
GRADIENT CORRELATION METHOD FOR THE STABILIZATION 

OF INVERSION RESULTS OF AEROSOL MICROPHYSICAL  

PROPERTIES RETRIEVED FROM PROFILES OF OPTICAL DATA 

Alexei Kolgotin
1
, Detlef Müller2,3

, Anton Romanov
4
, Eduard Chemyakin

2
 

(1)
Physics Instrumentation Center, Troitsk, Moscow Region, 142190, Russia, alexeift@yahoo.com 

(2)
Science Systems and Applications, Inc. (SSAI), NASA LaRC,  

1 Enterprise Parkway, Hampton, VA, 23666, USA, 
(3)

University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK, d.mueller@herts.ac.uk 
(4)

The National University of Science and Technology, Leninskii av. 4, Moscow, 119049 

ABSTRACT 

Correlation relationships between aerosol micro-

physical parameters and optical data are investi-

gated. The results show that surface-area concen-

trations and extinction coefficients are linearly 

correlated with a correlation coefficient above 

0.99 for arbitrary particle size distribution. The 

correlation relationships that we obtained can be 

used as constraints in our inversion of optical 

lidar data. Simulation studies demonstrate a sig-

nificant stabilization of aerosol microphysical 

data products if we apply the gradient correlation 

method in our traditional regularization tech-

nique.  
 

1. INTRODUCTION 

Several approaches for the retrieval of particle 

microphysical parameters from multiwavelength 

lidar measurements were developed in the past 

years [1-3]. Since we deal with an ill-posed, ill-

conditioned problem the derived solutions oscil-

late, they are unstable, and we may obtain non-

physical results. Even the use of advanced ma-

thematical methods such as regularization, e.g. 

Tikhonov’s regularization does not guarantee that 

we find physically meaningful solutions unless 

we introduce additional constraints in the solu-

tion spaces. We showed that we can stabilize the 

solution space if we use whole sections of optical 

data profiles rather than optical data sets of indi-

vidual height bins as input in our inversion 

scheme [4].  

If the profiles of the optical data (OD) do not 

change, in other words the profile gradient is 

close to 0, we can expect that profiles of particle 

microphysical parameters (PMP) do not vary sig-

nificantly either. On the contrary if the OD pro-

files show variations, i.e., the “gradient” profile 

differs from 0, we can expect that the PMP vary 

with height, too. In this contribution we investi-

gated which correlations between lidar optical 

data and particle microphysical parameters exist 

and if these correlations can be used in our inver-

sion methodology for improving the microphysi-

cal data products.  

In section 2 we present the correlation relation-

ships we found between PMP and OD. We de-

scribe how they can be used in our gradient cor-

relation method. In section 3 we show a numeri-

cal example with synthetic OD. Retrieval results 

of different approaches are compared in section 

4. Section 5 summarizes our results. 

 

2. METHODOLOGY 

Lidar measurements deliver the OD which can be 

used for the retrieval of bulk PMP (p) such as 

mean radius (rmean) and effective radius (reff), 

mean width, i.e. geometrical standard deviation 

() of a particle size distribution, number (n), 

surface-area (s) and volume (v) concentrations. 

This problem is related to solving the Fredholm 

integral equation of the 1
st
 kind
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l1,..,NL, g, 

The optical data g
(l)

() are measured with lidar at 

wavelength . The unknown function f
(l)

(r) de-

scribes the particle size distribution (PSD), and r 

describe the particle radius on the domain 

[rmin
(l)

, rmax
(l)

]. Here we consider rmax
(l)0.05 m. 

The kernel functions Kg(,m,r) can be computed 

on the basis of Mie-scattering theory in the case 

of spherical particle shape. The parameter 

m
(l)mR

(l)
-imI

(l)
 describes the particle complex 

refractive index. Extinction coefficients are de-

noted as g, backscatter coefficients are de-

noted as g. The superscript l indicates the 

number of the height bin we use to describe the 

OD profiles. The total number of height bins is 

NL. The PMP can be easily estimated from the 

solution f. 

Eq. (1) can be solved, for example, with regulari-

zation which allows us to find a solution space 

F
(l){f1

(l)
(r),…, fNsol

(l)
(r)} at each height bin l. If 

we know F
(l)

 we can also obtain the solution 
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spaces for any bulk parameter P
(l){p1

(l,…, 
pNsol

(l)
} at each height bin l, where P

(l) Rmean
(l)

, 

Reff
(l)

, (l)
, N

(l)
, S

(l)
, or V

(l)
 denotes the solution 

space of rmean, reff, , n, s, or v respectively [1]. 

The collection of the solution spaces for all NL 

heights forms the profiles of the PMP. The final 

solution pav at height l is defined by averaging all 

individual parameters pi
(l)

, iNsol, over some in-

terval of the discrepancy range [min
(l)

,av
(l)

] [2,4]. 

In order to find physically meaningful solutions 

we need to apply different constraints, as for ex-

ample, the discrepancy range [min
(l)

,av
(l)

], the 

radius range [rmin
(l)

,rmax
(l)

], and the complex re-

fractive index m
(l)

. In that way we can exclude 

individual solutions pi
(l)

 which for example de-

viate too much from the average value pav. In that 

case we insert a threshold p to take into consid-

eration only those individual solutions that fulfill 

the condition 

| pi
(l)

 - pav | p.    (2) 

In our previous strategy of data inversion we 

used this averaging procedure for each solution 

space (in each height bin) independently, i.e., we 

did not take into consideration that results of suc-

cessive height bins may be correlated to each 

other. The profile of the OD contains information 

regarding the variation of the profile of the PMP. 

In other words we can predict the PMP behavior 

if we know the law(s) (or correlations) that de-

scribes the interdependence of OD and PMP. 

The interdependence that is generally accepted is 

that effective radius reff is inversely proportional 

to the extinction Ångström exponent (EAE) : 
ln[(1)/(2)]/ln(2/1). (3) 

For small variations  we obtain 

reff ar+br.   (4) 

The constants ar and br are regression coefficients 

(RC). The linear correlation (4) can be used as 

extra constraint if we want to find the solution 

space for Reff
(l)

. In fact if we measure (l)
 the cor-

relation (4) allows us to estimate reff
(l)*

 according 

to  

reff
(l)*

 ar(l)
+br   (5) 

If we introduce the threshold reff we can rewrite 

condition (2) as  

|reff,i
(l)

 – reff
(l)*

|reff  (6) 

If we approximate the kernel K and the PSD f by 

the parabolic and rectangle functions, respective-

ly, one can show on the basis of the average theo-

rem that there are additional linear correlations 

between extinction (in Mm
-1

) and other PMP and 

combinations of several PMP (in Mm
-1

) with cor-

relation coefficients R
2
 0.99: 

sas()+bs,   (7) 

v/reff av()+bv[as()+bs]/3,  (8) 

nreff
2an()+bn   (9) 

The correlation (9) is valid only for a fixed stan-

dard deviation .  

The linear correlations (7)-(9) and relationship 

(4) can be used as extra constraints to identify the 

solution spaces. We stress that any combination 

of correlations (4) and (8), (9), is acceptable, for 

example  

v / (ar+br)  [as()+bs]/3. (10) 

Again, introducing the threshold p the condition 

(6) and the correlations (4), (8), (9) can be rewrit-

ten in a more general form as 

|pi
(l)

 – p
(l)*

|p p reff, s, v/reff, nreff
2
(11) 

and 

p
(l)* apx

(l)
+bp   x, (12) 

The use of the constraints (11) in the averaging 

procedure [2,4] is at the heart of the gradient cor-

relation method (GCM). 

3. NUMERICAL SIMULATION 

3.1. Synthetic optical data 

We used synthetic optical data (SOD) to identify 

the correlation relationships. We generated the 

synthetic optical data 32 at 355, 532 and 

1064 nm for backscatter coefficients and at 355 

and 532 nm for extinction coefficients [1]. We 

took into account Eq. (1). We pre-defined values 

for f and m. We used the lognormal law for de-

scribing f. We selected a wide range of values for 

the mean radius, i.e. rmean20, 60, 100, 140, 180, 

220, 260, and 300 nm. With regard to the mode 

width we used 1.5, 1.7, 1.9, 2.1, 2.3, and 2.5. 

We selected the following values for the real and 

imaginary parts: mR1.4, 1.5, 1.6, 1.7, and mI 0, 

1e-4, 1e-3, 2.5e-3, 5e-3, 7.5e-3, 1e-2, 1.5e-2, 2e-

2, 2.5e-2, 3e-2, 3.5e-2, 4e-2, 4.5e-2, and 5e-2. 

We used all possible combinations (rmean, , mR, 

mI) and in that way we created 2880 sets of 

32 data for the SOD bank.  

Fig. 1 presents the statistical analysis of the SOD 

bank. We see that reff is nearly inversely propor-

tional to  (Fig. 1a). The range of EAE varies 

from -0.5 to 4. For example, if   2, which 

means that reff <0.1 m, we find for the RC 

ar-0.02 and br 0.1. The analysis of all entries 

of the SOD bank shows that these two parameters 

vary in the diapasons:   

ar[-0.02; -1.7],  br[0.1; 1.5]  (13) 

We find linear correlations of R
20.998 for s ver-

sus (355) [see Fig. 1b]. In the following we de-

note IP as parameters we investigated with regard 

to useful correlation properties. If we use all val-

ues stored in the SOD bank we find for the RC: 
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as1.7 and bs-0.08. A more thorough analysis of 

the SOD bank shows the following variations 

as[1.33; 1.75],  bs[-0.05; 0.03] (14) 

These values depend on . The strong correlation 

guarantees that surface-area concentration can be 

directly estimated from the extinction with an 

uncertainty that is less than the measurement er-

ror. 

Fig. 1b shows that v/reff and  are linearly corre-

lated as well. It can be shown that Eq. (7) and (8) 

are true for any amount of modes in PSDs. 

We also find a linear correlation of R
20.999 for 

IP nreff
2
, but in that case  needs to be kept con-

stant (see Fig. 1c). Depending on [1.5; 2.5] we 

find the following RCs: 

an[0.17; 1.73],  bn[-0.05;0.004](15) 

 
Fig. 1. Statistics (gray 

solid circle) for the pa-

rameters s (b), v/reff (b), 

and nreff
2 for different  

(c) versus (355), for 

reff (a) versus . The 

solid lines describe the 

correlation trends ac-

cording to yax+b with 

correlation coefficient 

R2. 

 

3.2. Retrieval example for synthetic data 

We selected NL6 OD sets of 32 data from 

the SOD bank and we constructed OD profiles 

(see Fig. 2a). The true PMP are shown in Fig. 2b 

and 2c as thick lines. The real part does not 

change with height. It is equal to 1.5. The imagi-

nary part increases with height, i.e. mI0, 0.01, 

0.03, and 0.05 (not shown). In the inversion prob-

lem the true OD profile are distorted with 15% 

extreme error.  

In the next step we identified the solution space 

F
(l)

, l1,…,6, with our traditional regularization 
technique [2]. Each solution space F

(l)
 contains 

about 610
4
 individual solutions which are re-

trieved for 100 inversion windows that slip inside 

the radius range from 0.03 to 8 m. We used 20 

equidistant values of the real part, i.e., 

mR[1.325;1.8] and 30 equidistant values of the 

imaginary part, i.e., mI[0.0;0.1]. 

Finally we post-processed the solution spaces 

with GCM when the RCs ap are known (True 

RC) and when they are distorted up to 25% 

(Dist.RC). In that way we could test the stability 

of our novel approach. In addition we post-

processed the solution spaces in the automated 

mode [5] without using GCM and without using 

any constraints of the parameters reff , n, 

r[0.03;8], mR[1.325;1.8] and mI[0.0;0.1] 

(NoGCM).  

All retrieval results are shown in Fig. 2b and Fig.  

2c. We see that in the case of NoGCM (triangle) 

there are large retrieval errors of effective radius 

in 3 of the 6 height bins, and number concentra-

tion shows errors up to 200% in the height bin 

l#4. The solution can be significantly improved if 

we require that the correlation relationships (4), 

(9), and (10) are fulfilled. In the case of True CC 

(square) and Dist.CC (star) the retrieval errors of 

number concentration do not exceed 50 %, the 

error of effective radius is even less.  

In order to obtain the GCM results we used the 

RCs shown in the table: 

p 
ap bp p ap bp p 

True RC Dist.RC 

reff -1.0 0.76 0.25 -0.8 0.8 0.25 

v/(ar+br) 0.7 -0.05 0.1 0.56 -0.05 0.1 

nreff
2
 0.7 -0.04 0.1 0.5 -0.04 0.1 

We present the statistics for all results derived 

with NoGCM (triangle), TrueRC (square) and 

DistRC (star) in Fig. 3. The statistics for the true 

data obtained from the SOD bank are plotted as 

circles in Fig. 3. Fig. 3 also shows the (actual) 

RCs, which we obtained after post-processing the 

solution space F
(l)

, for all three cases together 

with RCs for the true data.  

We see that the parameter s that is retrieved with 

NoGCM, TrueRC, and DistRC is linearly corre-

lated with extinction (Fig. 3b). We obtain R
21 

and as 1.7 which is equal to the true value. This 

is the reason why we do not use Eq. (7) in GCM 

(see table).  

We find outliers in the profiles of reff and n if we 

use NoGCM (see Fig. 2). As a result the actual 

RCs ar1.82 (Fig. 3a, triangle) and an2.37 (Fig. 

3c, triangle) are out of their ranges (13) and (15), 

respectively.  

If we implement in GCM the relationships (4) 

and (9) and we use the RCs from the table, we 

find for the actual RCs: ar1.14 (R
20.95) and 

an0.68 (R
20.999) for TrueRC (Fig. 3a, 3c, 

square). If we use GCM with DistRC we obtain
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Fig. 2. Retrieval results for the case of a 32 data set constructed from our SOD. a: input true (open marker) and distorted 

(close marker+line) EAE, extinctions, lidar ratios at 355 and 532 nm. b, c: true (thick line) and retrieved (line+marker) PMP. 

Retrieval results were obtained when GCM is not used (triangle), GCM is used with true RC (square), GCM is used with RC 

distorted up to 25%. 

RCs ar0.93 (R
20.97), and an0.49 (R

20.999) 

[see Fig. 3a, 3c, star]. Notably the actual and true 

RCs converge. 

 

4. CONCLUSION 

We presented the novel method of GCM for the 

stabilization of PMP retrieved from profiles of 

optical data taken with lidar. GCM uses correla-

tion relationships between particle bulk parame-

ters and measured optical information.  

We found that the linear correlation between par-

ticle surface-area concentration and extinction 

coefficient is approximately R
21. The IP v/reff 

and extinction coefficient are linearly correlated 

with the same correlation coefficient. We find a 

linear correlation between the product nreff
2
 and 

particle extinction. The correlation is R
21 for 

fixed mode width .  

These relationships allow us to use additional 

constraints during the post-processing of the so-

lution spaces. As a result the surface-area con-

centration can be estimated with an uncertainty 

that is less than the measurement error of the ex-

tinction coefficient.  

Our comparisons between the results obtained 

with GCM and with our traditional regularization 

technique show a significant stabilization of the 

retrieved profiles of aerosol microphysical prop-

erties. We will continue with numerical simula-

tions and the analysis of case studies in order to 

further assess the potential of this new approach. 
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