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ABSTRACT

Context. Feedback from supernovae and active galactic nuclei (AGN) shapes the galaxy formation and evolution, but its impact
remains unclear. Galaxy groups offer a crucial probe to determine this impact because their gravitational binding energy is comparable
to the energy that is available from their central AGN. The XMM-Newton Group AGN Project (X-GAP) is a sample of 49 groups that
were selected in the X-ray (ROSAT) and optical (SDSS) bands and provides a benchmark for hydrodynamical simulations.
Aims. For this comparison, it is essential to understand the selection effects. We model the selection function of X-GAP by forward-
modelling the detection process in the X-ray and optical bands.
Methods. Using the Uchuu N-body simulation, we built a dark matter halo light cone, predicted X-ray group properties with a neural
network trained on hydrodynamical simulations, and assigned matching observed properties to the galaxies. We compared the selected
sample to the parent population in the light cone.
Results. Our method provided a sample that matched the observed distribution of the X-ray luminosity and velocity dispersion. A
completeness of 50% was reached at a velocity dispersion of 450 km/s in the X-GAP redshift range. The selection is driven by X-ray
flux, with a secondary dependence on the velocity dispersion and redshift. We estimated a purity level of 93% for the X-GAP parent
sample. We calibrated the relation of the velocity dispersion to the halo mass. We found a normalisation and slope that agree with the
literature and an intrinsic scatter of about 0.06 dex. The measured velocity dispersion is only accurate within 10% for rich systems
with more than about 20 members, and the velocity dispersion for groups with fewer than 10 members is biased at more than 20%.
Conclusions. The X-ray follow-up refines the optical selection and enhances the purity, but reduces completeness. In an SDSS-like set-
up, measurement errors for the velocity dispersion dominate the intrinsic scatter. Our selection model enables unbiased comparisons
of thermodynamic properties and gas fractions between X-GAP groups and hydrodynamical simulations.

Key words. methods: data analysis – surveys – galaxies: clusters: intracluster medium – galaxies: groups: general –
large-scale structure of Universe – X-rays: galaxies: clusters

1. Introduction

The large-scale structure (LSS) of the Universe evolves under the
action of gravity following a bottom-up scenario (Navarro et al.

? Corresponding author: riccardo.seppi@unige.ch

1996; Mo & White 2002; Springel et al. 2005; Fakhouri et al.
2010). The massive dark matter haloes we observe today in the
nodes of the LSS are the end result of a process of merging and
accretion from smaller haloes that formed in the early Universe
from the collapse of initial perturbations in the density field. The
behaviour of baryonic components such as gas and stars within
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the distribution of dark matter has been a key scientific puzzle
for the past few decades. Feedback from active galactic nuclei
(AGN, Padovani et al. 2017) has been suggested as a solution to
a variety of questions, such as the suppression of cooling flows
towards the centre of galaxy clusters (McNamara & Nulsen
2007; Gitti et al. 2012; Fabian 2012; Hlavacek-Larrondo et al.
2022; Bourne & Yang 2023), the quenching of star formation to
reproduce the shape of the observed galaxy stellar mass func-
tion in simulations (Silk & Rees 1998; Pillepich et al. 2018), and
the origin of scaling relations between galaxy properties and the
mass of a supermassive black hole (SMBH) (Magorrian et al.
1998; Kauffmann & Haehnelt 2000; Kormendy & Ho 2013;
Sahu et al. 2019).

Galaxy groups represent a key mass scale in this context
because their gravitational binding energy is comparable to the
output energy of the central AGN. Therefore, galaxy groups are
very sensitive to the physics of AGN feedback. They are located
at the peak of the mass density at the current epoch (Tinker et al.
2008). Groups of galaxies were historically first detected and
studied in the optical and infrared bands, as collections of
their member galaxies identified as over-densities in angu-
lar and redshift distributions (Abell 1958; Zwicky et al. 1963;
Huchra & Geller 1982; Geller & Huchra 1983; Beers et al.
1990). Since then, various works presented similar methods
for identifying groups from galaxy surveys, including phase-
space methods (Mamon et al. 2013), the identification of red-
sequence galaxies (Gladders & Yee 2000; Saro et al. 2013;
Rykoff et al. 2014; Licitra et al. 2016), friends-of-friends (FoF)
algorithms (Trevese et al. 2007; Muñoz-Cuartas & Müller 2012;
Wen et al. 2012; Tempel et al. 2012), and modified FoF algo-
rithms (Tempel et al. 2018; Lambert et al. 2020). Groups are
often characterised in terms of the velocity dispersion of their
galaxy members (Mamon et al. 2010; Gozaliasl et al. 2020); we
refer to Old et al. (2014, 2015) for a comprehensive descrip-
tion and review about optical detection and mass estimate of
galaxy groups). Galaxy groups are also often identified in X-
rays through thermal bremsstrahlung and line emission from the
hot gas that fills their potential wells (e.g. Böhringer et al. 2000;
Rosati et al. 2002; Gozaliasl et al. 2014, 2019) and reaches tem-
peratures between 106 and 108 K (Sanders 2023). Wide-field sur-
vey instruments in the X-ray band, such as ROSAT1 (Truemper
1982) and eROSITA2 (Merloni et al. 2012; Predehl et al. 2021),
are therefore suitable to detect these objects. X-ray observa-
tions show prominent features such as cavities in the intra-group
medium (IGrM) that are produced by massive AGN outflows
(Bîrzan et al. 2008; Gastaldello et al. 2009; Randall et al. 2015).
When the outburst is supersonic, shock waves propagating per-
pendicular to the outflow become visible (Liu et al. 2019).

The behaviour of the gaseous atmosphere is strongly con-
nected with both gravitational and non-gravitational processes.
The physical connection between these two types of properties
is therefore related to the thermodynamic quantities describ-
ing the gas state. For example, AGN feedback tends to dis-
rupt the gas in a more dramatic manner than massive clus-
ters, causing an excess entropy in the core (Ponman et al. 1999)
and/or in the outskirts, as observed by Finoguenov et al. (2002),
Ponman et al. (2003). The combination of data from different
wavelengths allowed us to consider these questions from vari-
ous points of view. The Complete Local Volume Groups Sam-
ple (CLoGS, O’Sullivan et al. 2017) started from optical groups
from the all-sky Lyon Galaxy Group catalogue (LGG, Garcia

1 ROentgen SATellite.
2 Extended ROentgen Survey with an Imaging Telescope Array.

1993) and combined them with X-ray observations from Chan-
dra and XMM-Newton and with radio data from the Giant
Metre wave Radio Telescope (GMRT) and the Very Large Array
(VLA). Their sample was limited to the local Universe within
80 Mpc and focused on the properties of the brightest group
galaxies (BGGs; O’Sullivan et al. 2018; Kolokythas et al. 2018,
2019). Later studies provided a more systematic analysis of ther-
modynamical properties for groups out to large radii, even up
to R500c

3, using both XMM-Newton (Johnson et al. 2009) and
Chandra (Sun et al. 2009). More recently, Bahar et al. (2024)
compared a large sample of 1178 groups that were detected in
the first eROSITA all-sky survey to various hydrodynamical sim-
ulations. They found that the entropy profiles agree well between
observations and simulations, whereas the groups core and inner
part of the profile show some inconsistencies. This means that
group properties might be a direct tracer of the AGN feedback
mechanism.

Currently, hydrodynamical cosmological simulations
include the implementation of AGN feedback in various
forms and recipes. Some simulations, such as cosmo-OWLS
(Le Brun et al. 2014), EAGLE (Schaye et al. 2015), and
BAHAMAS (McCarthy et al. 2017), rely on an isotropic and
thermal response to gas accretion onto the SMBH (see e.g.
Booth & Schaye 2009). The gas surrounding the central black
hole is heated when the AGN turns on, which suppresses gas
cooling and hence star formation. Illustris (Vogelsberger et al.
2014) has a separate radio mode that injects off-set hot bubbles
to mimic radio lobes. This concept was also used by the Fable
Simulations (Henden et al. 2018). Other works, including Hori-
zonAGN (Dubois et al. 2016), MAGNETICUM (Dolag et al.
2016), IllustrisTNG (Pillepich et al. 2018), SIMBA (Davé et al.
2019), and Flamingo (Schaye et al. 2023), added a kinetic feed-
back scheme, in which part of the energy injected by the AGN
is converted into kinetic energy of the surrounding gas. This
drives outflows out of the central SMBH and is more similar to
a standard supernova feedback approach (Springel & Hernquist
2003).

Most simulations are tuned to reproduce a standard set of
observables, which mainly are the galaxy stellar mass func-
tion, but also the gas fraction for clusters in the local Universe
(BAHAMAS, Fable, and Flamingo). Although different simu-
lations agree on the prediction of the quantities used to tune
them, this is not necessarily the case for the inferred quanti-
ties. The predictions of the gas content and radial profiles of
thermo-dynamical quantities, such as pressure and entropy, dif-
fer significantly between various works in the regime of galaxy
groups, as highlighted by the reviews from Eckert et al. (2021),
Oppenheimer et al. (2021), Gastaldello et al. (2021).

High-quality and multi-wavelength observations of galaxy
groups are required to inform simulations in this regime. This
is the primary goal of the XMM-Newton Group AGN Project
(X-GAP, Eckert et al. 2024), which is a large program on XMM-
Newton dedicated to 49 galaxy groups that aims to measure
the impact of AGN feedback on the IGrM out to R500c. X-
GAP is selected from the parent All-sky X-ray Extended Sources
project (AXES, Damsted et al. 2024; Khalil et al. 2024), which
combines the X-ray detection from the ROSAT all-sky survey
using wavelet filters (Käfer et al. 2019) and optical FoF groups
detected in the Sloan Digital Sky Survey (SDSS, Blanton et al.
2017) by Tempel et al. (2017). On the one hand, the optical

3 R500c is the radius encompassing an average density that is 500 times
larger than the critical density of the Universe at the group redshift,
ρc = 3H(z)/8πG.
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detection of galaxy groups using galaxy members is affected
by projection effects that typically arise in photometric data
(see e.g. redmapper Rykoff et al. 2014). Spectroscopic informa-
tion (Robotham et al. 2011; Tinker 2021) alleviates the projec-
tion effects, but a few issues still remain, such as low statistics,
spectroscopic completeness, or redshift space distortions. On the
other hand, the X-ray detection of groups is affected by a prefer-
ential selection for bright and peaked objects (this is the notion
of cool core bias, Eckert et al. 2011), and only at relatively
low redshift due to the shallow depth of X-ray surveys such as
ROSAT (Ponman et al. 1999) and eROSITA (Bulbul et al. 2024;
Bahar et al. 2024). The double selection in X-GAP is devised to
obtain a complete and pure sample of galaxy groups that is to be
compared to hydrodynamical simulations.

In this context, understanding the X-GAP completeness level
is key to assessing whether any statement about AGN feed-
back resulting from its analysis is valid for a fair subsample
of the overall group population in the Universe. This concept
is encoded in the selection function, that is, the probability of a
detection as a function of a given set of properties. In astronom-
ical surveys, it is in fact often fruitful to model the incomplete-
ness and exploit larger amounts of data than to restrict the study
to a very complete sample with a high signal-to-noise ratio at the
cost of losing many sources that lie closer to the detection limit
(Rix et al. 2021; Clerc et al. 2024). The selection function is
therefore a key component of the scaling relation and the cosmo-
logical analysis (see e.g, Pacaud et al. 2018; Bahar et al. 2022;
Ghirardini et al. 2024; Artis et al. 2024) because it addresses the
population of undetected objects in a statistical way.

We developed a framework for modelling the X-GAP selec-
tion function quantitatively by forward-modelling the selec-
tion process using end-to-end simulations. Similar approaches
were recently dedicated to modelling the eROSITA X-ray selec-
tion function (Seppi et al. 2022; Clerc et al. 2024; Marini et al.
2024). A multi-wavelength approach to assess the sample prop-
erties with simulations is key to obtaining observational con-
straints that are representative of the underlying population
(Marini et al. 2025; Popesso et al. 2024). We constructed a full-
sky light cone starting from the Uchuu set of N-body simula-
tions (Ishiyama et al. 2021). We used dedicated SDSS mocks
based on Uchuu (Dong-Páez et al. 2024) to develop the opti-
cal side of our simulation. We populated our mock sky with
X-rays using the AGN model from Comparat et al. (2019) and
a new model for clusters and groups informed by hydrodynam-
ical simulations. We forward-modelled the X-ray observations
with the software called simulation of X-ray telescopes (SIXTE,
Dauser et al. 2019). We reproduced the detection schemes in
X-rays (Damsted et al. 2024) and optical bands (Tempel et al.
2017). We focused on selecting the parent sample because repli-
cating the cuts in source size (angular size of R500c smaller than
15 arcmin to fit in the XMM-Newton field of view) and galaxy
members (more than or equal to eight spectroscopic members) is
then straightforward (Eckert et al. 2024). We evaluated and mod-
elled the X-GAP selection function in terms of observables with-
out directly modelling the mass selection. This makes the selec-
tion function more flexible against specific modelling choices,
which may impact the relation between mass and luminosity.
Finally, we calibrated the scaling relation between the line-of-
sight velocity dispersion and the halo mass of the galaxy mem-
bers.

This paper is organised as follows. In Section 2 we explain
the strategy in our end-to-end simulation. In Section 3 we
describe the neural network model we used to assign X-ray pro-
files and temperature to dark matter haloes. In Section 4 we elab-

orate on the treatment of each catalogue for input haloes, X-rays,
and optical detections. In Section 5 we describe sample proper-
ties such as purity and completeness, and we model the selection
function. In Section 6 we calibrate the scaling relation between
the velocity dispersion and halo mass. Finally, in Section 7 we
elaborate our findings in terms of the dynamical state of dark
matter haloes and summarize our results in comparison to other
works. When not otherwise specified, we assume the cosmo-
logical parameters from Planck Collaboration VI (2020), those
used for simulating the Uchuu Universe, that is, ΩM = 0.3089,
ΩB = 0.0486, σ8 = 0.8159, and H0 = 67.74 km/s/Mpc. We use
X-ray luminosities within R500c in the 0.5–2.0 keV band.

2. Simulation strategy

Our strategy was to forward-model the galaxy group selection
with end-to-end simulations, as shown in Fig. 1. We started from
individual snapshots of the Uchuu simulations (Ishiyama et al.
2021) and build a dark matter halo light cone. We use the
UchuuSDSS mock from Dong-Páez et al. (2024) to populate our
haloes with galaxies. More details are reported in Sect. 4.2.
We develop a novel method to populate haloes with X-rays
from galaxy clusters and groups (see Sect. 3) and implement
the AGN model from Comparat et al. (2019). We model the dif-
fuse X-ray background following the real ROSAT background
maps (Snowden et al. 1997). We generate X-ray events using the
SIXTE software (Dauser et al. 2019). We detect sources in the
X-ray and optical bands and cross-matched the output galaxy
cluster and group catalogue to the input dark matter haloes. The
whole process is detailed in the next sections.

2.1. Halo light cone

Uchuu is a large dark matter only simulation with high resolution
(Ishiyama et al. 2021). It is based on a standard Flat ΛCDM cos-
mology with parameters from Planck Collaboration VI (2020).
Individual snapshots are publicly available4. The box size
is 2 Gpc/h, with a total of 2.1 trillion particles, for a mass
resolution of 3.27× 108 M�/h. The gravitational softening
length is 0.4 kpc/h. This is ideal for our purpose to mini-
mize cosmic variance effects due to the all-sky X-ray selec-
tion, but also to properly account for faint local galaxies
in the SDSS optical selection. Haloes are identified with
the Rockstar-Consistenttrees algorithm (Behroozi et al.
2013), based on a FoF approach in six dimensions for posi-
tions and velocities. The parallel processing of multiple snap-
shots provides a consistent halo catalogue as a function of red-
shift. We concatenate individual snapshots into a halo light cone
by adapting the methodology of Comparat et al. (2020) to match
the geometry of Dong-Páez et al. (2024). We combine snapshots
at redshift 0.0, 0.09, 0.19, 0.30, 0.43, 0.49, 0.56, 0.70, 0.78, 0.86,
0.94, 1.03, 1.12, 1.22, 1.32, 1.43, 1.54, and 1.65 to obtain a
smooth redshift distribution of dark matter haloes. This allowed
us to include the bulk of the AGN population detected in the
ROSAT All-Sky Survey (RASS), which peaks at redshift 0.3
and has a long tail extending just above redshift 1.5 (see e.g.
Anderson et al. 2007). A rotation of 10 deg in the x-z cartesian
plane allowed us to match our coordinates to the geometry of
the UchuuSDSS simulation, for the observer placed in the ori-
gin, providing the same conversion between cartesian to angu-
lar coordinates. We convert cartesian coordinates into equatorial

4 https://www.skiesanduniverses.org/Simulations/Uchuu
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Fig. 1. Forward-modelling of the X-GAP selection. We started from a
dark matter halo light cone generated from the Uchuu simulation, built a
novel method for assigning cluster and group X-ray profiles and temper-
atures as a function of the halo mass and redshift, and used abundance-
matching schemes to simulate galaxies and AGN. We generated X-ray
events and accounted for the telescope response. Finally, we reproduced
the detection schemes in X-ray and optical bands to select an X-GAP-
like sample from our simulation.

coordinates according to

dC =

√
x2 + y2 + z2

θ = arccos z/dc
φ = arctan y/x

Dec = θ − 90

RA = φ − 360
⌊
φ

360

⌋
, (1)

where the conversion from φ to RA is done in python with
the numpy.mod function (van der Walt et al. 2011). We infer
the cosmological redshift zcosmo from the comoving distance dC
using astropy (Astropy Collaboration 2013) and add the effect
of peculiar velocities according to:

vpec =
x × vx + y × vy + z × vz

dC

zpec =

√
1 + vpec/c
1 − vpec/c

zspec = (1 + zcosmo) × (1 + zpec) − 1, (2)

Fig. 2. Dark matter halo light cone generated from individual Uchuu
snapshots. This panel shows a slice within ±50 Mpc along the z-axis up
to redshift of 0.4. We show haloes more massive than 1012.5 M� colour-
coded by its redshift. The shaded areas denote the various snapshots we
used to generate the light cone.

where c is the speed of light and zspec is the idealised spectro-
scopic redshift. Note that in Eq. (1) we place the observer in
(0,0,0). The box is replicated 8 times around the origin by shift-
ing all combinations of each cartesian coordinate by one box
length. In the construction of the light cone we use the out-
put of a given snapshot at redshift zsnap according to (zsnap−1 +
zsnap)/2 < z < (zsnap + zsnap+1)/2. For z > 0.78 the comov-
ing distance to the edge of the snapshot becomes larger than
the box length. Therefore, we replicate the snapshots one more
time along each direction, obtaining 64 replicas around the
observer at the origin for snapshots between z = 0.78 and
z = 1.65.

We then query subhalo members for each distinct halo and
use the individual peculiar velocities to compute the true halo
line of sight velocity dispersion, according to:

σv,T =

√√√
1

(Nmem − 1)

Nmem∑
i=1

(vpec,i − vpec)2, (3)

where Nmem is the number of subhaloes for each distinct halo.
We restrict our measurement to subhaloes with virial mass
larger than 9.3× 109 M�. It allowed us to resolve these struc-
tures with more than 20 particles, so that Rockstar provides
secure (sub)halo properties (Knebe et al. 2011, 2013). In addi-
tion, it allowed us to describe SDSS-like galaxies with stellar
masses down to 108 M�, the lower limit in the GALEX-SDSS-
WISE Legacy Catalog (GSWLC, Salim et al. 2016). We veri-
fied the robustness of the measured true velocity dispersion by
increasing the threshold to 50 and 100 particles, hence increasing
the subhalo resolution level at the cost of reducing the number
of subhaloes used in Eq. (3) (Onions et al. 2012), and did not
find significant differences in the estimate of velocity dispersion.
For computational power reasons, we compute velocity disper-
sions only for haloes in the first two redshift snapshots, meaning
that we can access intrinsic halo velocity dispersion in our light
cone up to z ≤ 0.14. Therefore, we miss it for haloes present
in the optical mock for z > 0.14, but we are not affected by
this limitation thanks to the upper limit of X-GAP at z = 0.06,
allowing us to focus on lower z when modelling the selection
function.

Various versions of UchuuSDSS are available, depending on
the geometry and the conversion between cartesian and angu-
lar coordinates. By placing the observer in the origin of the
boxes, we obtain a dark matter halo light cone with coordinates
matching the UchuuSDSS0 galaxy mock from Dong-Páez et al.
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(2024). A slice of the full light cone is shown in Fig. 2, where
the LSS expands from the origin as a function of the comov-
ing distance to the observer. Each halo is colour-coded by its
redshift (see Eq. (2)) and the shaded areas denote the intervals
corresponding to the output from different snapshots. In addi-
tion, we rotate and flip the coordinates to match the geometry of
three additional light cones with the observer at the same place,
allowing us to independently reproduce the SDSS sky footprint
of 7261 deg2 with four different regions, corresponding to the
UchuuSDSS mocks from 0 to 3. In the rest of the article we will
refer to the combination of the four light cones when stating
our results. When needed, we assign hydrogen column density
due to galactic absorption following HI4PI Collaboration
(2016).

2.2. Active galactic nuclei

We populate dark matter haloes from the Uchuu simulation with
AGN using the model from Comparat et al. (2019). It is based
on a halo abundance matching scheme (HAM) between stellar
and halo mass. We select haloes with virial mass larger than
1011 M�. The stellar masses are assigned to each halo based on
the stellar to halo mass relation from Moster et al. (2013), which
accounts for the intrinsic scatter in the relation. The model is
calibrated to reproduce the AGN duty cycle and the hard X-ray
luminosity function (see Georgakakis et al. 2017; Aird et al.
2015). The choice of the 2–10 keV band is particularly useful
because the hard band flux is less affected by the AGN spectra
and obscuration properties compared to a softer X-ray band. The
model produces an AGN population that matches measurements
of the evolution of their number density with redshift and
luminosity, and the clustering properties (Georgakakis et al.
2019). Various works in the literature reported the identification
of a soft excess feature in AGN spectra (Boissay et al. 2016;
Ricci et al. 2017; Waddell et al. 2024), which we include in
our modelling. We assume a typical spectrum composed by
an absorbed power-law with photon index equal to 1.9, with
the addition of a scatter component from cold matter with
2% normalisation (Yaqoob 1997), and a reflection one with
emission lines (Nandra et al. 2007). We add a phenomeno-
logical 0.2 keV thermal bremsstrahlung component to model
the soft excess (Boissay et al. 2016). We generate model
spectra with Xspec (version 12.13.1, Arnaud 1996), our model
reads TBabs(ztbabs(powerlaw + constant× bremss) +
constant× powerlaw + pexmon× constant). We assign
the spectra by a nearest neighbour search in redshift, intrinsic
absorption, and galactic extinction. We simulate AGN down
to an X-ray flux of 10−13.2 erg/s/cm2, slightly below the flux
limit of the ROSAT all sky survey (Voges et al. 2000). This
allowed us to simulate the AGN population corresponding
to the one detected in the real RASS, but without double
counting the faint, undetected AGN contributing to the cosmic
X-ray background (see next Section). Indeed, in the most
recent processing of the ROSAT All-Sky Survey, that is, the
Second ROSAT all-sky survey (2RXS) source catalogue by
Boller et al. (2016), we find that the 1st percentile of the
cumulative flux distribution calculated assuming a power-
law spectrum appropriate for AGN corresponds to a flux of
approximately 5.8× 10−14 erg/s/cm2. Given the uncertainties
associated with flux measurements at these faint levels, which
are sensitive to the assumed spectral model, we consider this
threshold to be broadly consistent with our adopted flux cut of
10−13.2 erg/s/cm2.

2.3. X-ray background

We merge the individual band 4–7 RASS background maps
(Snowden et al. 1997)5 into a single map in the 0.44–2.05 keV
band, summing the count rates from each individual band. This
strategy accounts for spatial variations of the X-ray background,
including the emission of the eROSITA bubble (Predehl et al.
2020) in the sky covered by SDSS, which was already detected
in the RASS as the North Polar spur (Egger & Aschenbach
1995). Its brightest part is in the galactic plane (Willingale et al.
2003). We model the background assuming three main com-
ponents: unabsorbed plasma emission from the local hot bub-
ble (LHB), absorbed plasma emission from the galactic halo
(GH), and the cosmic X-ray background (CXRB) from unde-
tected point sources. In Xspec terms our model reads APEC +
Tbabs× (APEC + powerlaw). We assume solar abundance
(Z�) and kT = 0.097 keV for the LHB, 0.3 Z� and kT = 0.22 keV
for the GH, and a photon index Γ = 1.46 for the CXRB.
We stress that the faint AGN population is not simulated as
individual sources (see previous Section), because its emission
is already present in the background maps. The proportional
counter PSPC of ROSAT has low sensitivity to high energy
particles and soft protons, therefore we neglect the particle
induced background component in our spectral model. Indeed
Eckert et al. (2012) demonstrated that the PSPC instrumental
background is more than one order of magnitude lower than the
sky background. We process the merged map into HEALPix6

format with NSIDE = 64, generating 49 152 areas of about
0.84 deg2. We convert the count rate to flux using the spectral
model defined above folded with the ROSAT PSPC response file
and integrate it in the individual areas to obtain the total flux
from each pixel in the energy band of interest.

2.4. Event generation

To generate X-ray photons we use the SIXTE software
(Dauser et al. 2019). It is an end-to-end X-ray simulator that
allowed a forward-modelling of observations that accounted for
vignetting, the energy-dependent PSF, the ancillary response file
(ARF), and the redistribution matrix file (RMF). We built an ad
hoc SIXTE module to simulate the RASS data. We use pub-
licly available response files from ROSAT7. We build an ana-
lytical PSF model following the work from Boese (2000) (see
Eq. (6), (7) therein). The ROSAT PSPC has a sensitive area
of 8 cm diameter (Pfeffermann et al. 1986). The total area is
A = π × (d/2)2, corresponding to a mock pixel with a size of
s =
√

A = 70.898 mm on a side. During the readout, we ignore
any correction between pulse height amplitude and channels, as
the time resolution of proportional counters is very good. We
account for a dead time interval after each event of 180 µs, when
the detector is not sensitive to radiation. We collect information
about the telescope pointing from the publicly available ancil-
lary ROSAT data8. We concatenate each file to generate a sin-
gle RASS attitude file describing the coordinate pointing and
the roll angle of the telescope as a function of time. We ignore
time spans with operational problems (see Table 2 in Voges et al.
1999). For processing purposes, we divide the area covered by
5 https://www.jb.man.ac.uk/research/cosmos/rosat/
6 https://healpy.readthedocs.io/en/latest/
7 https://heasarc.gsfc.nasa.gov/FTP/caldb/data/rosat/
pspc/cpf/matrices
8 https://heasarc.gsfc.nasa.gov/FTP/rosat/data/pspc/
processed_data/rass/release
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the X-GAP sample into 627 pixels of about 53 square degrees
using healpix with NSIDE = 8. For clusters and groups, we
generate idealised input images following the ellipticity of each
dark matter halo, which SIXTE used to simulate events from
extended sources on the plane of the sky.

3. Model of clusters and groups

Since the Uchuu simulations contain only dark matter, we need a
prescription to populate the haloes with baryons. Various imple-
mentations exist in the literature, such as semi-analytical models
(Shaw et al. 2010; Osato & Nagai 2023), or phenomenological
approaches based on real observations (Zandanel et al. 2018),
also accounting for covariances between different observables
(Comparat et al. 2020). We proceed in this direction and develop
a new model to predict the X-ray emissivity profile and temper-
ature as a function of halo mass and redshift using a machine-
learning approach. Our method builds on Comparat et al. (2020)
and aims to predict cluster and group properties with the cor-
rect covariances. The Comparat et al. (2020) model is based on
high signal to noise observation of massive galaxy clusters and
required ad hoc corrections in the galaxy group regime (see dis-
cussion in Seppi et al. 2022). Although hydrodynamical simula-
tions are not a perfect reconstruction of the real Universe due to
various assumptions, for example, in the feedback and star for-
mation prescriptions, they still provide a complete view of the
galaxy group population under those assumptions. On the one
hand, our new model is more reliable at low masses <1014 M�,
because it is informed by hydrodynamical simulations, which do
not lack objects in this mass range. On the other hand, hydrody-
namical simulations cannot consistently predict hot gas proper-
ties for galaxy groups (Eckert et al. 2021). However, our defi-
nition of the selection function in terms of observables makes
our modelling less dependent on specific models assumed in the
implementation of baryonic physics (see also Appendix A). Sim-
ilarly, various prescriptions for the hot X-ray gas may change
the total number of sources as a function of X-ray observables
at fixed optical properties in our framework. However, the selec-
tion function is a ratio, and it is not dependent on a given X-ray
model if it also accounts for optical properties in its definition
(see Sect. 5). We introduce the concepts, the model, and show
the results about inferred observables in this section.

3.1. Emission measure profiles

We use the emission measure integrated along the line of sight
to model the profiles. This quantity is also known as emis-
sion integral and should not be confused with the volume inte-
grated emission measure (Eckert et al. 2016). When mentioning
the emission measure, we refer to the one integrated along the
line of sight. At radius x = r/r500c it can generally be deduced
from the X-ray surface brightness (Neumann & Arnaud 1999;
Arnaud et al. 2002). It is defined as follows:

EM(x) =

∫
nenHdl

EM(x) =
4π(1 + z)4S (x)

ε(T, z)

ε(T, z) =

∫ E2

E1
S (E)e−σ(E)NH fT((1 + z)E)(1 + z)2dE, (4)

where S (E) is the detector effective area at energy E, σ(E) is
the absorption cross section, fT((1 + z)E) is the emissivity in
cts/s/keV× cm3 for a plasma of temperature T .

In practice, various works in the literature use a conver-
sion factor between count rate and APEC normalisation with
xspec to obtain the emission measure profile from surface
brightness. It allowed us to account for the response of the
instrument (Pratt et al. 2009; Eckert et al. 2012; Bartalucci et al.
2023). More details are given in Appendix D. The self similar
scaled emissivity profile is finally obtained as follows (see e.g.
Arnaud et al. 2002; Eckert et al. 2012):

EMSS(x) = EM(x)
[

kT
10 keV

]−1/2

E(z)−3. (5)

3.2. Profile extraction from TNG

We train a neural network on galaxy clusters from the
hydrodynamical TNG300 simulation9 (Nelson et al. 2019). The
box size is 205 Mpc/h and the dark matter particle mass is
5.9× 107 M�/h, therefore galaxy groups and clusters are simu-
lated with extremely high resolution. We use groups and clus-
ters with M500c > 8× 1012 M� at snapshots corresponding to z =
0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.5, 1.0, 1.5. In the snapshot at
z = 0.03, which is within the X-GAP window, we model 4101
objects.

Following a methodology similar to Shreeram et al. (2025),
we retrieve the data stored for each gas cell and model its emis-
sion measure using pyxsim (ZuHone et al. 2015), which pro-
vides a Python interface to the PHOX code (Biffi et al. 2012,
2013). We consider gas cells with temperature between 0.1 and
20 keV, with gas density below 5× 10−25 g/cm3. We project the
3D model of each cell along the x cartesian direction and inte-
grate them within circular apertures to retrieve the emission
measure profile integrated along the line of sight (as defined in
Eq. (4)).

Next, we need an estimate for the source temperature in
the simulation. Although computing the local temperature of a
gas cell or particle in hydrodynamical simulations is possible
using the internal energy, translating a large amount of individ-
ual temperatures into a global halo temperature is not trivial,
as it often requires the assumptions of weights for different gas
properties, which may result in disagreements between outputs
from hydro simulations and observations (Mazzotta et al. 2004;
Rasia et al. 2005, 2014). In observations, the temperature mea-
surements comes rather from fitting the source spectrum with
a single global temperature. Therefore, to be as close as possi-
ble to an ideal X-ray temperature from the observations’ per-
spective, we generate an ideal spectrum starting from the emis-
sion measure profile. We determine the photon X-ray emissivity
using an APEC model (Smith et al. 2001) as a function of den-
sity and temperature of each gas cell, assuming a metallicity of
Z = 0.3 Z� and the abundance table from Asplund et al. (2009),
using the emissivity of each cell as a distribution function for
photon energy, assuming a large collective area of 10 000 cm2

and a long exposure time of 500 ks. We infer the ideal X-ray
halo temperature by fitting the resulting global spectrum with an
APEC model in Xspec, fixing the redshift to the redshift of the
TNG snapshot and metallicity to 0.3, while leaving temperature
and normalisation free to vary. The result is a collection of clus-
ters and groups with mass, redshift, emission measure profile,
and temperature. The assumption of Z = 0.3 Z� is reasonable
for the average metallicity in galaxy groups, especially outside
the core (Sun et al. 2009; Mernier et al. 2017; Bahar et al. 2024).
For detailed comparisons between the prediction of hydrody-

9 https://www.tng-project.org
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namical simulations and the real X-GAP, accounting for the
metallicity distribution along the group profile may also help in
shedding light on AGN feedback prescriptions and we will con-
sider it in future work.

3.3. Profile generation with machine-learning

The field of machine-learning and neural networks has enor-
mously grown in recent years, with a multitude of implemen-
tations for various algorithms, such as variational auto encoders
(Kingma & Welling 2013), and generative adversarial networks
(Goodfellow et al. 2014). Different works in the literature have
successfully applied machine-learning techniques in astronomy,
for example to study galaxy cluster morphologies (Benyas et al.
2024), predict galaxy cluster masses (Ntampaka et al. 2019;
Krippendorf et al. 2024), infer the gravitational potential of the
Milky Way (Green et al. 2023), and study dark matter simula-
tions (Rose et al. 2025).

In this context, normalising flows have emerged as a pop-
ular way to model and generate data (Hahn & Melchior 2022;
Li et al. 2024; Crenshaw et al. 2024). normalising flows consti-
tute a machine-learning approach to construct a complex prob-
ability distribution from a set of transformations of simple dis-
tributions (see Kobyzev et al. 2019, for a review). Given a set of
observed variables x the goal is to model its probability distri-
bution px(x), by starting from a continuous random variable y
that follows a simple probability distribution py(y), for instance
a Gaussian one. The idea is to transform the simple py(y) into a
more complex one through a collection of N invertible and dif-
ferentiable functions (bijectors) fT(y) = fN◦ . . . fk◦ . . . f1(y). The
transformed probability distribution is:

px(x) = py(y)
∣∣∣∣ det

∂ f −1
T (x)
∂x

 ∣∣∣∣
= py(y)

N∏
i=0

∣∣∣∣ det
∂ f −1

i (x)
∂zi

 ∣∣∣∣, (6)

where y = f −1
T (x) and det

∂ f −1
i (x)
∂yi

 is the Jacobian of each

transformation fi. The variable y flows through the bijectors
chain, while the Jacobians normalise the probability distribu-
tions of the transformed variable. The training process of a nor-
malising flow consists of optimising the parameters of the bijec-
tors in the chain to best reproduce the probability distribution of
the observable px(x). During training we minimize the negative
log likelihood defined from Eq. (6) as follows:

logL =

N∑
i=0

log py[ f −1
i (x)] +

N∑
i=0

log | det D fi(x)|, (7)

because for bijectors the determinant of the product of the jaco-
bian matrices of each transformation is the product of the indi-
vidual determinants.

Our model is based on a multivariate normal distribution
with the same dimension as our training dataset. Then we create
an autoregressive normalising flow (MAF, Papamakarios et al.
2019) using autoregressive models for density estimation
(MADE, Germain et al. 2015). They describe the final probabil-
ity distribution as the product of conditional probabilities:

px(x) =

D∏
i=0

px(xi|x<i), (8)

where D is the number of dimensions of a given dataset. In par-
ticular, each component of the observable x is predicted by trans-
forming the latent variable y with a shift µi and a rescale factor
σi that depend on the previous components:

xi = µi(x<i) + yi × exp logσi(x<i). (9)

This set-up makes the calculation of the Jacobian in Eq. (6) sim-
ple, which reduces for each component to

det D fi(x) = σi(x<i). (10)

Finally, we minimize the negative of the log likelihood in Eq. (6)
by the gradient descent method using the Adam optimiser with a
learning rate of 10−3. One of the caveats in the field of computer
vision is that the MAF architecture is slow in generating new
data, because the generation of each variable needs all the previ-
ous inputs in the flow. Given the size of the dataset we need to
generate we are not affected by this limitation.

In this study, we develop a network to predict the self similar
emission measure profile (see Eq. (5)) and X-ray temperature,
conditionally on mass and redshift. This allowed us to generate
X-ray quantities (i.e. profiles and temperatures) using prior infor-
mation of mass and redshift from our Uchuu halo light cone.
Together with the profiles extracted from TNG, in the train-
ing set we add the HIFLUGCS sample (Reiprich & Böhringer
2002), and Chandra observations of SPT-selected clusters from
Sanders et al. (2018). They make the prediction of our model
more robust at high mass, where only a few haloes are avail-
able in TNG. If the X-ray data is not sufficient to reach the halo
outskirts, we follow the approach of Comparat et al. (2020) and
extrapolate the profile using a power law whose slope is fitted
on the three outermost bins. The input dimension of our net-
work is equal to 2 (M,z), while the output dimension is equal to
21, that is, 20 radial bins logarithmically spaced between 0.02
and 3 R500c plus one value for temperature. In contrast to tem-
perature, the values of mass and surface brightness span many
orders of magnitudes. Therefore, we model their log-value and
normalise each array in our training data, so that the network
only needs to work with numbers between 0 and 1. We then
apply the inverse transformations to convert the output values of
the network to predictions in physical units. We apply a median
smoothing to the radial profiles. This technique replaces points
that exhibit strong fluctuations relative to their neighbors with
the median of the two preceding and two following points along
the profile, effectively preserving the overall shape and slope
of the profile. We build model with TensorFlow (Abadi et al.
2015), it is composed of three MAF. Each autoregressive net-
work has two output parameters (µi, σi), two layers of 128 units
each, and a sigmoid activation function. We train the model
for 200 epochs, with a batch size of 16. We find that this set-
up reproduces well the distributions of observed clusters and
group properties compared to existing observations, as shown
in the next section. This model does not introduce a correlation
between the X-ray morphology (cool core or non-cool core) and
the dynamical state of the dark matter haloes (see e.g. Seppi et al.
2021). The X-ray detection scheme is designed to be insensitive
to the relaxation state of the hot gas and we verified that this is
the case in Sect. 7.1.

3.4. Results

Starting from the halo masses and redshifts in the Uchuu light
cone, we use the trained neural network to generate profiles
and temperatures for each dark matter halo. The result is shown
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Fig. 3. Emission measure profiles with self-similar scaling, colour-
coded for temperature, as a function of radius in units of R500c. The units
on the y-axis are Mpc keV−1/2 cm−6. The bottom part of the panel shows
the evolution of the intrinsic scatter of the profile at different radii. For
reference, it is compared to the model from Comparat et al. (2020) and
profiles of X-COP clusters (Ghirardini et al. 2019).

in Fig. 3. It displays the self similar scaled emission mea-
sured profiles, colour-coded by temperature. The scaling of the
profiles with temperature is clear and as expected: hot clus-
ters exhibit high surface brightness with steep profiles, while
cooler systems show lower normalisation and flatter slopes.
Specifically, we observe a correlation between emission mea-
sure and temperature in the central region within 0.5×R500c,
and a more uniform distribution of the profiles towards the
outskirts (Eckert et al. 2012). Our result is in agreement with
Comparat et al. (2020), which was built to reproduce observa-
tions of massive clusters by construction, and the profiles of
X-COP clusters (Ghirardini et al. 2019). The bottom part of the
panel shows the intrinsic scatter of the profiles at different radii.
It is defined as the 16th–84th percentile distribution of the pro-
files around their median. It is the only scatter component, as the
ideal model has no noise for individual systems. It is compared
to the model from Comparat et al. (2020). The intrinsic scatter
is computed on the overall population, so the halo selection is
different between the lines shown in the bottom panel of Fig. 3.
Nonetheless, we find overall a good agreement between the pre-
diction of our neural network to previous models and observa-
tions. Our model predicts a slightly smaller intrinsic scatter com-
pared to the training set in inner region, with a value of 0.39
against 0.48 at 0.1×R500c. The opposite holds in the outskirts,
with values of 0.7 and 0.55 at 2×R500c. However, the model
prediction and the training set are always compatible within 1σ
throughout the whole profile.

We compute the value of X-ray luminosity with a cylindrical
integral of the emissivity profile as follows:

L500c =

∫ R500c

0
2πEM(r)rdr Λ(kT ), (11)

where r is the radius and Λ(kT ) is the temperature dependent
cooling function in the 0.5–2.0 keV band in units of cm3 erg s−1

(Sutherland & Dopita 1993). For convenience, we tabulate the
cooling function on a fine grid of temperature (every 0.075 keV)
and interpolate. We apply a 2D K-correction to convert intrin-
sic luminosities to the observer frame. We tabulate conversion
factors as a function of cluster temperature and redshift. Finally,
we additionally account for galactic absorption. We compute the
galactic gas column density (NH) at the angular position of each
cluster using the maps from HI4PI Collaboration (2016). Sim-
ilarly to the cooling function case in Eq. (11), we tabulate the
conversion factors and then interpolate at the exact values of
luminosity, redshift, and NH of each cluster.

To assess the robustness of the model, we compare the scal-
ing relations between observables and halo mass to literature
results. The results are shown in Fig. 4, displaying the X-ray
luminosity to mass and temperature to mass relations. Overall,
we find good agreement between our result and observations.
The model predicted by the neural network applied to the Uchuu
light cone is in blue, and it is compared to a collection of real
clusters and groups, including a RASS selected groups sample
(Lovisari et al. 2015), some ROSAT selected sample of massive
clusters (Mantz et al. 2016; Schellenberger & Reiprich 2017),
the XMM-XXL survey (Adami et al. 2018), some Sunyaev-
Zeldovich (SZ) selected samples in the radio/millimeter bands
from SPT (Bulbul et al. 2019) and Planck (Lovisari et al. 2020),
and the eROSITA catalogues from eFEDS (Liu et al. 2022a) and
eRASS1 (Bulbul et al. 2024; Seppi et al. 2024). The bottom part
of both panels shows the intrinsic scatter evolution as a func-
tion of halo mass. For the LX − M500c relation we find a slope of
1.58± 0.02. It is steeper than the self-similar model expectation
of 4/3, because the gas fraction in the galaxy group regime is
smaller than the cosmic one, which reduces luminosity at fixed
mass. Our model aligns well with previous observations. The
luminosity at fixed mass is slightly higher than the eRASS1 sam-
ple, likely due to software and calibration differences (see dis-
cussion in Bulbul et al. 2024). In any case, an accurate and pre-
cise comparison is not possible since for some of these observa-
tional samples a full scaling relation model including systemat-
ics and selection function is not available. In addition the masses
have been computed using different techniques, such as weak
lensing calibration, hydrostatic equilibrium assumption, or scal-
ing relations, which means that the observational samples have
different accuracy and precision along the x-axis in Fig. 4. The
scatter in luminosity predicted by the neural network evolves
for different masses, from about 0.4 dex at about 2× 1013 M�
to 0.3 dex at 8×1014 M�, with a median value of 0.31 dex. This
is in agreement with expectations when comparing these values
with observations, given the fact that our model does not include
measurement uncertainties that affect the latter. Literature val-
ues span between 0.2 and 0.4 (Lovisari et al. 2015; Bulbul et al.
2019; Sereno et al. 2019; Seppi et al. 2024). The relation is flat-
ter in the mass range between 1× 1013 and 5× 10 13 M�. This
is intrinsic to the TNG simulation, as indicated by the dashed
magenta line, which reports the TNG100 prediction as shown
in Zhang et al. (2024). This effect could be due to line cool-
ing. At fixed density, the X-ray emissivity is enhanced for tem-
peratures around 1 keV due to the addition of line cooling on
top of the self-similar expectation of thermal bremsstrahlung.
Indeed Lovisari et al. (2021) showed that the emissivity quickly
increases by up to a factor of about two in the temperature range
of 1 keV, this holds for different metallicities and energy bands.
Disentangling such an effect from the reduced gas fraction in
groups compared to clusters and the variation of the gaseous
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Fig. 4. X-ray scaling relation prediction of the cluster and group model.
Top panel: Scaling relation between X-ray luminosity obtained by inte-
grating the emission measure profiles (see Eq. (11)) and halo mass. Bot-
tom panel: Scaling relation between temperature and halo mass. The
blue shaded area shows the 16th–84th percentile distribution for the
model applied to the Uchuu light cone in each mass bin. Our model is
compared to a collection of real groups and cluster samples. The bottom
part of both panels shows the intrinsic scatter evolution as a function of
halo mass.

atmosphere due to AGN feedback is not trivial. In any case, we
verify that this is not a limitation for our purpose of formulat-
ing the selection function in terms of observables. We reduce
the luminosities extracted from the cluster model by a constant
factor of 10%, that is, the fluxes are rescaled by a factor of 0.9.
We re-generate the SIMPUT cluster files for the mock number
three and process it with our end-to-end approach. We find that
the final detection probability as a function of flux is in excellent
agreement with the main work combining the four light cones.
In addition, the X-GAP flux limit is about 5× 10−13 erg/s/cm2,
where we find an excellent agreement between different mocks

and the test with rescaled luminosities. We further elaborate in
Appendix A.

For the TX − M500c relation we find a slope of 0.63± 0.02,
close to the self similar model expectation of 2/3. The scat-
ter is fairly constant as a function of mass, with values
around 0.13. This is larger compared to the model from
Comparat et al. (2020), reporting values around 0.07. Results
from observational studies span from 0.05 (Lovisari et al. 2020),
0.064 (Sereno et al. 2019), 0.069 (Chiu et al. 2022), to 0.18
(Bulbul et al. 2019).

4. Catalogue creation

We follow the selection scheme devised by Damsted et al.
(2024) for AXES, the successor of CODEX (Finoguenov et al.
2020), and the parent sample of X-GAP (Eckert et al. 2024). The
optical FoF detection follows Tempel et al. (2017). On top of the
positional matching between X-ray and optical detections, we
add a matching to the input clusters and groups, which allowed
us to quantify completeness and purity levels in the AXES cata-
logues. The whole procedure is detailed in this section.

4.1. X-ray detection

We run a wavelet source detection algorithm, as introduced by
Vikhlinin et al. (1998). It consists in convolving the image with
a kernel with a positive core and a negative outer ring, allowing
the isolation of objects with a given angular size. The kernel is
a Mexican hat function. This allowed us to subtract the back-
ground accurately because the convolution of the kernel with
any local linear function is zero (see Vikhlinin et al. 1998, for
details). The wavelet scale n is defined such that the outer scale
corresponds to a Gaussian with size of 2n−1 pixels. We follow
the implementation described in Käfer et al. (2019). We divide
the detection of point-like emission using wavelet scales of 2,
3, and 4 pixels; from the detection of extended-like emission
using wavelet scales of 5 and 6 pixels. A key step at this point
is using images with the same pixel size as the real RASS maps,
because this is the scale at the base of the wavelet filters. Given
the pixel size of 45 arcsec, these scales correspond to 1.5, 3,
and 6 arcmin for point-like emission, and 12, 24 arcmin for the
extended-like case. Given the redshift range of X-GAP, using
such large angular scales allowed us to create a source cata-
logue that was only sensitive to the baryonic content of groups
in the outskirts. For a typical 5× 1013 M� group at z = 0.04,
R500c covers about 12 arcmin. This minimizes the impact of
AGN feedback, mostly evident in the central region, on the sam-
ple selection. The centre of X-ray emission is located by run-
ning SExtractor (Bertin & Arnouts 1996) on the sum of the
extended source wavelet images.

4.2. Optical detection

Our optical mock is based on the UchuuSDSS simulation
(Dong-Páez et al. 2024). The UchuuSDSS catalogues are pub-
licly available10. They are based on a subhalo abundance match-
ing (SHAM) between the maximum value of the halo circular
velocity, serving as a stellar mass proxy, and a target luminos-
ity to match the SDSS galaxy luminosity function. They add a
smoothing to reproduce the observed redshift trend of the lumi-
nosity function and assign colours based on empirical models.

10 https://skun.iaa.csic.es/SUsimulations/UchuuDR2/
Uchuu_SDSS/uchuusdss_lightcones

A206, page 9 of 26

https://skun.iaa.csic.es/SUsimulations/UchuuDR2/Uchuu_SDSS/uchuusdss_lightcones
https://skun.iaa.csic.es/SUsimulations/UchuuDR2/Uchuu_SDSS/uchuusdss_lightcones


Seppi, R., et al.: A&A, 699, A206 (2025)

Apparent r-band magnitude (mag-r) are computed accounting
for colour-dependent k-corrections. Finally, they assign addi-
tional galaxy properties, such as stellar mass and star formation
rate, by a nearest neighbour search within SDSS. The authors
demonstrated that this approach recovers SDSS population prop-
erties by construction, such as the stellar mass function, galaxy
clustering, redshift distribution, and colour magnitude diagrams
(see Dong-Páez et al. 2024, for more details).

The optical FoF algorithm from Tempel et al. (2017), used
in Damsted et al. (2024) and in this work, only requires angu-
lar coordinates, redshift, and mag-r. We treat their catalogue as
the mock corresponding to the real galaxy SDSS data used in
FoF search of galaxy groups. We select galaxies with redshift
z < 0.2 and r-band magnitude r-mag < 17.77 to reproduce the
same selection as Tempel et al. (2017). The authors used a red-
shift dependent linking length according to:

dLL(z) = dLL,0[1 + arctan(z/z∗)], (12)

with dLL,0 = 0.34 Mpc and z∗ = 0.09. The original SDSS
catalogue contains 584 449 galaxies and 88 662 groups with at
least two members. In the four simulations we used there are
624 639, 610 845, 595 183, and 626 333 galaxies. Differences
between the mocks are attributed to cosmic variance. These
numbers are higher compared to the real Universe observed
in SDSS. This is due to an overestimation of the galaxy den-
sity in the optical mock compared to the real SDSS at red-
shift close to 0.2, as pointed out in Dong-Páez et al. (2024).
This is not a limitation in our redshift range of interest z <
0.14, where we also have access to velocity dispersions (see
Sect. 2.1). In fact, in this range the mocks contain 484 960,
473 439, 456 510, 492 000 galaxies compared to 464 978 in the
real SDSS. We discard groups with fewer than five galaxy
members, as their properties are hard to measure quantitatively
(replicating the selection of Damsted et al. 2024). In addition to
the catalogue of FoF groups, the algorithm from Tempel et al.
(2017) provides the catalogue of member galaxies assigned
to each FoF group. We use the latter for matching the FoF
groups to input dark matter haloes, as explained in the next
section.

We further clean our optical catalogue following the same
approach as Damsted et al. (2024) and apply the CLEAN algo-
rithm (Mamon et al. 2013). It minimizes the impact of interlop-
ers, that is, galaxies falling within the projected virial radius
but that are actually located outside the main halo, by select-
ing member galaxies based on their position in the phase space
of radial distance from the centre and rest frame velocity.
An iterative process based on an NFW model estimates r200c
from velocity dispersion. Then the algorithm selects galaxies
within the ±Kσlos(R), with K = 2.7. For more details about
the theoretical formalism of CLEAN, we refer the reader to
Appendix B in Mamon et al. (2013). Finally, using the cleaned
members, we compute observed velocity dispersion using the
Gapper method (Beers et al. 1990), an estimator based on the
gaps between ordered measurements: it sorts the values of
individual velocities and uses the difference between veloc-
ity intervals as weights to compute the final velocity disper-
sion (Wetzell et al. 2022). The uncertainty on the measure-
ment is computed as the standard deviation of 1000 bootstrap
resamples.

4.3. Matching input and output

Given the set-up of our simulation, we need to perform a three-
way matching, between dark matter haloes in the light cone,

detections in the X-ray mock, and FoF optical groups. For a
given dark matter halo, we can ask whether it is detected in the
X-ray, optical, or both mocks. For the matching procedure we
focus on haloes at z ≤ 0.14, where we measured input velocity
dispersions. We ignore optical detections in the range between
0.14 and 0.2, which is nonetheless outside the X-GAP range of
interest.

4.3.1. X-ray to haloes

We follow a similar scheme to Seppi et al. (2022) to match input
and output catalogues from the X-ray point of view, and use the
information stored in the unique ID of each photon. For each
event, the ID encodes the source responsible for the emission,
either a cluster, an AGN, or the background. For each entry in
the wavelet catalogue, we query all the events within a radius of
6 arcmin. We assign such detection to the simulated source emit-
ting the majority of the photons. If different sources provide the
same exact amount of events, we give priority to the input clus-
ter. We only account for input sources providing more than two
events on the mock detector, and sources providing an amount of
events larger than the 0.8 percentile point of the Poisson distri-
bution with mean value equal to the total number of counts pro-
vided by the background within the given aperture of 6 arcmin
(see also Liu et al. 2022b, for a similar implementation).

The main difference compared to previous work about
eROSITA simulations cited above is that in this case we are par-
ticularly interested in the detection of extended sources rather
than contamination. Indeed, it is clear from the X-GAP data that
contamination from AGN is not an issue (Eckert et al. 2024),
with only one false detection out of 49. Therefore, if a detec-
tion contains cluster emission but is not assigned to the cluster
directly, that is, due to the presence of a bright AGN, we still
consider the cluster as detected. Indeed, the cross-match with
the optical mock allowed us to clean the otherwise contami-
nated X-ray classification of such sources. However, we track
all cases of sources whose emission is contaminated by a sec-
ondary object. To do this, we require that the amount of counts
provided by the secondary source within the given aperture is
larger than the square root of the counts produced by the primary
match.

4.3.2. Optical to haloes

We now search for an optical FoF counterpart to each simulated
halo. We start from the input halo catalogue and search for opti-
cal matches in radial angular apertures of 3×R500c in the RA-Dec
plane. We then query the candidate matches, if present, and keep
only the ones with a relative redshift error below 1%, that is,
|zFoF − ztrue|

1 + ztrue
< 0.005. This threshold is comparable to state of

the art results on cluster photometric data (see e.g. Kluge et al.
2024), and thus serves as a reasonable upper limit that also
accounts for additional observational redshift uncertainties. We
perform the matching in redshift space, that is, ztrue includes
peculiar velocities (see Eq. (2)), which help to disentangle close
pairs or mergers due to the fact that the optical detection uses
observed redshifts as well. For each candidate we evaluate the
matching quality by computing a matching statistic accounting
for a mass probability, encoded in the estimate of velocity disper-
sion, and a distance probability, related to the 3D cartesian dis-
tance from the true halo centre. The matching statistic is there-
fore higher if the optical candidate is well centred on the true
position of the halo, and if velocity dispersion is accurately esti-
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Fig. 5. Image example showing one of the brightest clusters in our mock
with the additional components we included in the simulation. A sec-
ondary halo is located in the south-east region compared to the bright-
est one. The events generated by clusters (AGN, the X-ray background)
are displayed as small dots in blue (orange, green). The true halo posi-
tion is shown with large crosses, colour-coded by the X-ray flux. The
position of the X-ray wavelet (optical FoF) detection is located at the
cyan circle (magenta triangle). Each galaxy is marked by the small plus
signs, according to their g-r colour. The vertical colour bar refers to
input groups and clusters (the large crosses), the bottom one to individ-
ual galaxies (small plus signs).

mated. The final equation reads:

r =
d3D

R500c

Pdist(r) =
1

1 + r2

Pmatch(σv,M, σv,T, r) = LN(σv,M|σv,T, σLN) × Pdist(r), (13)

where LN(σv,M|σv,T) is a log-normal function describing the
measured velocity dispersion σv,M that is centred around the true
value σv,T. We use a log-normal scatter of σLN = 0.08 dex. An
accurate refinement of this quantity is provided in Sect. 6.

We consider the optical FoF object with the highest match-
ing statistic as the primary match to an input halo, if more than
one candidate is present. Although this set-up easily allowed
us to state whether a halo is detected or not, it may assign the
same optical FoF object to different input haloes. In such cases,
we assign the primary match to the halo whose FoF object has
the highest matching probability. For the other haloes, we then
check if they have secondary matches. If the secondary matches
have not been assigned as primary matches to another halo, we
upgrade them to primary matches. Otherwise, we mark the clus-
ter as blended with another primary detection. With this method
we now have a unique way of mapping input haloes into FoF
optical groups and clusters.

An example of the end result of the processing detailed
in this section is shown in Fig. 5. It is a field of one square
degree with one of the brightest clusters in our simulation. X-ray
photons generated by various components (clusters and groups,
AGN, background) are shown as small dots (in blue, orange,
green). Galaxies are displayed by the plus signs and represented
according to their g-r colour. True halo positions (wavelet detec-
tions, optical FoF detections) are located at the large crosses

(cyan circles, magenta triangles). In this case, the bright system
in the centre of the image is properly detected both in X-ray and
optical bands. In addition, a fainter nearby halo is found by the
optical FoF algorithm, but not in the wavelet processing.

We generate X-ray photons for a total of 62 868 clusters and
groups below redshift 0.14, with flux larger than 10−14 erg/s/cm2.
This limit is much below the expected RASS detection limit
(Böhringer et al. 2000; Ebeling et al. 2001). Between them,
17 669 are detected in the optical mock, for an optical complete-
ness of 28.1%. In the X-ray mock, the wavelet processing iden-
tifies 5589 sources, for an X-ray completeness of 8.8%. After
combining X-ray and optical detections, we obtain 3975 sources,
for a global completeness of 6.3%. When focusing on a lower
redshift slice, or more massive systems, the detection probability
increases. In the redshift range of interest for X-GAP, between
0.02 and 0.06, the global probability of detection is 20.9%. A
summary is reported in Table 1.

Comparing the output sample obtained as described above
to the real AXES presented in Damsted et al. (2024) is a test for
our full workflow, from the individual models of clusters and
groups, the X-ray simulation, the detection algorithm, and the
matching procedure. We do so by comparing the X-ray lumi-
nosity as a function of the measured galaxy member velocity
dispersion. In this case we use the X-ray luminosity in the 0.1–
2.4 keV band to match the values measured in the real AXES.
The procedure is the same as Eq. (11), but in this case we use
the cooling function in the 0.1–2.4 keV band computed using
pyatomdb (Foster & Heuer 2020). We focus on the X-GAP red-
shift range 0.02–0.06. The result is shown in Fig. 6. It displays
the relation for our mock in blue and for the real AXES in
orange. The shaded area accounts for 16th–84th percentiles. We
find excellent agreement between our simulation and the results
from Damsted et al. (2024). Therefore, our end-to-end simula-
tion provides a robust sample in comparison to real data and is
suitable to study its selection effects.

5. Selection function

In this section, we report our results about the sample com-
pleteness, directly encoded in the selection function, and purity.
These results include the combination of the four light cones
described in Sect. 2.1 into a single summary catalogue. We
express the true X-ray flux in the 0.5–2.0 keV band within R500c.

5.1. Sample completeness

Information and knowledge about the sample completeness level
is necessary to characterize the population of galaxy clusters and
groups from a sample such as X-GAP. Our end-to-end mock
allowed us a direct comparison between the halo population
selected in the optical and X-ray bands to the global one in the
full light cone. We start by analysing the fraction of selected
sources as a function of X-ray flux and velocity dispersion. Just
like for the luminosity, we use fluxes within R500c in the 0.5–
2.0 keV band. The result is shown in Fig. 7. We see that the
probability of detection is higher (in red) for bright systems with
high velocity dispersion, and therefore high mass. However, we
notice that the detection depends primarily on flux, rather than
velocity dispersion. In the top panel of Fig. 7, at fixed velocity
dispersion σv,T = 400 km/s, the detection probability changes
from about 53% at X-ray flux of 2×10−12 erg/s/cm2 to about
86% at 8×10−12 erg/s/cm2. Conversely, it varies only from 75%
at fixed flux of 5×10−12 erg/s/cm2 for σv,T of 250 km/s to 81% at
1000 km/s. Although flux and velocity dispersion are inevitably
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Table 1. Summary statistic for our mocks.

Sample Total Number FoF Groups X-ray Wavelet X-ray + Optical

Full Sample 62 868 17 669 (28.1) 5589 (8.9) 3975 (6.3)
z < 0.08 14 366 6990 (48.6) 2804 (19.5) 2144 (14.9)
z < 0.08, M500c > 5× 1013 M� 1962 1614 (82.2) 1352 (68.9) 1166 (59.4)
0.02 < z < 0.06 5768 3230 (56.0) 1582 (27.4) 1206 (20.9)

Notes. The table reports the total number of simulated clusters and groups, together with the number and fraction of detected objects in the optical
(FoF) and X-ray (Wavelet) mocks, for different redshift and mass references. The last line refers to the X-GAP redshift range of interest. The
numbers between brackets are the detection probability expressed as percentage.

intrinsically correlated, their impact on detection is not strongly
linked. The same holds for redshift in comparison to X-ray
flux. In the middle panel of Fig. 7 the detection probability is
one for flux above 4×10−11 erg/s/cm2 at each redshift, whereas
faint sources at about 1×10−13 erg/s/cm2 are not detected even if
they are nearby. This result is in agreement with Damsted et al.
(2024), who find a small redshift evolution of the 10% complete-
ness limit of AXES, from about 300 km/s at z = 0.05–480 km/s
at z = 0.15. The bottom panel of Fig. 7 shows the detection
probability as a function of redshift and velocity dispersion. In
this case we do see a combined evolution. At z = 0.1, the com-
pleteness fraction increases from about 0.1% at σv,T = 300 km/s
to 78% at σv,T = 1000 km/s. Similarly, at z = 0.02 it increases
from 40% to 1. This trend is encoded in the correlation between
more massive systems with larger velocity dispersion and X-ray
brightness, meaning that the X-ray sensitivity is driving the vari-
ation of detection probability with redshift and velocity disper-
sion. We stress that this is true for our particular survey set up
and does not necessarily hold for other selection criteria. Indeed,
this is the result of the ROSAT selection being the limiting fac-
tor compared to the SDSS one. In an opposite case, with a deep
X-ray coverage and a shallow optical one, the main driver of the
selection method would likely be the optical proxy. Finally, we
notice that the average R500c of the simulated systems in the X-
GAP redshift range of 0.02–0.06 is equal to about 8 arcminutes
and the average size of the detected systems is 11 arcminutes.
This confirms that the size of the wavelet scales equal to 12 and
24 arcminutes in Damsted et al. (2024) is suitable to detect X-
GAP groups using emission from their outskirts.

5.2. Selection function model

The selection function encodes the probability for a source to be
detected as a function of a given set of parameters. We compute
the ratio between the detected and the simulated sources:

Pdet(FX, z, σv,T) =
NDET

NALL
(FX, z, σv,T). (14)

In particular, we evaluate the ratio in Eq. (14) as a func-
tion of observable properties. This makes our selection function
directly related to observations, bypassing intrinsic halo prop-
erties (e.g. halo mass), that are not directly measurable. When
using multi wavelength data for the identification of clusters
and groups, accounting for mass tracers using different observ-
ables is key to model selection effects in different surveys (e.g.
Finoguenov et al. 2020). We use the X-ray flux in the 0.5–
2.0 keV band within an aperture equal to R500c (computed fol-
lowing Sect. 3.4), velocity dispersion (see Eq. (3)), and red-
shift. The result is shown in Fig. 7. This combination is par-
ticularly suitable in the case where the selection function is
needed for forward-modelling a population. One caveat is that

Fig. 6. Scaling relation between X-ray luminosity and measured veloc-
ity dispersion. The result from our simulation (the real AXES) is shown
in blue (orange). We find excellent agreement between the mock and
real data in Damsted et al. (2024).

one would need to account for an aperture correction since the
radius encompassing an average density that is 500 times larger
than the critical density depends on cosmology. It is possible to

account for it by modelling its evolution with E(z) =
H(z)
H0

. In

the opposite case, where one wants to start from the data and
does not necessarily have access to M500c, a selection function
expressed in terms of flux measured within a fixed angular aper-
ture is more convenient. Therefore, we add a second model on
top of the base one, where we model the detection probability
as a function of observed flux within an angular aperture of six
arcminutes, velocity dispersion, and redshift. In addition, the lat-
ter model does not depend on any mass assumptions to estimate
the radial aperture, which is also makes it useful for forward-
modelling.

For both cases, we expect massive, bright, and nearby
sources to be easier to detect compared to lighter, fainter, fur-
ther ones. Therefore, the completeness is directly proportional
to flux and velocity dispersion, and inversely proportional to red-
shift. In the previous paragraph describing Fig. 7, we notice that
our selection is primarily driven by X-ray flux, which is the main
variable of our model. We combine individual sigmoid functions
into a comprehensive detection probability model with four free
parameters, that reads:

Pdet(FX, z, σv,T) = (1 + exp[−αFx(log10 FX − FX,0) +

− ασv × log10 σv,T + αz × log10 z])−1,
(15)
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Fig. 7. Two-dimensional probability of detection for X-ray plus opti-
cally selected haloes in our simulation (see Sect. 5.1). The panels shows
the completeness fraction as a function of three combinations of X-ray
flux, velocity dispersion, and true velocity dispersion.

where the parameters αFx, αz, ασv regulate the slope of the
global sigmoid function, and FX,0 sets the flux scale to centre its
zero point along the flux axis. A similar approach was followed
by Clerc et al. (2018), who modelled the detection of extended

sources in eROSITA simulations with an error function. We find
that a sigmoid allowed us to better capture the completeness
trend in our simulations. To test the performance of our fit, we

compute a reduced χ2
r =

1
F

∑ (D − M)2

δD2 , where F is the num-
ber of degrees of freedom, that is, the number of bins minus the
number of free model parameters, D is the measured complete-
ness, δD is its uncertainty, and M is the best-fit model evalu-
ated at the median flux, velocity dispersion, and redshift of the
full population in each 3D bin. We obtain χ2

r = 0.97, therefore
we conclude that our fit is adequate. We derive posterior prob-
ability distributions and the Bayesian evidence for the parame-
ters in Eq. (15) with the nested sampling Monte Carlo algorithm
MLFriends (Buchner 2016, 2019) using the UltraNest11 package
(Buchner 2021).

The result for the base model using F500c is shown in Fig. 8.
The three panels show the detection probability with all com-
binations of flux, velocity dispersion, and redshift. The circles
and squares represent the measurements from the end-to-end
mocks, while the lines and shaded areas denote the best-fit
model with 68% and 95% confidence intervals. The error bars
account for the Poisson uncertainty in counting the total and
the detected number of sources when computing the complete-
ness (see Eq. (14)). The model favours a selection driven by
flux, as noted in the previous section, with a secondary depen-
dence on redshift and velocity dispersion. We find good agree-
ment between the measured completeness and the model of the
selection function. The full marginalised posterior distribution
is shown by the green contours in Fig. 9. There is a negative
correlation between the parameters describing the slope and flux
normalisation, with a Pearson correlation coefficient of −0.75.
This is unexpected because if the zero point is set to fainter
fluxes, the slope needs to be shallower to describe the bulk of
the population. However, this effect is mitigated by the posi-
tive correlation of FX,0 to the slopes related to velocity disper-
sion and redshift, with Pearson coefficients respectively equal to
0.98 and 0.79. We find also a positive correlation between the
slopes related to redshift and velocity dispersion, with a coeffi-
cient of 0.69. This is expected by construction, because even if
the detection probability increases with velocity dispersion and
decreases with redshift, the sign in slope definition is opposite
in Eq. (15). The results for the additional model using the flux
within six arcminutes are qualitatively very similar to the base
model using flux within R500c. The flux and the velocity disper-
sion slopes are compatible within 1σ. The flux normalisation
is slightly larger at −10.84± 0.15 compared to −11.03± 0.14.
One would naively expect the opposite, because at the average
redshift (equal to 0.075) of our detected population, the mean
R500c covers about 7 arcminutes, meaning that the integrated flux
within a smaller aperture of six arcminutes should end up in
a lower normalisation of the sigmoid function. However, this
effect is counter balanced by the positive correlation between
the flux normalisation and redshift slope, which is steeper in
this second case at 2.19± 0.12 compared to 1.73± 0.12 for the
base model. The larger slope values push the flux normalisation
to higher values as well, but at fixed flux the completeness is
higher for the model using flux within six arcminutes compared
to the base one, as expected. All the parameters are reported in
Table 2.

11 https://johannesbuchner.github.io/UltraNest/
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Fig. 8. Probability of detection for X-GAP-selected haloes as a function
of observables. The three panels show different combinations of flux
measured within R500c, redshift, and velocity dispersion on the x-axis
in different colours and with different symbols. The various line styles
denote the selection function model in Eq. (15). The error bars account
for the Poisson error on the number of total and detected sources. The
lines in each panel were shifted by −0.02, −0.01, 0, and 0.01 dex for
clarity.

5.3. Purity-completeness trade-off

In the previous subsection, we analysed the sample completeness
after cross-matching the input dark matter haloes to the X-ray
and optical mocks. Instead, we did the opposite in this instance,

Fig. 9. Marginalised posterior distribution of the best-fit model of the
X-ray plus optical selection function (see Eq. (15)). The filled 2D con-
tours show the 1σ and 2σ confidence levels of the posteriors after con-
volution with the uniform priors. The green contours denote the base
selection function where flux is measured within R500c, the violet con-
tours show the effect of measuring flux within an angular aperture of six
arcminutes. The parameter values are reported in Table 2.

Table 2. Priors and posteriors of the parameters describing the X-GAP
selection function model in Eq. (15).

Parameter Prior Posterior FX,500c Posterior FX,6′

αFx U(0, 10) 4.78± 0.08 4.76± 0.08
FX,0 U(−14, −5) −11.03± 0.14 −10.84± 0.15
αv U(0, 5) 0.83± 0.19 1.01± 0.21
ασz U(0, 5) 1.73± 0.12 2.19± 0.12

Notes. Posteriors are reported for both cases of X-ray flux measured
within R500c or in an aperture of six arcminutes. The symbol U(M,N)
denotes a uniform prior between the values M and N.

that is, we started from the output mock catalogues and queried
the matched haloes from the procedure outlined in Sect. 4. To
compare the X-ray and optical catalogues we follow a prescrip-
tion similar to Damsted et al. (2024). For each optical detection,
we estimate R200c from a halo mass inferred from the measured
galaxy velocity dispersion, based on the scaling relation cali-
brated in the next section. We stress the fact that this is not nec-
essarily a precise and accurate measure of groups’ radii, but we
simply use it as an aperture to search for X-ray matches. We
consider an optical group to have a corresponding X-ray detec-
tion if there is a wavelet detection within the R200c estimated
from velocity dispersion. This process allowed us to measure the
purity of our sample, that is, the fraction of sources detected in
the simulation that correspond to real input objects.

Since defining an input property for a source that is not
matched to an input halo is impossible, we analyse purity as a
function of a measured quantity: velocity dispersion. The result
is shown in the left hand panel of Fig. 10. The blue line denotes
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Fig. 10. Trade-off between completeness and purity as a function of velocity dispersion. Left panel: Fraction of objects with a corresponding real
input dark matter halo as a function of measured velocity dispersion. The blue line shows the fraction of objects detected in the optical mock
that are matched to a real halo in the light cone. The orange line denotes objects with a corresponding X-ray detection. The green and red lines
refer to the low redshift population, in the interval of interest for X-GAP, between 0.02 and 0.06. The black line shows the normalised distribution
of measured velocity dispersion in the simulation. Central panel: Distribution of the measured velocity dispersion in our mock and in the real
data. The blue and orange lines are left as a reference from the previous panel. The pink lines show the normalised distributions of the real AXES
sample from Damsted et al. (2024), while the black ones refer to the simulation. The solid (dashed) lines denote the full optical (optical plus X-ray)
detections. Right panel: Fraction of real input dark matter haloes with a corresponding detection in the mock. The coloured lines represent the
same populations as the top panel, but starting from the true input dark matter haloes.

the global population detected in the optical mock, after the
application of CLEAN. The orange line considers only optical
detections with a corresponding X-ray detection. The dashed
black line shows the global distribution of the measured velocity
dispersion in our mocks. The central panel shows the comparison
to the full distribution in the real AXES sample (in pink), where
the dashed lines denote the population with an X-ray match.
We find that distributions in our mock and in the real AXES
peak at the same velocity dispersion, and have a similar distri-
bution, especially around the peak. This is an additional confir-
mation that our end-to-end simulations produce a high fidelity
sample that matches the properties of the real AXES. In addi-
tion, it enables a reliable estimate of the purity level in AXES
using the results from the mock. We find that the sample with an
X-ray detection is very pure, reaching a purity of 90% already
at σv,M = 280 km/s. The full optical mock reaches a similar
purity level at about σv,M = 600 km/s. This means that the
cross-correlation with X-ray practically serves as a cleaning of
the optical catalogue, confirming the finding of Damsted et al.
(2024). In fact, the overall distribution of measured velocity dis-
persion for all detections with an X-ray match peaks at higher
values compared to only optical detections, with values of about
450 km/s and 350 km/s respectively. Using the full AXES popu-
lation and our purity estimate from the simulation, we can esti-
mate the purity level in the real data:

Pavg =
∑
σv,M

fobs(σv,M)Psim(σv,M)
fobs(σv,M)

, (16)

where fobs is the fraction of real sources at a given velocity dis-
persion, and Psim is the purity estimate from the simulation. We
estimate a purity level of 76% in the optical-only detection, and
a 93% purity level in the AXES sample after adding the X-ray
matching.

We also study the detection performance in the lower red-
shift range between 0.02 and 0.06, where X-GAP is defined. The
result is denoted by the green and red lines, that are the analogue
of the blue and orange ones respectively, but for the low red-
shift population. When accounting only for the optical detection,
the purity for the latter is lower than the global population by

about 5–10% up to 500 km/s, where the two distributions start to
agree within error bars. This is due to the fact that in the nearby
Universe the SDSS galaxy sample contains a larger fraction of
galaxies with low stellar mass. In the 0.02–0.06 range, the aver-
age stellar mass is about 2× 1010 M�, whereas at higher redshift
between 0.06–0.14, it increases to about 5× 1010 M�. Therefore,
the fraction of isolated galaxies at low redshift is higher, and the
chance of merging them together into a fake detection is higher.
However, there is excellent agreement between the orange and
the red lines, meaning that after adding the X-ray match to the
optical detections, the purity level is very stable for different red-
shift.

The effect of the X-ray correlation is also clear in the right
hand panel of Fig. 10. It shows the completeness fraction as
a function of true velocity dispersion, the same concept anal-
ysed in the previous section, in this case marginalised on flux
and redshift. The optical catalogue reaches a 50% completeness
at velocity dispersion equal to about 500 km/s, while the opti-
cal plus X-ray case requires about 730 km/s. This is due to the
relatively shallow and low resolution coverage of the ROSAT
all sky survey, which allowes us to detect only massive bright
systems in large fractions. Conversely to purity, we see a sig-
nificant improvement of the detection probability as a function
of velocity dispersion at low redshift. In the 0.02–0.06 range,
the 50% completeness is reached at 300 km/s. When adding the
X-ray match, the same completeness level is reached at about
450 km/s. Both cases are an improvement by a factor of about
1.6 compared to the full population. The higher completeness at
low redshift is also evident in the global distribution of measured
velocity dispersion, the brown lines in the top panel of Fig. 10.
In fact, such distribution peaks at 250 km/s and at 350 km/s when
adding the X-ray match. Both are about 100 km/s lower than the
peak of the distribution for the full population, even if the under-
lying true velocity dispersion follows a very similar trend (brown
line in the bottom panel of Fig. 10): at low redshift we are able to
probe the groups population down to lower velocity dispersion.
We stress that this redshift trend is encoded in the selection func-
tion defined in terms of flux. We conclude that combining X-ray
detected clusters and groups in the RASS with optical FoF detec-
tions provides pure samples even at low velocity dispersions, at
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the cost of reducing the sample completeness. However, the lat-
ter can be accounted for via the selection function calibrated in
the previous section.

6. Mass – velocity dispersion

In the section, we use our mock to calibrate the scaling rela-
tion between halo mass and velocity dispersion. Within the scal-
ing relation we account for two distributions. The first one is a
log-normal distribution of the true velocity dispersion σv,T (see
Eq. (3)) around the linear relation with halo mass. The second
one is another log-normal distribution of the measured velocity
dispersion σv,M (see Sect. 4.2) around the true one.

Following the work from Munari et al. (2013) and
Ferragamo et al. (2022), we model the relation between
the true velocity dispersion and halo mass using a power law
model with normalisation A and slope α. In addition, we add the
intrinsic scatter of the true velocity dispersion at fixed halo mass
σintr. Finally, we consider the measured velocity dispersion to
be distributed around the true value in a log-normal way with
a scatter of σmeas. We report the two scatters σintr and σmeas
in units of dex, they are the scatters of the base 10 logarithm
of velocity dispersion. We also account for the measurement
uncertainty of velocity dispersion on top of the scatter between
measured and true velocity dispersion. This mitigates the lower
precision of the velocity dispersion measurement for systems
with a lower amount of members. Overall, our hierarchical
formalism reads as follows:

P(σv,T|M, z) = LN(µ = A
(

h(z)M
1015M�

)α
, σ = σintr)

σmeas,err =

√
σ2

meas +

(
δσv,M

σv,M log(10)

)2

P(σv,M|σv,T) = LN(µ = σv,T, σ = σmeas,err)
P(σv,M|M, z, θ) = P(σv,M|σv,T)P(σv,T|M, z, θ)P(I|σv,T, z), (17)

where θ is the collection of parameters describing the scaling
relation, in our case A, α, σintr, σmeas. The normalisation A is
always expressed in units of km/s. The last term P(I|σv,T, z) is the
detection probability. We model it similarly to Eq. (15), but with
a single sigmoid function for velocity dispersion. It depends on
two parameters, the slope and normalisation, similarly to the cor-
responding flux terms in Eq. (15). We find a slope of 6.4 (10.8)
and a normalisation of 2.64 (2.68) for the optically (optically
plus X-ray) detected systems. Accounting for the detection prob-
ability allowed us to down-weight the low-mass groups that are
less likely to be detected in the forward model of the selection
process within the likelihood formalism. We perform five differ-
ent fits in total. For the first three we focus on the true velocity
dispersion. For the last two we account for the measured velocity
dispersion and use the full calibration described above. In this
section we focus on M200c, for consistency with the literature
about velocity dispersion in clusters and groups. In Appendix B
we calibrate the relation as a function of M500c, which is the mass
measured for X-GAP galaxy groups (Eckert et al. 2024).

We note that when studying the scaling relation with real
data, disentangling the two components of true and measured
velocity dispersion is not feasible. However, this is possible
within our framework, as we have access to σv,T in the simula-
tions. This allowed us to separate the selection function, defined
in terms of true observable halo properties, and the measurement
of such observables, that in this case is σv,M .

6.1. True scaling relation

We first analyse the three cases focusing on the true velocity dis-
persion with different selections. The first case describes the full
halo population in our light cone and does not account for any
selection effect. The second one adds the optical selection, and
the third one combines the optical selection with the X-ray one.
Any discrepancy between these cases would allows us to under-
stand the impact of selection effects on the true scaling relation.

We derive posterior probability distributions and the
Bayesian evidence with the MLFriends algorithm using the
UltraNest package. The full marginalised posterior distributions
are shown in Fig. 12. We find a positive degeneracy between
the normalisation and the slope of the scaling relation. This is
expected, because the normalisation fixes the amplitude of the
relation at high mass, therefore, a shallower slope is required
to model the bulk of the population for a smaller normalisa-
tion. For the M200c case, the 1-D marginalised posteriors are
A = 1145.1 ± 3.9 and α = 0.330 ± 0.001. We find a scatter
for the true velocity dispersion of σintr = 0.073±0.001, confirm-
ing the tight distributions presented by Munari et al. (2013) and
Ferragamo et al. (2022). The end result is shown in the top panel
of Fig. 11, displaying the scaling relation between the true veloc-
ity dispersion computed using subhalo velocities (see Eq. (3))
and halo mass. The blue line denotes the best-fit model, the red
lines include the intrinsic scatter σintr. Our result is compati-
ble with the orange and green lines, referring to Munari et al.
(2013) and Ferragamo et al. (2022), respectively. When adding
the optical and the X-ray selections, we find a scaling relation
with lower slope and normalisation. However, all three best fits
are in excellent agreement within the intrinsic scatter of the scal-
ing relation. The intrinsic scatter decreases from 0.073 for the
full halo sample to 0.067 when adding the optical selection, and
to 0.057 when including also the X-ray selection. This suggests
that confirming the presence of a halo with one or multiple prox-
ies gets rid of outliers, with velocity dispersions that are far from
the mean scaling relation of fixed halo mass. All the parameters
are reported in Table 3.

6.2. Full calibration

We perform a full calibration of the velocity dispersion-halo
mass relation by accounting for the distribution of the measured
velocity dispersion around the true value. For the fourth and fifth
case we add the measured velocity dispersion and apply the full
formalism in Eq. (17). In the first place, we only study haloes
detected in the optical mock, then secondly we add the X-ray
selection. The bottom panel of Fig. 11 shows σv,M as a function
of halo mass. In this case, the red lines include the contribution of
the two scatters σintr and σmeas summed in quadrature, with the
inclusion of measurement uncertainty as in Eq. (17). The pos-
terior distribution is shown in the bottom panel of Fig. 12. The
scatter for the measured velocity dispersion assumes larger val-
ues of σmeas = 0.102±0.001. The recovery of the normalisation,
slope, and intrinsic scatter is in excellent agreement with the true
velocity dispersion case analysed in the previous section. This is
key, because it means that our formalism in Eq. (17) allowed
us to recover the base scaling relation also when accounting for
the measurement of velocity dispersion. The same holds for the
addition of the X-ray selection on top of the optical one, with
a similar measurement scatter of σmeas = 0.102 ± 0.001. We
emphasize that it is not possible to directly disentangle intrin-
sic and measurement scatter in observational data, as the true
velocity dispersion is not accessible. However, this distinction is
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Table 3. Priors and posteriors of the scaling relation between halo mass M200c and velocity dispersion.

Parameter Prior σv,T All σv,T Optical σv,T Opt + X σv,M Optical σv,M Opt + X

A U(100, 2000) 1145.1± 3.9 1114.6± 4.9 1124.3± 6.6 1114.9± 4.9 1124.4± 6.6
α U(0.1, 0.5) 0.330± 0.001 0.331± 0.001 0.335± 0.002 0.331± 0.01 0.335± 0.002
σintr U(0.01, 1.0) 0.073± 0.001 0.067± 0.001 0.057± 0.01 0.067± 0.001 0.057± 0.001
σmeas U(0.01, 1.0) – – – 0.102± 0.001 0.106± 0.002

Notes. The symbolU(M,N) denotes a uniform prior between the values M and N. Posterior values are reported from the third column onward for
each case that is labelled in the top row.

Fig. 11. Scaling relation between velocity dispersion and halo mass.
Top panel: Scaling relation for the true velocity dispersion (Eq. (3)).
The orange and green lines show the results from Munari et al. (2013)
and Ferragamo et al. (2022). Bottom panel: Scaling relation for the mea-
sured velocity dispersion (Sect. 4.2). The blue line denotes the best-fit
relation, and the red lines include the contribution of the intrinsic and
measurement scatter summed in quadrature (see Eq. (17)).

valuable in the context of forward-modelling, where true veloc-
ity dispersions can be generated as a function of halo mass
including intrinsic scatter, and the observed values are subse-
quently modelled by incorporating measurement uncertainties
around the true values. This approach enables a more accurate
connection between observations and halo mass by appropriately
accounting for both sources of scatter.

Finally, we test whether our assumption that the measured
velocity dispersion is log-normally distributed around the true
value is justified. We measure the ratio between measured
and true velocity dispersion as a function of recovered num-
ber of CLEAN members. The result is shown in Fig. 13. The
red line shows the gapper velocity dispersion measured by the
CLEAN algorithm, the blue one denotes the estimate of the
FoF finder. We do not see significant differences between them
here.

The ratio is systematically low for poor systems. About
20 members are required for a 10% accuracy in the mea-
surement of velocity dispersion. We notice that this does not
mean that the members have to be true group members. The
misidentification of nearby galaxies that are not however grav-
itationally bound to the main halo from the dark matter point
of view likely contributes to the scatter around the 1:1 ratio
in Fig. 13. Our result is consistent with Marini et al. (2025),
who find a large scatter between true halo mass and mass
inferred from velocity dispersion spanning values between 25%
and 40%, based on different optical finders for a GAMA-
like survey. To assess whether the discrepancy between true
and measured velocity dispersion for poor groups and clus-
ters had an impact in our calibration of the total scaling
relation, we tested a similar run by allowing the measured
velocity dispersion to be biased compared to the true value,
that is,

P(σv,M|σv,T) = LN(µ = m × σv,T + q, σ = σmeas,err), (18)

where m, q describe the linear relation between the logarith-
mic values of measured and true velocity dispersion. On the one
hand, we obtain m = 0.85 ± 0.01 and q = 0.06 ± 0.01, in agree-
ment with the fact that their ratio does not follow a perfect 1:1
relation, as suggested by Fig. 13. This also means that estimating
mass via velocity dispersion can be problematic also for massive
galaxy clusters if the cluster is poor. This is a matter of galaxy
population rather than halo mass. The majority of X-GAP groups
are rich (Eckert et al. 2024), so accounting for velocity disper-
sion in the mass calibration is justified for large part of the sam-
ple. On the other hand, the scaling relation parameters are unbi-
ased compared to the standard case (see Figs. 12, 11). We obtain
a normalisation of 1124.3± 6.5, a slope of 0.335± 0.01, and an
intrinsic scatter of 0.056± 0.001, all in great compatibility with
the last column of Table 3. The additional uncertainties in the
measurement of velocity dispersion just contributes to the mea-
surement scatter, in fact we obtain a value of 0.078± 0.002 com-
pared to 0.106± 0.02. We note that the linear model in Eq. (18)
may not perfectly capture an effect that vanishes for rich sys-
tems. Nevertheless, given the results presented above, we expect
that a more complex model would yield an even lower measure-
ment scatter while preserving the same scaling relation parame-
ters. We conclude that when using velocity dispersion as a mass
proxy, accounting for measurement uncertainties and modelling
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Fig. 12. Marginalised posterior distributions of the best-fit scaling rela-
tion parameters between velocity dispersion and M200c. The filled 2D
contours show the 1-σ and 2-σ confidence levels of the posteriors after
convolution with the uniform priors. The model is given by Eq. (17).
The corresponding 1D parameter constraints are reported in Table 3.
The top panel refers to direct relation between true velocity dispersion
and halo mass, with black contours referring to the full sample, orange
ones to clusters and groups detected in the optical mock, and blue ones
with the addition of the X-ray detection. The bottom panel refers to the
full model of the scaling relation accounting for the measured velocity
dispersion.

the distribution around its true value, even with a simple log-
normal function, is a key step towards retrieving an unbiased
relation to halo mass.

Fig. 13. Ratio of the measured and true velocity dispersion as a function
of the number of recovered galaxy members. The red line shows the
gapper velocity dispersion measured by the CLEAN algorithm, and the
blue line refers to the direct estimate from the FoF finder. The dashed
black line denotes the one-to-one ratio, and the dotted lines include a
10% deviation from unity.

7. Discussion and conclusions

We summarise our work and discuss the results we obtained in
the previous sections further in terms of the group surface bright-
ness and dynamical state. This final discussion aims to highlight
the implications of our findings and place them in the broader
context of galaxy group evolution and selection effects.

7.1. Surface brightness shape

The wavelet detection scheme is designed to detect groups and
clusters using the emission from the outskirts. It is therefore
not sensitive to the core properties, such as a peaked surface
brightness profile in relaxed systems with an efficient cooling
(Eckert et al. 2011). We therefore did not introduce a direct cor-
relation between the dynamical state of dark matter haloes and
the X-ray core properties.

We tested whether this assumption is valid by studying the
detection probability as a function of the shape of the surface
brightness profiles generated from the neural network in Sect. 3.
We encoded the surface brightness shape in the ratio of the
emissivity at R500c and in the inner most bin. When the ratio
is low, the system is more similar to a cool core with a steep
profile. Conversely, a high ratio means that the profile is flat-
ter and the system is closer to a non-cool core. The result is
shown in Fig. 14. The top panel shows the completeness frac-
tion as a function of the profile ratio for different flux inter-
vals identified by the various colours. No clear trend of the
detection probability as a function of the profile ratio is visi-
ble, meaning that the detection process is not highly sensitive
to the surface brightness shape. This holds from faint systems
with an X-ray flux below 7× 10−13 erg/s/cm2 where the com-
pleteness is close to zero to bright systems with a flux higher
than 5× 10−12 erg/s/cm2, with a detection probability higher than
80%. In the bottom panel of Fig. 14, we split our population into
cool cores and non-cool cores by selecting systems with a profile
ratio that is below and above the median ratio, which is equal to
0.55. We show the completeness fraction as a function of flux for
these two populations and find no significant difference between
them. The two panels in Fig. 14 confirm that the wavelet detec-
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Fig. 14. Probability of detection as a function of core properties. The
dashed lines represent the normalised distribution of the full popu-
lation. Top panel: Completeness fraction as a function of emissivity
profile ratio measured at R500c and in the inner most bin. Different
flux intervals are encoded in different colours. Bottom panel: Com-
pleteness fraction as a function of flux for the cool core (non-cool
core) systems with profile ratio smaller (larger) than the median values
of 0.001.

tion scheme is not sensitive to the dynamical state and the core
properties of clusters and groups in our simulation. Finally, it is
justified to assume a constant metallicity profile because varia-
tions in metallicity would primarily affect the shape of the sur-
face brightness profile, to which our selection method is largely
insensitive.

7.2. Dynamical state

The dynamical state of dark matter haloes hosting galaxy
clusters and groups has frequently been studied in past
decades in theory and simulations (Neto et al. 2007; Prada et al.
2012; Klypin et al. 2016; Seppi et al. 2021; De Luca et al. 2021)
and through observations (Wojtak & Łokas 2010; Eckert et al.
2011; Ota et al. 2020; Ghirardini et al. 2022; Seppi et al. 2023;
Cerini et al. 2023). From the point of view of dark matter alone,
various parameters that are linked to the halo rotational proper-
ties and/or merger history were used to characterize the dynam-
ical state of haloes. A popular choice was a combination of
the spin parameter and the offset parameter. They are defined

Fig. 15. Selection of relaxed and unrelaxed groups from the point of
view of the dark matter halo ba sed on the spin and offset parameters.

as

λP =
J
√

E
GM5/2

Xoff =
|Rpeak − RCM|

Rvir
, (19)

where J is the halo angular momentum, E is its total energy,
Rpeak is the position of the deepest point in the potential well,
and RCM is its centre of mass. A disturbed or recently merged
halo has a high ratio of rotational kinetic to gravitational energy
and a large offset between the peak and centre-of-mass posi-
tions. Therefore, the spin and offset parameter values will both
be higher than for a relaxed halo according to the definitions in
Eq. (19). Following the popular thresholds for these parameters
of 0.07 (see e.g. Neto et al. 2007; Klypin et al. 2016; Seppi et al.
2021), we divided our halo population detected in the optical
mock into a relaxed and an unrelaxed sample. The sample selec-
tion is shown in Fig. 15. It displays the halo distribution in the
spin-offset parameter plane.

We repeat the scaling relation analysis explained in Sect. 6
to the individual samples selected from haloes matched with an
optical detection. We use the same priors as the ones for the pri-
mary analysis in Table 3. The results are qualitatively similar,
the posterior distributions are shown in Fig. 16. The slope of the
scaling relation is compatible within 1σ for the two populations,
assuming values of 0.333± 0.002 and 0.329± 0.002. However,
the normalisation is significantly different, meaning that at fixed
halo mass, a relaxed halo tends to host a group or cluster with
higher velocity dispersion. The normalisation is 1147.1± 6.3 for
the relaxed population, compared to 1074.0± 7.8 for the dis-
turbed one. One may expect the opposite, with unrelaxed groups
that are in the evolutionary stage of undergoing tidal interactions
and mergers hosting a galaxy population with irregular veloci-
ties, ultimately increasing velocity dispersion at fixed mass.

To investigate this discrepancy, we measure the average dis-
tance of the recovered galaxy members from the halo centre as
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Fig. 16. Full marginalised posterior distribution for the scaling relation
between halo mass and velocity dispersion for relaxed and unrelaxed
haloes.

Fig. 17. Average galaxy member distances from the halo centre as a
function of halo mass. The blue line denoted relaxed haloes, and the red
line refers to disturbed ones.

a function of halo mass. The result is shown in Fig. 17. In par-
ticular, the bottom panel shows the ratio of the average member
distance between the disturbed and the relaxed population. It is
always higher than 1 throughout the whole mass range, span-
ning between an increase of at least 5%, up to 10% at different
masses. This means that for relaxed haloes, the member galax-
ies are probing a more central region of the gravitational poten-
tial compared to the disturbed case. Velocity dispersion tends to
increase radially up to about the scale radius (Hoeft et al. 2004;
Faltenbacher & Diemand 2006), and tends to decrease toward
the outer regions. Since both radii used to describe clusters and
groups, such as R200c or R500c, are significantly larger than the
scale radius (depending on halo concentration, see Klypin et al.
2016), the members of relaxed groups and clusters are tracing a
region of the potential with larger velocity dispersion, explain-

ing the higher normalisation of the scaling relation measured in
Fig. 16.

We stress that our formalism (see Eq. (17)) within the full
calibration allowed us to probe the true velocity dispersion,
which is unaffected by interlopers. This implies that the observed
difference in normalisation is encoded in the radial distribution
of member galaxies, which varies with the dynamical state of
the halo. This effect plays a more significant role than the pres-
ence of galaxies with irregular velocities in disturbed systems.
The latter effect rather contributes to the intrinsic scatter: the
relaxed haloes trace a population with a velocity dispersion that
lies closer to the mean relation to halo mass compared to the dis-
turbed ones, in fact the intrinsic scatter is lower at 0.063± 0.001
compared to 0.069± 0.001. Because of projection, it is more
likely to observe a merger closer to the 2D sky plane than along
the 1D line of sight. Nonetheless, the line of sight velocity dis-
persion is able to capture the larger scatter in disturbed haloes.
Finally, one might expect disturbed haloes to contain a higher
fraction of interlopers, which would introduce additional scat-
ter in the measured velocity dispersion. However, we find that
the measured dispersions for disturbed (σmeas = 0.099± 0.002)
and relaxed (σmeas = 0.104± 0.002) haloes are compatible within
1.7σ, indicating no statistically significant difference. This sug-
gests that CLEAN is effectively removing interlopers in both
relaxed and disturbed systems, ensuring robust velocity disper-
sion measurements.

7.3. Summary and comparison to other works

We produced and analysed a full end-to-end mock sky in
the optical and X-ray wavelengths with the goal of forward-
modelling the selection function of the X-GAP galaxy group
sample (Eckert et al. 2024), a collection of 49 galaxy groups that
were selected by cross-matching extended sources in the Rosat
All Sky Survey (RASS) and FoF galaxy groups and clusters in
the SDSS area (Tempel et al. 2017; Damsted et al. 2024). The
workflow was summarised in Fig. 1. We built a dark matter halo
light cone using individual snapshots of the Uchuu simulation
(Ishiyama et al. 2021) (see Fig. 2) and adapted dedicated simu-
lations of the SDSS sky (Dong-Páez et al. 2024). We developed a
novel method for populating dark matter haloes with X-ray emis-
sion using an optimised neural network informed by hydrody-
namical simulations to simulate emissivity profiles and temper-
atures with the proper covariances in terms of mass and redshift.
We demonstrated that our model is able to predict the observed
distributions of cluster and group profiles and observables and
recovers scaling relations with halo mass for the X-ray luminos-
ity and temperature with observations (see Sect. 3, Fig. 3 and 4).
We used the AGN model from Comparat et al. (2019) and gen-
erated a mock X-ray diffuse background by resampling the real
RASS background maps. We generated X-ray photons using
SIXTE (Dauser et al. 2019), and we accounted for the instru-
mental response and observing strategy of the spacecraft.
We ran a wavelet-based detection scheme (Vikhlinin et al. 1998;
Käfer et al. 2019) on the mock X-ray images and a FoF finder on
the mock galaxies to obtain galaxy group candidates. We cross-
matched the output catalogues with the dark matter halo light
cone using the information stored in the source ID generating
each X-ray event and the parent IDs stored for each galaxy mem-
ber of the optical groups. An example for a field of one square
degree that covers a massive cluster in the mock is shown in
Fig. 5.

We measured the detection probability by comparing the his-
togram of detected haloes to the complete population as a func-
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tion of flux, velocity dispersion, and redshift. The result is shown
in Fig. 7. In total, we simulated 62 868 clusters and groups at
z < 0.14. The global completeness is 6.3%, with the X-ray mock
being the limiting factor. The completeness is 8.8%, compared
to 28.1% for the optical FoF catalogue alone. We found that
the detection probability mainly depends on flux and weakly
depends on the velocity dispersion and redshift. This confirms
that the X-GAP selection is mainly limited by the X-ray flux
because the coverage of the RASS is relatively shallow. We
found a 50% detection probability at about 1.5× 10−12 erg/s/cm2.
This 50% flux limit is about five times higher than the estimate
for the first eROSITA all sky survey (eRASS1) that carried out
by Seppi et al. (2022), at about 3× 10−13 erg/s/cm2. Since the
average exposure time is comparable between eRASS1 and the
X-GAP area covered by the RASS, the difference resides in the
higher eROSITA sensitivity compared to ROSAT based on its
efficient grasp, that is, the effective collecting area multiplied by
the field of view, which is larger than the ROSAT field of view by
about three at 1 keV. Previous work by Clerc et al. (2018) esti-
mated an average 50% completeness at 6× 10−15 erg/s/cm2 for
the cumulative sum of eight eROSITA all sky surveys. In this
case, the much lower flux limit is also due to the increment in
exposure time, which reaches average values of more than 1.5 ks
compared to our average coverage of about 400 s. Pointed pro-
grams such as the XMM-XXL survey (Pierre et al. 2016), which
covers about 50 square degrees with an exposure time of about
10 ks, allow us to reach faint fluxes of 2× 10−14 erg/s/cm2 at
z = 0.2 (Pacaud et al. 2006), with an effective area that is com-
parable to that of eROSITA. The different flux limits also depend
on the set-up of a detection algorithm and source classification,
which makes them dependent on the scientific goal of specific
project.

Various approaches have been adopted in the litera-
ture to model the selection function, from empirical meth-
ods (Bocquet et al. 2019) and analytical models (Clerc et al.
2018; Ider Chitham et al. 2020) to more complex interpolation
schemes (Clerc et al. 2024). The latter is preferable when the
selection is to be modelled in a very large parameter space, in
which case the effort becomes computationally very expensive.
For example, Clerc et al. (2024) combined 100 different realisa-
tions of a single mock to model the eRASS1 cluster detection
probability and accounted for the very large variations in the
exposure time and local background across the eROSITA sky
in addition to the count rate, redshift, and various combinations
of morphological parameters. In comparison, the X-GAP area
is covered with a stable background and more uniform expo-
sure due to the marginal overlap between the deep region around
the ecliptic pole and the SDSS area. We modelled the selec-
tion function with a sigmoid distribution that accounted for a
main flux component, and secondary slopes described the red-
shift and velocity dispersion trends. We provided two models
for the selection function, one model based on the observed flux
within R500c, which is ideal for forward-modelling population
studies, and a second model that used flux within a fixed angu-
lar aperture of 6 arcminutes, which is useful for studies that start
from the perspective of the observations. Both models captured
the smooth increment of the detection probability as a function
of flux and its secondary trend with increasing velocity disper-
sion and decreasing redshift (see Fig. 8). The expression for our
model is given in Eq. (15), the best-fit parameters are reported in
Table 2, and their posterior distribution is shown in Fig. 9.

We analysed the purity of the selection method by compar-
ing the fraction of detections that is not matched to an input
halo. We studied this fraction as a function of velocity disper-

sion in Fig. 10. We found that the X-ray data serve as a clean-
ing of the optical catalogue, which reaches a purity of 90% at
about 280 km/s, compared to 600 km/s for the optical FoF group
catalogue. A similar comparison was performed by Marini et al.
(2025) and Popesso et al. (2024). Together with the FoF algo-
rithm from Tempel et al. (2017), they tested the optical finders
from Yang et al. (2005) and Robotham et al. (2011). They stud-
ied completeness and purity as a function of halo mass instead of
velocity dispersion, but our calibration of the mass-to-velocity
dispersion scaling relation allowed us to compare our results
with their work. At M200c = 2 × 1013 M�, they reported a con-
tamination level of about 6% and 15% depending on the optical
finder. Although the scatter is larger at low masses, at a corre-
sponding velocity dispersion of about 250 km/s, we obtained a
higher contamination of about 35%. The discrepancy is reduced
after the X-ray cleaning, where our purity increases to about
85%. Multiple effects contribute to this difference. Marini et al.
(2025) focused on a GAMA-like spectroscopic survey instead
of SDSS, which allowed them to reach fainter magnitudes down
to 19.8 (Popesso et al. 2024). Their mock extended to z = 0.2,
which means that they probed fainter magnitudes than we did,
but not necessarily a galaxy population with a lower stellar mass.
This is consistent with our result in Fig. 10, where the purity
decreases at low redshift. In addition, our matching procedure
is different because we directly involved the velocity dispersion
in the matching (see Sect. 4). One additional difference is that
we did not include X-ray binaries (XRB) in our mock, which
lack baryons in the first place. Popesso et al. (2024) showed
that the XRB contribution to the total X-ray emission is 5% at
most for small groups around 1013 M�, and it drastically drops
towards the cluster scale. A similar result using observations was
reported by Anderson et al. (2015), with an X-ray luminosity
from XRBs around 1040 erg/s at stellar mass M? = 2 × 1011 M�,
while the total luminosity was closer to 1040 erg/s. According to
Tinker (2021), this range corresponds to an halo mass of about
8×1012 M�. We therefore consider this a negligible limitation
for the purpose of this work. Nonetheless, accounting for XRBs
will be relevant in the future model comparison of thermody-
namical profiles to X-GAP. Finally and most importantly, the
selection of the parent optical catalogue is different because they
even included galaxy pairs, while we focused on groups with at
least five members.
The latter point also boosted the completeness, as reported by
Popesso et al. (2024), which reached levels higher than 80% in
the group regime, compared to our result, where the complete-
ness is about 20% at a velocity dispersion of about 300 km/s.
This is expected because the majority of these groups are
detected with a low number of members, which are naturally
filtered out by our selection of at least five members. Finally,
the construction of the optical simulation also plays a role. On
the one hand, we used the abundance-matching prescription
from Dong-Páez et al. (2024), which recovers the SDSS opti-
cal properties by construction. On the other hand, Marini et al.
(2025) built an optical mock with a stellar mass function that
was skewed towards massive centrals, and they tested their anal-
ysis with a different simulation that was built using the Uni-
verseMachine software (Behroozi et al. 2019). They showed that
their completeness was reduced to about 60% for galaxy groups,
which reduces the difference with our work. The estimation of
the completeness and purity levels using simulations is strongly
sensitive to the specific survey set-up and to the assumptions
made in the detection scheme. A careful modelling of the whole
process is the key to properly assessing the systematics for dif-
ferent works.

A206, page 21 of 26



Seppi, R., et al.: A&A, 699, A206 (2025)

Finally, we calibrated the scaling relation between halo mass
and velocity dispersion. We accounted for two different types
of scatter. The first type was the intrinsic scatter, and the sec-
ond scatter was due to the uncertainty in the measurement of
velocity dispersion. The scaling relation is shown in Fig. 11
and the posterior distribution of the best-fit parameters is shown
in Fig. 12. Our results agree with previous work on simula-
tions (Munari et al. 2013; Ferragamo et al. 2022). The scatter
is dominated by the measurement uncertainty, assuming val-
ues of 0.102 and 0.106 for groups detected in the optical mock
and with the addition of the cross-correlation to X-ray. These
are about 60% larger than the respective intrinsic scatters of
0.067 and 0.057. Moreover, the measurement of velocity dis-
persion is accurate compared to its true value only for rich sys-
tems, with a bias lower than 10% for systems with at least 20
members (see Fig. 13). For smaller groups, the velocity disper-
sion is biased towards lower values. This is true also for more
massive systems when they are poor. Our result agrees with
that of Marini et al. (2025), who obtained halo masses inferred
from a velocity dispersion that were biased low compared to the
true mass from groups to clusters using the FoF finder from
Tempel et al. (2017). In general, it is essential to account for
the distribution of the measured velocity dispersion around its
true value to recover an unbiased scaling relation to the halo
mass. In the context of forward-modelling, this is usually done
for mass proxies, especially in cluster count cosmological stud-
ies in the X-ray or millimeter bands using the X-ray count rate
(Ghirardini et al. 2024) or Y-SZ (Bocquet et al. 2025).

The mocks and the selection function developed in this arti-
cle will be used a benchmark to compare the real X-GAP data to
hydrodynamical simulations in future work.
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Appendix A: Rescaled Luminosity Test

Our cluster and group model, used to assign X-ray properties to
dark matter haloes, is based on TNG. Compared to a stacking
analysis of X-ray data with eROSITA from Zhang et al. (2024),
it over predicts X-ray luminosities around 1013 M� by about a
factor 2 (see Sect. 3.4). By construction, our selection function
for the X-ray plus optically selected clusters and groups is not
affected by this particular prescription because it is formulated
in terms of observables. A given model prescription will change
the relation between luminosity and halo mass. On the one hand,
at a fixed mass, the detection rate could change based on a given
set up for the X-ray model. On the other hand, different models
will map different luminosities at fixed mass. This does certainly
impacts the detection rate at a given halo mass, but the same does
not necessarily hold at a given flux. Nonetheless, we test such
hypothesis by rescaling the input X-ray luminosities by 10% in
the mock number 3. We regenerate the X-ray events and process
this rescaled version of the simulation through our end-to-end
pipeline. We finally compare the detection rate as a function of
X-ray flux to the standard processing.

Fig. A.1. Detection probability as a function of X-ray flux. The collec-
tion of the four mocks processed with the standard pipeline is shown in
blue, the rescale test is in orange. The individual mocks are displayed
with thinner coloured lines. The pink line denotes the normalised his-
togram of the X-GAP fluxes. The bottom panel shows the ratio between
each catalogue and the collection of the four mocks.

The result is shown in Fig. A.1. The collection of the four
mocks is shown in blue. The detection probability in the rescaled
simulation is in orange. The results from the standard process-
ing of each individual mock is shown by the thinner lines. The
bottom panel displays the ratio between each experiment and
the reference collection used for the analysis in the main body
of this paper. There is almost a perfect agreement between the
rescaled version of the mock and the summary catalogue until
5×10−13 erg/s/cm2, where the total completeness is about 20%.
Moreover, the agreement between the rescaled experiment and
mock number 3, the one used to generate the rescaling in the first
place, reaches even fainter fluxes at about 3×10−13 erg/s/cm2,
where the detection probability is low, at about 5%. At fainter
fluxes, both distributions are noisy, with fewer than 250 detected
groups in total. We conclude that our selection method is not

Fig. B.1. Scaling relation between velocity dispersion and halo mass
M500c. The top and bottom panels are the same as in Fig. 11, but the
reference mass is M500c instead of M200c.

affected by assumptions included in the X-ray model for clus-
ter and groups. In addition, the pink line shows the normalised
flux distribution of the X-GAP groups presented in Eckert et al.
(2024). There is no object fainter than about 5×10−13 erg/s/cm2.
For this flux threshold we have an excellent agreement between
various mocks and the rescaled test. The selection function for-
mulated in this work is robust for the X-GAP sample.

Appendix B: Velocity dispersion and M500c

Compared to other galaxy clusters samples, the strength of X-
GAP resides in mapping the gas properties out to R500c with
high signal to noise ratio for low mass haloes hosting galaxy
groups. Therefore, estimating the halo mass at larger radii, such
as M200c is challenging. As explained in the main body of the
article, we focus first on M200c to compare our results with previ-
ous works, since most of the literature focuses on R200c for such
studies. In addition, we use our mock to calibrate the scaling
relation between velocity dispersion and M500c. The formalism
is the same as in Eq. 17, we simply substitute M200c with M500c.
We fit for A, α, σintr, and σmeas. We put uniform priors on the
parameters as reported in Table B.1.

The results for the two cases using M200c or M500c are qual-
itatively similar. For the M500c case, we find a higher normali-
sation compared to the M200c case equal to A = 1332.2 ± 5.2.
This is expected, because the scaling relation is anchored at high
mass of 1015 M� and M500c is smaller than M200c. The slope
α = 0.348 ± 0.001 is slightly steeper, but compatible within the
intrinsic scatter. The true intrinsic scatter σintr = 0.073±0.001 is
compatible within 1σ with the M200c case. Similarly to the first
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Fig. B.2. Same as Fig. 12, but referring to the scaling relation to M500c.

Table B.1. Priors and posteriors of the scaling relation between halo mass M500c and velocity dispersion.

Parameter Prior σv,T All σv,T Optical σv,T Opt+X σv,M Optical σv,M Opt+X
A U(100, 2000) 1332.2 ± 5.2 1273.6 ± 6.2 1290.1 ± 8.9 1273.6 ± 6.3 1290.0 ± 8.8
α U(0.1, 0.5) 0.348 ± 0.001 0.333 ± 0.001 0.341 ± 0.002 0.333 ± 0.001 0.341 ± 0.002
σintr U(0.01, 1.0) 0.073 ± 0.001 0.068 ± 0.001 0.058 ± 0.001 0.068 ± 0.001 0.058 ± 0.001
σmeas U(0.01, 1.0) - - - 0.102 ± 0.001 0.106 ± 0.002

Notes. The symbol U(M,N) denotes a uniform prior between the values M and N. Posterior values are reported from the third column onward,
for each case labelled in the top row.

case, the scatter is dominated by measurement uncertainty, with
a σmeas = 0.102±0.001 and σmeas = 0.106±0.002 for the haloes
detected in the optical and optical plus X-ray bands. Similarly to
Fig. 11, the full relation between velocity dispersion and M500c
is reported in Fig. B.1, with the top and bottom panels respec-
tively showing the true and measured σV as a function of M500c.
Similarly, the full posterior distributions are shown in Fig. B.2.

Appendix C: Selection impact on scaling relations

In this section we present the impact of the selection on the scal-
ing relations between halo mass and observables, that is, temper-
ature, luminosity, and velocity dispersion. In different mass bins,
we compute the median observable, together with their 16th and
84th percentile points. We do it for the full population in the light
cone and for the selected one after the optical and X-ray detec-
tion in our simulations. The result is collected in Fig. C.1. The
top panels show the scaling relation rescaled by the self simi-
lar redshift evolution using E(z), the bottom panels display the
ratio between the selected and the full population. We do not
see an impact on the velocity dispersion to mass scaling rela-
tion, which confirms our previous findings in Sect. 5, with the
X-ray selection being the limiting factor in our set-up, and Sect.
6, with similar best-fit parameters for the scaling relation before
and after the selection. In addition, temperature does not impact
the selection. The ratio between the selected and the full popula-
tion is constant around 1. The same does not hold for luminosity.
Moving towards lower masses, the selection is biased towards
the brightest systems, with a 25% net effect 2×1013 M�. This is
expected, because luminosity is the intrinsic property related to

the observable that mostly impact our detection probability, that
is, flux (see Sect. 5).

We further investigate this trend by dividing our samples into
multiple redshift bins. The result is shown in Fig. C.2, where the
redshift intervals are encoded in different colours: below 0.06
(in blue and orange), then up to 0.1 (in green and red), and
0.15 (in purple and brown). The bottom panel shows the ratio
between the two populations in each bin, that is, the orange (red,
brown) line is divided by the reference blue (green, purple) one.
We find that the low redshift population is the least biased. The
ratio between the full and the selected population is close to one
down to 4×1013 M�, then it increases by about 20% down to
about 1.5×1013 M�. As redshift increases, the detection of faint
systems at fixed mass is more challenging and the scaling rela-
tion is more biased. In the middle redshift bins, there is 10%
bias at 6×1013 M�, while in the higher redshift bin, the same
bias is already reached at about 2×1014 M�. This highlights the
importance of accounting for the selection function in this type
of analysis, which are naturally affected by selection effects in
extragalactic surveys.

Appendix D: Self similar emission measure profile

We detail the calculation of the self similar emission measure
profiles in this appendix. We start from a cluster surface bright-
ness profile, defined as count rate in different radial bins per
unit surface, that is, in units of cts/s/arcmin2. We can obtain the
APEC normalisation profile by dividing the surface brightness
profile by the net count rate obtained from xspec by assuming
a Tbabs(APEC) model with the proper values of NH , temper-
ature, redshift, metallicity and setting the normalisation to one,
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Fig. C.1. Scaling relation between observables and halo mass M500c.
The top panel shows the X-ray luminosity, the central one displays tem-
perature, while the bottom one reports the velocity dispersion.

Fig. C.2. Scaling relation between X-ray luminosity and halo mass, as
in the top panel of Fig. C.1, but split in different redshift bins. The panel
shows the comparison between full population in the light cone and
the one selected from our detection scheme. Different colours denote
various redshift intervals: below 0.06 (in blue and orange), then up to
0.1 (in green and red), and 0.15 (in purple and brown).

accounting for the response files of the instrument for the study
(Eckert et al. 2012).

The APEC normalisation is defined as

APEC NORM =
10−14

4π[dA(1 + z)]2

∫
nenHdV, [cm−5] (D.1)

with dA being the angular diameter distance at redshift z. The
self similar emission measure integrated along the line of sight
is

EMSS =
1

√
kT/10 keVE(z)3

∫
nenHdl. (D.2)

Combining equations D.1 e D.2 and splitting the volume
integral between plane of the sky and line of sight we obtain

dV = A × dl

M =
10−14

4π[dA(1 + z)]2

N =
√

kT/10 keVE(z)3

APEC NORM = M × N × EM × A. (D.3)

Considering an area A of 1 arcmin2 and the corresponding
solid angle Ω with the proper conversion from arcmin to rad, we
have

A = Ω × d2
A

Ω =
( π

180 × 60

)2
. (D.4)

Substituting equation D.4 into D.3 we get

APEC NORM =
10−14π

4(180 × 60)2(1 + z)2 × N × EMSS, (D.5)

which we can invert to derive the final expression to infer the
self similar emission measure profile from the APEC normalisa-
tion:

EMSS =
1

√
kT/10 keVE(z)3

4(180 × 60)2(1 + z)2

10−14π
×APEC NORM.

(D.6)
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