference. As a matter of

fact, when taking the limit z ! 1, the vertex Lie algebra structure is not spoiled.

5.2.5. The space M̂z[≤ 1]. Recall from section 5.1.1 that the image of the element

Ja,n ∈ g under the map ϱ from eq. (5.5) contains sums that don’t develop a widening gap,

namely the image of the map ν from eq. (5.9). To take care of these terms, in this section

we introduce a slightly bigger space obtained by adjoining the specific type of infinite sums

from eq. (5.9).
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Define by Oz = C(z)[γa,n[0]](a,n)∈A the ring of polynomials in the generators γa,n[0],

a ∈ I with coefficients in C(z), the ring of rational functions.

We define the space of quadratic infinite sums Qz as follows

Qz :=

 ∑
k≥max(0,n)

zαkγa,k−n[0]βb,k[−1] |0⟩ : α ∈ Z≥0, n ∈ Z

 , (5.36)

which clearly are sums that do not develop a widening gap.

Working now over C(z), we introduce the direct sum

M̂z[≤1] := Qz ⊕Mz[≤1] ⊂ M̃z[≤1]. (5.37)

Elements in M̂z[0] are finite sums of terms R(γ) |0⟩, R(γ) ∈ Oz, while elements in M̂z[1] are

of the form ∑
k≥max(0,n)

zαkγa,k−n[0]βb,k[−1] |0⟩

+
∑

(a,n)∈A

P a,n(γ)βa,n[−1] |0⟩+
∑
b,m

Qb,m(γ)γb,m[−1] |0⟩ ,
(5.38)

where the second possibly infinite sum is over a family of polynomials P a,n(γ) ∈ Oz with

widening gap, while the last sum is finite and Q(γ) ∈ Oz.

5.2.6. Vertex Lie algebra M̂z[≤ 1]. Extending the definition of the modes of the

states from section 5.2.2 to this space, we see that some products can generate infinite

power series in z. In particular, we find that the first products between quadratic infinite

sums have coefficients in C[[z]]:

(
∑

k≥max(0,n)

zαkγa,k−n[0]βb,k[−1] |0⟩)(1)
∑

j≥max(0,m)

zβjγc,j−m[0]βd,j [−1] |0⟩

=
∑

k≥max(0,n)

∑
j≥max(0,m)

zαkzβjγa,k−n[1]βb,k[0]γ
c,j−m[0]βd,j [−1] |0⟩

=− δadδ
c
bδm+n,0z

−n(β+1)
∑

k≥max(0,m+n)

zk(α+β+2) |0⟩ (5.39)

− δadδ
c
bδm+n,0z

−n(β+1)

max(0,m+n)−1∑
k≥max(0,n,m+n)

zk(α+β+2) |0⟩ . (5.40)

In the last step, note that the second sum is quadratic but finite, hence it is a well defined

element in C[z] ⊂ C(z). Conversely, the first term is an infinite sum in C[[z]]. Crucially,

we can regard it as the expansion of a rational function for |z| < 1. By doing this, we can

rewrite the first term as∑
k≥max(0,m+n)

zk(α+β+2) =
zmax(0,m+n)(α+β+2)

1− zα+β+2
∈ C(z). (5.41)

As a result, we have the following
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Proposition 5.2.2. Regarding infinite sums as the small-z expansions of rational func-

tions, (M̂z[≤1], |0⟩ , T, Y (•, x)) is a vertex Lie algebra over C(z).

Proof. We first show that the products on M̂z close over C[[z]].
Since we are considering the first two graded subspaces of M̂z[0] and M̂z[1], we restrict

our analysis on the only two non-trivial products on this space: the (0) and (1) product.

In more explicit terms, for f ∈ M̂z[0] and u, v ∈ M̂z[1], we have the following possible

non-trivial combinations

f(0)u ∈ M̂z[0], u(0)f ∈ M̂z[0], u(0)v ∈ M̂z[1], u(1)v ∈ M̂z[0]. (5.42)

Moreover, we just need to focus on cross products, i.e. products between elements in

Qz and Mz[≤ 1], and products of two infinite quadratic sums in Qz. The closure of the

products between elements in Mz[≤1] follows from the fact that it already has the structure

of a vertex Lie algebra, as pointed out in Lemma 5.2.2.

Let us start considering the (0) products. It is easy to show that expressions like

(Qz)(0)R(γ) |0⟩ and (Qz)(0)R(γ)γ[−1] |0⟩ or those with the factors flipped close in M̂z[≤ 1]

for any element R(γ) ∈ Oz, as they give rise to finite sums of polynomials of depth 0 or 1

which are well-defined elements in M̂z[≤1], respectively.

We need to show the closure for (Qz)(0)Qz and (Qz)(0)Mz[≤1]. The former reads

(
∑

k≥max(0,n)

zαkγa,k−n[0]βb,k[−1] |0⟩)(0)
∑

j≥max(0,m)

zβjγc,j−m[0]βd,j [−1] |0⟩

=
∑

k≥max(0,n)

∑
j≥max(0,m)

zαkzβjγa,k−n[0]βb,k[0]γ
c,j−m[0]βd,j [−1] |0⟩

+
∑

k≥max(0,n)

∑
j≥max(0,m)

zαkzβjγa,k−n[1]βb,k[−1]γc,j−m[0]βd,j [−1] |0⟩

=+ δcbz
−m(α+1)

∑
k≥max(0,m,m+n)

z(α+β+1)kγa,k−(m+n)[0]βd,k[−1] |0⟩

− δadz
−n(β+1)

∑
k≥max(0,n,m+n)

z(α+β+1)kγc,k−(m+n)[0]βb,k[−1] |0⟩

=δcbz
−m(α+1)

∑
k≥max(0,m+n)

z(α+β+1)kγa,k−(m+n)[0]βd,k[−1] |0⟩

− δadz
−n(β+1)

∑
k≥max(0,m+n)

z(α+β+1)kγc,k−(m+n)[0]βb,k[−1] |0⟩

+ δcbz
−m(α+1)

max(0,m+n)−1∑
k≥max(0,m,m+n)

z(α+β+1)kγa,j−(m+n)[0]βd,k[−1] |0⟩

− δadz
−n(β+1)

max(0,m+n)−1∑
k≥max(0,n,m+n)

z(α+β+1)kγc,j−(m+n)[0]βb,k[−1] |0⟩ (5.43)

In the last step, we have further decomposed the sums into two terms that manifestly

live in Qz, while the rest are finite sums. Note en passant the reason why in the definition
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(5.36) we had to include the power of zα; indeed, setting α, β = 0, we see that the first two

terms in the last expression would not be well-defined.

Consider now the product between one element in Qz and one infinite sum with widening

gap in Mz[1],

(
∑

k≥max(0,m)

zαkγa,k−m[0]βb,k[−1] |0⟩)(0)
∑

(c,n)∈A

P c,nβc,n[−1] |0⟩

=
∑

k≥max(0,m)

zαkγa,k−m[0]βb,k[0]
∑

(c,n)∈A

P c,nβc,n[−1] |0⟩

+
∑

k≥max(0,m)

zαkγa,k−m[1]βb,k[−1]
∑

(c,n)∈A

P c,nβc,n[−1] |0⟩

=
∑

k≥max(0,m)

∑
(c,n)∈A

zk(α+1) ∂P
c,n

∂γb,k
γa,k−m[0]βc,n[−1] |0⟩

−
∑

k≥max(0,m)

∑
(c,n)∈A

zk(α+1)−mδk−m,nδ
a
cP

c,nβb,k[−1] |0⟩ (5.44)

The first sum is well defined because, from Lemma 5.2.1, it has widening gap. The second

sum is non-zero only if n > −m, for all n,m ∈ Z: this ensures that the combination k = n+m

is non-negative, and therefore also the second sum develops widening gap.

Let us consider now the (1) product. We need to show the closure only for products of

elements of depth 1, namely (Qz)(1)Qz and (Qz)(1)Mz[1]. The first case is

(
∑

k≥max(0,n)

zαkγa,k−n[0]βb,k[−1] |0⟩)(1)
∑

j≥max(0,m)

zβjγc,j−m[0]βd,j [−1] |0⟩

=
∑

k≥max(0,n)

∑
j≥max(0,m)

zαkzβjγa,k−n[1]βb,k[0]γ
c,j−m[0]βd,j [−1] |0⟩

=− δadδ
c
bδm+n,0z

−n(β+1)
∑

k≥max(0,n,m+n)

zk(α+β+2) |0⟩ (5.45)

Consider now the product between one element in Qz and one infinite sum with widening

gap in Mz[1],

(
∑

k≥max(0,m)

zαkγa,k−m[0]βb,k[−1] |0⟩)(1)
∑

(c,n)∈A

P c,nβc,n[−1] |0⟩

=
∑

k≥max(0,m)

∑
(c,n)∈A

zαkγa,k−m[1]βb,k[0]
∑

(c,n)∈A

P c,nβc,n[−1] |0⟩

=−
∑

k≥max(0,m)

∑
(c,n)∈A

zk(α+2)−nδk−m,nδ
a
c

∂P c,k−m

∂γb,k
|0⟩

(5.46)

Since this sum is finite, it represents a well-defined element in M̂z[0]. All other combinations

of elements give rise to well-defined elements in M̂z[≤1].
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This shows that the products close on M̂z[≤1] over C[[z]]. In particular, since M̃z[≤ 1]

has the structure of a vertex Lie algebra (cfr. Proposition 5.2.1), this implies that M̂z[≤ 1]

is a vertex subalgebra of M̃z[≤ 1] over C[[z]], as all axioms (i)-(iv) are satisfied.

These products also close on M̂z[≤ 1] over C(z), when regarding infinite sums as expan-

sions of rational functions. Indeed, looking at the calculations above, the only difference is

in the first product between quadratic states in eq. (5.45), which reads

(
∑

k≥max(0,n)

zαkγa,k−n[0]βb,k[−1] |0⟩)(1)
∑

j≥max(0,m)

zβjγc,j−m[0]βd,j [−1] |0⟩

= −δadδcbδm+n,0z
−n(β+1)

zmax(0,n)(α+β+2)

1− zα+β+2
+

max(0,m+n)−1∑
k≥max(0,n,m+n)

zk(α+β+2)

 |0⟩ , (5.47)

To finally prove the statement, one has to ensure that the vertex Lie algebra axioms

are still satisfied after regarding infinite sums as expansions of rational functions. This

is the case for vacuum, translation and skew-symmetry as they are all equality involving

single products. More subtle is the case for Borcherds’ identities, since nested products

appear. However, as pointed out above, resummation is only needed when computing the

first products of quadratic states. Writing down explicitly the identities (3.70) for all possible

combinations of the products (5.42), we find that the only non-trivial identity which presents

a nesting of first products is

u(1)(v(1)w)− v(1)(u(1)w) = (u(1)v)(1)w, (5.48)

for u, v, w ∈ Qz. However, as the first product of such states is proportional to the vacuum

and the action of positive modes on the vacuum is zero, this identity is trivially satisfied. □

5.3. Regularising the products

In sections 5.2.3 and 5.2.4, we defined the completion M̃z of the Fock module of a

Heisenberg algebra and we restricted it to the subspace Mz[≤ 1] of sums with widening

gap which has the structure of a vertex Lie algebra. Then, in the section above we have

introduced the space of main interest for this work, the vertex Lie algebra M̂z[≤ 1] over

C(z), which is spanned by a specific type of quadratic infinite sums and possibly infinite

sums with widening gap. We will now proceed to regularise the products.

5.3.1. ζ-function regularisation. For any given expression in C(z), we introduce the
following regularisation procedure

reg : C(z)! C (5.49)

defined as follows

i) perform the transformation z ! ey;

ii) power expand the resulting term for small values of y;
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iii) regard the result as the ratio of Laurent series, which is again a Laurent series;

iv) remove the singular terms and perform the limit y ! 0, i.e. z ! 1 to remove the

regulator. This is equivalent to extracting the constant term of the series obtained.

As an example, consider the following

z3

1− z2
⇝

e3y

1− e2y
(5.50)

⇝
(1 + 3y + 9y2/2 + . . . )

1− 1− 2y − 2y2 − . . .
= − 1

2y

(1 + 3y + . . . )

(1 + y + . . . )
(5.51)

⇝ − 1

2y
(1 + 3y + . . . )(1− y + . . . ) = − 1

2y
− 1 +O(y)⇝ −1 (5.52)

where each arrow corresponds to one of the steps above. Therefore we would write

reg

[
z3

1− z2

]
= −1. (5.53)

In particular, for any polynomial or rational function which is regular at z = 1, this procedure

is equivalent to the evaluation z = 1. For this reason, roughly speaking, we can regard this

procedure as a “renormalised” version of the limiting procedure z ! 1.

5.3.2. Regularisation of the first products. Recall from eq. (5.14) the definition

of the Lie algebra map

ϱ+ φ : g! D̃erO(n+)⊕ ΩO(n+). (5.54)

We have the embedding into the Fock space

ȷ : D̃erO(n+)⊕ ΩO(n+) ↪! M̂z[≤ 1] (5.55)

by simply replacing Xa,n with γa,n[0], Da,n with βa,n[−1] and dXa,n with γa,n[−1].

By identifying Vk,0
0 [1] ≃ g and then composing the Lie algebra map (5.54) with the

embedding eq. (5.55) we obtain a map

ϑ := ȷ ◦ (ϱ+ φ) : Vg,0
0 [≤ 1] −! M̂z[≤ 1]. (5.56)

More explicitly, any element Ja,n[−1] |0⟩ ∈ Vg,0
0 [1] gets mapped to

f c
ab

∑
k≥max(0,n)

γb,k−n[0]βc,k[−1] |0⟩

+
∑

(b,m)∈A

Rb,m
Ja,n

(γ)βb,m[−1] |0⟩+
∑

(b,m)∈A

QJa,n;b,m(γ)γb,m[−1] |0⟩ .
(5.57)

where Rb,m
Ja,n

(γ) = ȷ(Rb,m
Ja,n

(X)) from eq. (5.10) and QJa,n;b,m is the image of ȷ ◦ φ, cfr.

eq. (5.13), while |0⟩ 7! |0⟩.
We have the following

Lemma 5.3.1. For any two states Ja,n[−1] |0⟩ , Jb,m[−1] |0⟩ ∈ Vg,0
0 [≤ 1] one has

reg[ϑ(Ja,n[−1] |0⟩)(0)ϑ(Jb,m[−1] |0⟩)] = reg[ϑ(Ja,n[−1] |0⟩(0) Jb,m[−1] |0⟩)]. (5.58)
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The proof is essentially the same of [You21, Theorem 33]. In particular, the fact that

there are no possible double contractions implies that there will never be terms of the form

q(z) |0⟩, with q ∈ C(z). For this reason, the action of the regularisation procedure is simply

to compute the limit z ! 1, i.e. it is equivalent of working in the unregulated setting.

We will now move our attention to first products. As illustrated above, in this case dou-

ble contractions can appear and the regularisation procedure becomes of central importance.

The main result of this chapter is the following

Theorem 5.3.1. For any two states Ja,n[−1] |0⟩ , Jb,m[−1] |0⟩ ∈ Vg,0
0 [≤ 1] one has

reg[ϑ(Ja,n[−1] |0⟩)(1)ϑ(Jb,m[−1] |0⟩)] = 0. (5.59)

Proof. The proof occupies section 5.4. □

As an example, consider the elements from Vŝl2,0
0

JE,2[−1] |0⟩ ϑ
7−! βE,2[−1] |0⟩ −

∑
k≥5

γF,k−2[0]βH,k[−1] |0⟩+ 2
∑
k≥5

γH,k−2[0]βE,k[−1] |0⟩+ . . .

JF,−2[−1] |0⟩ ϑ
7−! −14γE,2[−1] |0⟩ −

∑
k≥1

γE,k+2[0]βH,k[−1] |0⟩+ 2
∑
k≥1

γH,k+2[0]βF,k[−1] |0⟩+ . . .

(5.60)

where we only wrote the quadratic infinite sums and the other terms that could contribute

with terms of the form C(z) |0⟩ in the computation of first products; the dots denote all

other terms with widening gap. Their first product is

(βE,2[−1] |0⟩ −
∑
k≥5

γF,k−2[0]βH,k[−1] |0⟩+ 2
∑
k≥5

γH,k−2[0]βE,k[−1] |0⟩+ . . . )(1)

(−14γE,2[−1] |0⟩+
∑
k≥1

γE,k+2[0]βH,k[−1] |0⟩ − 2
∑
k≥1

γH,k+2[0]βF,k[−1] |0⟩+ . . . )

=(βE,2[1]−
∑
k≥5

γF,k−2[1]βH,k[0] + 2
∑
k≥5

γH,k−2[−1]βE,k[0] + . . . )

(−14γE,2[−1] |0⟩+
∑
k≥1

γE,k+2[0]βH,k[−1] |0⟩ − 2
∑
k≥1

γH,k+2[0]βF,k[−1] |0⟩+ . . . )

=(−14z2 − 4
∑
k≥5

z2k−2) |0⟩+ · · · = (−14z2 − 4
z8

1− z2
) |0⟩+ . . . . (5.61)

In the last line, the dots would correspond to terms which are not of the form C(z) |0⟩.
However, the theorem above ensures that they give trivial contribution.

Applying the regularisation procedure to this expression, we obtain

− 14z2 − 4
z8

1− z2
⇝ −14e2y − 4

e8y

1− e2y

⇝ − 1

2y

(
− 14

1 + 2y + . . .

1 + y + . . .
+ 14

1 + 4y + . . .

1 + y + . . .
− 4

1 + 8y + . . .

1 + y + . . .

)
=

14

2y
(1 + 2y + . . . )(1− y + . . . )− 14

2y
(1 + 4y + . . . )(1− y + . . . )



5.4. PROOF OF THE MAIN THEOREM 105

− 4

2y
(1 + 8y + . . . )(1− y + . . . )⇝ 0 (5.62)

Remark. It might be tempting to think that one could use this procedure to system-

atically regularise the products of the vertex Lie algebra M̂z[≤1] as follows

[i]:= reg ◦(i) : M̂z[≤1]× M̂z[≤1]! M̂[≤ 1], (5.63)

and conclude that Lemma 5.3.1 and Theorem 5.3.1 define a homomorphism of vertex Lie

algebras. However, the space with these new products has not the structure of a vertex Lie

algebra, since Borcherds’ identities are in general not satisfied.

5.4. Proof of the main theorem

The proof of the theorem makes use of the doubling procedure introduced in [You21].

For the sake of completeness, we will first recall the main ideas of that construction, which

will be used below.

5.4.1. The doubling trick. Recall from section 5.1.2 that it is not possible to lift the

Lie algebra homomorphism at the vertex algebra level because first products are in general

not well-defined.

The so-called doubling trick was introduced in order to make sense of such products and

construct a genuine homomorphism of vertex algebra.

The idea is that the problem can be solved by suitably “glueing together” the algebra

D̃erO(n+) with a “negative copy” of itself, D̃erO(n−) acting on the polynomial algebra

O(n−) = C[Xa,n](a,n)∈A− , with A− := (α, 0)α∈∆̊−
∪I×Z≤−1. With a construction analogous

to the one outlined in the previous subsection, one can define DerO(n−), its completion

D̃erO(n−) and the subalgebra of elements with widening gap DerO(n−). Also, one defines

the space O := C[Xa,n](a,n)∈I×Z, and accordingly the completion D̃erO and the subalgebra

of terms with widening gap D̃erO and DerO.

By using the involution map τ : D̃erO ! D̃erO, with the property of exchanging

D̃erO(n+) with D̃erO(n−) and vice-versa, one defines

ρ := ϱ+ τ ◦ ϱ ◦ σ : g! D̃erO(n+)⊕ D̃erO(n−) ↪! D̃erO (5.64)

where σ : g ! g is the Cartan involution, with the property of exchanging n+ with n−,

namely

σ(JEα,n) = JFα,−n, σ(JHi
, n) = −JHi,−n. (5.65)

One can prove a similar result to section 5.1.1, now adapted to the doubled case:

Lemma 5.4.1. For all (a, n) ∈ I × Z

ρ(Ja,n)− f c
ab

∑
k∈Z

Xb,k−nDc,k :=
∑

(b,m)∈I×Z

Rb,m
Ja,n

(X)Db,m ∈ DerO (5.66)

where R ∈ O.
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The most important feature is that the infinite quadratic sum now runs over all k ∈ Z.
Let us make an explicit example, in order to understand what this realisation looks like.

Consider the element JE,1 ∈ ŝl2. It is realised as

ρ(JE,1) =−
∑
k≥3

XF,k−1DH,k + 2
∑
k≥3

XH,k−1DE,k +
∑

(b,m)∈A

+Rb,m
E,1(X)Db,m︸ ︷︷ ︸

ϱ(JE,1)

−
∑
k≤−1

XF,k−1DH,k + 2
∑
k≤−1

XH,k−1DE,k +
∑

(b,m)∈A−

−Rb,m
F,−1(X)Db,m︸ ︷︷ ︸

τ◦ϱ◦σ(JE,1)

=−
∑
k∈Z

XF,k−1DH,k + 2
∑
k∈Z

XH,k−1DE,k +
∑

(b,m)∈A

+Rb,m
E,1(X)Db,m

+
∑

(b,m)∈A−

−Rb,m
F,−1(X)Db,m +

2∑
k=0

XF,k−1DH,k − 2

2∑
k=0

XH,k−1DE,k

=−
∑
k∈Z

XF,k−1DH,k + 2
∑
k∈Z

XH,k−1DE,k +
∑

(b,m)∈I×Z

Rb,m
E,1(X)Db,m (5.67)

where
∑

(b,m)∈A−
−Rb,m

F,−1(X)Db,m = τ ◦ ϱ ◦ σ(
∑

(b,m)∈A
+Rb,m

E,1(X)Db,m). In the second-

to-last step one “fills the gap” between the semi-infinite sums in the positive and neg-

ative directions, which is the reason for the appearance of a finite number of quadratic

compensating terms. The sum
∑

(b,m)∈I×ZR
b,m
E,1(X)Db,m =

∑
(b,m)∈A

+Rb,m
E,1(X)Db,m +∑

(b,m)∈A−
−Rb,m

F,−1(X)Db,m+finite quadratic compensating terms in the last line is precisely

the r.h.s. of eq. (5.66).

As before, D̃erO can be naturally embedded into the “doubled” Fock space of the βγ-

system M̃d and DerO into Md ⊂ M̃d, by the identification Xa,n 7! γa,n[0] and Da,n 7!

βa,n[−1].

The main advantage of the glueing procedure is that one can now regard the infinite

sums of quadratic terms
∑

k∈ZX
a,k−nDa,k as new abstract generator Sab,n of the loop algebra

gl(̊g)[t, t−1], with commutation relations

[Sab,m,S
c
d,n] = δcbS

a
d,n+m − δadS

c
b,n+m. (5.68)

Let D be the derivation element for the homogeneous gradation of this algebra, obeying

[D,Sab,n] = nSab,n. One has the homomorphism g̊[t, t−1]! gl(̊g)[t, t−1], given by

Ja,n 7! f c
ab Sbc,n, n ∈ Z, (5.69)

where we are using the index summation convention for the Lie algebra indices.

This can be extended to the whole affine algebra by declaring

k 7! 0, d 7! D. (5.70)
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One can then introduce the loop algebra D = L(gl(̊g)[t, t−1] ⋊ CD), with generators

Sab,n[N ] and D[N ], where a, b ∈ I and n,N ∈ Z with the following commutation relations

[Sab,n[N ],Scd,m[M ]] = δcbS
a
d,n+m[N +M ]− δadS

c
b,n+m[N +M ]

[D[N ],Sab,n[M ]] = nSab,n[N +M ]
(5.71)

Introducing a vacuum vector |0⟩, one defines the vacuum Verma module Vgl(̊g)[t,t−1]⋊CD,0
0

over this loop algebra at level zero. The tensor product of D⋉ H modules,

M := Md ⊗ Vgl(̊g)[t,t−1]⋊CD,0
0 , (5.72)

has the structure of a vertex algebra.

As in the finite-type case, lifting the homomorphism of Lie algebras ρ to one of vertex

algebras from Vg,k
0 to M, does not preserve the non-negative products and therefore does

not define a homomorphism of vertex algebras. However, one has the doubled analogue of

the map eq. (5.12)

ϕ : g −! ΩO, (5.73)

where ΩO is the space of one forms dXa,n, such that the map ρ + ϕ can be lifted to a

homomorphism of vertex algebras

θ : Vg,0
0 −!M, (5.74)

where the level of the vacuum Verma module has to be set to the very particular value k = 0.

5.4.2. Undoubling. In order to prove our statement, we need to make contact between

the double setting and the undoubled one.

There is the embedding map p : M ! M̃d, mapping the abstract generators to doubly

infinite sums, namely

Sab,n[−1] |0⟩ p
7−−−−−!

∑
k∈Z

γa,k−n[0]βb,k[−1] |0⟩ , (5.75)

D[−1] |0⟩ p
7−−−−−!

∑
k∈Z

kγa,k[0]βa,k[−1], |0⟩ (5.76)

and acting as the identity on the widening gap subspace Md ⊂ M. We can introduce the

projectors onto the positive and negative subspaces

π+ : M̃d ! M̃(n+), π− : M̃d ! M̃(n−), (5.77)

defined in the obvious way. However, recall that “overlapping terms” with both positive and

negative loop modes, like γa,1[0]βb,−1[−1] |0⟩, are also well defined states in M̃d. Hence, we

also define π0 : M̃d ! M̃d as follows

π0 := idM̃d
−π+ − π−. (5.78)
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We define the compositions p+ := π+ ◦ p : M! M̃(n+), p− := π− ◦ p : M! M̃(n−) and

p0 := π0 ◦ p : M! M̃d, and therefore we have

p = p+ + p− + p0. (5.79)

In particular, by the definition of M, we have p+(M) ⊆ M̂z(n+), because the elements in

Vgl(̊g)[t,t−1]⋊CD,0
0 are mapped to semi-infinite sums that can always be regarded as elements

of Qz in eq. (5.36) setting α = 0, while elements in Md are mapped to Mz(n+). Recall from

section 5.2 that this space is a vertex Lie algebras over C(z) when regarding infinite sums

as the expansion for small z of some rational functions. Similarly, one can repeat similar

arguments for the image p−(M) ⊆ M̂z(n−), finding that it is a vertex Lie algebra over C(z−1)

when regarding infinite sums as the large-z expansions of rational functions. This allows

us to employ the same regularisation procedure as described in section 5.3 to regularise the

products on both spaces.

In particular, we have the following result, which relates the values of regularised rational

functions in z and z−1,

Lemma 5.4.2. The regularisation map reg is invariant under the inversion map ϖ :

z 7! z−1, i.e. reg[f(z)] = reg[ϖ(f(z))], for any f ∈ C(z).

Proof. We denote by {z1, . . . , zn} ⊂ C the set of poles of f ∈ C(z) and by {k1, . . . , kn}
their multiplicities. By partial fraction decomposition, we can write

f(z) =

n∑
i=1

fi(z)

(z − zi)ki
+ f0(z) (5.80)

where fi ∈ C[z], i = 0, . . . , n. Recall that by definition, the regularisation procedure is

essentially the evaluation z ! 1, whenever this does not produce ill-defined quantities.

Hence, if zi ̸= 1 one can explicitly evaluate the limit z ! 1. In this case, since z = 1 is a

fixed point for the map ϖ, the result will not change under inversion.

Consider now the case when zi = 1 is one of the poles. We have

1

(z − 1)ki
, (5.81)

where, without loss of generality, we set fi(z) = 1. Recall the expansion

1

1− ey
= −

∑
k≥0

Bk

k!
yk−1, (5.82)

where Bk are the k-th Bernoulli numbers [Lep99]. By performing the steps i) - iii) on this

expression, we obtain

1

(z − 1)ki
⇝

(−1)ki

(1− ey)ki
=

∑
j≥0

Bj

j!
yj−1

ki

:= y−ki

∑
j≥0

cjy
j

ki

. (5.83)
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The constant term can be obtained by extracting the coefficient of the ki-th power in y of

the series in brackets, which will have the following form∑
{j1,...,jki

}

cj1 · · · cjki
yj1+···+jki , (5.84)

where the sum is over all the tuples of reals {j1, . . . , jki
}, with the constraint

∑ki

i=1 ji = ki.

For example, if ki = 1, the only tuple one can choose is {j1} = {1} and the constant term

is just c1. If ki = 2 the tuples are {j1, j2} = {1, 1}, {0, 2}, {2, 0}; plugging the values in

eq. (5.84) we obtain c21 + 2c0c2 as constant term.

Repeating analogous steps for the same expression where we first send z 7! z−1, we get

1

(z−1 − 1)ki
⇝

(−1)ki

(1− e−y)ki
=

∑
j≥0

(−1)j−1Bj

j!
yj−1

ki

:= y−ki

∑
j≥0

(−1)j−1cjy
j

ki

.

(5.85)

and using the same notations as above the constant term will have the form∑
{j1,...,jki

}

(−1)j1+···+jki
−kicj1 · · · cjki

yj1+···+jki . (5.86)

Since we have the constraint
∑ki

i=1 ji = ki, the sign disappears. Therefore the constant

terms from eq. (5.83) and eq. (5.85) agree. This concludes the proof. □

We can now compute first product in the doubled setting, without abstract generators,

using the regulation procedure, as defined in the following lemma

Lemma 5.4.3. For any x, y ∈ M[≤ 1], we have

p(x(1)y) := reg[p+(x)(1)p+(y)] + reg[p−(x)(1)p−(y)] + lim
z!1

[p0(x)(1)p0(y)] (5.87)

where reg is the regularisation procedure introduced in eq. (5.49).

Proof. We need to check all different possible combinations of products, namely when

both x and y are in Vgl(̊g)[t,t−1]⋊CD,0
0 , when they are both in Md[≤ 1] and the mixed case.

Consider Md[≤ 1](1)Md[≤ 1]. In this case, the embedding map p acts on this space

as the identity, by definition. The vertex algebra products are all well-defined, since Md

is a vertex subalgebra over C, hence the regularisation procedure is simply the evaluation

at z ! 1. Therefore, the right-hand side of eq. (5.87) is just the decomposition of such

products relatively to the maps (5.78).

For the mixed case, note that Md[≤ 1] is a vertex algebra ideal in M[≤ 1], and therefore

Vgl(̊g)[t,t−1]⋊CD,0
0 (1)Md[≤ 1] ⊂ Md[≤ 1]. Moreover, we have

p(Sab,n[−1] |0⟩)(1)p(
∑

(c,m)∈I×Z

P c,m(γ)βc,m[−1] |0⟩)

=
∑
k∈Z

γa,k−n[0]βb,k[−1] |0⟩(1)
∑

(c,m)∈I×Z

P c,m(γ)βc,m[−1] |0⟩
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=
∑
k∈Z

γa,k−n[1]βb,k[0]
∑

(c,m)∈I×Z

P c,m(γ)βc,m[−1] |0⟩ (5.88)

= −
∑
k∈Z

∑
(c,m)∈I×Z

z2k−n ∂P
c,m(γ)

∂γb,k[0]
δac δk−n,m |0⟩ = −

∑
(c,m)∈I×Z

δac z
2m+n ∂P c,m(γ)

∂γb,n+m[0]
|0⟩ ,

which is precisely the same result one would obtain without embedding the two terms,

considering the additional regulated commutation relations

[Sa
b,n[N ],γc,m[M ]] = zmδcbγ

a,m−n[N +M ],

[Sa
b,n[N ],βc,m[M ]] = −zmδacβb,m+n[N +M ]. (5.89)

Since the final expression in eq. (5.88) only involves a finite number of non-zero terms, the

regularisation procedure is just the evaluation z ! 1. As before, the right-hand side of

eq. (5.87) just follows from the decomposition eq. (5.79).

The only non-trivial check is when considering two elements in Vgl(̊g)[t,t−1]⋊CD,0
0 . In this

case, the left-hand side of eq. (5.87) is identically zero by definition. First, we decompose

each infinite sum, obtaining

p(Sab,n[−1] |0⟩) =
∑
k∈Z

γa,k−n[0]βb,k[−1] |0⟩ =
∑

k≥max(0,n)

γa,k−n[0]βb,k[−1] |0⟩

+
∑

k≤−max(0,n)

γa,k−n[0]βb,k[−1] |0⟩+
max(0,n)+1∑

k=−max(0,n)+1

γa,k−n[0]βb,k[−1] |0⟩

=p+(S
a
b,n[−1] |0⟩) + p−(S

a
b,n[−1] |0⟩) + p0(S

a
b,n[−1] |0⟩). (5.90)

where crucially the last sum is always finite. In the case n = 0, one should instead consider

(
∑

k>0 +
∑

k<0 +δk,0)γ
a,k[0]βb,k[−1] |0⟩. This however does not alter the proof.

Using this identity, we can compute the regularised first products of two such states

reg[p+(S
a
b,n[−1] |0⟩)(1)p+(Scd,m[−1] |0⟩)] + reg[p−(S

a
b,n[−1] |0⟩)(1)p−(Scd,m[−1] |0⟩)]

+ reg[p0(S
a
b,n[−1] |0⟩)(1)p0(Scd,m[−1] |0⟩)]. (5.91)

where no additional cross-terms appear, since they would only give trivial contractions. Since

the image p0(S
a
b,n[−1] |0⟩) is always a finite sum, the last term in the previous expression

has only a finite number of non-zero contractions. For this reason, strictly speaking, the full

regularisation procedure is not needed, as it just corresponds to the limit z ! 1.

Writing out explicitly the images of the various projectors and computing the products,

we obtain

−δm+n,0δ
a
dδ

c
b

reg
[ ∑
k≥max(0,n)

z2k−n
]
+ reg

[ ∑
k≤−max(0,n)

z2k−n
]
+ lim

z!1

max(0,n)−1∑
k=−max(0,n)+1

z2k−n


(5.92)
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Regarding the infinite sums as expansions of rational functions, we obtain

−δm+n,0δ
a
dδ

c
b

reg
[
ιz=0

z2max(0,n)−n

1− z2

]
+ reg

[
ιz=∞

z−2max(0,n)−n

1− z−2

]
+ lim

z!1

max(0,n)−1∑
k=−max(0,n)+1

z2k−n

 .

(5.93)

Finally, by explicitly performing the regularisation procedure, one finds

reg[p(Sab,n[−1] |0⟩)(1)p(Scd,n[−1] |0⟩)]

= −δm+n,0δ
a
dδ

c
b

(
1− 2max(0, n) + 2max(0, n)− 1

)
= 0. (5.94)

□

As a remark, note that the expression in eq. (5.93) is zero on the nose, even without

employing the full regularisation procedure outlined in section 5.3. However, as we will see

in the proof of the main theorem below, the remarkable cancellations only happen when we

perform the other steps of the procedure.

5.4.3. Proof of the main theorem. We now have all the necessary tools to prove the

main theorem. Consider the states Ja,n[−1] |0⟩ , Jb,m[−1] |0⟩ ∈ Vg,0
0 . They can be mapped

into M, using the vertex algebra map θ in eq. (5.74). Since it is a homomorphism of vertex

algebras, we have

θ(Ja,n[−1] |0⟩)(1)θ(Jb,m[−1] |0⟩) = θ(Ja,n[−1] |0⟩(1) Jb,m[−1] |0⟩) = 0. (5.95)

Here the right-hand side is zero because it is defined from the vacuum Verma module at

zero level, cfr. eq. (5.74). Acting on both sides with the map p from eq. (5.79) we get

p
(
θ(Ja,n[−1] |0⟩)(1)θ(Jb,m[−1] |0⟩)

)
= 0. (5.96)

Recall from the doubling construction summarised in section 5.4.1 that the image of θ is

obtained by glueing together a positive and a negative copy of the Lie algebra homomorphism

(5.5). For this reason, there are no overlapping terms, i.e.

p0 ◦ θ(x) = 0 for all x ∈ Vg,0
0 . (5.97)

Moreover, for all x ∈ Vg,0
0 we can identify

p+ ◦ θ(x) = ϑ(x), p− ◦ θ(x) = τ ◦ ϑ ◦ σ(x) (5.98)

These facts can be understood by looking at the first two lines of the example in (5.67).

Keeping this in mind, using the result of Lemma 5.4.3 on eq. (5.96), we find

reg[ϑ(x)(1)ϑ(y)] + reg[τ ◦ ϑ ◦ σ(x)(1)τ ◦ ϑ ◦ σ(y)] = 0. (5.99)

We will now proceed to show that these terms are in fact equal and therefore independently

zero.
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The first term will produce either a term proportional to the vacuum, when two qua-

dratic semi-infinite sums are contracted together or when (βa,n[−1] |0⟩)(1) = βa,n[1] is con-

tracted with a single γa,n[−1] |0⟩, or terms of the form R(γ) |0⟩, with R ∈ C[γa,n](a,n)∈A+

of degree > 0. Similarly, the second term, being the “negative copy” coming from the glue-

ing procedure, will produce either terms proportional to the vacuum or terms of the form

Q(γ) |0⟩, with Q ∈ C[γa,n](a,n)∈A− of degree > 0.

It follows that the two contributions have to be independently zero, exception made for

terms of the form C(z) |0⟩.
By direct calculation one finds that this product is proportional to the Killing form, and

therefore it is non-trivial only in two cases: (a, n) = (Eα, n), (b,m) = (E−α,−n) for some

α+ ∈ ∆̊, n ∈ Z, and (a, n) = (Hi, n), (b,m) = (Hi,−n), where Hi ∈ h̊ i = 1, . . . , rank g̊, is

an orthogonal basis for the Cartan subalgebra.

In the first case, we can act with the involution σ explicitly and use the symmetry

property of the (1) product to get

reg[ϑ(JEα,n[−1] |0⟩)(1)ϑ(JE−α,−n[−1] |0⟩)]

+ reg[τ ◦ ϑ ◦ σ(JEα,n[−1] |0⟩)(1)τ ◦ ϑ ◦ σ(JE−α,−n[−1] |0⟩)]

= reg[ϑ(JEα,n[−1] |0⟩)(1)ϑ(JE−α,−n[−1] |0⟩)]

+ reg[τ ◦ ϑ(JE−α,−n[−1] |0⟩)(1)τ ◦ ϑ(JEα,n[−1] |0⟩)]

= reg[ϑ(JEα,n[−1] |0⟩)(1)ϑ(JE−α,−n[−1] |0⟩)]

+ reg[τ ◦ ϑ(JEα,n[−1] |0⟩)(1)τ ◦ ϑ(JE−α,−n[−1] |0⟩)], (5.100)

where in the last step we have used the symmetry of the first product on the second term

(cfr. eq. (3.34)).

In the second case, we similarly obtain

reg[ϑ(JHi,n[−1] |0⟩)(1)ϑ(JHi,−n[−1] |0⟩)]

+ reg[τ ◦ ϑ ◦ σ(JHi,n[−1] |0⟩)(1)τ ◦ ϑ ◦ σ(JHi,−n[−1] |0⟩)]

= reg[ϑ(JHi,n[−1] |0⟩)(1)ϑ(JHi,−n[−1] |0⟩)]

+ reg[τ ◦ ϑ(JHi,−n[−1] |0⟩)(1)τ ◦ ϑ(JHi,n[−1] |0⟩)]

= reg[ϑ(JHi,n[−1] |0⟩)(1)ϑ(JHi,−n[−1] |0⟩)]

+ reg[τ ◦ ϑ(JHi,n[−1] |0⟩)(1)τ ◦ ϑ(JHi,−n[−1] |0⟩)]. (5.101)

where in the last term we have used the symmetry of the (1) product.

By definition, the effect of the map τ is to “mirror” the elements in M̂z[≤ 1], to get a

realisation of the algebra as derivations on O(n−). This means that whenever we have a

non-trivial contraction between a, b ∈ M̂z[≤1], we also have it between τ(a) and τ(b), with

the only difference that z is replaced with z−1, i.e.

τ(a)(1)τ(b) = ϖ(a(1)b) (5.102)
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where ϖ is the inversion map z 7! z−1.

By Lemma 5.4.2, we conclude that after regularisation, the two terms are equal and

therefore they must be both independently zero.





Conclusions and outlooks

This thesis examines different aspects within the broad field of quantum integrable field

theories. Some of the results led to the explicit definition of new examples of integrable mod-

els, while others addressed more abstract questions related to the algebraic formulation of

integrable systems. This opens up a series of interesting directions for further investigation,

which we will now summarise.

Theories with Hagedorn-like singularity. In chapter 2, we defined a new family of

minimal integrable quantum field theories by explicitly constructing their S-matrices in the

repulsive regime. In order to achieve this, we imposed all the relevant properties, namely the

Yang-Baxter equation, unitarity and crossing symmetry. In accordance with the quantum-

inverse scattering program, the resulting scattering matrices can be regarded as exact S-

matrices of a factorisable scattering theory. The TBA equations for these models were

derived, and thanks to the remarkable relation between the integral kernels in Fourier space,

they were recast in a universal form. Despite their apparent simplicity, numerical solutions

for spin s ≥ 3/2 revealed the emergence of singular behaviours, indicative of a second-order

phase transition. This result is unexpected, given that the S-matrices constructed using this

method typically describe UV-complete quantum field theories. This is exemplified by the

sine-Gordon and the sausage models, with spin s = 1/2 and s = 1, respectively.

Dynkin structure. An intriguing and suggestive fact is that the graphs encoding the

structure of TBA equations for these singular cases are of non-Dynkin type, in contrast to

those for the sine-Gordon and the sausage models, which are of type D and D̂, respectively.

This fact requires further investigation, as it was previously observed that there is a profound

relationship between the TBA equations and Dynkin diagrams [Zam91b, RTV93]. Fur-

thermore, it is known that the TBA equations can be expressed as the so-called Y -system,

whose periodicity properties are directly related with the Dynkin structure of the equations

[KNS11]. These periodicity relations have been understood in the context of cluster alge-

bras [Nak10] and for this reason it would be interesting to explore the non-UV-completeness

of the corresponding theories with this language.

It would be interesting to determine whether it is possible to construct minimal theories

with similar behaviours. One potential approach to achieving this goal is to define analogous

higher-spin theories based on different quantum group symmetries. Another interesting di-

rection is to consider supersymmetric theories. Indeed, the S-matrix for the supersymmetric

115
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sine-Gordon model has been constructed in [Ahn91] and its TBA is known to be described

by a D-type Dynkin diagram, with an additional “fermionic” node attached to the one as-

sociated with the massive particle. In light of the results we obtained, one might conjecture

that the supersymmetric version of the sausage model develops a singular point, as its TBA

graph would be of non-Dynkin type.

Attractive regime. To get a complete description of these theories, one has to study

their attractive regime, γ > 1/2s. It is known that in this case the S-matrix develops

poles, which can be interpreted as bound states of solitonic solutions. The first natural

question is whether the bootstrap can be “closed”, in the spirit of the procedure outlined

in section 1.2.6. This is a notoriously challenging task, to the extent that it has not been

completed even for the sausage model. Nevertheless, it would be intriguing to investigate

the possibility of whether the presence of bound states in the theory could have the effect

of “moving the singularity”, and eventually remove it.

Affine Gaudin models. In chapters 3 and 4 we introduced the language of Gaudin

models, with a particular emphasis on those of affine type. As pointed out in the introduction

to this thesis, the reason why they are worthy of study is that they are expected to provide

a general framework to describe a vast class of integrable quantum field theories, in analogy

with their classical counterparts. In particular, in chapter 4 we have constructed the first

example of non-trivial higher Hamiltonian for the affine sl2 Gaudin model. Furthermore, we

provided the explicit expression up to the next-to-leading order for all higher charges. It is

evident from these calculations that the computational power needed for this construction is

too high. Consequently, a significant challenge remains in characterising the Gaudin/Bethe

subalgebra of commuting charges within this framework.

Higher structures. The most promising prospect would be to undertake a construc-

tion á la Feigin-Frenkel-Reshetikhin, i.e. by identifying the higher Hamiltonians with cer-

tain singular vectors in an appropriate space. To do this, the naive expectation is that one

would need a “higher analogue” of vertex algebras, depending on two parameters. Unfor-

tunately, to the present day these structures are still not known, although some very recent

developments appeared in the context of higher current algebras and factorisation algebras

[CG17, FHK19, AKY24].

The meaning of the regularisation procedure. The general expectation is that the

“higher analogue” of the Feigin-Frenkel homomorphism of vertex algebra will play a central

role in the characterisation of affine Gaudin models. Should this be the case, it would be

interesting to understand what role is played by the construction presented in chapter 5 or,

in other words, to determine the meaning of the regularisation procedure which, as we saw,

one is somehow forced to introduce to make sense of the higher products.

Finally, recall from section 5.3.2 that defining a regularised version of the Feigin-Frenkel

map in the affine setting does not give rise to a homomorphism if one regularises system-

atically every product. However, it would be interesting to show if the map works if one
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computes all the products and regularises only at the very end. This would suggest that the

homomorphism works “up to regularisation”, which leads us to wonder if this construction

has a more natural interpretation in the language of homotopy theory.
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APPENDIX A

Full expression for A1,3(z, w) and B1,3(z, w)

The explicit expressions for A1,3(z, w) and B1,3(z, w) in V(z,w) obtained by direct calcu-

lations are

A1,3(z, w) =
[8
3

1

z − w
Ia−2(z)I

(a
−1(w)I

b
−1(w)I

b)
−1(w)

+ fabc
(80
9

1

z − w
Ia−2(z)I

b
−2(w)I

c′
−1(w)−

80

9

1
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b
−2(w)I

c
−1(w)

+
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9

1
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c
−1(w)
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9
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a
−3(w)k

′(w)− 80

3

1

z − w
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a
−1(w)k
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+
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a
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160

9

1
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+
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9

1
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a
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160

27

1

(z − w)2
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a′
−3(w)

− 160

9

1

z − w
Ia−3(z)I

a′′
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160

9

1

(z − w)2
Ia−3(z)I

a′
−2(w)

− 160

9

1
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a′
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]
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B1,3(z, w) =
[8
3

1
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b)
−1(w)

+ fabc
(
− 160

9

1

(z − w)3
Ia−1(z)I

b
−2(w)I

c
−1(w)−

80

9

1

(z − w)2
Ia−1(z)I

b′
−1(w)I

c
−2(w)

− 160

9

1

(z − w)2
Ia−2(z)I

b′
−1(w)I

c
−1(w)

)
− 160

9

1

(z − w)2
Ia−1(z)I

a
−3(w)k

′(w) +
1120

27

1

(z − w)2
Ia−1(z)I

a′′
−3(w)

+
640

27

1

(z − w)3
Ia−1(z)I

a′
−3(w)−

320

9

1

(z − w)2
Ia−2(z)I

a′
−2(w)

+
320

9

1

(z − w)4
Ia−1(z)I

a
−3(w)−

640

9

1

(z − w)3
Ia−3(z)I

a′
−1(w)

+
320

3

1

(z − w)4
Ia−3(z)I

a
−1(w)

]
|0⟩ .

127





APPENDIX B

Realisation of ŝl3 as differential operators

Explicit expression for the images of Jα1,n, with n = −1, 0, 1, through the Lie algebra

homomorphism (5.5), truncated up to loop order 3,4 or 5 (depending on the length of the

expressions).

ϱ(Jα1,1) = Dα1,1 −
∑
k≥2

Xα2,k−1Dα1+α2,k −
∑
k≥3

X−α1,k−1D1,k +
∑
k≥3

X−α1−α2,k−1D−α2,k

+ 2
∑
k≥3

X1,k−1Dα1,k −
∑
k≥3

X2,k−1Dα1,k

+ (−X−α2,2Xα2,1 + . . . )Dα1,4 + (−X−α1−α2,2Xα2,1 + . . . )D1,4

+ (−X−α1−α2,2Xα2,1 + . . . )D2,4 + (X1,2Xα2,1 +X2,2Xα2,1 + . . . )Dα1+α2,4

+ (−2X−α1,2Xα1,2 −X−α1−α2,2Xα1+α2,2

− 2X1,2X1,2 + 2X2,2X1,2 − 1

2
X2,2X2,2 + . . . )Dα1,5

+ (X−α1,2Xα2,2 + . . . )Dα2,5

+ (−X−α1,2Xα1+α2,2 + 2X1,2Xα2,2 −X2,2Xα2,2 + . . . )Dα1+α2,5

+ (X−α1,2X−α1,2 + . . . )D−α1,5

+ (−X−α2,2X−α1,2 +−X1,2X−α1−α2,2 + 2X2,2X−α1−α2,2 + . . . )D−α2,5

− (X−α1−α2,2Xα2,2 + . . . )D2,5 + (X−α1−α2,2X−α1,2 + . . . )D−α1−α2,5 + . . . (B.1)

ϱ(Jα1,0) = Dα1,0 −
∑
k≥0

Xα2,kDα1+α2,k −
∑
k≥1

X−α1,kD1,k +
∑
k≥1

X−α1−α2,kD−α2,k

+ 2
∑
k≥1

X1,kDα1,k −
∑
k≥1

X2,kDα1,k

+ (−2X1,1X1,1 + 2X2,1X1,1 − 1

2
X2,1X2,1Dα1,2 + . . . )Dα1,2 + (X−α1,1X−α1,1 + . . . )D−α1,2

+ (−X−α2,1X−α1,1 + . . . )D−α2,2 + (X−α1−α2,1X−α1,1 + . . . )D−α1−α2,2

+ (X−α2,1X−α1,1Xα1+α2,1 +
4

3
X1,1X1,1X1,1 − 2X2,1X1,1X1,1

+X2,1X2,1X1,1 − 1

6
X2,1X2,1X2,1Dα1,3 + . . . )Dα1,3

+ (X−α1,1X−α1,1Xα1+α2,1 + . . . )Dα2,3
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+ (−2X1,1X1,1Xα2,1 + 2X2,1X1,1Xα2,1 − 1

2
X2,1X2,1Xα2,1 + . . . )Dα1+α2,3

+ (−X−α1−α2,1X−α1,1Xα2,1 + 2X1,1X−α1,1X−α1,1 −X2,1X−α1,1X−α1,1 + . . . )D−α1,3

+ (X−α1−α2,1X−α1,1Xα1,1 +X1,1X−α2,1X−α1,1 − 2X2,1X−α2,1X−α1,1 + . . . )D−α2,3

+ (−X−α2,1X−α1,1X−α1,1 +X1,1X−α1−α2,1X−α1,1 +X2,1X−α1−α2,1X−α1,1 + . . . )D−α1−α2,3

+ (−X−α1,1X−α1,1Xα1,1 −X−α1−α2,1X−α1,1Xα1+α2,1 . . . )D1,3

+ (X−α2,1X−α1,1Xα2,1 −X−α1−α2,1X−α1,1Xα1+α2,1 + . . . )D2,3 + . . . (B.2)

ϱ(Jα1,−1) = −
∑
k≥0

Xα2,k+1Dα1+α2,k −
∑
k≥1

X−α1,k+1D1,k +
∑
k≥1

X−α1−α2,k+1D−α2,k

+ 2
∑
k≥0

X1,k+1Dα1,k −
∑
k≥0

X2,k+1Dα1,k

+ (2X−α1,1Xα1,0 +X−α1−α2,1Xα2,0Xα1,0 +X−α1−α2,1Xα1+α2,0 + . . . )Dα1,0

+ (−X−α1,1Xα2,0 −X−α1−α2,1Xα2,0Xα2,0 + . . . )Dα2,0

+ (X−α1,1Xα1+α2,0 −X−α1−α2,1Xα1+α2,0Xα2,0Dα1+α2,0 − 2X1,1Xα2,0 +X2,1Xα2,0 + . . . )Dα1+α2,0

+ (X−α2,1Xα2,1 + 2X1,1X1,1 − 2X2,1X1,1 +
1

2
X2,1X2,1Dα1,1 + . . . )Dα1,1

+ (−X−α1,1Xα2,1 + . . . )Dα2,1 + (−X1,1Xα2,1X2,1Xα2,1 + . . . )Dα1+α2,1

+ (−X−α1,1X−α1,1 + . . . )D−α1,1 + (2X1,1X−α1−α2,1 −X2,1X−α1−α2,1 + . . . )D−α2,1

+ (−X−α1−α2,1X−α1,1 + . . . )D−α1−α2,1 + (X−α1−α2,1Xα2,1 − 2X1,1X−α1,1 +X2,1X−α1,1 + . . . )D1,1

+ (X−α1−α2,1Xα2,1 + . . . )D2,1

+ (2X−α1,2Xα1,1 +X−α1−α2,2Xα1+α2,1 − 2X1,1X−α2,1Xα2,1 − 8

3
X1,1X1,1X1,1

+X2,1X−α2,1Xα2,1 + 4X2,1X1,1X1,1 − 2X2,1X2,1X1,1 +
1

3
X2,1X2,1X2,1Dα1,2 + . . . )Dα1,2

+ (−X−α1,2Xα2,1 −X1,1X−α1,1Xα2,1 + 2X2,1X−α1,1Xα2,1 + . . . )Dα2,2

+ (X−α1,1Xα2,1Xα1,1 +X−α1,2Xα1+α2,1 +
1

2
X1,1X1,1Xα2,1

− 2X1,2Xα2,1 +X2,1X1,1Xα2,1 +
1

2
X2,1X2,1Xα2,1 +X2,2Xα2,1Dα1+α2,2 + . . . )Dα1+α2,2

+ (−X−α1−α2,1X−α1,1Xα2,1 + 2X1,1X−α1,1X−α1,1 −X2,1X−α1,1X−α1,1 + . . . )D−α1,2

+ (−X−α1−α2,1X−α2,1Xα2,1 − 2X1,1X−α2,1X−α1,1 +X1,1X−α1−α2,2

+X2,1X−α2,1X−α1,1 − 2X2,1X−α1−α2,2D−α2,2 + . . . )D−α2,2

+ (−X−α1−α2,1X−α1−α2,1Xα2,1 + 2X1,1X−α1−α2,1X−α1,1

−X2,1X−α1−α2,1X−α1,1D−α1−α2,2 + . . . )D−α1−α2,2

+ (−X−α2,1X−α1,1Xα2,1 +X−α1−α2,2Xα2,1 + . . . )D2,2
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+ (X−α2,1X−α1,1Xα2,1Xα1,1 +X−α2,2Xα2,2 +X−α1−α2,1X−α2,1Xα1+α2,1Xα2,1

+ 2X1,1X−α2,1X−α1,1Xα1+α2,1 −X1,1X−α1−α2,2Xα1+α2,1 + 2X1,1X1,1X−α2,1Xα2,1

+ 2X1,1X1,1X1,1X1,1 + 2X1,2X1,2 −X2,1X−α2,1X−α1,1Xα1+α2,1 + 2X2,1X−α1−α2,2Xα1+α2,1

− 2X2,1X1,1X−α2,1Xα2,1 − 4X2,1X1,1X1,1X1,1 +
1

2
X2,1X2,1X−α2,1Xα2,1

+ 3X2,1X2,1X1,1X1,1 −X2,1X2,1X2,1X1,1 +
1

8
X2,1X2,1X2,1X2,1

− 2X2,2X1,2 +
1

2
X2,2X2,2 + . . . )Dα1,3

+ (−X−α1,2Xα2,2 − 2X−α2,1X−α1,1Xα2,1Xα2,1 −X−α1−α2,1X−α1,1Xα1+α2,1Xα2,1

+X−α1−α2,2Xα2,1Xα2,1 + 2X1,1X−α1,1X−α1,1Xα1+α2,1 − 1

2
X1,1X1,1X−α1,1Xα2,1

−X2,1X−α1,1X−α1,1Xα1+α2,1 + 2X2,1X1,1X−α1,1Xα2,1 − 2X2,1X2,1X−α1,1Xα2,1 + . . . )Dα2,3

+ (2X−α1,2Xα2,1Xα1,1 −X−α2,1X−α1,1Xα1+α2,1Xα2,1 +X−α1−α2,2Xα1+α2,1Xα2,1

+X1,1X−α1,1Xα2,1Xα1,1 − 2X1,1X−α2,1Xα2,1Xα2,1 − 17

6
X1,1X1,1X1,1Xα2,1

−X1,2Xα2,2 − 2X2,1X−α1,1Xα2,1Xα1,1 +X2,1X−α2,1Xα2,1Xα2,1 +
7

2
X2,1X1,1X1,1Xα2,1

− 5

2
X2,1X2,1X1,1Xα2,1 +

1

6
X2,1X2,1X2,1Xα2,1 −X2,2Xα2,2 + . . . )Dα1+α2,3

+ (−X−α1,2X−α1,2 +X−α1−α2,1X−α1−α2,1Xα2,1Xα2,1 − 4X1,1X−α1−α2,1X−α1,1Xα2,1

+ 4X1,1X1,1X−α1,1X−α1,1 + 2X2,1X−α1−α2,1X−α1,1Xα2,1 − 4X2,1X1,1X−α1,1X−α1,1

+X2,1X2,1X−α1,1X−α1,1 + . . . )D−α1,3

+ (X−α2,1X−α2,1X−α1,1Xα2,1 −X−α1−α2,1X−α1−α2,1Xα2,1Xα1,1

+ 2X1,1X−α1−α2,1X−α1,1Xα1,1 +X1,1X−α1−α2,1X−α2,1Xα2,1 + 2X1,1X1,1X−α2,1X−α1,1

− 1

2
X1,1X1,1X−α1−α2,2 + 2X1,2X−α1−α2,2 −X2,1X−α1−α2,1X−α1,1Xα1,1

− 2X2,1X−α1−α2,1X−α2,1Xα2,1 − 5X2,1X1,1X−α2,1X−α1,1 + 2X2,1X1,1X−α1−α2,2 + . . . )D−α2,3

+ (X−α1−α2,1X−α2,1X−α1,1Xα2,1 −X−α1−α2,2X−α1,2 − 2X1,1X−α2,1X−α1,1X−α1,1

−X1,1X−α1−α2,1X−α1−α2,1Xα2,1 + 2X1,1X1,1X−α1−α2,1X−α1,1 +X2,1X−α2,1X−α1,1X−α1,1

−X2,1X−α1−α2,1X−α1−α2,1Xα2,1 +X2,1X1,1X−α1−α2,1X−α1,1

−X2,1X2,1X−α1−α2,1X−α1,1 + . . . )D−α1−α2,3

+ (X−α1−α2,1X−α1,1Xα2,1Xα1,1 +X−α1−α2,1X−α1−α2,1Xα1+α2,1Xα2,1 +X−α1−α2,2Xα2,2

− 2X1,1X−α1,1X−α1,1Xα1,1 − 2X1,1X−α1−α2,1X−α1,1Xα1+α2,1 − 2X1,2X−α1,2

+X2,1X−α1,1X−α1,1Xα1,1 +X2,1X−α1−α2,1X−α1,1Xα1+α2,1 +X2,2X−α1,2 + . . . )D1,3

+ (X−α1−α2,1X−α2,1Xα2,1Xα2,1 +X−α1−α2,1X−α1−α2,1Xα1+α2,1Xα2,1

+X−α1−α2,2Xα2,2 + 2X1,1X−α2,1X−α1,1Xα2,1 − 2X1,1X−α1−α2,1X−α1,1Xα1+α2,1
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−X1,1X−α1−α2,2Xα2,1 −X2,1X−α2,1X−α1,1Xα2,1 +X2,1X−α1−α2,1X−α1,1Xα1+α2,1

+ 2X2,1X−α1−α2,2Xα2,1 + 2X2,1X2,1X−α2,1X−α1,1

− 2X2,1X2,1X−α1−α2,2 −X2,2X−α1−α2,2 + . . . )D2,3 + . . . (B.3)

For the sake of completeness, we also report an example of the image of a generator

from n−, truncated at order 4.

ϱ(J−α1,1) = D−α1,1 +
∑
k≥2

Xα1,k−1D1,k −
∑
k≥3

Xα1+α2,k−1Dα2,k

+
∑
k≥2

X−α2,k−1D−α1−α2,k − 2
∑
k≥2

X1,k−1D−α1,k +
∑
k≥2

X2,k−1D−α1,k

+ (Xα1,1Xα1,1 + . . . )Dα1,3 + (−Xα2,1Xα1,1 − 2X1,1Xα1+α2,1 +X2,1Xα1+α2,1 + . . . )Dα2,3

+ (−X−α2,1Xα2,1 − 2X1,1X1,1 + 2X2,1X1,1 − 1

2
X2,1X2,1 + . . . )D−α1,3

+ (X−α2,1Xα1,1 + . . . )D−α2,3 + (Xα1+α2,1Xα1,1 + . . . )Dα1+α2,3

+ (X1,1X−α2,1 +X2,1X−α2,1 + . . . )D−α1−α2,3

+ (−X−α2,1Xα1+α2,1 + 2X1,1Xα1,1 −X2,1Xα1,1 + . . . )D1,3 + (−X−α2,1Xα1+α2,1 + . . . )D2,3

+ (−X−α2,1Xα1+α2,1Xα1,1 + 2X1,1Xα1,1Xα1,1 −X2,1Xα1,1Xα1,1 + . . . )Dα1,4

+ (−X−α2,1Xα1+α2,1Xα2,1 − 2X1,1Xα2,1Xα1,1 − 2X1,1X1,1Xα1+α2,1 −X1,2Xα1+α2,1

+X2,1Xα2,1Xα1,1 + 2X2,1X1,1Xα1+α2,1 − 1

2
X2,1X2,1Xα1+α2,1 + 2X2,2Xα1+α2,1 + . . . )Dα2,4

+ (−2X−α1,2Xα1,1 −X−α1−α2,2Xα1+α2,1 −X1,1X−α2,1Xα2,1 − 4

3
X1,1X1,1X1,1

−X2,1X−α2,1Xα2,1 + 2X2,1X1,1X1,1 −X2,1X2,1X1,1 +
1

6
X2,1X2,1X2,1 + . . . )D−α1,4

+ (X−α2,2Xα1,1 +X1,1X−α2,1Xα1,1 +X2,1X−α2,1Xα1,1 + . . . )D−α2,4

+ (Xα2,1Xα1,1Xα1,1 +Xα1+α2,1Xα1,2 −X−α2,1Xα1+α2,1Xα1+α2,1 + 2X1,1Xα1+α2,1Xα1,1

−X2,1Xα1+α2,1Xα1,1 + . . . )Dα1+α2,4

+ (−X−α1−α2,2Xα1,1 +
1

2
X1,1X1,1X−α2,1 +X2,1X1,1X−α2,1 +

1

2
X2,1X2,1X−α2,1 + . . . )D−α1−α2,4

+ (−X1,1X−α2,1Xα1+α2,1 + 2X1,1X1,1Xα1,1 −X2,1X−α2,1Xα1+α2,1

− 2X2,1X1,1Xα1,1 +
1

2
X2,1X2,1Xα1,1 + . . . )D1,4

+ (−X−α2,1Xα2,1Xα1,1 −X−α2,2Xα1+α2,1 −X1,1X−α2,1Xα1+α2,1

−X2,1X−α2,1Xα1+α2,1 + . . . )D2,4 + . . . (B.4)
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