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Abstract

Ketamine, an NMDA receptor (NMDA-R) antagonist, produces psychotomimetic
effects when administered in sub-anesthetic dosages. While previous research
suggests that Ketamine alters the excitation/inhibition (E/l)-balance in cortical micro-
circuits, the precise neural mechanisms by which Ketamine produces these effects
are not well understood. We analyzed resting-state MEG data from n=12 partici-
pants who were administered Ketamine to assess changes in gamma-band (30-90
Hz) power and the slope of the aperiodic power spectrum compared to placebo. In
addition, correlations of these effects with gene-expression of GABAergic interneu-
rons and NMDA-Rs subunits were analyzed. Finally, we compared Ketamine-induced
spectral changes to the effects of systematically changing NMDA-R levels on pyrami-
dal cells, and parvalbumin-, somatostatin- and vasoactive intestinal peptide-
expressing interneurons in a computational model of cortical layer-2/3 to identify
crucial sites of Ketamine action. Ketamine resulted in a flatter aperiodic slope and
increased gamma-band power across brain regions, with pronounced effects in pre-
frontal and central areas. These effects were correlated with the spatial distribution
of parvalbumin and GIuN2D gene expression. Computational modeling revealed that
reduced NMDA-R activity in parvalbumin or somatostatin interneurons could repro-
duce increased gamma-band power by increasing pyramidal neuron firing rate, but
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did not account for changes in the aperiodic slope. The results suggest that parval-
bumin and somatostatin interneurons may underlie increased gamma-band power
following Ketamine administration in healthy volunteers, while changes in the aperi-
odic component could not be recreated. These findings have implications for current
models of E/I-balance, as well as for understanding the mechanisms underlying the
circuit effects of Ketamine.

Author summary

Previous research has shown that sub-anesthetic doses of Ketamine lead to
increased excitation which could be mediated via effects on specific inhibitory
GABAergic interneurons. In this study, we examined how the NMDA-R antago-
nist Ketamine influences the balance between excitation and inhibition in magne-
toencephalography (MEG)-data and explored the role of different neuron types
in mediating this effect. We found that Ketamine increased gamma-band activity
and altered the slope of the aperiodic power spectrum in MEG-data. These
effects were also linked to the expression of genes involved in regulating exci-
tation and inhibition. Using a computational model, we simulated neural circuit
activity following disruptions to specific neuron types and found that reducing two
types of GABAergic interneurons (parvalbumin and somatostatin interneurons)
produced changes in gamma-band oscillations similar to those observed with
Ketamine in humans. These findings highlight the role of specific inhibitory neu-
rons in the effects of Ketamine on neural circuits, offering new insights into how
Ketamine alters the balance of excitation and inhibition.

Introduction

Ketamine is an N-methyl-D-aspartate receptor (NMDA-R) antagonist which elicits,
following sub-anesthetic administration to healthy volunteers, transient psychotic
symptoms, such as hallucinations, delusions, and negative symptoms which overlap
with the clinical presentation in schizophrenia patients [1,2]. An increasing body of
work suggests that Ketamine-induced positive and negative symptoms as well as
cognitive deficits involve alterations in the balance between excitation and inhibition
(E/I-balance) in neural circuits [3,4]. E/lI-balance has been shown to be essential for
effective information processing in large-scale networks [5], and disruptions have
been implicated to account for circuit and cognitive deficits in schizophrenia [6].
During normal brain functioning, excitation is balanced by inhibition produced by
y-amino butyric acid (GABA)ergic interneurons that inhibit pyramidal cells, thereby
allowing for fluctuations in their excitability [5,7]. Since gamma-band oscillations
(30-90 Hz) reflect the precise rhythmic interaction between excitatory and inhibitory
neurotransmission, alterations in gamma-band oscillations might provide a non-
invasive measure of changes in E/l-balance [8]. Moreover, recent evidence suggests
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that the slope of the aperiodic, non-oscillatory component of brain activity may provide an additional marker for E/I-
balance [9], as it has been shown to reflect the integration of excitatory and inhibitory synaptic currents [10] and to be
associated with working memory performance [9,11], consciousness [12,13], and psychiatric disorders, such as depres-
sion, attention deficit disorder, and autism [14].

Gamma-band alterations have been implicated in circuit deficits in schizophrenia, and are thought to underlie cognitive
impairments and certain clinical symptoms [15]. Specifically, reductions in the power of task-related gamma-band oscilla-
tions have been demonstrated during sensory and cognitive processes [16,17]. Moreover, there is evidence for alterations
in resting-state activity and studies have shown both evidence for a reduction as well as an increase of gamma-band
power [18]. Finally, preliminary evidence suggests that the aperiodic component might be altered in schizophrenia [19,20].

Among the mechanisms involved in maintaining E/I-balance, rhythmic inhibition by fast-spiking parvalbumin-expressing
(PV+) interneurons is of particular interest as PV+ input onto pyramidal cells is crucial for generating gamma-band oscil-
lations [21,22]. In addition, somatostatin-expressing (SST+) interneurons have also been shown to be involved in syn-
chronizing gamma-band oscillations [23,24]. Finally, vasoactive intestinal peptide-expressing (VIP+) interneurons, which
mainly target other GABAergic interneurons, including the PV+ and SST+ subclasses [25], may promote the disinhibition
of pyramidal cells thus modulating oscillatory activity. Interestingly, the abundance of these different interneuron types
varies across brain regions as indicated by distinct gene expression gradients [26].

Ketamine has been shown to have a profound effect on E/I-balance parameters through its action on glutamatergic synapses by
non-competitively blocking NMDA-Rs [27]. While anesthetic doses of Ketamine have been shown to reduce excitation levels [28],
sub-anesthetic doses increase the firing activity of pyramidal cells [29]. One possible mechanism is a preferential action of Ketamine
on glutamatergic synapses on GABAergic interneurons, resulting in reduced inhibitory input to pyramidal neurons [30-32].

Increased disinhibition of neural circuits following Ketamine administration is consistent with altered gamma-band
power in human EEG/MEG-recordings. Specifically, several studies have observed increased gamma-band power in both
cortical and subcortical areas [33—35] but the precise circuit mechanisms that give rise to these changes remain unclear.
Several rodent studies have found that NMDA-R antagonists, such as Ketamine and MK801, increase activity-levels of
neurons with narrow spikes, hence putative fast-spiking interneurons [3,36]. However, excitatory synapses onto PV+
interneurons display a small NMDA receptor-mediated response to glutamate, relative to the aminomethylphosphonic acid
(AMPA) receptor-mediated response [37,38]. In contrast, the NMDA-mediated contribution at synapses onto non-PV+
interneuron subtypes is larger [39,40]. Thus, by blocking NMDA receptors, Ketamine might affect cortical network activity
via complex effects that involve multiple interneuron subtypes. Consistent with this idea, reduced activity following Ket-
amine administration has also been observed in SST+ interneurons [41,42]. Cichon et al. [43] observed that Ketamine
decreased activity of PV+, SST+, and VIP+ interneurons in mice, while blockage of PV+ or SST+ interneurons was nec-
essary for inducing the increase in pyramidal cell firing seen after Ketamine administration.

In the current study, we aimed to investigate the circuit mechanisms underlying the dysregulation of gamma-band activity
following S-Ketamine administration in healthy volunteers, combining non-invasive MEG and computational modeling. Spe-
cifically, we examined the differential contribution of NMDA-Rs in PV +, SST+, and VIP+ interneurons towards alterations in
gamma-band activity and in the slope of the aperiodic neural activity following subanesthetic Ketamine administration. We
hypothesized that Ketamine administration would result in an increase in gamma-band power and a lower aperiodic slope (i.e.,
flatter power spectrum due to a shift towards more excitation), which would be mediated by blockage of NMDA-Rs on PV+ and
SST+ interneurons.

Results
Demographic and PANSS data

We analyzed MEG-data from 12 healthy participants who received sub-anesthetic doses of Ketamine in a single-blind,
randomized, placebo-controlled design. Resting-state MEG-data (5 minutes, eyes closed) was recorded before and during

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013118 June 9, 2025 3/19




N\ Computational
PLOS }. Biology

continuous infusion of Ketamine or Placebo respectively. Demographic information, including age and sex information, as
well as Positive and Negative Syndrome Scale (PANSS) [44] can be found in Table 1. PANSS scores in all six subscales
were significantly increased after Ketamine administration (all p-values <0.03).

Gamma-band power

We computed gamma-band power (30—90 Hz) at sensor level and for virtual channels of 90 AAL atlas regions. Ketamine
led to increased 30—90 Hz activity in the Ketamine vs. Placebo condition (Fig 1A) in a broad cluster of sensors, with a
maximum effect over central and frontal sensors (cluster-t=1955.5, p<0.001, Cohen’s d=2.95). Increased gamma-band
power was localized across 79 cortical and subcortical regions with a mean effect size of d=3.66 (mean percent change:
21.05%) (see Table 2 and Fig 2A and 2B). The effects were highly consistent across participants (Fig 2C). A similar power
increase could be observed in the periodic gamma-band (i.e., after subtraction of aperiodic activity; S2 File).

Theta, alpha, and beta power

We additionally analyzed Ketamine-induced power changes in the theta (4-8 Hz), alpha (8—12 Hz), and beta (13-30 Hz)
frequency ranges in both the non-separated as well as the periodic power spectrum. While no significant changes in theta
and alpha power could be observed, Ketamine-induced decreases in the beta range were significant across several fron-
tal and central brain regions both in the periodic and the non-separated data (for further discussion and comparison with
computational modeling results, see S2 File).

Aperiodic slope

We separated the periodic and aperiodic components of the MEG-data and calculated the slope of the aperiodic power
spectrum between 7 and 80 Hz. The slope of the aperiodic component was flatter in the Ketamine condition compared to
Placebo at sensor-level (see Fig 1B) (cluster-level t-value=-1557.7, p<0.001, Cohen’s d=-2.36), and across a wide range
of brain regions, except for occipital cortex (Cohen’s d=-1.85, mean percent change from Placebo to Ketamine: -20.27%)
(see Table 2 and Fig 2D and 2E).

Table 1. Demographic and phenomenological information.

Placebo Ketamine Statistics

Age in years (range) 29.6 (26-39)

Sex 10 male, 2 female

PANSS scores (SEM)
Negative 8.0 (0.6) 13.3 (1.1) t(11) = 4.7, p<0.001
Excitement 5.5(0.4) 6.8 (0.6) t(11) = 2.5, p=0.028
Cognitive 5.5(0.3) 10.1 (0.7) #(11) = 6.5, p<0.001
Positive 4.1(0.1) 6.9 (0.5) #(11) = 6.2, p<0.001
Depression 5.7 (0.2) 10.2 (0.4) t(11) = 9.9, p<0.001
Disorganization 3.1(0.1) 5.5 (0.6) t(11) = 4.1, p=0.002
Total 35.8 (1.0) 58.6 (2.4) t(11) = 11.1, p<0.001

Positive and Negative Syndrome Scale (PANSS) scores were assessed at the completion of each session.
Standard error of the mean (SEM) in brackets. Dependent-sample t-tests were used. Includes only
participants whose data were included in the MEG analyses.

https://doi.org/10.1371/journal.pcbi.1013118.t001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1013118  June 9, 2025 4/19



https://doi.org/10.1371/journal.pcbi.1013118.t001

A Gamma-band power

PLA Post PLAPre  PLA Post-Pre

B | Aperiodic Slope |

PLA Post PLAPre  PLA Post-Pre

0 0.6 1.2
[ aamamma—

KET Pre KET Post-Pre

t-values

Fig 1. Topography of gamma-band power and aperiodic slope effects. (A) Depicted are grand-averaged (n=12) topographies of averaged power
estimates (30-90 Hz) for each condition (left panels), topographies of power difference values (post-condition, i.e., during continuous infusion, minus
pre-condition, i.e., before administration; middle panels), and t-values of the statistical comparison (contrast of power difference values; right panels).
Positive t-values indicate increased gamma-band power in the Ketamine compared to the placebo condition. White dots indicate sensors belonging to
the cluster with significant effect. (B) Same as in (A) for the aperiodic slope effect. Negative t-values indicate a flatter slope in the Ketamine compared to
the placebo condition. PLA=Placebo, KET =Ketamine.

https://doi.org/10.1371/journal.pcbi.1013118.9g001

To examine whether the slope change was driven by higher (> 30 Hz) vs. lower frequencies (< 30 Hz), analyses were
repeated with slopes fitted between 7 and 30 Hz and between 30 and 80 Hz. While the slope of the lower-frequencies
data did not differ between Ketamine compared to Placebo in any brain region, the slope for higher-frequencies was
affected by Ketamine in several pre-frontal and central brain regions (see S2 Fig).

Correlation with gene expression profiles

We calculated correlations between the topography of Ketamine-induced effects and the regional gene expressions of
genes encoding the PV, SST, and VIP proteins (i.e., genes PVALB, SST, VIP) as well as genes encoding NMDA-R
GIuN2A-D subunits (i.e., GRIN2A, GRIN2B, GRIN2C, GRIN2D).

PVALB gene expression levels across cortical areas were positively correlated with spatial differences in Ketamine-induced
heightened gamma-band power (partial-r=0.679, p=0.006). The spatial differences in expression profiles of genes encoding
PV and GIuN2D correlated significantly with the spatial differences in Ketamine-induced negative slope change (i.e., cor-
related positively with a flatter slope; PVALB: partial-r=-0.671, p=0.010, GRIN2D: partial-r=-0.426, p=0.04; see Fig 3).
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Table 2. Overview of brain regions with significant Ketamine-induced increase in gamma-band power and aperiodic slope change.

Significant brain regions t-values p-values
Gamma
difference
Cortical LPreCG, RPreCG, LSFGdor, RSFGdor, LORBsup, RORBsup, LMFG, RMFG, LORBmid, RORB- 2.84t04.03 0.008 to
mid, LIFGoperc, RIFGoperc, LIFGtriang, RIFGtriang, LORBInf, RORBInf, LROL, RROL, LSMA, 0.001
RSMA, LOLF, LSFGmed, RSFGmed, LORBsupmed, RORBsupmed, LREC, RREC, LINS, RINS,
LACG, RACG, LDCG, RDCG, LPCG, RPCG, LPHG, RPHG, RLING, RSOG, LMOG, RIOG,
LPoCG, RPoCG, LSPG, RSPG, LIPL, RIPL, LSMG, RSMG, LANG, RANG, LPCUN, RPCUN,
LPCL, RPCL, LHES, RHES, LSTG, RSTG, LTPOsup, RTPOsup, LMTG, RMTG, LTPOmid,
RTPOmid, LITG, RITG
Subcortical LHIP, RHIP, LAMYG, RAMYG, LCAU, RCAU, LPUT, RPUT, LPAL, RPAL, LTHA, RTHA 3.00 to 4.03 0.006 to
0.001
Slope
difference
Cortical LPreCG, RPreCG, LSFGdor, RSFGdor, LORBsup, RORBsup, LMFG, RMFG, LORBmid, LIF- 3.111t04.03 0.005 to
Goperc, LIFGtriang, LORBInf, LROL, RROL, LSMA, RSMA, LOLF, LSFGmed, RSFGmed, LORB- 0.001
supmed, RORBsupmed, LREC, RREC, LACG, RACG, LDCG, RDCG, LPCG, RPCG, LPoCG,
RPoCG, LSPG, RSPG, LIPL, RIPL, RMSG, LPCUN, LPCL, RPCL, LHES, RHES, LSTG, RSTG,
RMTG, LTPOmid
Subcortical RHIP, LAMY, LCAU, RCAU, LPUT, LPAL, LTHA, RTHA 3.111t04.03 0.005 to
0.001

Abbreviations of brain regions according to AAL-atlas, for full labels see S1 File. Prefix: L=left, R=right.

https://doi.org/10.1371/journal.pcbi.1013118.t002

Computational modeling of NMDA-R dysfunction

Using a generic model of cortical layer 2/3 microcircuits developed by Yao et al. [45], we modeled the effects of NMDA-R
dysfunction in either PV+, SST+, VIP+, or pyramidal neurons and examined whether the effects observed in human
MEG-data after Ketamine administration could be simulated. The computational model consists of pyramidal neurons,
PV+, SST+, and VIP+ interneurons, which were modeled to fit human data and connected in microcircuits (Fig 4B). The
expected MEG signal from a volume of 1000 neurons (see Fig 4A) was simulated without manipulation (baseline model)
and with the following reductions in NMDA-R conductance: PV +: 60%, 40%, 20%, 10%; SST+: 100%, 80%, 60%, 40%;
VIP+: 80%; pyramidal: 80%, 40%; all neuron types simultaneously: 40% (see Fig 4B).

NMDA-R conductance reductions on PV+ or SST+ interneurons resulted in significant increases in gamma-band
power (Fig 5A and 5B), with the magnitude of the power increase depending on the amount of reduction (see Table
3). Greater reductions on NMDA-Rs on SST+ interneurons resulted in higher increases in gamma-band power,
with a complete removal of NMDA-Rs on SST+ interneurons leading to a mean power increase of 3.27 x 10e-

21 (Cohen’s d=4.16). A comparable mean gamma-band power increase was observed with a 60% reduction of
NMDA-Rs on PV+ interneurons (mean increase =3.31 x 10e-21), yet this amount of NMDA-R conductance reduc-
tion in PV+ also caused considerably higher variance in power between simulations (see Table 3), diminishing the
effect size (Cohen’s d=2.41). When comparing a 40% reduction in NMDA-R conductance between PV+ and SST+
interneurons, the mean power and effect sizes were of similar magnitudes (PV +-40%: mean power=2.17 x 10e-
21, Cohen’s d=1.48; SST+-40%: mean power=2.10 x 10e-21, Cohen’s d=1.36). NMDA-R conductance reduc-
tions in pyramidal neurons, VIP+ interneurons, and in all neuron types simultaneously, did not result in an increase
in gamma-band power (Fig 5C) (results of simulations with different combinations of neuron types affected are
reported in S3 File and S3 Fig).

The slope of the aperiodic component of the simulated data, however, was not flatter after NMDA-R conductance
reductions in any neuron type (all p-values>0.44). While a power increase across the whole examined spectrum (3—90
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Fig 2. Gamma-band power and aperiodic slope change at virtual channel level. (A) Grand-averaged (n=12) power spectrum in gamma range
(30-90 Hz) per condition (black: Placebo, red: Ketamine, dotted line: pre infusion onset, straight line: post infusion onset), averaged across regions with
significant gamma-band power change and across participants. Shaded envelope indicates standard error of the mean. (B) Centroids of cortical (red)
and subcortical (blue) brain regions with significant gamma-band power change. Perspective from the left (upper figure) and above (lower figure) on

a semi-transparent brain. Labels of these regions can be found in Table 2. (C) Gamma-band power difference values (post minus pre administration)
for each participant (dark grey dots) averaged across regions with significant gamma power change, and averaged across participants (black dot) with
standard deviation indication (black error bars). (D) Grand-averaged aperiodic fit (n=12) per condition (black: Placebo, red: Ketamine, dotted line: pre
infusion onset, straight line: post infusion onset), averaged across regions with significant slope change and across participants. The more transparent
lines in the background show the aperiodic power spectrum in the respective conditions, averaged across regions with significant gamma-band power
change and across participants, with the standard error of the mean as shaded envelope. (E, F) Same as (B, C) for the aperiodic slope.

https://doi.org/10.1371/journal.pcbi.1013118.9002

Hz) of the aperiodic component of the data could be observed, the flattening of the aperiodic spectrum in MEG-data fol-
lowing Ketamine administration was not reproduced (see Fig 5D-F).

Modeling NMDA-R conductance reductions in pyramidal, PV +, SST+, and VIP+ neurons resulted in mean spike rate
changes across neuron types (Fig 6). Elevated firing of pyramidal neurons (i.e., increased excitation) was observed in
conditions with NMDA-R conductance reductions in PV+ interneurons or SST+ interneurons. Pyramidal cell spike rates
were decreased when NMDA-Rs in VIP+ or pyramidal cells were affected.

Discussion

The current study investigated the effects of Ketamine, a non-competitive NMDA-R antagonist, on E/I-balance in human
MEG-data. Ketamine administration increased gamma-band power and flattened the aperiodic slope across brain regions
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and these changes correlated with expression levels across cortical areas for the PV-encoding (PVALB) and NMDA recep-
tor subunit GIuN2D-encoding (GRIN2D) genes. In our computational model, we found that the increase in gamma-band
power could be reproduced by reducing NMDA-R levels in PV+ or SST+ interneurons. Interestingly, NMDA-R dysfunction
on GABAergic interneurons, however, did not reproduce changes in the slope of Ketamine-induced changes in MEG-data.

The increase in gamma-band power after Ketamine administration is consistent with previous findings in rodents
[46,47] and human resting-state EEG and MEG-data [33,48,49]. Increased gamma-band power has been linked to
changes in E/l-balance, particularly to elevated levels of excitation [8,38,50]. Consistent with this hypothesis, a flatter ape-
riodic slope following Ketamine administration was observed in frontal, central as well as subcortical regions. Theoretical
and empirical studies have shown that a flatter slope indexes elevated excitation [9,10]. Our results demonstrate that the
change in slope was mainly driven by the aperiodic component in higher frequencies (> 30 Hz), which is consistent with
previous observations of Gao et al. [10] that slope changes in these frequency ranges reflect E/I-changes.

Correlations between Ketamine-induced spectral changes and gene-expression data provided further evidence for the con-
tribution of E/I-balance parameters. Changes in gamma-band power and the aperiodic slope induced by Ketamine correlated
with the spatial distribution of PVALB gene expression, suggesting a preferential action via PV+ interneurons. The correlation
of SST gene expression with changes in gamma-band power and aperiodic slope was also large, but did not reach statistical
significance after correcting for spatial autocorrelation. Together with the simulation results showing that NMDA-R malfunction
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Fig 4. Human cortical layer-2/3 model. (A) Representation of the model with 1000 neurons, the neural morphologies of each modeled neuron type,
and pie chart with the proportion of neuron types in the model (Pyramidal [Pyr] neurons 80%; somatostatin [SST] interneurons 5%; parvalbumin [PV]
interneurons 7%; vasoactivate intestinal peptide [VIP] interneurons 8%). (B) Connectivity diagram of the microcircuit with main connections between
neuron types. Blue circles indicate the site at which NMDA-R conductance was reduced (NMDA to [1] pyramidal cells, [2] PV interneurons, [3] SST inter-
neurons, and [4] VIP interneurons). (A, B) Reprinted and adapted with permission from [45].

https://doi.org/10.1371/journal.pcbi.1013118.g004

in SST+ interneurons reproduces increased gamma power as in human MEG data, these findings mayindicate that SST-
related effects may exist but are more subtle than those associated with PVALB gene expression. Moreover, Ketamine-
induced effects correlated with NMDA-R subunit gene expression. GRIN2D is expressed in about 60—-80% of SST+ and PV+
interneurons in adult mice [51,52] with minimal expression in principal neurons [53,54]. Results on NMDA-R subunit-specific
sensitivity to Ketamine have been inconsistent [55], but under physiological conditions, Ketamine may have more pronounced
effects on GIuN2C and GIuN2D receptors compared to GIuN2A and GIuN2B receptors [56].

Using a computational model simulating human cortical layer-2/3 microcircuits, we were able to identify the contribu-
tion of specific GABAergic interneurons and their interactions with NMDA-Rs towards dysregulated gamma-band activity.
Previous studies had shown that Ketamine inhibits fast-spiking [3,36] but also SST+ and VIP+ interneurons [41-43]. In
all simulated conditions that elicited higher gamma-band power, pyramidal neuron firing rates were increased, consistent
with prior observations [3]. Accordingly, dysregulated gamma-band activity following NMDA-R dysfunction may arise
from an increased but desynchronized firing pattern of excitatory neurons due to reduced inhibitory input [50].
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Fig 5. Gamma-band power and aperiodic components of simulated data with NMDA-R reductions. Panels (A-C) depict the averaged power
spectrum of the fast-Fourier transformed data in the gamma-power range. Panels (D-F) show the aperiodic component of the power spectrum in log-log
space. Shaded envelopes indicate standard error. Control condition (black, dotted line) without any manipulations. In the test conditions (straight, colored
lines), NMDA receptors of (A, D) parvalbumin neurons, PV, (B, E) somatostatin neurons, SST, (C, F) vasoactive-intestinal peptide neurons, VIP, and
pyramidal neurons, Pyr, and in all aforementioned neuron types simultaneously, were reduced by the indicated amount.

https://doi.org/10.1371/journal.pcbi.1013118.g005

Table 3. Gamma-band power increase in modeled NMDA-R dysfunction.

Condition mean power standard devi- p-value t-value Cohen’s d Percent change
(x102) ation (x1022)
baseline 1.72 2.48
PV -10% 1.74 2.46 0.351 -0.38 0.08 1.16%
PV -20% 1.90 3.02 <0.001 -3.24 0.65 10.47%
PV -40% 217 3.59 <0.001 -7.36 1.48 26.16%
PV -60% 3.31 8.99 < 0.001 -12.03 2.41 92.44%
SST -40% 2.10 3.09 <0.001 -5.64 1.36 22.09%
SST -60% 2.47 3.26 <0.001 -13.02 2.61 43.60%
SST -80% 2.82 4.31 <0.001 -15.6 3.12 63.95%
SST -100% 3.27 4.66 <0.001 -20.80 4.16 90.12%

Independent one-sided t-test between conditions with dysfunctional NMDA receptors in either parvalbumin (PV) or somatostatin (SST) interneurons in
the indicated proportion of neurons and a baseline model without NMDA receptor manipulations. P-values are false-discovery-rate corrected for multiple
comparison. Percent change from mean gamma-band power at baseline. N=50 simulations per condition.

https://doi.org/10.1371/journal.pcbi.1013118.t003
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https://doi.org/10.1371/journal.pcbi.1013118.9006

Our data showed that NMDA-Rs on PV+ or SST+ interneurons were the main contributors towards increased
gamma-band power following Ketamine administration, while reductions of NMDA-Rs on VIP+ and pyramidal cells did not
increase gamma-band power. Reductions of NMDA-R activity in all neuron types did also not show a gamma-band increase,
indicating that Ketamine might preferentially inhibit NMDA-Rs on specific neuron types. The specific effects of NMDA-Rs on
PV+ and SST+ interneurons are consistent with the faster spike rate of PV+ and SST+ relative to VIP+ and pyramidal neu-
rons [57,58] which is an important determinant for the generation of high-frequency oscillations [21]. A fast spike rate might
lead to increased relief of NMDA-Rs from magnesium block, and could thereby enable Ketamine to inhibit these neuron
types more easily [58]. However, there were also differences between simulations with different NMDA-R expression levels
on PV+ and SST+ interneurons. Pronounced reductions of NMDA-Rs on PV+ interneurons distorted firing properties while
comparable simulations with SST+ interneurons did not show such effects, indicating a greater sensitivity of PV+ interneu-
rons towards the effects of NMDA-R hypofunction and highlighting the importance of PV+ interneurons for the maintenance
of E/l-balance.

Moderate reductions of NMDA-Rs in both PV+ and SST+ interneurons resulted in comparable gamma-band power
increases, indicating that both interneuron types are contributing towards E/I-balance in human microcircuits and might

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013118 June 9, 2025

1719


https://doi.org/10.1371/journal.pcbi.1013118.g006

A Computational
PLOS }. Biology

underlie Ketamine’s effects on gamma-band oscillations. However, computational modeling was not able to reproduce
the changes in the aperiodic slope following Ketamine administration. Importantly, the interpretation of the slope as

a measure of microcircuit E/lI-balance has recently been challenged [59], suggesting that the aperiodic slope may be
influenced by central states, such as arousal [60—62]. Furthermore, Ketamine is not only an NMDA-R antagonist but also
targets dopaminergic, serotonergic and cholinergic receptors [55]. Accordingly, it is also conceivable that downstream
effects of local E/l-imbalance, caused by Ketamine acting on NMDA-Rs of interneurons interact with Ketamine’s effects
on dopaminergic and cholinergic transmission to elicit slope changes. Furthermore, more complex mechanisms by which
Ketamine might disrupt E/l-balance have been proposed, e.g., by acting on extra-synaptic NMDA-Rs of pyramidal neu-
rons [58,63].

The current approach combining MEG-activity with computational modeling to explore the mechanisms of E/l-balance
alterations is also relevant for understanding the biological basis of schizophrenia, which is characterized by prominent
alterations in gamma-band oscillations [64] as well as alterations in excitatory and inhibitory neurotransmission [65].
However, it is currently unclear whether impairments in GABAergic interneurons, for example, are a primary dysfunction
or whether these reflect a compensatory deficit towards impaired excitatory inputs [66]. Accordingly, advances in computa-
tional modelling could contribute towards disentangling competing circuit hypotheses [67].

The current study has several limitations. Although gamma-band power and aperiodic slope were used as distinct
markers of E/l-balance, these measures are strongly correlated. It cannot be ruled out that changes in gamma-band
power are driving the change in aperiodic slope in our MEG data, and that they might reflect overlapping aspects
of the same underlying mechanism. Additionally, the computational model was restricted to cortical layer 2/3. While
superficial layers are crucial for E/l-balance and are the main origin of gamma-band activity [68,69], it is not clear
whether slope changes are specifically linked to layer 2/3 activity. The sample size of 12 participants was relatively
small but the effects of Ketamine on gamma-band activity were highly robust and consistent across participants.
Another limitation concerns the generic nature of the computational model, which was not optimized to simulate a par-
ticular brain region. Lastly, the baseline model assumed equal synaptic conductances from NMDA and AMPA recep-
tors and in different (inter-)neuron types, which could lead to an overestimation of the impact of NMDA downregulation
on specific cell types.

Summary and implications

Our study provides novel evidence using computational modeling on the role of NMDA-Rs on different GABAergic inter-
neurons towards dysregulated gamma-band oscillations following the administration of Ketamine. Firstly, our computa-
tional simulations recreated previous findings showing that Ketamine is associated with an increased firing in excitatory
pyramidal cells. Secondly, we can show that both reduced NMDA-Rs on PV+ and SST+ interneurons may underlie the
dysregulation of gamma-band activity in human MEG-activity following sub-anesthetic administration of Ketamine. How-
ever, while a Ketamine-induced change in the aperiodic slope was found in human MEG data, our computational model-
ing results suggest that NMDA-R dysfunction in cortical layer 2/3 interneurons do not account for this effect.

Materials and methods
Ethics statement

The study was approved by the ethical committee of Goethe University Frankfurt and carried out according to the Decla-
ration of Helsinki. Participants gave written informed consent after complete description of the study and were monetarily
rewarded for their participation.

The analysis plan of this project was registered under https://osf.io/u4f2y. Any deviations from the registered protocol
will be reported along with a justification. Moreover, MEG-data from this study were previously published [35,70].
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Participants and experimental procedure

The sample consisted of 13 participants (2 females; mean age=29.6). Only 12 participants were included in the analysis
because of missing data. The study followed a single-blind, randomized, placebo-controlled crossover design. An initial
bolus of 10 mg S-Ketamine (drug condition) or 10 ml sodium chloride (NaCl) 0.9% (Placebo condition) was administered,
followed by a continuous intra-venous infusion of 0.006 mg S-Ketamine or NaCl 0.9% per Kg body weight per minute. The
order of drug and Placebo conditions was randomized between participants.

Resting-state MEG activity was recorded for 8 minutes (4 minutes eyes closed, 4 minutes eyes open) three times
on each session: 1) before bolus injection, 2) 5 minutes after the onset of the continuous infusion, and 3) 45 minutes
later after completion of a visual grating task. Here, only the first two resting-state data sets (i.e., before bolus and 5
minutes after onset) of the eyes-closed condition were used. Results from this data-set were previously reported by
Rivolta et al. [35].

Participants were excluded if they met a past or present axis | or Il diagnosis (screened with SCID-II) or had a family
history of psychosis.

Neuroimaging

MEG data were acquired using a 275-sensors whole-head system (Omega 2005, VSM MedTech Ltd, BC, Canada) at a
sampling rate of 600 Hz in a synthetic third order axial gradiometer configuration. A high-resolution anatomical MRI scan
of each participant was acquired using a 3D magnetization-prepared rapid-acquisition gradient echo sequence in a 3T
Siemens Trio scanner (160 slices, voxel size: 1x1x1mm, FOV: 256 mm, TR: 2300ms, TE: 3.93 ms). Markers placed on the
nasion and pre-auricular points (bilaterally) were used to guide subsequent co-registration of the MEG data to the struc-
tural MRI scan.

MEG data preprocessing and analysis

The Matlab toolbox ‘FieldTrip’, version 20221223 [71] was used for all MEG analysis. For figure generation, R (version
4.2.2; R Core Team, 2013) [72] with ggplot2 [73], FieldTrip, and BrainNet Viewer [74] were utilized. The data was seg-
mented into 2s intervals with an overlap of 0.5s, down-sampled to 300 Hz, and notch-filtered to remove line-noise. The
segments were visually inspected for muscle artifacts and SQUID jumps, and independent component analysis (ICA) was
used to remove further artifacts. Trial numbers did not differ significantly between conditions (Placebo Pre: 225, Placebo
Post: 224, Ketamine Pre: 224, Ketamine Post: 218; F(3,44) = 1.09, p=0.365).

Analyses were conducted on both sensor and virtual channel level. We used the linearly constrained minimum variance
(LCMV) beamformer approach [75] to reconstruct the MEG data from MNI source locations corresponding to centroids
of the AAL atlas regions (90 regions; excluding cerebellum) [76]. For the estimation of spectral power, a Slepian-window
multi-tapered Fast Fourier Transform (FFT) with a smoothing of 6 Hz was applied and the power estimates averaged
between 30 and 90 Hz.

To separate the oscillatory and aperiodic components of the power spectrum, we applied the irregular resampling
auto-spectral analysis (IRASA) algorithm [77] in a range between 3 and 90 Hz. For the calculation of the aperiodic slope,
we fitted the logarithmic function L(F) = b —log, - FX to the aperiodic component of the data in the frequency range F =
[7,80] after log-transformation of the power estimates L. The exponent x corresponds to the negative linear slope of the
function in log-log space. An example fit can be seen in S1 Fig.

We tested for significant differences in the aperiodic slope and broadband gamma power between Ketamine condition
(i.e., Ketamine post infusion onset — Ketamine pre infusion onset) and Placebo condition (i.e., Placebo post infusion onset
— Placebo pre infusion onset) using Monte-Carlo permutation dependent t-test statistics with a cluster-based correction
(sensor level) and false discovery rate (FDR) correction (virtual channel level). Two-sided t-tests with an alpha level of
0.05 were performed.
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Correlations between MEG-data and gene expression

We examined the topography of Ketamine-induced gamma-band and aperiodic slope effects in relationship to the
regional gradient of expression of different E/l-related genes. To this end, we used data of the Allen Human Brain Atlas
[78], (preprocessed by Burt et al. [26]) to assess expression of the genes encoding the PV, SST, and VIP proteins (i.e.,
genes PVALB, SST, VIP) as well as genes encoding NMDA-R GIuN2A-D subunits (i.e., GRIN2A, GRIN2B, GRIN2C,
GRIN2D).

As only left-hemisphere gene data was available, we compared Ketamine-induced changes and gene expres-
sions in 30 left-hemisphere AAL regions. Given the high correlations among the selected genes, we calculated
partial correlations to isolate the effects of specific gene expressions. To prevent inflated p-values due to spatial
autocorrelation (SA), we produced 1000 SA-preserving surrogate brain maps using the python package ‘BrainS-
MASH:’ [79], using the default parameters, and calculated the statistics of the partial correlations based on this
generative null model.

Computational modeling

We used a generic model of a layer 2/3 (L2/3) cortical microcircuit developed by Yao et al. [45], which is a data-driven
model of cortical L2/3 neurons based on mainly human data. It consists of 1000 neurons distributed in a 500 x 500 x
950 um? volume, 250-1,200 um below the pia (see Fig 4A). Morphological, electrophysiological and anatomical (den-
sity of neurons and synaptic connectivity) features within the microcircuit model were fit to human data where possible
and to rodent data otherwise, and show close matches with the experimental characteristics of the modeled populations
[78,80-85].

The model was simulated using NEURON [86] and LFPy [87]. Background excitatory input representing cortical
and thalamic drive was modeled so that the recurrent activity within the model shows realistic spontaneous firing rates
for the different modeled cell types. Several models with reductions in NMDA-R conductance in PV +, SST+, VIP +,
or pyramidal neurons were evaluated to systematically test the contribution of different expression levels of NMDA-Rs
on GABAergic interneuron subtypes (PV +: -60%, -40%, -20%, -10%; SST+: -100%, -80%, -60%, -40%, VIP +: -80%,
pyramidal: -80%, -40%; see Fig 4B). NMDA-R conductance reductions of more than 60% in PV+ interneurons resulted
in unrealistic firing patterns and power spectra with strong oscillations at around 12 Hz and a power increases 30
times higher than in the control condition and were therefore not further evaluated. Additionally, simulations with
NMDA-R conductance reductions of 40% in all four neuron types (pyramidal, PV+, SST+, VIP+) simultaneously were
tested. To ensure the robustness of the finding with regard to the stochastic nature of the connectivity rules, we gener-
ated 50 randomized microcircuits with a duration of 3s each, of which the first second was removed prior to analysis
to avoid potentially disrupted onset activity.

To compare the simulated data to MEG-recordings, we modeled the expected MEG activity of the simulated neural
activity using an infinite homogeneous volume conductor model [88] through the Python module LFPy. A fixed dipole origin
was placed at the midpoint of L2/3 (-725 pm). The average signal from four sensors placed at the corners of a square with
a side length of 1 cm located on the surface perpendicular to the computational model was then computed. Gamma-band
(30-90 Hz) power and the slope of the aperiodic activity (modeled between 7 and 80 Hz) of the simulated data was ana-
lyzed in the same way as the MEG data described earlier.

To test which change in parameters resulted in a significant difference in gamma-band power and aperiodic slope
compared to control conditions (i.e., no NMDA-R manipulation), independent-sample one-sided t-tests (informed by the
direction of the effect in the MEG data; alpha-level=0.05) were used, FDR-corrected for multiple comparisons.

Moreover, to test the effects of NMDA-R manipulations on the L2/3 neurons’ firing properties, we calculated the aver-
aged spike rates of pyramidal, PV+, SST+, and VIP+ neurons for each simulated condition.
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Supporting information

S1 Fig. Example fit of the aperiodic component of one participant in LSFGmed. (A) Power log-transformed. (B)
Power and Frequency log-transformed.
(PNG)

S2 Fig. Comparison of aperiodic slope changes in different frequency ranges. (A) Upper panel: Power spectrum
(log-transformed) of the aperiodic component per condition, averaged across regions with significant slope change and
across participants, in a frequency range between 7 and 80 Hz. Lower panel: Centroids of cortical (red) and subcortical
(blue) brain regions with significant slope change (slope fitted between 7 and 80 Hz). Perspective from the left and above
on a semi-transparent brain. (B-C) Same as (A) but in a frequency range of 7-30 Hz (B) and 30-80 Hz (C).

(PNG)

S3 Fig. Mean spike rates (A), gamma-band power (B) and aperiodic component (C) of simulated data with NMDA
receptor reductions. (A) Error bars indicate standard error of the mean. Control condition without any manipulations. In
the test conditions, NMDA receptors of different combinations of parvalbumin neurons (PV), somatostatin neurons (SST),
pyramidal neurons (Pyr) and vasoactive-intestinal peptide neurons (VIP) were reduced by the indicated amount. In the
‘spike rate’ condition, NMDA receptors were reduced proportional to the spike rate of that neuron type (NMDA receptor
reductions: PV -40%, SST -20%, VIP -15%, Pyr -5%). In the ‘interneurons’ condition, NMDA receptors of PV, SST, and VIP
interneurons were reduced by 40%. In the ‘neurons’ condition, NMDA receptors of all modeled neurons types (PV, SST,
VIP, and pyramidal neurons) were reduced by 40%. (B) Averaged power spectrum of the fast-Fourier transformed data in
the gamma-power range. (C) Aperiodic component of the power spectrum in log-log space. Shaded envelopes indicate
standard error. Control condition (black, dotted line) without any manipulations. In the test conditions (straight, colored
lines), NMDA receptors of PV, SST, VIP, and Pyr neurons, were reduced by the indicated amount.

(PNG)

S1 File. AAL region abbreviations.
(DOCX)

S2 File. Power Differences in Different Frequency Ranges.
(DOCX)

S3 File. Statistical information on computational scenarios after reduction of NMDA-Rs in combinations of
neurons.
(DOCX)
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