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Abstract

We report the discovery of a progenitor candidate for the Type IIb SN 2024abfo using multiepoch pre-explosion
images from the Hubble Space Telescope and the Dark Energy Camera Legacy Survey. The progenitor exhibited
a ∼0.7 mag decline in F814W from 2001 to 2013, followed by signiBcant brightening and color Euctuations in the
g, r, and z bands. This is the Brst time that substantial photometric variability has been found for the progenitor of
a SN IIb. We suggest that the variability is caused by intrinsic changes in the progenitor star instead of varying
obscuration by circumstellar dust. Our results show that the progenitor of SN 2024abfo was likely a yellow
supergiant star with an initial mass of 12–18M⊙ for circumstellar reddening of E(B − V )CSM < 0.2 mag. Our
study underscores the critical role of multiepoch imaging surveys in revealing the Bnal stages of core-collapse
supernovae progenitors.

Uni"ed Astronomy Thesaurus concepts: Variable stars (1761); Type II supernovae (1731)

1. Introduction

In the standard model, stars with initial masses greater than
about 8M⊙ end their lives as core-collapse supernovae (SNe).
Among these, Type IIb SNe (SNe IIb) are a transitional class
of core-collapse events, characterized by the presence of
hydrogen (H) in early spectra that diminishes within tens of
days (A. V. Filippenko 1988; M. Modjaz et al. 2014; Y.-Q. Liu
et al. 2016). This distinctive spectral evolution implies that the
progenitor of SN IIb possessed a low-mass H envelope,
suggestive of signiBcant mass loss happening for very massive
single stars (A. Gal-Yam et al. 2014) or binary-driven
stripping prior to core collapse (K. I. Nomoto et al. 1995).
Based on direct detections in pre-explosion archival images,
the progenitors of SNe IIb have been conBrmed to be
supergiant stars (e.g., J. R. Maund et al. 2011; S. D. Van Dyk
et al. 2014; C. D. Kilpatrick et al. 2022) with effective
temperatures hotter than the red supergiant progenitors for
normal SNe IIP due to the partial stripping of their H-rich
envelopes. Binary companions of three SNe IIb progenitors
have also been detected (J. R. Maund et al. 2004; S. D. Ryder
et al. 2018; J. R. Maund 2019), which strongly supports
interacting binaries as the dominant progenitor channel toward
SNe IIb.
Pre-SN stellar variability can introduce additional uncer-

tainties in determining the initial mass and, thereby, the pre-
SN evolution of the progenitor. In recent years, substantial pre-
explosion photometric variability of the progenitor stars for
SNe IIP (e.g., L. Rui et al. 2019; J. E. Jencson et al. 2023;

Z. Niu et al. 2023; M. D. Soraisam et al. 2023; D. Xiang et al.
2024), IIn (e.g., N. Smith et al. 2010; S. J. Brennan et al.
2022), Ibn (A. Pastorello et al. 2007; R. J. Foley et al. 2007;
J. R. Maund et al. 2016; N.-C. Sun et al. 2020) and broad-
lined Ic (A. Y. Q. Ho et al. 2019) has been observed.
N. L. Strotjohann et al. (2015) also reported a likely precursor
for SN IIb 2012cs. The luminosity variations of progenitors for
SNe IIn are frequently observed (E. O. Ofek et al. 2014;
N. L. Strotjohann et al. 2021), easily exceeding 1 mag;
however, their speciBc identities and evolutionary pathways
remain poorly understood, with only tentative links to
very massive (>30M⊙) luminous blue variables proposed
(A. Gal-Yam & D. C. Leonard 2009; N. Smith 2017).
Meanwhile, studies of the Type Ibn SN 2006jc have further
demonstrated that even lower-mass stars (e.g., <15M⊙) can
display giant pre-SN eruptions. Progenitors of Type IIP
SNe 2017eaw, 2023ixf, and 2024ggi also exhibited pro-
nounced pulsational brightness variability and may also be
obscured by circumstellar dust (S. D. Van Dyk et al. 2019;
E. A. Zimmerman et al. 2024). These effects complicate
progenitor interpretation—for instance, the inferred properties
of SN 2023ixf’s progenitor differ markedly among studies (see
Table 2 in Y.-J. Qin et al. 2024).
In this paper, we report the detection of a progenitor of

SN IIb 2024abfo. SN 2024abfo occurred in a nearby galaxy
NGC 1493 (z= 0.003512, via the NASA/IPAC Extragalactic
Database). It was Brst discovered by ATLAS on 2024
November 16 and was initially classiBed as a Type II SN due
to the presence of a broad P-Cygni H-alpha feature in the early
spectra obtained ∼19 hr postdiscovery (S. D. W. E. Zimmerman
2024). Subsequently, A. Reguitti et al. (2025) reclassiBed it as an
SN IIb based on the disappearance of H lines in the SN
spectrum obtained approximately 1 month after explosion. Its
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redshift corresponds to a distance of 12.92Mpc, after
correcting for local velocity Eows such as those induced by
the Virgo cluster and assuming a Hubble constant of
73.30 ± 1.04 km s−1Mpc−1 (A. G. Riess et al. 2022). The
Galactic foreground reddening toward the SN is E
(B − V )= 0.009 mag (E. F. SchlaEy & D. P. Finkbei-
ner 2011). Applying an extinction law of RV = 3.1
(J. A. Cardelli et al. 1989), the Galactic extinction is
AV = 0.028 mag. The extinction from the host galaxy is
negligible, given that the Na ID absorption lines in the SN
spectrum are too weak to provide a reliable estimation of
reddening of the host galaxy (A. Reguitti et al. 2025). Using
the reported mB = 11.8 mag for NGC 1493 (G. Dálya et al.
2022) and distance above, the galaxy luminosity–metallicity
relation (C. A. Tremonti et al. 2004) yields 12+ log(O/
H)≈ 8.70 dex, corresponding to approximately solar metalli-
cities (C. Allende Prieto et al. 2001). Since the SN is located
5.8 kpc from the galaxy center, we adopt a slightly subsolar
metallicity of Z = 0.010 in the subsequent analysis.
Extensive pre-explosion imaging of SN 2024abfo is avail-

able from multiple facilities, including the Hubble Space
Telescope (HST)/Wide Field Planetary Camera 2 (WFPC2),
Dark Energy Camera Legacy Survey (DECaLS)/Dark Energy
Camera (DECam), Visible and Infrared Survey Telescope for
Astronomy (VISTA)/VISTA InfraRed CAMera (VIRCAM),
and the Spitzer/Infrared Array Camera (IRAC). These multi-
epoch, multiband observations allow us to constrain the
properties of the progenitor and investigate whether it has
signiBcant variability before explosion. Section 2 describes the
data and photometry procedure. The inferred physical proper-
ties of the progenitor candidate are presented in Section 3, and
we summarize our Bndings in Section 4.

2. Data and Photometry

2.1. Southern Astrophysical Research Telescope

In order to obtain the accurate position of SN 2024abfo in
the pre-explosion image, we carried out 4× 30s r-band
imaging observations of the Beld of SN 2024abfo on 2024
November 18 using the Goodman High Throughput
Spectrograph equipped on the 4.1 m Southern Astrophysical
Research (SOAR) telescope located at Cerro Pachon, Chile.
The combined SOAR image is shown in Figure 1(a), where the
SN is clearly visible and remains unsaturated thanks to the
short single-exposure time. Centers of the SN and Beld stars on
this image were determined through two-dimensional Gaus-
sian Btting. The common Beld stars that were detected both in
the SOAR image and pre-explosion image were used to
conduct the astrometric transformation. The transformation
included rotation, scaling, and shifting and was achieved
through Equation (1), where (x, y)/(u, v) donates coordinates
on the SOAR/pre-explosion image:
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P P

Q Q
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P

Q
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1 2

1 2

0

0

We used least-squares minimization to derive the transforma-

tion coefBcients, where iterative rejection of 3σ outliers was

employed. We subsequently computed transformation resi-

duals for the common stars to estimate the uncertainty of

transformation. Detailed results of the transformed SN

coordinate shall be described in the following subsections.

2.2. HST

Before the explosion, this SN site was imaged by HST with
WFPC2 in F814W in 2001, with one 40 s exposure and two
300 s exposures (PI: Boeker). The 40 s exposure is not used in
this work, and for the two 300 s exposures we retrieved the
calibrated images from the Mikulski Archive for Space
Telescopes.10 We employed the IRAF task CRREJ to construct
the cosmic-ray mask and combined two exposures using the
ASTRODRIZZLE package11 for display purposes. Point-spread
function (PSF) photometry was then performed with the
DOLPHOT package with WFPC2 module (A. E. Dolphin 2000),
in which parameters were set according to recommendations in
the User Guide.
When aligning the HST and SOAR frames, Bve common

sources that are clearly detected in both images can be found
(marked with blue circles and labeled a–e in Figures 1(a), (b)).
The common source a/b/c/d/e has i = 17.45/17.93/21.74/
20.98/19.78 mag. The transformed SN position on the
WFPC2/F814W image is indicated by a red circle in

Figure 1(c), with a radius of 2.0 HST pixels (0.2), representing
the uncertainty of the differential astrometry. This uncertainty
corresponds to the mean astrometric residual of the common
sources c–e, whose brightness is more comparable to the
progenitor candidate (see below).
An isolated bright source is clearly visible at the

transformed SN position on the F814W image with an offset
of only 1.8 pixels; hereafter we call it progenitor candidate,
with mF814W = 21.86 ± 0.03 mag (Vega). A faint source of
mF814W = 24.87 ± 0.27 mag is detected 0.5 away from the
progenitor candidate, as marked with a green arrow; hereafter
we call it Source A. At this offset, the contamination from
Source A to the progenitor candidate is negligible. Another
source is located 1.1 southwest of the progenitor candidate
with mF814W = 24.630 ± 0.228 mag, indicated in a cyan
arrow; hereafter we call it Source B.

2.3. DECaLS

The DECaLS, carried out by the 4.1 m Blanco Telescope at
the Cerro Tololo Inter-American Observatory, also covered the
SN site in the g, r and z bands (brick ID: 0592m462). These
data sets consist of 7× 90 s exposures in the g band and
6× 90 s exposures in each of the r and z bands from 2013
November to 2018 February. We retrieved the single-exposure
and coadded images from Data Release 9.12We selected about
10 common sources to perform the astrometric transformation
between the SOAR and DECaLS images. Figure 2 shows
astrometric residuals and magnitudes of the common sources.
At the SN magnitude (see Figure 1 of A. Reguitti et al. 2025),
the typical error of astrometric transformation is always less
than 0.4 pixels (0.1).
The transformed positions of the SN are shown in red points

in Figures 1(d)–(f). The position of Source A/B is marked
with a green square/cyan diamond according to its relative
locations, as observed in the HST image. A point-like source is
visible near the SN position in the g-, r-, and z-band images.
The SN progenitor and Source A are unresolved in the
DECaLS images due to the larger pixel size of 0.262.

10
https://mast.stsci.edu/search/ui/#/hst

11
http://drizzlepac.stsci.edu/

12
https://www.legacysurvey.org/
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However, it is reasonable to assume that this point-like source

is predominantly contributed by the progenitor candidate with

negligible emission from Source A, since the progenitor

candidate is ∼632 times brighter than Source A in the F814W
band images.
This source was reported in the Dark Energy Legacy Survey

Data Release 1 (DR1) and Data Release 2 (DR2); the former is

based on observations from 2013 August to 2016 February

(T. M. C. Abbott et al. 2018), while the latter (T. M. C. Abbott

et al. 2021) extended the data up to 2019 January. Its aperture

magnitudes (AB), MAG_AUTO, which are measured on the
coadded images, are g = 23.17 ± 0.08 mag, r = 21.89 ±
0.04 mag, and z = 22.58 ± 0.20 mag in DR1 and g =
22.61 ± 0.03 mag, r = 22.22 ± 0.03 mag, and z = 22.47 ±
0.12 mag in DR2. However, the aperture model for this

target, as shown by the model image, has a highly eccentric

elliptical shape that overlaps with both the progenitor

candidate and the nearby Source B. Consequently, the

Figure 1. Pre- and postexplosion images of the site of SN 2024abfo. Each panel is labeled with the instrument, band, and epoch. Details of the pre-explosion imaging
are summarized in Table 1. All panels are aligned with north up and east to the left. Panel (a) and (b) have the same scale, with reference stars used for astrometric
transformation between WFPC2 and SOAR circled in blue and SN site marked in red. The transformed SN position and its uncertainty are shown with the red circle
in Panel (c). Two nearby sources detected in F814W image are indicated in cyan and green. Panels (c) to (i) show a same zoomed-in scale. About 20 common stars
on SOAR and DECaLS/VISTA images are used for astrometric transformation. The transformed SN position as well as two nearby sources are also indicated in the
same colors as in panel (a). The typical astrometric uncertainties for both DECaLS and VISTA are 0.4 pixels.
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MAG_AUTO measurements are contaminated by the Source B and
not adopted in this study. Additionally, the DECaLS performed
PSF photometry on single-epoch images and reported weighted
average PSF magnitudes (AB), WAVGMAGPSF, in DR2 with
g = 23.05 ± 0.06mag, r = 22.84 ± 0.06mag, and z = 22.52 ±
0.13mag. Unfortunately, PSF photometry for individual epochs is
not provided.
We performed our own PSF photometry on the single-

exposure images. For each image, we selected unsaturated
stars with signal-to-noise ratio exceeding 5σ above the
background and no bright stars within a radius of 35 pixels.
Typically, more than 100/200/200 stars can be selected for
the g-/r-/z-band images. By using the EPSFBuilder of the
Photutils package (C. Bradley et al. 2024), we constructed
empirical PSF models based on these selected stars. The
resulting full width at half-maximum (FWHM) values were in
the range of 3.7–4.2 pixels, consistent with those provided by
the DECaLS.
We measured instrumental magnitudes (minst) using the

PSFPhotometry13 subpackge with the empirically derived
PSF models. The progenitor candidate and nearby Source B
are overlapped with each other in the g and r bands, as shown
in Figure 1. For these two bands, to improve the Bt, the
progenitor and Source B were simultaneously Btted by
assigning the same group_id in PSFPhotometry. In all
z-band single-exposure images, Source B is too faint to be
detected; therefore we only made PSF Btting for the progenitor
candidate. An example of PSF subtractions is demonstrated in
Figure 3, where both the progenitor candidate and Source B
are cleanly subtracted.
Then, we measured instrumental magnitudes for all stars in

the images, and we compared their instrumental magnitudes
with their PSF magnitudes from T. M. C. Abbott et al. (2021)
in the corresponding band to determine the zero point (ZP) for
each image. A few sources were discarded if their residuals
within twice the FWHM radius showed signiBcant deviations
from zero. For the remaining stars, the ZP was calculated as
ZP= WAVGMAGPSF−minst. We Btted all ZPs with a Gaussian
function after applying an iterative 3σ clipping. An example of
the measurement and the corresponding residual is shown in
Figure 4. The standard deviations of the residuals around the
progenitor’s instrumental magnitudes reEect the ZP uncertain-
ties, and they are found to be much larger than the PSF Btting
uncertainties. Therefore, we adopt the ZP uncertainties as
an estimate of the Bnal photometric uncertainties of the
progenitor.

The derived photometry is listed in Table 2. For the g and r

bands, most of our single-epoch photometry agrees well with

the cataloged WAVGMAGPSF expected for the dimming event in
2016 December and brightening event in 2018 January. It

worth noting that the r-band PSF Btting of the epoch in 2016

September returned a stellar centroid between the progenitor

candidate and Source B, resulting in measurements of

combined Eux of the two sources. Therefore, we adopted this

measurement as an upper limit for the brightness of the

progenitor. We notice that the cataloged WAVGMAGPSF_z is
brighter than most of our z-band magnitudes. We suspect that

this weighted average magnitude is biased by the brightening

event in 2016 December. We shall discuss this variability in

Section 3.

2.4. Infrared Telescopes

Figures 1(g)–(i) display pre-explosion JHKs images

acquired by VISTA. Aside from a bright source located 2″
north of the progenitor position and exhibiting a remarkably

red color across optical–infrared wavelengths, no source was

reliably detected near the SN site. The nominal 5σ detection

limits (AB) are J = 20.9 mag, H = 20.3 mag, and

Ks = 19.8 mag (R. G. McMahon et al. 2013)
We also searched for the progenitor in Spitzer/IRAC

images. In the IRAC imaging, the SN position coincides with

the wings of the northern red source, thereby preventing its

detection within the infrared data.
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Figure 2. An example of the uncertainties in differential astrometry for

DECaLS images. The pixel size of DECaLS images is 0.262.

Table 1
Observations of the SN 2024abfo Site before the Explosion

Instrument Date Filter Exposure Time Program ID

(yyyy-mm-dd) (s)

WFPC2 2001-05-02 F814W 2 × 300 s 8599 (a)

DECam 2013-12∼2018-01 g 7 × 90 s 2012B−0001 (b)

DECam 2013-12∼2018-01 r 6 × 90 s 2012B−0001

DECam 2013-11∼2018-02 z 6 × 90 s 2012B−0001

VIRCAM 2011-12-09 J 60 s 179.A−2010(E) (c)

VIRCAM 2011-12-09 H 60 s 179.A−2010(E)

VIRCAM 2011-12-09 Ks 60 s 179.A−2010(E)

Note. PI last name: (a) Boeker; (b) Frieman; (c) Richard.

13
https://photutils.readthedocs.io/en/stable/user_guide/psf.html
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Figure 3. The PSF subtraction of images obtained in 2018 December as an example. Each row shows single-exposure images before (left) and after (right) the PSF
subtraction. Red and cyan scatters mark the Btted positions of the SN progenitor candidate and Source B, respectively. In the g and r bands, to avoid contamination
from Source B (cyan), we performed PSF Btting for Source B and the progenitor candidate simultaneously. In the z band of all epochs, Source B was undetected in
the single-exposure image; therefore, PSF photometry was only performed for the progenitor candidate. Projections centered at the progenitor candidate along the x-
and y-axis are also shown for each panel. The progenitor and Source B are successfully subtracted, and no visible residuals remain in the subtracted images.
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3. Results

Figure 5 shows the light curves of the progenitor candidate
in the g, r, and z bands. From 2013 November to 2013
December, there was no obvious variation for each band, so
we used the weighted averaged magnitudes in 2013 December
as a reference baseline, as shown in Figure 5. Compared with
that, the g-band magnitude decreased/increased by 0.39/
0.43 mag at 2016 September/2018 January. The r-band
brightness contemporaneously became slightly lower/higher
at those epochs. The progenitor brightened in the z band by
0.43 mag in 2016 September. Unfortunately, the sparse
sampling makes it difBcult to accurately determine whether
there is any periodicity in the variation.

Figure 6 shows the evolution of the spectral energy
distribution (SED) of the progenitor candidate. We plotted
Bve key epochs where at least two bands of photometry are
available. By interpolating the g- and z-band Eux at 2013
December, we Bnd the F814W band in 2001 is signiBcantly
brighter than that at 2013 December by 0.71 mag. It is also
clear that the progenitor candidate signiBcantly dimmed and
possibly redwarded in 2016 September and brightened and
bluewarded in 2018 January, while the other three epochs
show mild variations.
These features could arise from two possible scenarios. In

the Brst scenario, the observed variations are caused by
changes in the circumstellar extinction. While this scenario can
explain the dimming in 2016 September by dust in the newly
ejected material, it is difBcult to account for the return to
“normal” brightness within just 3 months by 2016 December
as well as the sudden brightening in 2018 January and the
subsequent dimming in 2018 February. Besides, the F814W
band magnitude decreased by 0.71 mag from 2001 to 2013
December; however, the progenitor candidate still appears
quite blue in 2013 December. If the brightness decline were
caused by increasing dust extinction, the progenitor in 2013
December would be extremely hot (log(Teff/K)> 4.20) and
luminous (log(L/L⊙) > 5.97), consistent with a very massive
star with initial mass over 50–70M⊙ instead of an SN IIb
progenitor. Thus, we deem this scenario very unlikely.
In another scenario, the observed variability is caused by

intrinsic changes of the progenitor star. To characterize the
evolution of the progenitor as it approaches the SN explosion,
we performed SED Btting using the stellar atmosphere models
of F. Castelli & R. L. Kurucz (2003) for the Bve key epochs
with observations of at least two Blters. The synthetic
photometry was carried out with PYSYNPHOT (STScI Develop-
ment Team 2013), and parameter optimization was performed
using the EMCEE package (D. Foreman-Mackey et al. 2013).
However, the possible circumstellar extinction of the progenitor
remains unknown, for which we considered a range of values of
E(B − V )CSM= 0.0, 0.1, 0.2, and 0.3 mag.
Figure 7 illustrates the derived positions of the progenitor

candidate on the Hertzsprung–Russell (HR) diagram at the Bve
key epochs, along with the BPASS single-star evolutionary
tracks (J. J. Eldridge et al. 2017) and other SNe IIb progenitors
with well-constrained parameters (SNe 1993J, 2011dh,
2013df, 2016gkg, 2017gkk; J. R. Maund et al. 2004, 2011;
S. D. Van Dyk et al. 2014; C. D. Kilpatrick et al. 2022; Z. Niu
et al. 2024). The phenomena mentioned before are all reEected
in the HR diagram as the progenitor is notable in both effective
temperatures and bolometric luminosities.
When the circumstellar reddening is negligible(i.e.,

E(B − V )CSM= 0.0 mag), the progenitor tends to be a yellow
supergiant (YSG) star with log(Teff/K) of 3.83–3.88 and and
log(L/L⊙) of 4.92–5.03. It is difBcult to estimate an accurate
initial mass by comparing the variable luminosity with stellar
evolutionary tracks in which variability is not involved. It
seems that, however, the initial mass of the progenitor
candidate is most likely to lie in the range of 12–14M⊙. It is
worth noting that, compared with a single star with the same
initial mass, the partial stripping of the H-rich envelope by
binary interaction only affects the effective temperature and
leaves the core mass and luminosity almost unaffected
(E. J. Farrell et al. 2020; E. Laplace et al. 2021).

Figure 4. An example of the zero-point Btting for the PSF photometry of
DECaLS single-exposure images. The left-hand panel plots the zero-point
measurements (red vertical line) for the g-band image taken in 2018, where
gray and black points represent data before and after a 3σ clipping,
respectively. The right-hand panel shows the distribution of absolute values
of residuals, where the blue line indicates the rms of different instrumental
magnitudes. Near the progenitor candidate’s magnitude (indicated by the red
dashed line), the rms of the residuals is approximately 0.17 mag.

Table 2
AB Magnitude Photometry of the Progenitor Candidate of SN 2024abfo from

DECaLS Images

Date Filter Magnitude Error

(yyyy-mm-dd)

2013-12-09 g 23.13 0.11

2013-12-12 g 22.99 0.18

2013-12-12 g 23.11 0.18

2016-09-26 g 23.48 0.18

2016-12-25 g 22.98 0.16

2017-12-15 g 22.92 0.18

2018-01-18 g 22.67 0.17

2013-12-12 r 22.88 0.16

2013-12-12 r 22.83 0.16

2013-12-29 r 22.98 0.14

2016-09-24 r >23.05 0.22

2017-12-15 r 22.86 0.18

2018-01-18 r 22.76 0.17

2013-11-14 z 22.98 0.30

2013-12-21 z 23.13 0.24

2013-12-22 z 22.99 0.22

2016-01-18 z 23.19 0.28

2016-12-18 z 22.62 0.21

2018-02-18 z 23.28 0.34
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As the circumstellar reddening increases, the progenitor
exhibits higher temperatures, larger luminosities, and conse-
quently increased initial masses. The initial mass would lie in
the range of 14–15M⊙ for E(B − V )CSM= 0.1 mag and
15–18M⊙ for E(B − V )CSM= 0.2 mag, if we exclude the epoch
2018 January during which the progenitor suddenly becomes
overluminous (Figure 5). The inferred masses fall below the
threshold, presumably Mini > 25–30M⊙ (e.g., P. Massey et al.
2001; G. Meynet & A. Maeder 2005), above which massive

stars get stripped through their own stellar wind, thus supporting
a binary origin of SNe IIb (K. I. Nomoto et al. 1995; S.-C. Yoon
et al. 2017; L. Dessart et al. 2024). We deem even higher
circumstellar reddening (e.g., E(B − V )CSM= 0.3 mag) unlikely
since the progenitor would become much hotter and more
luminous than other SNe IIb progenitors.

4. Discussion and Conclusion

In this paper, we identify the progenitor star of
SN IIb 2024abfo in the multiepoch pre-explosion images from
DECaLS in the g, r, and z bands and from HST in the F814W
band. By performing high-precision PSF photometry on
single-epoch images, we detected signiBcant and complex
brightness and color variability in all Blters.
A recent work also reported the progenitor candidate from

HST/WFPC2 F814W band, DECaLS g-, r-, i-, z-band, and
XMM-Newton/OM B- and V-band images (A. Reguitti et al.
2025). For DECaLS, they have used the cataloged average
magnitudes over multiple epochs. As demonstrated in
Section 2.3, the cataloged magnitudes are inEuenced by stellar
variability and contamination from the nearby bright Source B.
Still, both works converge on a likely YSG progenitor for
SN 2024abfo.
Brightness variability has been widely observed for super-

giant stars in the local Universe, not pre-explosion but long
before their core collapse. Optical variability with amplitudes of
about 0.01–1 mag on day-to-decade timescales has been
observed for the substantial fraction of supergiant stars in
nearby galaxies (S. H. Grammer et al. 2015; C. Conroy et al.
2018; M. Yang et al. 2019; M. D. Soraisam et al. 2020).
Similarly, long-term monitoring of luminous Galactic stars has
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revealed persistent photometric variability, alongside substantial
color changes, indicative of effective temperature variations
(A. M. van Genderen et al. 2019; A. M. van Genderen
et al. 2025).
We Bnd that the main cause of the variability is the stellar

internal changes rather than external dust obscuration. The
observed rapid changes with a <100 day timescale are difBcult
to reconcile with the quasi-static surface evolution predicted
by standard one-dimensional stellar structure models, which
assume hydrostatic equilibrium and typically yield luminosity
variations on thermal timescales of ∼104 yr or longer
(R. Kippenhahn et al. 2013). It may not necessarily arise from
global structural changes but may reEect transient disturbances
in the outer envelope, possibly driven by pulsations, episodic
mass loss, and/or binary interactions (A. Maeder 1980;
L. L. Kiss et al. 2006; E. Quataert & J. Shiode 2012;

J. H. Shiode & E. Quataert 2014; J. Fuller & S. Ro 2018;
F. R. N. Schneider et al. 2024).
An estimate of the progenitor’s initial mass is complicated

by the signiBcant variability and the uncertain circumstellar
extinction. The initial mass is likely to be 12–14, 14–15, and
15–18M⊙ for E(B − V )CSM= 0, 0.1, and 0.2 mag, respec-
tively. We stress that an accurate estimate of the initial mass
needs further analysis of the light curves and nebular
spectroscopy. Future late-time observations will also conBrm
whether this progenitor candidate has disappeared and reveal
the putative binary companion that has survived the explosion.
This progenitor is the seventh directly detected SN IIb

progenitor. Thanks to the wealth of pre-explosion data, we had
this Brst opportunity to observe the substantial brightness
variability for an SN IIb progenitor before explosion. Our
Bndings not only extend the limited sample of SNe IIb
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progenitors but also shed light on the Bnal stages of massive
star evolution preceding core collapse. Together with recent
studies for progenitors of SNe IIP (L. Rui et al. 2019; Z. Niu
et al. 2023; M. D. Soraisam et al. 2023; D. Xiang et al. 2024),
the pre-explosion variability of supergiant stars seems to be
quite common. Therefore, this work also underscores the
critical need for future sky surveys with multiband, deep-
detection capabilities and long-baseline temporal coverage,
such as Chinese Space Station Telescope (H. Lin et al. 2023)
and Legacy Survey of Space and Time (V. Petrecca et al.
2024; N. L. Strotjohann et al. 2024), to probe the complex
dynamics of core-collapse SN progenitors.
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