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Abstract: Background: Lung adenocarcinoma is one of the major subtype of non-Small Cell
Lung Cancer and biomarkers are essential to be identified for early diagnosis. The study
aims to find in silico and preliminary in vitro analysis of potential biomarkers for lung
adenocarcinoma. Methods: Bioinformatics analysis in parallel to data mining analysis was
performed on microarray data with lung adenocarcinoma samples to identify potent gene
biomarkers associated with lung cancer type. Afterwards, these genes were then validated
in vitro using RT-qPCR analysis in cancerous (Calu-3) and non-cancerous (MRC-5) cell
lines. Moreover, these genes were used in machine learning-based analysis to classify lung
adenocarcinoma samples from controls. The analysis includes three experiments—the
bioinformatic (in silico), in vitro, and machine learning analyses. Results: The three ex-
periments identified four genes, namely, SLC15A1, GPR123 (ADGRA1), KCNAB2, and
KNDC1, as key biomarkers and the most relevant gene features for distinguishing lung ade-
nocarcinoma from control. Conclusions: This study identifies four biomarkers associated
with lung adenocarcinoma through bioinformatics, in vitro and machine learning analyses.
These four genes shows strong potential for further investigation in clinical research.

Keywords: lung adenocarcinoma; bioinformatics analysis; in vitro analysis; machine
learning; LASSO; mRMR; new biomarker signature; DNA microarray; GEO; SMOTE;
RMA; differentially expressed genes

1. Introduction
Lung adenocarcinomas (LUAD) are considered as the leading cause of cancer-related

deaths worldwide amongst men and women. Despite improvements in the management
of the neoplasm, 18% of the LUAD cases are associated with a low 5-year overall survival
rate [1]. Current advancements in genomics and in machine learning allow the analysis of
large bioinformatics databases and the discovery of new diagnostic biomarkers associated
with Non-Small Cell Lung Cancer (NSCLC).

In this article, three experiments were conducted to identify, analyze, and validate
new LUAD diagnostic biomarker signatures. The conceptual diagram of the experimental
setup followed for the identification of new lung cancer biomarker signatures from DNA
microarray data is illustrated in Figure 1.

The first experiment involved bioinformatics analysis using statistical tools to screen
potential diagnostic biomarkers for LUAD. Linear modeling [2] and Empirical Bayes [3]
were applied on LUAD DNA microarray data extracted from patients diagnosed with
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LUAD and from control samples to identify new biomarkers. In parallel to the bioinformat-
ics analysis, feature ranking with minimum Redundancy Maximum Relevance (mRMR) [4]
and with Least Absolute Shrinkage and Selection Operator (LASSO) [5] were applied on the
LUAD DNA microarray data. The findings of the bioinformatics analysis also supported
by the genomic feature rankings were used in the next experiment for in vitro validation.

Figure 1. Conceptual diagram of the experimental setup followed for identification of new lung
cancer biomarker signatures using bioinformatic analysis, in vitro analysis, and ML analysis.

In the second experiment, the upregulated and downregulated genes found in the first
experiment after the bioinformatics analysis were reviewed, and among these genes, five
genes were examined as potential diagnostic biomarkers using in vitro experiments.

In the third experiment, the biomarker signatures validated after the in vitro anal-
ysis were used as gene features to train Machine Learning (ML) models to distinguish
LUAD from control samples along with the use of the oversampling Synthetic Minority
Oversampling Technique (SMOTE) [6] to eliminate imbalances in the number samples of
each category. The work was conducted by training the ML models with all the possible
combinations of the validated biomarkers used as input features. The best-performing
combinations were selected and presented in Section 3.2 of this article.

2. Materials and Methods
2.1. Data Description

A total of 490 tissue samples from different microarray datasets were selected from
the Gene Expression Omnibus (GEO) [7] database. Specifically, five datasets for LUAD
were combined, namely, the GSE40791 [8], the GSE30219 [9], the GSE43580 [10], the
GSE18842 [11], and the GSE37745 [12]. The tissue samples are from subjects who ei-
ther were diagnosed as having LUAD or were diagnosed as healthy control subjects. The
distribution of the number of microarray samples across the two categories is shown in
Table 1.

Table 1. Distribution of the samples of the GEO microarray data used.

Category Training Samples Test Samples Total Samples

LUAD 301 75 376
Control 91 23 114

Total 392 98 490

As can be seen in Table 1, the LUAD category consists of 376 samples and the con-
trol category consists of 114 samples. Each microarray sample consists of 21,407 gene
expression values.
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2.2. Methodology
2.2.1. Bioinformatics Analysis
Preprocessing

The Robust Multi-array Average (RMA) [13] was applied on the raw microarray data
to normalize them for further analysis. Specifically, RMA corrects the background noise
using maximum likelihood estimation, quantile normalization to make the distribution of
probe intensities the same across all arrays, and summarization using linear modeling to
combine probe-level intensities into a single expression value of each gene.

Biomarker Extraction

The first experimental setup involved applying linear modeling [2] along with Empiri-
cal Bayes [3] to extract genes that are differentially expressed (DE) between cancerous and
non-cancerous tissue samples. The analysis was performed using R on RStudio 4.4.1. The
block diagram of the bioinformatics analysis process that was followed using DE analysis
of DNA microarray data is illustrated in Figure 2. The limma package [14] was used to
perform DE analysis of the gene expression data. In particular, limma was used to fit a
linear model to each gene separately.
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Figure 2. Block diagram of bioinformatics analysis process.

Let ym ∈ RN×1 be the measured expression levels of gene m across all samples and its
matrix form being the Y ∈ RN×M, where N is the number of samples and M the number of
genes. The differential expression analysis using linear modeling for the m-th gene is given
in Equation (1a) and for all genes, M, in Equation (1b).

ym = X · βm + ϵm (1a)

Y = X · B + E (1b)

where X ∈ NN×p represents the design matrix with p equal to the number of categories (in
our case LUAD and the control, which results in p = 2); βm ∈ Rp×1 is the coefficients of
the linear model for gene m, and thus its matrix form is B ∈ Rp×M; and ϵm ∈ RN×1 is the
estimation errors of gene m, and its matrix form is E ∈ RN×M.

The design matrix X encodes the conditions for linear modeling, given that in our case
p = 2, each row represents a sample where the first column is equal to one if the sample is
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LUAD and zero if it is control. Likewise, the second column is equal to one if the sample is
control and zero if it is LUAD, i.e.,

Xn,: =

[1 0], i f the sample n is LUAD

[0 1], i f the sample n is control
(2)

For each gene m, Ordinary Least Squares (OLS) estimates the coefficients β̂m ∈ Rp×1

of the two categories (LUAD and control) according to Equation (3):

β̂m =
(

XT · X
)−1

· XT · ym (3)

The residual variance (mean-squared error) of the linear model ŝ2
m for gene m is

estimated as in Equation (4):

ŝ2
m =

∥∥ym − X · β̂m
∥∥2

d
(4)

where d = N − p the residual degrees of freedom of the genes.
To test whether the difference in expression among the conditions/classes is sta-

tistically significant, a contrast matrix C ∈ Np×c is defined where c is the number of
comparisons that can be made between the conditions/classes, i.e.,

c =
p · (p − 1)

2
(5)

For a two-group comparison, p = 2 =⇒ c = 2 , (LUAD vs. control), it is C =

(
1
−1

)
.

The estimation of the base 2 logarithm of the Fold Change (log2 FC),
∼
βm ∈ Rc×1, is given

in Equation (6).
∼
βm = CT · β̂m (6)

Due to the high dimensionality of the microarray data (high M compared to the usually
small N), ŝ2

m estimations can be highly unstable and noisy; thus, Empirical Bayes [3] is
applied to improve variance estimations by mostly shrinking the gene-specific estimations
with high variance towards a common value. Specifically, the Empirical Bayes method
assumes a prior distribution for sigma squared, the variance, which is a scaled chi-squared
distribution as in Equation (7).

1
ŝ2

m
∼ 1

d0 · s2
0
· χ2

d0
(7)

where d0 is the prior degrees of freedom and s2
0 is the prior variance. This results in

moderated variance estimates that lead to more robust and stable t-statistics. To do so, the

moderated variance
∼
s

2
m for gene m is calculated using Equation (8).

∼
s

2
m =

d0 · s2
0 + d · ŝ2

m
d0 + d

(8)
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The moderated variance estimates
∼
s

2
m are then used to compute moderate t-statistics

tm as according to Equation (9). Empirical Bayes focuses on the problem of testing the null

hypotheses H0 :
∼
βm = 0 and aims to develop improved test statistics.

tm =

∼
βm

∼
s m ·

√
CT ·(X T · X

)−1
· C

(9)

Afterwards, tm is used to calculate the p-value pm of each m gene. Since more than
ten thousands of genes are tested, the false discovery rate is controlled using the Benjamini–
Hochberg procedure [15], which generates adjusted p-values p̂m. A gene m is considered

differentially expressed if p̂m < 0.05. A fold-change threshold is then applied (
∣∣∣∣∼β

m

∣∣∣∣> 0.05 )

to the genes found to be differentially expressed to characterize them as upregulated or
downregulated, i.e.,

m p̂m<0.05 =

 upregulated,
∼
βm > 0.05

downregulated,
∼
βm < −0.05

(10)

In parallel to the bioinformatics analysis, genomic feature ranking with minimum
Redundancy Maximum Relevance (mRMR) [4] and with Least Absolute Shrinkage and
Selection Operator (LASSO) [5] was performed to investigate the relevance of the found
lung cancer biomarkers. Both for the two feature rankings and for the log2 FC values,
estimations were nested within each fold of a stratified five-fold cross, and the results were
averaged across the five folds.

2.2.2. In Vitro Analysis

The Calu-3 cell line, derived from LUAD, and the MRC-5 cell line, derived from
lung fibroblasts (control), were used for RNA isolation and DNA profiling. Both cell lines
were obtained from ATCC, Manassas, VA, USA. Calu-3 cells were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) medium supplemented with 10% fetal bovine serum
(FBS; Gibco™, Bleiswijk, The Netherlands) and 11% penicillin-streptomycin (10,000 U/mL)
(Gibco™, Bleiswijk, The Netherlands), while MRC-5 cells were cultured in complete Min-
imum Essential Media (MEM; Gibco™, Bleiswijk, The Netherlands) with the same sup-
plements. Both were incubated at 37 ◦C with 5% CO2, and only flasks with over 90%
confluency were used for RNA extraction.

RNA isolation was carried out using 400 µL of Trizol reagent (Ambion Life Technology,
Auckland, New Zealand). Homogenized cell pellets were incubated with Trizol for 5 min
at room temperature, followed by chloroform (Sigma-AldrichTM, Dorset, UK) treatment to
separate the RNA. The Trizol cell homogenates were then transferred to a 1.5 mL RNase-free
eppendorf tubes, and 80 µL of chloroform was added to each of them (Sigma-AldrichTM,
Dorset, UK). The contents were mixed thoroughly by vortexing at medium speed and
incubated at RT for 2–3 min. Subsequently, the samples were centrifuged (Biofuge Fresco,
Hanau, Germany) at 12,000× g for 15 min at 4 ◦C. After centrifugation, the RNA-containing
upper layer was collected and precipitated with isopropanol. The RNA was then washed
twice with 75% ethanol, air-dried, and dissolved in RNase-free water. The RNA’s quantity
and quality were assessed using a NanoDrop (Nanodrop ND1000 Spectrophotometer,
NanoDrop Technologies, Fishersville, VA, USA). To remove DNA contamination, DNase
treatment was performed using the QIAGEN RNase-Free DNase Set (Qiagen, Manchester,
UK). Specifically, 10 µL of RNase-free Buffer RDD and 2.5 µL of RNase-free DNase I were
added to the reaction tubes containing the samples, followed by incubation for 10 min at
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room temperature. After incubation, the samples were re-quantified using the Nanodrop
ND1000.

cDNA synthesis was performed using the High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems ThermoFisher, Pleasanton, CA, USA) with three independent
biologic samples for each cell line. RNA samples with a concentration of 20 ng/µL were
used, along with buffers, dNTPs, random primers, and reverse transcriptase. The thermal
cycler program ran at 25 ◦C for 10 min, 37 ◦C for 120 min, and 85 ◦C for 5 min. The
synthesized cDNA was stored at −20 ◦C for future experiments.

RT-qPCR was conducted to validate the expression of genes that were found upregu-
lated or downregulated after the bioinformatics analysis. TaqMan Fast Advanced Master
Mix (Applied Biosystems ThermoFisher, Pleasanton, CA, USA) and GAPDH (Applied
Biosystems ThermoFisher, Pleasanton, CA, USA) as the internal control were used. Controls
without template and master mix were included to ensure accuracy. The PCR program
consisted of enzyme activation at 95 ◦C for 20 s, followed by 40 cycles of 95 ◦C for 1 s and
60 ◦C for 20 s.

All sample data were analyzed on GraphPad Prism 9.5.0 software (GraphPad Software,
San Diego, CA, USA) via incorporating an unpaired t-test to check the difference in FC
of gene expression using the comparative CT method [16] between the cancerous and
control cell lines. p values less than 0.05 were deemed to be significantly different from the
controls and denoted with asterisks where appropriate. To calculate the FC, cycle threshold
(CT) values for the target gene CTtarget and the reference gene CTreference (housekeeping gene:
GAPDH) are measured for each sample. Then, ∆CT for each sample is calculated by
subtracting CTreference from CTtarget , i.e.,

∆CTsample = CTtarget − CTre f erence (11)

A reference (calibrator) MRC-5 sample is chosen with its ∆CT, namely, ∆CTcalibrator

which is the control sample. ∆∆CT is then calculated by estimating the difference between
∆CTsample and ∆CTcalibrator as defined in Equation (12).

∆∆CT = ∆CTsample − ∆CTcalibrator (12)

∆∆CT represents the relative change in expression of the target gene in the cancer sam-
ple compared to the control sample. Then, the FC of each gene expression is estimated as:

FC = 2−∆∆CT (13)

2.2.3. Machine Learning Analysis

The third experiment involved the use of the lung cancer biomarkers identified through
bioinformatics analysis and subsequently validated by the preliminary in vitro experiments
as gene features to classify LUAD and control. The machine learning validation focused on
evaluating the performance of five-gene combinations identified as candidate biomarkers
from in vitro analysis. Clinical validation is beyond the scope of this study. The block
diagram of the architecture for LUAD vs. control identification using the validated lung
cancer biomarkers in the in vitro analysis from DNA microarray data is illustrated in
Figure 3.

All possible combinations of the in vitro validated gene features were tested. These
combinations were applied to the microarray data and trained using different ML algo-
rithms, namely, the Support Vector Machine (SVM) [17] with linear, RBF, and polynomial
kernels, the Random Forest (RF) [18], the Logistic Regression (LR) [19], the Extreme Gradi-
ent Boosting (XGBoost) [20], the Gradient Boosting (GB) [21], the AdaBoost (AB) [22], the
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Extra Trees (ET) [23], the k-Nearest Neighbors (kNN) [24], and the Linear Discriminant
Analysis (LDA) [25]). The models were trained using stratified five-fold cross-validation,
and their performances were averaged across all folds. Additionally, stratified five-fold
cross-validation was applied to the training subsets to optimize the hyperparameters of the
machine learning models. The best combinations of the in vitro validated gene features are
presented in Section 3.2.

Figure 3. Block diagram of the LUAD vs. control identification from DNA microarray data using the
validated in vitro gene features.

Before training and testing the ML models, the gene expression values were standard-
ized to ensure that genomic features were centered around a mean of zero and scaled with
standard deviation equal to one. Standardization was applied separately on the training
set, with the estimated means and standard deviations used to standardize the test set.
All ML models were evaluated both with and without data augmentation to overcome
imbalanced classes (LUAD and control) during the training, using the Synthetic Minority
Oversampling Technique (SMOTE) [6] algorithm. SMOTE was applied only to the training
data, while all test samples were the original ones.

3. Results
3.1. Bioinformatics Analysis

Table 2 presents the results of the differential expression analysis for the genes found
in the bioinformatics analysis to be upregulated or downregulated. Along with the log2 FC
values, the LASSO and mRMR ranking scores are provided. As can be seen in Table 2,
the genes KCNAB2, GPR183, and KNDC1 were observed to have negative log2 FC values,
indicating their downregulation in LUAD, while the genes SLC15A1 and GPR123 were
observed to have positive log2 FC values, indicating upregulation.

Table 2. List of genes found upregulated or downregulated between LUAD and control groups.

Gene ID log2 FC LASSO mRMR

KCNAB2 −0.066271 −0.001912 95.929278
SLC15A1 0.075376 0.002642 39.628941
KNDC1 −0.061559 −0.001577 36.992438

GPR123 (ADGRA1) 0.002207 0.000941 0.575879
GPR183 −0.00581 0.000049 0.190521

SLC15A1 had the highest positive coefficient according to LASSO feature ranking,
signifying its importance in distinguishing LUAD from control. In contrast, KCNAB2 and
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KNDC1 have negative LASSO values, indicating a negative relationship to LUAD. mRMR
feature selection identified KCNAB2 as the most relevant gene with the highest score (95.92).
SLC15A1 and KNDC1 followed with scores of 39.63 and 36.99, while GPR123 and GPR183
had lower scores, indicating lesser relevance compared to the other genes. Table 2 presents
that the most upregulated gene SLC15A1, and the most downregulated genes KNDC1 and
KCNAB2 were also the most relevant features according to LASSO and mRMR.

3.2. In Vitro Analysis

Figure 4a shows growing Calu-3 cells (LUAD) at 90% confluency. Figure 4b illustrates
growing MRC-5 cells (control) at 70% confluency.

  
(a) (b) 

Figure 4. (a) A T75 flask for growing Calu-3 cells (LUAD) at 90% confluency (Scale bar 50 µm,
40× magnification). (b) A T75 flask for growing MRC-5 cells (control) at 70% confluency (Scale bar
50 µm, 40× magnification).

The results of gene fold expression obtained via RT-qPCR are illustrated in Figure 5.
Our results showed that the gene SLC15A1 was significantly upregulated (p < 0.0032)
within the Calu-3 cell line (LUAD) when compared to the MRC-5 cell line (control). Three
of the genes analyzed throughout this study showed significant downregulation. These
genes are GPR123 (p < 0.003), KNDC1 (p < 0.0002), and KCNAB2 (p < 0.0023). One of the
genes analyzed, GPR183, showed no significant difference in gene fold expression when
compared to the Calu-3 (LUAD) and MRC-5 (control) cell lines (p < 0.4711).

Figure 5. Fold change of gene expression (2−∆∆CT) for the five tested genes obtained via RT-qPCR,
with statistical significance indicated (ns: non significant, **: statistically significant with p < 0.01,
and ***: statistically significant with p < 0.001). SLC15A1 was significantly upregulated (p < 0.0032),
whereas the genes GPR123 (p < 0.003), KNDC1 (p < 0.0002), and KCNAB2 (p < 0.0023) were significantly
downregulated. There was no significant difference in the fold gene expression of the gene GPR183
(p < 0.4711).
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3.3. Machine Learning Analysis

The performance of all combinations of the five LUAD biomarkers validated in vitro
was evaluated using different ML algorithms, with and without the use of SMOTE. The
results for the best performing combinations of the five validated genes for the best per-
forming ML model and for the top performing validated genes combination are tabulated
in Table 3.

Table 3. Top performing combinations of the five validated in vitro genes for LUAD vs. control
identification.

Gene Features Oversampling Best ML
Model Acc. F1 Prec Recall Spec. AUC

SLC15A1, KNDC1
No ET 79.39 80.63 84.82 79.39 82.24 87.85

SMOTE SVM linear 78.16 74.89 82.45 74.18 82.45 87.94

KCNAB2, SLC15A1,
KNDC1

No ET 82.65 83.34 85.71 82.65 80.86 90.85

SMOTE SVM linear 82.65 78.78 83.55 77.40 83.55 90.84

ADGRA1, KCNAB2,
SLC15A1, KNDC1

No ET 84.08 84.60 86.18 84.08 80.00 92.25

SMOTE ET 85.10 79.92 80.86 79.55 80.86 91.72

ADGRA1, KCNAB2,
SLC15A1, GPR183, KNDC1

No SVM linear 83.67 84.49 87.18 83.67 84.74 91.71

SMOTE RF 86.12 81.54 83.11 81.51 83.11 91.46

As can be seen in Table 3, the best-performing biomarker signature was the combi-
nation of the gene features ADGRA1, KCNAB2, SLC15A1, and KNDC1 without SMOTE
using the ET machine learning algorithm, achieving 84.08% accuracy, 84.60% F1-score,
86.18% precision, 84.08% recall, 80.00% specificity, and AUC 92.25%. Combining all five
biomarkers reached 83.67% accuracy, 84.49% F1 score, 87.18% precision, 83.67% recall,
84.74% specificity, and 91.71% AUC without SMOTE.

For the best two-gene combination, SLC15A1 and KNDC1, without the use of SMOTE,
achieved 79.39% accuracy, 80.63% F1 score, 84.82% precision, 83.67% recall, 84.74% speci-
ficity, and 91.71% AUC. As for the best combination of three genes, it was using KCNAB2,
SLC15A1, and KNDC1, achieving 82.65% accuracy, 83.34% F1 score, 85.71% precision,
82.65% recall, 80.86% specificity, and 90.85% AUC without SMOTE.

4. Discussion and Conclusions
This study presented a multistage approach, incorporating bioinformatics, in vitro vali-

dation, and machine learning to identify a potential biomarker signature for LUAD. Among
the five initially shortlisted genes (SLC15A1, KNDC1, KCNAB2, GPR123, and GPR183), four
demonstrated consistent differential expression between LUAD and control conditions
in both microarray analysis and RT-qPCR validation (SLC15A1, KNDC1, KCNAB2, and
GPR123). These genes demonstrated strong predictive value in machine learning models,
enabling the distinction between LUAD and control samples with an accuracy of up to
84.08% and an AUC of 92.25%.

Our in vitro validation confirmed that KCNAB2 and KNDC1 were significantly down-
regulated in LUAD cells, suggesting tumor suppressor roles. Of note, KCNAB2 has been
previously associated with adverse outcomes in LUAD. Lyu et al. (2022) reported that the
decreased expression of KCNAB2 correlated with reduced immune infiltration and poor
prognosis in LUAD patients, highlighting its potential role in modulating tumor immu-
nity [26]. More recently, Li et al. (2025) demonstrated that FTO-mediated m6A methylation
of KCNAB2 suppresses its tumor-inhibiting effects by inactivating the PI3K/AKT pathway
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in non-small cell lung cancer, further supporting its relevance as a tumor suppressor [27].
These studies were in line with our findings, suggesting that KCNAB2 functions as a tu-
mor suppressor in lung cancer by influencing both immune microenvironment dynamics
and oncogenic signalling pathways. Although KNDC1 has not been previously studied in
LUAD, it has been identified as a tumor suppressor in ovarian cancer where reduced expres-
sion was associated with malignant transformation and poorer prognosis [28]. This aligns
with our observation of significant downregulation of KNDC1 in LUAD cells, suggesting a
possible tumor-suppressive role in lung cancer as well.

We also identified that SLC15A1 was significantly upregulated in both our in vitro
and microarray analyses, consistent with its putative role as an oncogene. A prior study
has also reported its involvement in LUAD [29]. Specifically, SLC15A1 was included in
a prognostic gene panel associated with recurrence in LUAD patients [29]. Furthermore,
the gene was also part of a ferritinophagy-related prognostic signature linked to overall
survival [30]. Our results further strengthen the case for SLC15A1 as a clinically relevant
biomarker, particularly in diagnostic and classification contexts.

GPR123 (ADGRA1), a member of the adhesion G protein-coupled receptor (GPCR)
family, was also found to be downregulated in our cell line model, suggesting a potential
tumor suppressor role. To the best of our knowledge, GPR123 has not been studied
in LUAD. However, in bladder cancer, GPR123 has been identified as an independent
biomarker for recurrence and prognosis [31]. A study by Liu et al. (2021) demonstrated
that high expression levels of GPR123 were significantly associated with advanced tumor
stages and poorer patient outcomes, suggesting a potential oncogenic role in bladder cancer
progression [31]. This difference in expression between different cancer types highlights
that the gene might exhibit context-specific behavior and that further functional studies in
LUAD are required to clarify its biological role and potential as a tumor suppressor.

In contrast, GPR183, though downregulated in our in silico analysis, showed no
significant expression change in vitro. Its biological role remains complex; single-cell RNA-
seq data from Hou et al. (2024) showed that GPR183 was involved in modulating tumor-
infiltrating B cell activity following immunotherapy in NSCLC [32]. These findings suggest
that GPR183 may play a context-dependent role in immune regulation with potentially
divergent functions across LUAD subtypes or treatment conditions.

Collectively, while some of these genes, such as SLC15A1, KCNAB2, and GPR183 have
prior associations with LUAD, our study provides additional evidence for their relevance
by integrating multistage transcriptomic screening, machine learning-based prioritization,
and RT-qPCR validation. Importantly, we highlight their utility not only as biologically
interesting genes but also as predictive features that improve classification performance
in distinguishing LUAD from non-cancerous samples. The aforementioned functional
roles of these genes proposed in the literature further support their relevance. These
findings underline the potential biological significance of the identified genes and highlight
directions for future mechanistic and clinical investigations.

Limitations of the present study include the use of only one LUAD (Calu-3) and one
control (MRC-5) cell line for RT-qPCR validation. Although our findings provide initial
validation, further studies incorporating additional LUAD subtypes, patient-derived tissue
samples, and protein-level assays will be important to strengthen clinical relevance. In
addition, testing the model on fully independent datasets such as separate GEO or TCGA
studies or clinical biopsy samples will be important to confirm its generalizability.

In conclusion, this study highlights the potential of combining data mining, experimen-
tal validation, and machine learning to prioritize gene biomarkers for LUAD classification.
The panel of SLC15A1, KNDC1, KCNAB2, and GPR123 emerged as a strong candidate and
may serve as an avenue for further exploration in clinical studies.
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