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Highlights

What are the main findings?

• Eyeblink indices are potentially useful biomarkers for the effects of electroacupuncture
and other neuromodulatory interventions.

• Significant autonomic correlates for some eyeblink parameters and EEG measures
appear likely.

What is the implication of the main finding?

• Traditionally viewed artefacts, such as eyeblink measures, may themselves possess
diagnostic and research value.

• Transcutaneous electroacupuncture stimulation can modulate brain activity and auto-
nomic function in a time- and frequency-dependent manner.

Abstract

This study investigates the effects of transcutaneous electroacupuncture stimulation (TEAS)
on eyeblink rate, EEG, and heart rate variability (HRV), emphasising whether eyeblink
data—often dismissed as artefacts—can serve as useful physiological markers. Sixty-six par-
ticipants underwent four TEAS sessions with different stimulation frequencies (2.5, 10, 80,
and 160 pps, with 160 pps as a low-amplitude sham). EEG, ECG, PPG, and respiration data
were recorded before, during, and after stimulation. Using non-parametric statistical anal-
yses, including Friedman’s test, Wilcoxon, Conover–Iman, and bootstrapping, the study
found significant changes across eyeblink, EEG, and HRV measures. Eyeblink laterality,
particularly at 2.5 and 10 pps, showed strong frequency-specific effects. EEG power asym-
metry and spectral centroids were associated with HRV indices, and 2.5 pps stimulation
produced the strongest parasympathetic HRV response. Blink rate correlated with increased
sympathetic and decreased parasympathetic activity. Baseline HRV measures, such as
lower heart rate, predicted participant dropout. Eyeblinks were analysed using BLINKER
software (v. 1.1.0), and additional complexity and entropy (‘CEPS-BLINKER’) metrics were
derived. These measures were more predictive of adverse reactions than EEG-derived
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indices. Overall, TEAS modulates multiple physiological markers in a frequency-specific
manner. Eyeblink characteristics, especially laterality, may offer valuable insights into
autonomic function and TEAS efficacy in neuromodulation research.

Keywords: transcutaneous electroacupuncture; TEAS; EEG; HRV; eyeblink parameters;
autonomic modulation

1. Introduction
Transcutaneous electroacupuncture or electrical ‘acupoint’ stimulation (TEAS) is used

increasingly in clinical practice as a non-invasive alternative to electroacupuncture using
needles. Most common applications are for the alleviation of pain, nausea and vomiting,
postoperative recovery, and in vitro fertilisation [1].

Eye movements such as blinking are usually considered as contaminating artefacts in
electroencephalography (EEG) research that should be removed to enable better analysis of
brain function. However, eyeblink characteristics may also be useful indicators in them-
selves. Blink rate (frequency), for example, typically between 10 and 25 blinks per minute
at rest, may increase with fatigue, stress, anxiety, or nervousness, but may decrease in
Parkinson’s disease or during tasks that require intense concentration or cognitive effort [2].
Other eyeblink parameters are provided as output from the easy-to-use MATLAB® software
package BLINKER [3], including several variants of duration, peak maximal values, and
‘amplitude–velocity ratios’ [4]. These are listed in the accompanying online Supplementary
Material and described in more detail on the GitHub BLINKER page [5]. Versions R2024a
and 1.1.0 were used for MATLAB® and BLINKER, respectively.

A novel index that we introduce here is ‘best’ blink laterality, referring to the tendency
for blinks to occur more frequently in one eye compared to the other (detailed explanation
below, based on Kleifges et al. (2017) [3]). We found little previously published material
on eyeblink laterality prior to BLINKER, other than a study indicating that eyelid (blink)
asymmetries decrease with increasing experimental trigeminal stimulation but are in
general stable over several months [6], together with several studies on ‘pre-pulse inhibition’
(PPI) of the startle response [7]. In one of these, Braff et al. cited previous research in which
blink reflex magnitude was found to be greater for the right than for the left eye in the
general population [8]. PPI itself was also noted to be greater in the right eye in healthy
individuals, and particularly in smokers, but this difference was reduced in patients with
schizophrenia [9]. Nicotine is well known to affect blink rate, presumably via a dopamine-
mediated mechanism [10].

In 2013, aware that eyeblink rate (EBR) may be an indirect marker of striatal dopamine
activity [10–12] and inversely correlated with parasympathetic activity [13,14], we pre-
sented a preliminary report based on four small pilot studies (N participants = 1 to 12) [15].
Our findings suggested that EBR increased more with electroacupuncture (EA), i.e., elec-
trical stimulation applied using needle electrodes, than with gentle manual acupuncture
(MA), that EBR increased more with 20 min than 5 min of EA, and that EBR decreased
following EA. These results were all statistically encouraging, with p-values < 0.001 for
Wilcoxon signed-rank and binomial tests. A finding that did not attain statistical signifi-
cance was that EBR was usually greater for transcutaneous EA stimulation (TEAS)—i.e.,
transcutaneous electrical nerve stimulation (TENS) applied to acupuncture points—than for
MA. In addition, we observed differences in EBR that failed to reach statistical significance
with stimulation frequency in cycles per second (2.5 Hz or 10 Hz), and that EBR appeared
to increase more with 20 min than with 5 min of EA.
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Here, we analyse eyeblink data from a larger and more recent study on TEAS alone
(2015–2016, N = 66, of whom 41 were women and 25 were men), comparing the effects of
different stimulation frequencies in four sessions spaced a week or more apart. We also
extended the range of indices provided by BLINKER by using their time series as input
for CEPS, an open access MATLAB® software package for the analysis of complexity and
entropy in physiological signals [16,17]. We then compared effect sizes for the effects of
TEAS frequency, session order, and time within sessions on the original and extended
BLINKER measures, other EEG-derived indices, and different measures of heart rate
variability (HRV) and pulse rate variability (PRV).

On the supposition that there might be a central ‘frequency following effect’ in re-
sponse to peripheral rhythmical stimulation, such as TEAS [18], with low-frequency stim-
ulation enhancing low-frequency (delta, theta) EEG power and so tending to relax, and
high-frequency stimulation increasing high-frequency (beta, gamma) EEG power and
so tending to stimulate [19], our original study objective was to explore the effects of
different frequencies of TEAS, rather than of stimulation amplitude [20]. Since then, at
least one research group has explored this possibility, even writing of ‘theta and gamma
electroacupuncture’ (stimulation at 6 Hz and 40 Hz, respectively) [21,22]. Another group
noted that low-frequency (but not high-frequency) median nerve stimulation (TENS) en-
hanced occipital EEG alpha power spectral density (PSD) and reduced frontal Beta1 PSD
in patients with generalised anxiety disorder [23]. In contrast, other researchers found
that 100 Hz TENS applied locally to the forearm at either side of a pressure cuff used to
induce ischaemic pain reduced the increase in gamma power that occurred when the cuff
was inflated [24].

In 2021, we analysed the data from our 66 study participants in a conference presen-
tation extending the range of autonomic measures associated with heart rate variability,
in which we categorised the HRV measures output by the Kubios HRV software (Kubios
Oy, Kuopio, Finland) as indicating either predominantly parasympathetic (‘PNS-like’) or
sympathetic (‘SNS-like’) modulation, ‘ambivalent’ or ‘other’ effects. These same categories
were also used to classify a variety of non-HRV measures derived from the electrocar-
diography (ECG), photoplethysmography (PPG), and respiration data collected concur-
rently [25]. Although it would be overly simplistic to consider the two main divisions
of the autonomic nervous system, the parasympathetic and sympathetic, as functionally
polar opposites [26], here, we extend this classification to a number of different EEG data
types (see Appendix S4 in the Supplementary Material). As an aside, although PPG data
were collected, pulse rate variability (PRV) was not analysed in detail independently (al-
though similar in some respects, HRV and PRV provide different information on underlying
physiological function [27]).

Our present objectives are as follows:
Objective 1. To consider whether time, stimulation frequency, or session order has

a greater effect on eyeblink, EEG, and HRV indices/measures, and whether the eyeblink
indices offer any advantage over the EEG and HRV measures in this regard.

Objective 2. To explore some possible parasympathetic/sympathetic associations of
these measures, comparing strengths of association for the different eyeblink and EEG-
derived data types.

Objective 3. To investigate whether these measures may be predictive of participant
dropout or adverse reactions to stimulation.
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2. Materials and Methods
2.1. Data Collection

EEG, ECG, and other data were recorded in the University of Hertfordshire’s phys-
iotherapy laboratory, as described in detail elsewhere [28–30]. The University Health
and Human Sciences Ethics Committee granted ethical approval (protocol number
HSK/SF/UH/00124).

The study design was that participants should attend for four planned sessions, during
each of which TEAS was applied to both hands over the acupuncture point hegu (LI4) and
a point on the ulnar border of the same hand (so that current did not cross the midline of
the body and did not flow through the arms and torso, and thus, in principle, should not
affect the heart—or brain—directly). A different stimulation frequency was applied in each
session—at 2.5, 10, 80, or 160 pulses per second (pps)—with the 160 pps frequency used as
a ‘sham’ treatment.

To avoid repeated order effects, the different frequencies were applied in semi-
randomised order: the sequence of sessions was first randomised, then checked to ensure
no particular frequency was preponderant, and the sequence was amended if this was the
case. For the active treatments, amplitude was increased until participants described it
as ‘strong but comfortable’ [31], while for the sham treatment, amplitude was very low,
with the amplitude control on the charge-balanced biphasic square-wave Equinox E-T388
stimulator (Equinox, Liverpool, UK) used being turned to zero once it had been felt initially
by the participants, but with a flashing indicator lamp still visible (a procedure similar to
that used previously in both clinical and experimental studies of transcutaneous electrical
nerve stimulation (TENS) [32–34] and TEAS itself [35–37]). Participants were informed that
they would habituate to the sham stimulation and would be unlikely to feel it after a short
time. Nonetheless, only 19 (30.6%) reported after their sham session that they had been
unable to feel anything at all during it.

On first arriving, the experimental procedure was explained to the study participants.
As part of this, they were told: “We are not asking you to meditate or do anything out of
the ordinary, but just to keep your eyes open and blinking as little as possible” (during
the experiment, if participants were observed to blink rapidly, they were also asked by
one of the researchers to slow their blinking down). Every attempt was made to keep the
participants comfortable. Electrode caps were selected individually, in accordance with
participant head size, to try and minimise any feelings of constriction or compression.
Following the completion of some initial questionnaires and a numerical rating scale (NRS)
for mood [29,38], the various electrodes and sensors were attached, including a 19-channel
ECI (Electro-Cap International, Inc., Eaton, OH, USA) EEG cap (electrodes positioned
according to the international 10/20 system, and with linked ears as reference and ground
anterior to Fz), forearm ECG, fingertip photoplethysmography (PPG), finger temperature,
respiration belt, and head movement sensors. Data were then recorded in eight consecutive
5 min time slots—baseline (Slot 1), stimulation (Slots 2–5), and post-stimulation (Slots 6–8).
The NRS instrument was also completed following Slots 3 and 8.

2.2. Participants

Sixty-six participants were recruited over a period of 14 months as a convenience sam-
ple from university staff and students, and from other interested local contacts (including
several established complementary health practitioners). This sample was expected to be
typical of the general population.
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2.3. Data Recording and Preprocessing

EEG data were recorded at 500 Hz using a Mitsar EEG-202 amplifier, and WinEEG
software (v2.91.54) (Mitsar Ltd., St. Petersburg, Russia). Preprocessing steps and artefact
removal are described elsewhere [30].

ECG data were recorded using the same equipment and software, with standard ECG
electrodes (Kendall™ H124SG, Cardinal Health UK, Leeds, UK) positioned bilaterally
on the volar surfaces of the forearms. In addition, respiration and head movement data
were recorded using, respectively, an abdominal piezo crystal SleepSense respiration effort
sensor belt (Scientific Laboratory Products, Elgin, IL, USA) and a head-mounted Pico Micro
Movement Sensor (Unimed Electrodes, Farnham, Surrey, UK); these data were not analysed
for the purposes of the current paper. ECG artefact correction and detrending (using the
‘smoothness priors’ method) were conducted using Kubios HRV software (Kubios HRV
Standard, 3.3.0, Kuopio, Finland).

Finger temperature was recorded using a NeXus-10 physiological monitoring unit with
its associated temperature sensor and BioTrace v2015B software (MindMedia BV, Herten,
The Netherlands). The same unit and software were also used for recording bilateral PPG
and a further channel of ECG (results not analysed here). Temperature was recorded at
32 Hz, recordings trimmed to remove obvious initial artefacts and then smoothed using
the method available in the BioTrace software, but otherwise not preprocessed.

2.4. Measures Analysed

1. BLINKER

BLINKER considers as potential blinks only those events that last more than
50 milliseconds (ms) and are at least 50 ms apart. A single EEG (or electrooculogram,
EOG) channel is then selected by the algorithm to provide the ‘best’ blinks, defined by the
closeness of their actual trajectory to that of a ‘stereotypical’ blink, with correlation between
them (Pearson’s R2) ≥ 0.98; for ‘good’ blinks, R2 ≥ 0.90 [3]. Parameters of the ‘stereotypical
blink’ were not defined by Kleifges et al. [3], as appears to be the case for other studies in
the literature in which stereotypical blinks are simply manually selected without further
discussion (e.g., [39,40]). However, Kay Robbins, the communicating author of the original
BLINKER study, has clarified that by ‘stereotypical blink’, the authors meant the ‘normal’
blink described by Johns [4], namely one with a single maximum whose derivative also
has a single maximum, but followed by a single minimum [41]. More generally, it has been
suggested that “all blinks of a test subject look pretty much alike, even among independent
sessions. While blinks of different persons seem to look slightly different, they appear
to be still highly correlated. Hence, it is possible to use a single prototype blink with the
signals of different subjects” [42]. Miyakoshi et al. [43] made the interesting observation
that physical effort to suppress blinks may indeed prevent the generation of stereotypical
blink-induced EOG waveforms.

We considered several basic ‘families’ of measures output by BLINKER (for details,
see Figure 1 here and Tables S1 and S2 in the Supplementary Material):

(1) Duration: median, mean, and ‘mad’ (mean absolute deviation) blink durations (at
blink base and zero levels, as well as at half-base and half-zero levels, together
with ‘tent’ duration), with corresponding measures for ‘good’ blinks (goodMedian,
GoodMean, etc.).

(2) Blink rate (blinks per minute, BpM)—mean, or mean of ‘good’ blinks per minute—together
with numbers of blinks and of ‘good’ blinks.

(3) Amplitude–velocity ratios (nAVRB, nAVRT, and nAVRZ), estimated from intervals
between peak maximum and right base, between tent peak and right tent line, and
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between peak maximum and right zero; correspondingly for pAVRB, pAVRT and
pAVRZ and right blink markers.

Figure 1. Some eyeblink landmarks and the BLINKER outputs derived from them (based on [44],
modified and reproduced with the author’s permission). Details of the ocular indices generated are
provided in the Supplementary Material.

In addition to this subset of 61 of the standard ocular indices provided by BLINKER,
we also considered the ratio of left to right channels providing the best blinks (LRBR),
as well as counts of left and right best blinks, resulting in 63 indices (see Supplementary
Table S1). Furthermore, we fed the output of all the ocular indices from BLINKER for
which this seemed appropriate to CEPS [16,17], to calculate a second layer defined as
CEPS-BLINKER composite measures. Although less immediately interpretable in terms of
physiology than the BLINKER indices, these would provide estimates of the complexity
and variability/predictability of the ocular indices themselves. Given that the number
of blinks in each 5 min recording was relatively small (see Section 3 below), only 34 of
the CEPS measures could be used for this purpose, based on 30 of the original BLINKER
indices, resulting in 34 × 30 or 1020 composite measures. Details are provided in Table S2
in the Supplementary Material.

For comparison purposes, as a convenience sample, a number of EEG power-based
data types were also used, selected partly because their analysis was possible using the
skills and resources available to us at the time, and on the basis of prior research indicating
their potential usefulness for this project. Brief descriptions follow.

2. Median power for each 5 min recording, for all 228 channel (19) and band (12) combi-
nations.

The EEG bands used were the five standard bands (delta, theta, alpha, etc.), to-
gether with Beta1 (15.0–18.0 Hz), Beta2 (18.0–25.0 Hz), Beta3 (25.0–35.0 Hz), the sensori-
motor rhythm (SMR, 12.0–15.0 Hz), 2.0–20.0 Hz and 0.5–45.0 Hz, with one other (‘Infill1’,
12.0–19.0 Hz). EEG power is a usual starting point used in investigations of the effects of
different interventions on the central nervous system. Prior research on EA frequency and
EEG power can be found in the literature (e.g., [45,46]). As mentioned, the correlations
between EEG features and HRV or stress measures have been researched by a number of
authors [47–51].

3. Regional power ratios: posterior/anterior, left/right, central/outer ratios of absolute
or relative power in 12 standard and ‘infill’ EEG bands—a total of 252 measures.
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We initially considered these regional ratios as a means of differentiating between
volume (outer) and neural (central/somatosensory) conduction effects [52] and then added
the other regional ratios as well [53]. Changes in EEG laterality have been reported before
in response to TEAS [54] and TENS [55]. To our knowledge, the posterior/anterior (P/A)
ratio has not been used in acupuncture-related research before, and although EEG laterality
may be affected by stress [56], the P/A and central/outer (C/O) ratios have not, to our
knowledge, been considered in relation to HRV.

4. Eighteen median power asymmetries, for both symmetrical right/left electrodes and
regions [Loge(Mdn Pwr Right) − Loge(Mdn Pwr Left)], and for posterior/anterior
and peripheral/central regions, in the same bands as for median power, together with
6 narrow bands centred on frequencies of potential interest (stimulation frequencies or
their sub-multiples) and a further 12 narrow bands centred on frequencies presumed
unrelated to stimulation frequencies, with 18 absolute and relative powers in narrow
bands—a total of 602 measures.

Frontal alpha band asymmetry is a frequently used measure in EEG research [57],
with changes reported in response to acupuncture, for example [58]. In particular, frontal
alpha asymmetry is commonly used in studies on stress [48,51]. Here, we assessed EEG
asymmetries more generally, not just in the alpha band.

5. Median power asymmetry ratios [e.g., 2 × (Loge(Mdn Pwr Right) − Loge(Mdn Pwr
Left))/(Loge(Mdn Pwr Right) + Loge(Mdn Pwr Left))], as for the asymmetries but omit-
ting narrow bands centred on 120 Hz and the absolute and relative power bands—a
total of 530 measures. We also considered power asymmetry ratios [59] as variant
measures of asymmetry.

6. Cordance measures in various standard and non-standard EEG bands, for all
electrodes, both non-normalised and calculated as a comparison using both log-
normalised [60,61] and square-root-normalised algorithms [62], with bands created
using Thomson multi-taper or continuous Morlet wavelet methods [63,64]—a total
of 8148 measures.

Leuchter and colleagues have claimed that cordance, a measure they derived from
averaged absolute and relative EEG power in a particular band measured from all or
some of the electrode pairs used [65], “is potentially a more specific indicator of cerebral
dysfunction than QEEG [i.e., quantitative EEG] power, since it has normal and abnormal
indicator states” [66]. They also noted that greater EEG alpha represents the inhibition
of brain activity, thereby reflecting a reduction in brain perfusion in the healthy [62].
Given that the frequency of TEAS or EA may affect circulation (e.g., [67]), we considered
that cordance would, therefore, be a useful measure to use in the present study. To our
knowledge, no studies on interactions between HRV and cordance have been published.
One study on cordance and ‘dry needling’ (a modern, stripped-down version of traditional
acupuncture) was located [68], but none on cordance and EA or TENS/TEAS.

7. Centroids: regional power and frequency centroids; electrode spectral centroids; finger
temperature slope (over time). ‘x’ and ‘y’ coordinates of centroids of all electrodes,
those on the left or right, anterior or posterior, central or peripheral regions of the
cranium, together with spectral centroids for each of the 19 channels—a total of
48 measures.

Sulaiman et al. (2010) [69] used EEG spectral centroids for identifying stress, and
Giannakakis et al. (2015) [70] found that EEG centroid frequencies in many channels did
indeed appear to increase with stress. We therefore considered this method appropriate
here and also used spatial centroids as another method of identifying particular brain
regions that might be affected by different frequencies of TEAS.
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Acute stress may trigger peripheral vasoconstriction, causing a rapid drop in skin
temperature [71]. Skin temperature itself may increase or decrease in response to EA,
depending on the individual [72]. Finger temperature slope was investigated here to
explore the autonomic effects of different frequencies of TEAS and whether these were
experienced as stressful or not. Low-frequency stimulation was expected to result in
vasodilation rather than vasoconstriction [67].

8. Power in 14 1 Hz bins, either bands centred on frequencies of potential interest
(stimulation frequencies or their sub-multiples) or centred on frequencies presumed
unrelated to stimulation frequencies, with bands created using the methods mentioned
above. Two different methods of independent component analysis (ICA) were used in
the data preparation: Extended InfoMax [73] (1065 measures) and Adaptive Mixture
ICA, or AMICA [74] (1063 measures). Preprocessing was either using the standard
methods available in EEGLab v 2022.0 [75] and associated software, using a pipeline
created by Paul Steinfath as described elsewhere [30], or a semi-automated machine
learning method developed by Thea Radüntz (who kindly provided the results for
us) [76]—a total of 2128 measures.

Our initial hypothesis [18] was that peripheral stimulation as applied in this study
might induce a ‘frequency-following response’ (FFR) centrally, in the EEG. Using narrow
frequency bins, we hoped to detect any resulting FFR. Given that correlations have been
found between the HRV HFnu index and EEG Alpha2 (a narrow band between 10 and
12 Hz) [49], we also hoped to detect such correlations in our own data.

9. In addition, the ‘classical’ EEG Hjorth activity, complexity and mobility parameters [77,78]
were computed for each electrode (228 measures), as well as Wackermann’s ‘global
descriptor’ indices sigma, phi and omega [79] (median values at the start, middle, and
end of each recording) (48 measures).

10. A further dataset consisted of the Wackermann descriptors for the 4 sec segments in
each 5 min slot, with a repeat of the median values from the previous dataset, based
on either Infomax or AMICA ICA (3188 measures).

11. Finally, HRV and PRV (pulse rate variability) indices computed using Kubios HRV
software (Standard version 3.3.0) were included, for both the 5 min recordings (59 PRV
and 59 HRV measures) and their 1 min segments (only a further 66, i.e., 2 × 33,
measures, as 1 min segments were too short to compute some measures).

To our knowledge, neither the Hjorth parameters nor Wackerman’s global descriptors
have been used in prior acupuncture research, nor have they been researched for their
association with HRV measures. However, they do provide an overview of the EEG that
we considered could be useful in this study.

In total, some 15,356 measures were available for analysis.
Data for all these measures will be made available by the corresponding author (DB,

email duncan.banks@open.ac.uk), upon reasonable request. Some findings for the most
salient measures are presented in Table 7 below, and in Tables S4, S8, and Appendix S4
Table S14 in the Supplementary Material.

2.5. Statistical Analysis

Analysis was conducted in various stages.

(1) Slot Values:

Initially, 5 min values of the various measures were analysed, or their median values
for each 5 min recording when more appropriate.

(2) Slot Differences (values normalised with respect to baseline, within session):
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To take into account differences at baseline (in Slot 1) that could clearly not be at-
tributed to the effects of stimulation frequency, the authors decided to also examine nor-
malised values, or differences between values in a given slot and in Slot 1.

Shapiro–Wilk tests were used (in both SPSS and R) for both values and differences to
determine whether data were normally distributed or not. Preliminary tests for normality
of distribution were initially also carried out in Excel using the Jarque–Bera test [80].

12. Given the large number of variables involved in this exploratory study, most would
be expected to provide little, if any, useful information on any questions we might
ask of the data. In an earlier project, we explored the effects of space and terrestrial
weather conditions on EEG and ECG readings collected during TEAS sessions, inves-
tigating more than 7700 features using a method called highly comparative time series
analysis [81]. Here, we used a different approach, making use of what we call ‘top
slicing’ methods in order to reduce the number of measures considered to something
more informative and manageable. Various methods of ‘top slicing’ were compared
to focus on those measures most likely to show significant differences with stimu-
lation frequency, session, or slot within session. These are discussed below, in the
Results section. Friedman’s test for repeated measures was used for both values and
differences (as a non-parametric equivalent of analysis of variance, or ANOVA), with
Kendall’s W as a measure of effect size, and Wilcoxon and Conover–Iman matched-
pair signed-rank tests for post hoc analysis.

(3) Bootstrapping (random sampling with replacement):

To provide more robust results for the Friedman, Kendall, Wilcoxon, and Conover–
Iman tests, ‘bootstrapping’ of 1000 randomly sampled sets of results was used [82], with
results reported as medians and 95% confidence intervals.

(4) Interactions between frequency, session, and slot within session were also tested for,
using the simple rank test for interaction proposed by Hettmansperger and Elmore
(2002) [83].

(5) Other non-parametric tests were used as required, such as the Mann–Whitney U
test (also known as the Wilcoxon rank-sum test) for differences between indepen-
dent samples and Spearman’s rank correlation method for correlations between
them. For the latter, confidence intervals were calculated using the method of Bonett
and Wright [84].

13. Effect size: In addition to statistical significance (using p-values), effect size (ES)
was computed using different methods, as appropriate for each test. For Mann–
Whitney tests, Cohen’s r (or Z/

√
n) was used, where Z is the Z-score, and n is the total

number of observations on which Z is based [85,86]; for Friedman and Conover tests,
Kendall’s W (or coefficient of concordance) was used, linearly related to Friedman’s
χ2 (W = χ2/n(k − 1), where k is the number of measurements per participant [86].
For Spearman’s rank correlations, the correlation coefficient itself (rho, ρ) was taken
as a measure of ES [87]. For all three methods, the usual convention was adopted:
0.1 ≤ ES < 0.3 was considered ‘small’, 0.3 ≤ ES < 0.5 as ‘medium, and ≥ 0.5 as ‘large’.

The following software packages were used: IBM SPSS Statistics v. 28 (IBM, Armonk,
NY, USA); RStudio 2024.04.0+735 “Chocolate Cosmos” Release for Windows (RStudio
Team, 2020); and RStudio: Integrated Development for R. RStudio (PBC, Boston, MA, USA),
with subsidiary packages for the Friedman, Kendall, Wilcoxon, and post hoc Conover tests
(the latter amended by author NS).

When discussing statistical significance, the usual 5% level of significance was em-
ployed, except when otherwise specified, but we must be mindful of the fact that many



Sensors 2025, 25, 4468 10 of 34

comparisons can be carried out. In these circumstances, p-values should not be taken at
face value and we have two options: (i) make adjustments to the p-values so that they can
be interpreted in a traditional manner; (ii) treat the p-values merely as indications of the
strength of evidence against the null hypothesis without any more formal interpretation.
In the publication of most studies, option (i) would be favoured over option (ii). However,
traditional methods for p-value adjustment (e.g., Bonferroni, Šidák) are only appropriate for
situations where the multiple tests are independent of each other, and this is far from being
the case here. For situations, such as the case in this paper, where the multiple tests are not
independent, simulation methods can, in theory, be used to make adjustments (e.g., [88]).
However, in the current context, with a very large number of highly correlated tests, it
was not computationally feasible to undertake such simulations. As a result, option (i) for
dealing with the multiple comparisons issue was not available, and we were obliged to use
option (ii), taking the p-values as they were and applying appropriate scientific judgment
and caution when drawing conclusions.

3. Results
3.1. Participant Demographics

Of the 66 participants recruited, 4 dropped out after only one session, and another
only completed three sessions. Technical and other issues (such as a computer crash on one
occasion and a participant ignoring the instruction to visit the toilet before a session, so
that it had to be interrupted) led to incomplete data in a number of other cases. Complete
datasets were obtained for 48 participants (18 men and 30 women, aged between 18 and
69). Their ages were not evenly distributed, and although more women (F) than men (M)
took part in the study, this was not the case in all age groups, as shown in Figure S1 from
the Supplementary Material.

The flowchart in Figure 2 summarises the above, from recruitment to statistical tests used.

Figure 2. Flowchart of methods used to acquire and analyse EEG, ECG, PPG, and finger temperature
data. Background colours indicate the stimulation frequencies applied.

3.2. Normality of Distribution

Testing for the normality of the distribution of measure values using Shapiro–Wilk
tests indicated that BLINKER, CEPS-BLINKER, and most of the other data types used were
not normally distributed, except for some EEG Median power, median power asymmetry
and asymmetry ratio results, justifying the use of non-parametric rather than parametric
statistical tests for the remainder of the study.
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3.3. Top Slicing Methods Used

We considered taking only those in the upper quartile, the top 10%, top 5%, top 1% or
top 0.1% of values or counts of Friedman’s chi-square, Kendall’s W or the Conover–Iman
statistic (CIS), counts of these three statistics greater than a certain threshold (e.g., 1, 2 or
3 for the Conover–Iman statistic), or simply the top 10 or top 2 measures—or even the single
very top measure—for each data type. For example, differences in BLINKER measures
between slots for each stimulation frequency (4 × 61 rows in the R output file) resulted
in Spearman correlations between the results from the different top slicing methods with
rho > 0.8 and p < 0.001 regardless of whether strengths of the correlations between the
resulting 45 pairs of percentiles, counts and/or Kendall’s W were checked. Thus, in a way,
it almost seems irrelevant which method of top slicing should be selected, whether these
are based on percentages or counts greater than a certain threshold. We eventually settled
on selecting the ‘top 10’ measures for each data type as a pragmatic way of proceeding.
However, different methods could be used to select the ‘top 10’ measures for each data
type, such as either including or excluding repetitions. In the former, the same measure
may appear in several rows (e.g., for several frequencies when testing for differences in
measures between slots for each stimulation frequency); in the latter, only for a single row
in the R output. As an example, the ‘top 10’ BLINKER measures using each method when
testing for differences in measures between slots for each stimulation frequency are shown
in Table S3, with six measures occurring in both lists.

Results for Objective 1. Does time, stimulation frequency, or session order have a
greater effect on eyeblink, EEG, and HRV indices/measures, and do the eyeblink indices
offer any advantage over the EEG and HRV measures in this regard?

Counts of the ‘top 10’ measures in the results for Friedman’s chi-square or for Kendall’s
W will be very much the same, given the linear relationship between the two statistics. The
results for Kendall’s W are shown in graphical form in Figure 3, for all the data types shown
in the study flowchart (Figure 2) taken together. For example, counts of differences between
slots varied with stimulation frequency, being greatest at 2.5 pps (70+ out of 140 measures)
and least for sham (only around 10 of 140 measures) (Figure 3A). Counts of differences
between slots were also greatest in Session 1 (Figure 3B), whereas counts of differences
between TEAS frequencies were greatest during stimulation (Slots 2–5) (Figure 3C). Note
that counts of the ‘top 10’ measures are not the same as those of the 10-scoring measures,
which will always be equal to 10.

Those of the ‘top 10’ measures that occurred three times or more for both Values and
Differences—i.e., for three or more comparisons (4 × Stimulation frequency within Slot,
8 × Slot within Session, etc., including 32 Slot × Stimulation frequency combinations for
Values, but not for Differences)—are shown in Table S4 in the Supplementary Material.

Note that for 19 of the ‘top 10’ measures for all data types in Table S4, the effect
size (Kendall’s W) was greater for differences, whereas this was only the case for 11
values. Considering only the single top-most measure for each data type, Kendall’s W for
differences between stimulation frequencies within each slot was now more often greater
for values (nine data types) than for differences (six data types). Corresponding results for
Friedman’s Chi2 are shown in Figure 4. Note, too, that nearly all the effect sizes (median W)
were small (0.1 ≤ ES < 0.3), if not very small. Incidentally, for all of the top 10 measures
for ‘1 Hz bins’, W for both values and differences was >0.2 for differences between slots
for each stimulation frequency, and also for differences between slots for each session, but
not for the other value or difference comparisons. Maximum effect sizes were found for
the 1 Hz bins, followed by median power (values: O2.5_P3, Wmax = 0.3023; differences:
O5_P3, Wmax = 0.3258). These were for differences between stimulation frequencies within
each slot, not differences between sessions within each slot. Corresponding results for
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Friedman’s Chi2 are shown in Figure 4. The results for the 1 Hz bins are provided in more
detail in Appendix S1 in the Supplementary Material.
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Figure 3. Counts of differences for the 140 ‘top 10’ measures (10 for each of 14 data types):
(A) between time ‘slots’ for the four stimulation frequencies used; (B) between time ‘slots’ in the
four sessions attended; (C) counts of differences between stimulation frequencies over time, showing
changes with session. Counts are shown for both slot values and differences of slot values from
baseline, so the latter are zero in (C) (see above, Section 2.5, for explanation).
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(A) 

 
(B) 

Figure 4. (A) A key to explain the numbering system used on the X-axis. (B) Differences between
stimulation frequencies within each slot, for the various data types—both values and differences.

More graphical results comparing values and differences (values normalised with respect
to baseline within session) are included in the Supplementary Material, Appendix S2.

3.4. Comparing Maximum Effect Sizes for Differences Between Sessions and Differences Between
Stimulation Frequencies, Both Within Slots

Figure 5 shows the maximum effect sizes for differences between sessions and differ-
ences between stimulation frequencies within slots.

Median W over all data types:

• Session by slot (Diffs): 0.129;
• Stimulation frequency by slot (Diffs): 0.179;
• Session by slot (values): 0.126;
• Stimulation frequency by slot (values): 0.127.

Overall, ES is marginally greater for differences than for values, and, more obviously,
for differences between frequencies than for differences between sessions.

The lowest values of W are consistently for the regional ratios, followed by cen-
troids, highest values for median power in 1 Hz bins and in the standard EEG bands.
BLINKER and CEPS-BLINKER measures do not perform particularly well in differentiating
between stimulation frequency and session. As might be predicted, finger temperature and
HRV/PRV do not show a session order effect.
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Figure 5. Maximum effect sizes for differences between sessions and differences between stimulation
frequencies, both within time ‘slots’.

3.5. Differences over Time (Between Slots) Within Sessions

For the majority of data types considered (8 out of 11), the 99th percentile of Kendall’s
W is greatest for changes over time (i.e., when comparing time slots within sessions) than
when comparing results for the four different sessions or the four stimulation frequencies,
as can be seen in Figure S6.

From Figure S6, it is clear that Kendall’s W, as a measure of effect size, was most
commonly very small (<0.1), although >0.1 for five data types (including BLINKER) for
time slot comparisons, and for the frequency and session comparisons for cordance only.

3.6. Post hoc Results, Using the Conover–Iman Statistic (CIS)

Turning now to the post hoc results, it is clear that findings for the Conover–Iman
statistic follow a similar pattern to those for Kendall’s W (Figure S7). Furthermore, counts
of the Conover–Iman statistic (CIS) > 3 (as well as of the 95th percentiles of the CIS) indicate
that differences from baseline (Slot 1) increase with time, when all 63 BLINKER measures
are considered together (Figure 6). Early changes (between Slots 1 and 3) appear to be
greater for 80 pps stimulation, with a cumulative effect for all stimulation frequencies by
Slot 5, although this is most consistently maintained only for 10 pps stimulation thereafter.

Counts (and values) of the blink measures appear to increase more rapidly during
80 pps than 2.5 pps stimulation, with more of a consistently cumulative effect over time
for 10 pps. The apparent pattern of increases only for every other slot is in part due to the
cumulative effects of stimulation (in Slots 2–5) and a subsequent decrease post-stimulation
(in Slot 6), together with a steady increase in CIS over time. An overview of CIS results
for the BLINKER and CEPS-BLINKER measures that differentiate between slots at each
stimulation frequency, between frequencies, and between sessions within each slot is
provided in Table 1.
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Figure 6. Differences from baseline in counts of CIS > 3 for the different stimulation frequencies, for
63 BLINKER output measures. Median counts for all seven pairs of slots are shown in the inset box.
The ‘average’ trendline is dotted.

Table 1. Values of CIS using different ‘top slicing’ methods (maxima, 90th and 95th percentiles, and
upper quartiles), for differentiating between time slots at each stimulation frequency (28 comparisons),
between frequencies within each time slot, and between sessions within each time slot (6 comparisons
each). Median values are also shown.

Method CIS for Frequencies CIS for Time Slots CIS for Sessions

BLINKER CEPS-
BLINKER BLINKER CEPS-

BLINKER BLINKER CEPS-
BLINKER

Max 3.713 4.445 5.826 5.682 3.894 5.104
95% 2.126 1.968 3.132 2.306 1.963 2.024
90% 1.799 1.650 2.591 1.923 1.664 1.724
Q3 1.222 1.146 1.800 1.346 1.134 1.203
Q2 0.752 0.679 1.055 0.788 0.667 0.726

From this top-level analysis, changes over time within sessions—whether for the
BLINKER measures or for the CEPS measures derived from them—are greater than their
differences with stimulation frequency, and greater than their differences over time between
sessions. However, contrary to expectation, differences in the CEPS measures derived from
the BLINKER indices are less over time (within sessions) than those for the BLINKER
measures themselves. Nonetheless, the maximal values of the CEPS-BLINKER measures
are indeed more than the maximal BLINKER measures themselves when comparing their
values for the different stimulation frequencies, as well as for the different sessions.

3.7. Measures and Indices Most Affected by Stimulation Frequency, Time Slot, or Session Order

The ten CEPS measures and BLINKER data types from which they were derived that
provided the greatest differentiation between stimulation frequencies, between times, and
between sessions (the largest 95th percentiles of CIS) are shown in the Supplementary
Materials, Tables S5 and S6.

When all data types are considered (1 Hz bins, HRV, etc.), the patterns of change
from baseline are similar to those for the 63 BLINKER output measures shown in Figure 6
above (also see Figures S4 and S5)—namely, consistent increases from Slots 1, 2, 3 and
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4 (before and during stimulation), with subsequent decreases from Slots 5, 6 and 7 (post-
stimulation). The top two measures most affected, together with the Frequency, slot or
session pair for which they showed maximum values of the Conover–Iman statistic, are
listed in Table S8. Note that pairs are rarely consistent for the two measures. The most
commonly occurring pairs, i.e., greatest differences, were time ‘Slots’ 2–7 (four occurrences),
Sessions 1–4 (eight occurrences), and stimulation frequencies 2.5–80 pps (eight occurrences).
The effects of stimulation amplitude were not so easy to disentangle (a brief summary of
methods used and findings is provided in Appendix S3 in the Supplementary Material).

3.8. Bootstrapping Results

Because of the large number of variables/measures analysed in this study, it was not
feasible to bootstrap results for them all. Instead, bootstrapping was only applied to the top
two measures for each data type (as listed in Table S8 in the Supplementary Material). As
expected, 95% confidence intervals were much narrower (i.e., more precise) for Kendall’s
W (and Friedman’s Chi2) for the bootstrapped than the non-bootstrapped results. As an
example, in Figure S2 the median values of W are plotted for differences between time
‘Slots’ at each of the four stimulation frequencies for EEG power at channel P8 in the 1 Hz
EEG bin centred on 7.5 Hz (using the extended InfoMax algorithm for ICA and Thomson’s
multi-taper method to create the band/bin). For the non-bootstrapped results, the upper
confidence interval = 1, so it is not shown. Note that the median W is greater for the
bootstrapped results (maximal for sham stimulation) and is less for the non-bootstrapped
results (maximal for 10 pps).

3.9. Interactions Analysed Using the Hettmansperger–Elmore Test

Using the Hettmansperger–Elmore test, most of the different data types showed
interactions between session and stimulation frequency, indicating that despite having
allocated stimulation frequencies to sessions in a semi-randomised balanced order, there
are still effects specific to combinations of sessions and stimulation frequencies present
for unexplained reasons. Counts of p-values < 0.01 for the Hettmansperger–Elmore test
were transformed into percentages of all counts for each data type (e.g., of 2128 for 1 Hz
EEG median power bins, or of 63 for the EEG regional ratios). In general, the percentage
counts were lower for the measure differences (values normalised with respect to baseline)
than for the values themselves, but all were more than 70%. However, for three data types,
significant interactions were found between session and time slot (rather than between
session and stimulation frequency): MdnPwr_ASYMM_171 (86.0%), MdnPwr_ASYMM
(79.2%), and MdnPwr (78.1%), although these were only for differences, not for values.

Results for Objective 2. Are there meaningful and significant associations be-
tween parasympathetic/sympathetic indices and the different eyeblink and EEG-derived
data types?

Several HRV indices are widely accepted as indicating parasympathetic or sympathetic
modulation of heart rate [89]. In a 2021 conference poster [25], we proposed extending
this list, considering some indices to be ‘PNS-like’, others ‘SNS-like’, and a third group
‘ambivalent’, as shown in Table 2 (based on Tables in the online ‘Background Information’
for the poster). The measures listed are those included in the Kubios HRV software package.
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Table 2. ‘Core’ measures considered as indicating parasympathetic (‘PNS-like’) or sympathetic
(‘SNS-like’) modulation of heart rate, with a third group of ‘ambivalent’ measures, and others for
which this autonomic classification did not seem relevant. The occupational medicine guideline list
included as a comparison is from Sammito et al. (2024) [89] and does not consider the PNS, SNS, SI,
HFlog and LFlog, SD2/SD1, and EDR (‘electrocardiogram derived respiration’) indices provided by
Kubios HRV (so listed as ‘n/a’, not applicable).

Autonomic Classification HRV Indices Occupational Med Guideline

PNS-like

PNS n/a
SDNN PNS and SNS

RMSSD/SD1 PNS
NNxx PNS

pNNxx PNS
TI No clear assignment

TINN No clear assignment
HF% PNS

HFabs PNS
HFlog n/a
HFnu PNS

SampEn No clear assignment
CorrD (D2) No clear assignment

SNS-like

SNS n/a
SI n/a

LF% PNS and SNS
LFnu PNS and SNS

LF/HF ‘mental workload’
SD2/SD1 n/a
DFA α1 No clear assignment

Ambivalent

SDHR n/a
TotPwr No clear assignment
LFabs PNS and SNS
LFlog n/a
SD2 PNS and SNS

Other

HF.Hz No clear assignment
ApEn No clear assignment
EDR n/a

DFA α2 No clear assignment
See list of abbreviations below for an explanation of terms.

Spearman correlations between 39 HRV indices and BLINKER measures were then
investigated (including those in Table 2 and excluding 20 multiscale entropies in the
output from recent versions of the Kubios HRV software). Spearman’s rho was computed
before, during, and after stimulation at the four different frequencies. BLINKER measures
considered were the amplitude–velocity ratios (nAVRZ and pAVRZ), blink rate (BpM),
and the ratio of left to right channels providing the best blinks (LRBR). Correlations with
the blink rate were consistently positive for the HRV SNS-like measures and negative for
the PNS-like measures. Correlations with BLINKER durations, nAVRZ, and pAVRZ were
less consistently associated with one or the other, and LRBR appeared almost uniformly
PNS-like (except for in the 10 pps group at baseline). The results—excluding durations,
durations, nAVRZ, and pAVRZ—are shown in Table 3.
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Table 3. Spearman correlations between Kubios HRV and BLINKER measures, with 0.2 < Spearman’s
|rho| < 0.3 (if |rho| ≥ 0.3, as for several correlations with BpM, this is indicated). HRV indices in red
are considered to be ‘SNS-like’, those in blue ‘PNS-like’, and those in italic type as ‘other’.

Pre-Stim-Post pps BLINKER Measures Negative rho Positive rho

Pre

Sham n/a n/a n/a

2.5 BpM n/a EDR

10 LRBR LF%

80 LRBR n/a
SDNN, TINN, TI, PNS,
RMSSD, SD1, HFAbs,

HFlog

Stim

Sham BpM

HFabs and log pwr,
SD1 and RMSSD,

NNxx, pNNxx, D2,
ApEn and SampEn

[<−0.3]

LF/HF, LFnu, SD2/SD1,
DFA α1, SNS

2.5
BpM

LRBR
n/a

SNS, SD2/SD1, DFA α1

RMSSD, SD1, HFabs,
HFlog

10
BpM

LRBR
n/a

LF/HF, LFnu, DFA α1

LFAbs, LFlog

80 LRBR n/a
PNS, NNxx, pNNxx,

HFabs, HFlog, Totpwr,
RMSSD, SD1, TINN, SD2

Post

Sham

BpM

LRBR

SD1, RMSSD and
pNNxx [<−0.3]

PNS, HFabs and HFlog,
D2, TI and PNS

SNS, SD2/SD1, DFA α1

PNS (>0.2)

2.5 n/a n/a n/a

10 BpM

SD1, RMSSD, HF abs
and HF log, NNxx,

pNNxx, TI, HF% and
HFnu; and PNS

(<−0.3); D2

SD2/SD1, LFnu, LF/HF,
DFA α1, DFA α2;

SNS (>0.3)

80

BpM

LRBR

NNx [<−0.03]

SNS, SD2/SD1, DFA α2
(>0.2)

PNS, SDNN, TI, SD1,
RMSSD and TINN, SD2,

SDHR

See list of abbreviations below for an explanation of terms.

The following correlations with |rho| > 0.3 were also noted: (a) five negative between
the standard deviation of good blink duration and various SNS-like measures (SI, HRmin,
Hrmean, and SNS itself) and also five negative between ‘goodRatio’ (the ratio of good to
all blinks) and various PNS-like measures (RMSSD/SD1, D2, NNxx, and pNNxx), all of
these mostly at baseline and preceding sham stimulation; (b) 17 positive, of which 11 were
between the standard deviation of good blink duration and PNS-like measures (3 of these
at baseline and before sham stimulation and 8 post-stimulation at 2.5 pps). Correlations
between the HRV indices and other data type measures are presented in the Supplementary
Material, Appendix S4.
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3.10. ‘Best’ Blink Laterality and Autonomic Modulation of HRV

For our study participants, many more ‘best’ blinks occurred on the left than on the
right (1031 for channel Fp1, 735 for Fp2, 50 for F7, and 19 for F8, with 11 each for F3 and F4).
This pattern was found consistently, irrespective of session (1 to 4), stimulation frequency
(Sham, 2.5, 10, or 80 pps), and time slot (1 to 8). However, counts of left and right best
blinks over time within sessions indicated that the ratio of these counts (LRBR) differed
most significantly from the median during rather than before or after stimulation (Figure 7).

 

Figure 7. Counts of left and right best blinks over time (Slots 1 to 8), showing p-values for the binomial
test of difference in distribution between left and right blinks.

Furthermore, counts of left and right best blinks were most different for stimulation
at 10 pps, followed by 2.5 pps, and were not significantly different for sham stimulation
(Figure 8).

 

Figure 8. Counts of left and right best blinks for the different stimulation frequencies (all slots taken
together), for data split by stimulation frequency, with p-values for the binomial test of difference in
distribution between left and right blinks. Note the lack of significance for sham stimulation.
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In summary, differences in counts of left and right ‘best’ blinks did not achieve statisti-
cal significance at baseline (Slot 1) or at the start of stimulation (Slot 2). Count differences
were largest during the middle 10 min of stimulation and then stabilised, with smaller
p-values. When data were split by stimulation frequency, the binomial test yielded sig-
nificant results during stimulation only for all frequencies, apart from 2.5 pps, for which
differences remained significant immediately post-stimulation (Slot 6). As stated by Kleifges
et al. (2017) [3], a continuing theme in research on ocular indices is that significant differ-
ences are found between individuals, but with consistent patterns in conditions such as
perceived sleepiness. Here, we found that significant left blink dominance was found in
14 of our study participants, but significant right blink dominance only in 3 (significance
assessed using the binomial test of difference in distribution between left and right blinks).
Mann–Whitney tests were also conducted for the 39 Kubios HRV indices, using left or right
laterality as the grouping variable. Significant differences for best blink laterality are shown
in Table 4.

Table 4. Counts of significant differences in 39 HRV indices between left (‘1’) and right (‘0’) laterality
groups before, during, and after stimulation at the four different frequencies.

L1 v. R 0 Baseline Stimulation Post-Stimulation
p < 0.05 p < 0.01 p < 0.05 p < 0.01 p < 0.05 p < 0.01

Sham 12 0 2 0 2 0

2.5 0 0 25 18 3 0

10 0 0 0 0 6 0

80 0 0 1 0 7 0

Note that left/right laterality patterns were significantly different, with p < 0.01 for
18 HRV measures only during stimulation at 2.5 pps.

Of these 18 measures, 7 could be classified with some confidence as ‘PNS-like’ (plus
a further two with less confidence), 3 as ‘SNS-like’, and a further 6 as ‘other’ (Table 5).
As described above, the effect size (ES) was calculated for each Mann–Whitney test as
|Z|/

√
(n), where Z = the Z-score and n = the number of participants involved.

Note that values of all three SNS-like measures in this Table were greater for right
laterality, whereas of the PNS-like measures, this was the case only for SampEn, one of the
two measures with least evidence for its PNS-like classification (the other being Correlation
Dimension, D2). Post-stimulation, all frequencies taken together, only PNS was significantly
different with laterality (p = 0.005, Z = −2.801, U = 49,611.5, N = 681). The median PNS
was larger (−0.624) for left-dominant blink and smaller (−0.805) for right-dominant blink,
in keeping with the results in the above table. However, SNS, SI, SD2/SD1, DFA α1,
and several frequency-domain measures also differed with laterality exactly as in Table 5,
although with less significance (p < 0.05 rather than 0.01). Regardless of p-values, for these
comparisons, the effect sizes shown were all between 0.1 (‘small’) and 0.3 (‘moderate’) [90],
a useful reminder that even small p-values do not always provide a complete picture.
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Table 5. The eighteen measures for which left/right laterality patterns were significantly different,
with p < 0.01 during stimulation at 2.5 pps. R > L indicates those measures which were greater for
right laterality, and L > R those which were greater for left laterality. See list of abbreviations and our
2021 conference presentation [25] for further information.

Measures Classification p-Values ES L > R or R > L
SNS SNS-like 0.006 0.179 R > L

SI SNS-like <10−4 0.261 R > L
SDNN PNS-like <10−3 0.232 L > R
HRmin SNS-like 0.003 0.192 R > L
RMSSD PNS-like 0.006 0.182 L > R
NNxx PNS-like 0.007 0.176 L > R

pNNxx PNS-like 0.008 0.174 L > R
TI PNS-like 0.008 0.175 L > R

TINN PNS-like <10−3 0.248 L > R
LFabs Other <10−3 0.241 L > R
LFlog Other <10−3 0.241 L > R

TotPwr Other <10−3 0.235 L > R
SD1 PNS-like 0.006 0.182 L > R
SD2 Other <10−3 0.230 L > R

ApEn Other 0.001 0.220 R > L
SampEn PNS-like 0.009 0.172 R > L
DFA α2 Other 0.005 0.185 R > L

D2 PNS-like 0.001 0.219 L > R

3.11. Autonomic Associations for the Other Data Types

As noted above (Table 3), absolute values of Spearman’s rho for correlations between
Kubios HRV and BLINKER measures were mostly between 0.2 and 0.3, for data split into
baseline/stimulation/post-stimulation and by stimulation frequency. Very few values of
rho lay outside that range. In contrast, for the spectral centroids in the ‘centroids’ data
type, many values of |rho| were > 0.3. When only these were considered, the following
patterns emerged:

Positive correlations with HRV measures only occurred for Baevsky’s SNS-like ‘Stress
Index’ (SI) [91], while negative correlations were all either with PNS-like measures (HFabs,
NNxx, RMSSD, etc.) or with ‘ambivalent’ measures such as SDHR or total power. Further-
more, these correlations occurred only at 6 of the 19 scalp electrodes, Cz, P7, P3, Pz, P4, and
P8, with most at those on the midline (Cz and Pz).

Correlations (median values of |rho|) were greatest before stimulation, decreasing
thereafter, and were also lower for sham than for the active stimulation frequencies.

Further analysis of correlations between the HRV indices and data type measures is
presented in Appendix S4 in the Supplementary Materi, ‘Autonomic Correlates with Other
Data Types’. However, scatter plots did not suggest that the correlations found would be
of any great use, practically, as they showed no obvious patterns, even for Spearman’s
correlations with p < 0.001.

Results for Objective 3. Are measures predictive of participant dropout or adverse
reactions to stimulation?

3.12. Dropout

At baseline (Session 1, Slot 1), Mann–Whitney tests indicated that measures of all data
types, bar one, including BLINKER and CEPS-BLINKER, as well as questionnaire and
scale scores, did not show significant differences between those who subsequently dropped
out (6) and those who did not (60) (some reasons for dropping out are given in the next
section). In contrast, eight HRV measures at baseline did appear to predict subsequent
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dropout, including DFA α2 with an effect size of 0.366 (p = 0.008), RR, and mean HR with
ES 0.349 (p = 0.006). Heart rate was—perhaps surprisingly—lower at baseline in those who
subsequently dropped out than in those who did not. However, the fact that multiple
comparisons are being carried out should be considered when interpreting these findings,
and caution applied.

3.13. Adverse Reactions

Participants were encouraged to report feeling uncomfortable at any time and were
also asked to report any adverse reactions after taking part in the study. Six women
and six men did so, whereas fifty participants did not. Physical reactions were mostly
minor, including transient nausea, dizziness, or feeling tired, or general discomfort due
to the room being too hot. Some participants found skin preparation for the EEG data
collection uncomfortable, and nine participants indicated that wearing the EEG cap was
itself uncomfortable, resulting in a transient headache for two. At least two reported pins
and needles in the hands following electrical stimulation, but this did not last more than a
few hours and was not experienced after all four sessions. Three stated that they felt faint
towards the end of one session but nonetheless returned for further sessions without further
problems. One participant who had previously suffered from a vestibular condition and had
experienced a short spell of dizziness in the week prior to the study reported more lasting
dizziness following stimulation to the hands and so withdrew from the study following
their first session. Another who found ‘the whole situation stressful and unpleasant’ also
withdrew after the first session. A third participant withdrew after the first session, without
explanation, and a further participant did not attend for their fourth session. Two others
also left the study early. Twelve participants were asked, during their sessions, if they
could slow their blinking rate, and one attempted to do so without prompting. Eight of
the twelve participants reported spontaneously that they found wearing the electrode cap
uncomfortable, as did one other. Three participants experienced a headache, and three
experienced tiredness following the sessions. One of the latter likened symptoms of general
achiness and low mood to those of possible fibromyalgia experienced two years earlier and
then dropped out of the study. Three others felt faint (two of them with accompanying
nausea) but recovered and continued to take part.

However, again at baseline, no BLINKER measures predicted subsequent adverse
effects, whereas 17 CEPS-BLINKER did so, with p < 0.01 and ES between 0.336 and 0.420
(Table 6). In contrast, no questionnaire results predicted adverse effects or dropout with
this level of significance. However, a number of other data types, like CEPS-BLINKER, also
appeared to predict subsequent adverse effects (Table 7).

Table 6. CEPS-BLINKER measures that appear to predict subsequent adverse effects, using Mann–
Whitney tests with p < 0.01. Median values of the measures and their interquartile ranges are shown
in the final two columns, with the greater value for each measure in bold.

CEPS-BLINKER
Measure p-Value < 0.01 ES Adverse Effects No Adverse Effects

Amplitude_FD_AvRVA 0.004 0.372 1.168 1.228 (1.193,1.270)

CCM_AvRVA 0.008 0.339 0.222 0.289 (0.232, 0.348)

DFA_MATS_dHB 0.005 0.355 0.714 0.462 (0.233, 0.695)

DFA_MATS_dHZ 0.004 0.370 0.776 0.538 (0.242, 0.739)
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Table 6. Cont.

CEPS-BLINKER
Measure p-Value < 0.01 ES Adverse Effects No Adverse Effects

FD_Linden_Box_AvRVA 0.007 0.342 1.662 1.758 (1.670, 1.820)

HjorthC_cTT 0.007 0.346 1.258 1.180 (1.126, 1.253)

HjorthC_cTZ 0.004 0.365 1.269 1.189 (1.1–7, 1.235)

HjorthC_dB 0.003 0.375 1.287 1.183 (1.128, 1.263)

HjorthC_dHB 0.005 0.360 1.312 1.220 (1.125, 1.290)

HjorthC_dHZ 0.008 0.339 1.345 1.221 (1.133, 1.310)

HjorthC_dT 0.002 0.394 1.385 1.217 (1.119, 1.299)

HjorthC_dZ 0.001 0.420 1.408 1.205 (1.128, 1.287)

HjorthC_AvRVA 0.001 0.420 1.429 1.270 (1.179, 1.333)

HjorthM_dT 0.009 0.336 1.134 1.366 (1.273, 1.496)

HjorthM_dZ 0.003 0.387 1.147 1.393 (1.235, 1.505)

HjorthM_AvRVA 0.003 0.375 1.157 1.359 (1.215, 1.424)

Hurst_H_AvRVA 0.006 0.353 0.761 0.564 (0.466, 0.717)
Key: Measures in this table are named according to the CEPS measure (e.g., ‘Amplitude_FD’) applied to a selected
BLINKER time series (e.g., ‘AvRVA’). The abbreviations used are listed in the Supplementary Material.

Table 7. Other data type measures that appear to predict subsequent adverse effects, using Mann–
Whitney tests with p < 0.01. Median values of the measures and their interquartile ranges are shown
in the final two columns, with the greater absolute value for each measure in bold.

Data Type p-Value < 0.01 ES Adverse Effects No Adverse Effects
Cordance (6 of 8148) (<1%)

CorN_Beta_T5Inf_mT_s 0.003 0.378 −0.326
(−0.525, −0.235)

0.245
(−0.062, 0.427)

CorN_Alpha_P3Inf_mTR_s 0.007 0.342 0.465
(0.446, 0.712)

0.268
(0.131, 0.363)

CorN_Beta_T5Inf_mTL_ln 0.003 0.382 −0.312
(−0.496, −0.214)

0.257
(0.102, 0.424)

CorN_Alpha_P3Inf_mTR_ln 0.008 0.335 0.471
(0.451, 0.652

0.275
(0.146, 0.368)

SQzTInf_mT_Theta4_8_P4 0.005 0.360 −1.930
(−2490, −1.533)

−0.543
(−1.086, 0.100)

LNzTInf_mT_Theta4_8_P4 0.005 0.360 −1.931
(−2.520, −1.621)

−0.505
(−1.088, 0.157)

Hjorth parameters (1 of 228) (<1%)

HjorthM_P3 0.009 0.263 0.139
(0.117, 0.151)

0.167
(0.153, 0.191)

Wackermann descriptors (11 of 3188) (<1%)

Omega_21_I 0.008 0.339 7.354
(6.500, 8.397)

9.748
(8.669, 10.631)

Omega_23_A 0.006 0.351 7.622
(4.820, 8.510)

10.305
(9.115, 10.855)

Omega_26_A 0.003 0.384 6.388
(4.820, 7.944)

10.155
(9.127, 10.948)

Omega_36_A 0.002 0.392 6.064
(4.022, 8.212)

10.162
(9.036, 11.015)

Omega_71_A 0.004 0.377 6.240
(4.843, 7.803)

10.085
(8.878, 10.940)

Phi_26_I 0.005 0.358 11.677
(9.441, 13.356)

16.498
(14.187, 18.847)

Phi_29_I 0.007 0.347 12.150
(10.382, 12.818)

16.763
(14.366, 18.534)

Phi_30_I 0.006 0.351 11.682
(10.458, 13.560)

16.118
(14.036, 18.516)

Phi_73_I 0.008 0.351 11.586
(10.965, 13.243)

16.364
(14.117, 18.824)
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Table 7. Cont.

Data Type p-Value < 0.01 ES Adverse Effects No Adverse Effects

Phi_26_A 0.004 0.369 10.543
(8.684, 13.206)

16.159
(14.079, 18.307)

Phi_36_A 0.005 0.362 10.085
(6.447, 12.873)

16.379
(13.741, 18.413)

1 Hz bins (1 of 2128) (<1%)

P8_10.0_A_PS_mT 0.008 0.335 44.490
(43.424, 50.817)

38.729
(34.363, 42.168)

Asymmetry (1 of 602) (<1%)

R_L_O80 [4,58] 0.008 0.335 3.305
(1.322, 5.363)

−0.844
(−2.524, 0.829)

Median (IQR) 0.006
(0.004, 0.008)

0.355
(0.341, 0.371)

Max ES
0.392

CEPS-BLINKER (17 of 1020) (1.67%)

Median (IQR) 0.004
(0.003, 0.007)

0.365
(0.346, 0.375)

Max ES
0.420

Note that the largest effect sizes (0.420) were both for Hjorth complexity variants of
the standard BLINKER indices.

Note that both maximum and median effect sizes are greater for CEPS-BLINKER
than for the other data types, and that the percentage of measures showing significant
differences between those that appear to predict subsequent adverse effects and those that
do not is also greater for CEPS-BLINKER.

4. Discussion
This study explored the effects of transcutaneous electroacupuncture stimulation

(TEAS) on eyeblink rate and other parameters, electroencephalography (EEG), and heart
rate variability (HRV). Using a range of non-parametric statistical methods, we analysed
physiological responses to different TEAS frequencies, session orders, and time slots within
sessions. For the majority of data types analysed, the test statistics and effect sizes were
greater when comparing time slots within sessions than when comparing stimulation
frequency or session order (see Table 1, Figures S6, S7, S23, S25, and S26). As shown in
Figure 6, early changes (between Slots 1 and 3) appear to be greater for 80 pps stimulation
(in line with reports on high-frequency TENS in the literature [31]), with a cumulative effect
for all TEAS frequencies after 20 min of stimulation, although this was most consistently
maintained only for 10 pps stimulation thereafter. Our key findings suggest that TEAS
exerts significant influences on eyeblink parameters, EEG power spectra, and HRV indices.
Notably, eyeblink measures, often disregarded as artefacts in EEG research, emerged as
potential indicators of TEAS effects and autonomic modulation.

One of the novel contributions of this study is the identification of eyeblink parameters
as useful physiological markers in acupuncture-related research. Blink rate (BpM) was
found to correlate positively with HRV indices associated with sympathetic nervous system
(SNS) activity and negatively with parasympathetic nervous system (PNS)-related indices.
These correlations reinforce the hypothesis that eyeblink dynamics may reflect autonomic
balance, particularly in response to TEAS. Additionally, the laterality of ‘best’ blinks (i.e.,
those whose trajectory was closest to that of a stereotypical blink) exhibited significant
associations with autonomic modulation, particularly during 2.5 Hz stimulation. Right-
dominant blink patterns were more strongly correlated with SNS-like measures, whereas
left-dominant blink patterns were associated with PNS-like measures. These findings
align with previous research suggesting that eyeblink asymmetries may be influenced by
neurological or neurochemical states.

In recent years, a number of researchers have investigated correlations between EEG
features and HRV or stress measures [47,48,51]. There is also increasing interest in using
HRV itself as a biomarker of altered autonomic function. In one critical review, for ex-
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ample, negative affect (emotion or mood) was found to be associated with a reduction in
parasympathetic activity as assessed using HRV [92]. Additionally, there is a growing body
of literature on the effects of EA and TEAS on HRV (see, for example, the literature review
in [93]). The authors of one study found that low-frequency EA (2.5 Hz) showed a measur-
able reduction in sympathetic stress with subsequent improvement in vagal tone, whereas
medium-frequency EA (15 Hz) elicited changes in all HRV markers, but these failed to
achieve statistical significance [94]. In an earlier study, 2 Hz EA appeared to increase
vagal activity, whereas 15 Hz EA increased sympathetic activity [95]. Other researchers
found a significant increase in the standard deviation of the normal-to-normal heart rate
interval (SDNN), usually considered an index of parasympathetic modulation, following
120 Hz EA, with no such change following the 2 Hz EA group [96]. Such findings suggest
inconsistencies in the literature that invite further investigation, particularly regarding a
central FFR to peripheral stimulation such as TEAS. An incidental finding in the present
study was that a more positive mood at baseline might be associated with a decrease in
markers of SNS HRV modulation with stimulation (Supplementary Material, Appendix S4).
This again suggests further avenues to explore.

Our results demonstrate that TEAS frequency significantly affects EEG power, partic-
ularly within the 1 Hz bins and median power asymmetries, but has less effect on more
abstruse measures such as cordance or the Wackermann global descriptors for the 4 sec
segments in each 5 min slot (Table S9). The maximum effect sizes were observed in EEG
bands associated with sensory and cognitive processing, particularly at lower stimulation
frequencies. This finding may support some prior research indicating that low-frequency
electroacupuncture (EA) preferentially enhances vagal activity, whereas higher frequencies
may have mixed or less pronounced effects, but provides little evidence in favour of—or
against—a central (EEG) FFR in response to TEAS as a form of ‘brain entrainment’.

HRV analysis revealed that 2.5 Hz TEAS elicited the most significant autonomic
changes, primarily increasing vagal tone while reducing sympathetic activity. These results
align with other research suggesting that low-frequency stimulation modulates autonomic
balance in a way that promotes relaxation and stress reduction [97]. Conversely, higher
stimulation frequencies, particularly 80 pps, showed less consistent effects on HRV markers,
further highlighting the need for a more nuanced understanding of frequency-dependent
autonomic modulation.

The methodological approach employed in this study was largely exploratory, utilising
non-parametric methods such as Friedman’s test, Kendall’s W, and bootstrapped Wilcoxon
and Conover–Iman tests. Given the non-normal distribution of most measures, these
approaches provided a robust means of detecting significant effects while reducing the risk
of Type I (false positive) and Type II (false negative) errors. Effect size measures (Kendall’s
W and Spearman’s rho) proved particularly valuable in quantifying physiological changes
over time, across TEAS frequencies, and between sessions. However, one challenge in
dealing with a large dataset encompassing over 15,000 measures was the need for ‘top
slicing’ to identify the most relevant physiological markers. Various slicing methods
produced consistent rankings, suggesting that our approach was reliable. Nonetheless,
given the multiple comparisons issue, our results should be interpreted with caution, and
future studies should consider refining statistical methods and feature selection criteria to
enhance reproducibility and interpretability.

A key objective of this study was to determine whether physiological markers could
predict participant dropout or adverse reactions to TEAS. Notably, baseline HRV measures,
particularly DFA Alpha2 and mean heart rate, differentiated those who subsequently
withdrew from those who completed all sessions. Additionally, CEPS-derived BLINKER
measures outperformed standard EEG and HRV indices in predicting adverse effects,
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suggesting that complexity and entropy analyses of eyeblink parameters may serve as early
indicators of discomfort or sensitivity to unfamiliar sensations such as those of electrical
stimulation. Furthermore, it is somewhat easier to calculate CEPS-BLINKER measures than
those derived from the EEG itself, which in general require time-consuming preprocessing.
Indeed, some eyeblink measures could potentially be assessed from video rather than
EEG recordings. It may therefore be worth considering the CEPS-BLINKER method of
predicting adverse events in other research.

5. Conclusions
Firstly, for the majority of data types analysed, whether derived from eyeblink pa-

rameters, EEG measures or HRV indices, test statistics and effect sizes were greater for the
effects of time (differences between baseline, stimulation and post-stimulation phases, for
example) than for those of stimulation frequency or session order. Secondly, significant
autonomic (PNS or SNS) correlates for some eyeblink parameters and EEG measures ap-
pear likely. Thirdly, HRV and CEPS-derived BLINKER measures at baseline were early
indicators of subsequent adverse effects.

This study provides novel insights into the physiological effects of TEAS, highlighting
the utility of some eyeblink parameters, measures based on EEG power asymmetries, and
HRV indices in understanding acupuncture mechanisms. Our findings suggest that TEAS
effects are frequency-dependent, with 2.5 Hz stimulation demonstrating the most consistent
autonomic modulation. Eyeblink laterality and CEPS-BLINKER measures emerged as
promising, though as yet underutilised, biomarkers of TEAS effects. Future research should
focus on integrating these markers into broader frameworks of acupuncture efficacy and
patient safety monitoring.

Eyeblink indices could serve as biomarkers for acupuncture effects, with HRV mea-
sures at baseline predicting participant dropout and adverse reactions better than EEG-
derived indices. These results demonstrate that TEAS modulates brain activity and auto-
nomic function in a frequency-dependent manner and that eyeblink measures, traditionally
seen as artefacts, may hold diagnostic and research value. Given their strong correlation
with autonomic indices here, further studies should validate their potential as non-invasive
biomarkers in acupuncture and other neuromodulation research.

The differential effects of TEAS frequencies on HRV indices suggest that individu-
alised frequency selection may optimise therapeutic outcomes, particularly for conditions
involving autonomic dysregulation. Future research should explore whether TEAS-induced
changes in EEG asymmetry correspond to clinical improvements in cognitive and affective
disorders. Another avenue to explore is how data length affects different measures. Here,
we used 5 min recordings. In parallel studies, time ‘Slots’ 1, 4, and 7 were subdivided into
10 s epochs, resulting in different shortlists of potentially useful measures [29,30], with
further reports in preparation. It is anticipated that some measures may provide significant
results at both timescales. A next step will be to compare results using the measures from
the different shortlists to determine which approach is likely to be the most fruitful, or
whether they are complementary.

Our findings suggest that CEPS-enhanced eyeblink analysis could be applied in
clinical trials to predict and mitigate adverse responses to electroacupuncture or other
neuromodulatory interventions.

Innovation and Limitations

The conclusions of this study are derived from analysing a plethora of measures drawn
from a relatively small sample of 66 participants. Many of these measures have not been
used before in acupuncture-related research, and indeed some data (e.g., that collected
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from head movement sensors) are only now being analysed. Data were recorded in less-
than-perfect circumstances (varying lab temperature, external noise, occasional requests to
slow down EBR), and effect sizes were often small, if not very small. Nonetheless, patterns
of response were sufficiently uniform (often strikingly so) that we hope this study will
encourage other researchers to develop and refine our findings using a larger sample of
individuals and a smaller selection of measures derived from eyeblink, EEG, and ECG data.
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Abbreviations
Abbreviations of BLINKER and CEPS terms are listed in Tables S2A and B in the Supplementary
Material, with other abbreviations used in the Supplementary Material but not in the main paper also
listed there.Further abbreviations used in this paper:

ECG/PPG Measure or term Abbreviation

Electroencephalography ECG

https://www.mdpi.com/article/10.3390/s25144468/s1
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Photoplethysmography PPG

HRV Measure or term Abbreviation

Approximate entropy ApEn

Correlation dimension D2 (or CorrD)

Detrended fluctuation analysis alpha 1

(short-term fluctuation slope)
DFA α1

Detrended fluctuation analysis alpha 2

(long-term fluctuation slope)
DFA α2

Electrocardiogram-derived respiration EDR

Relative power in the high-frequency band HF%

Peak frequency in the high-frequency band HF.Hz

Absolute power in the high-frequency band HFabs

Log-transformed high-frequency power HFlog

High-frequency power in normalised units HFnu

Relative power in the low-frequency band LF%

Heart rate (maximum, mean, minimum)
HR. HRmax,

HRmean, HRmin

Absolute power in the low-frequency band LFabs

Log-transformed the low-frequency power LFlog

Low-frequency power in normalised units LFnu

Ratio of low and high-frequency band powers LF/HF

Number of successive RR interval pairs that

differ by more than xx milliseconds (ms)
NNxx

NNxx divided by the total number of RR intervals pNNxx

Parasympathetic nervous system PNS

Square root of mean squared differences

between successive RR intervals (also = SD1)
RMSSD

Sample entropy SampEn

Standard deviations of Poincaré plot

perpendicular to (SD1) and

along (SD2) line-of-identity

SD1, SD2

Ratio of SD2 and SD1 SD2/SD1

Standard deviation of heart rate SDHR

Standard deviation of RR intervals SDNN

Stress Index SI

Sympathetic nervous system SNS

Triangular index TI

Triangular interpolation of NN interval histogram TINN

Sum of HF, LF, and very low-frequency power TotPwr

Nonlinear HRV measures HRV_Nonlin

Other HRV and PRV measures HRV_PRV

EEG Measure or term Abbreviation
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EEG Channels in the 10–20 system, as

in ‘SQzTInf_mT_Theta4_8_P4’

Fp1, Fp2, F7,

F3, Fz, F4, F8,

T7 (T3), C3,

Cz, C4, T8

(T4), P7 (T5),

P3, Pz, P4,

P8 (T6), O1, O2

Median power, as in

‘1 Hz_MdnPwr_bins’ or

‘Mdnpwr_ASYMM’ [or

ASYMM_171, where ‘171’

refers to binning method used]

MdnPwr

Asymmetry, as in ‘Mdnpwr_ASYMM’ ASYMM

Multi-taper, alternative

to Fourier transform for

time-frequency analysis

(as in ‘[channel]_

[stimulation frequency]

_A_PS_mT’)

mT

Variant of mT mTR

Other (frequency) O

1 Hz bin centred on frequency, at channel O[frequency]_Channel

Theta band between 4 and 8 Hz Theta4_8

AMICA A

Extended InfoMax I

Independent component analysis ICA

Wackermann omega at epoch number, AMICA Omega_[number 1 to 75]_A

Wackermann omega at epoch number, InfoMax Omega_[number 1 to 75]_I

Wackermann phi at epoch number, AMICA Phi_[number 1 to 75]_A

Wackermann phi at epoch number, InfoMax Phi_[number 1 to 75]_I

Hjorth and Wackermann measures

(median Slot values)
Hjorth_Wack’mn

DFA from measures of

analysis of time series

(MATS) software

DFA_MATS

Data processed using Paul Steinfath’s pipeline PS

Cordance Measure or term Abbreviation

Normalised, as in ‘CorN_Alpha_P3Inf_mTR_ln’ CorN

Natural logarithm, as in ‘CorN_

Alpha_P3Inf_mTR_ln’
ln

‘score’ (??), as in ‘CorN_Alpha_P3Inf_mTR_s’ s
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InfoMax ICA, as in ‘CorN_

Alpha_P3Inf_mTR_ln’ or

‘SQzTInf_mT_Theta4_8_P4’

Inf

EEG band, as in ‘CorN_

Alpha_P3Inf_mTR_ln’

Delta, Theta, Alpha,

Beta, Gamma

Square-root normalised and

Z-transformed, as in ‘SQzTInf_mT_Theta4_8_P4’
SQzT

Ocular Measure or term Abbreviation

Blinks per minute BpM

Temperature Measure or term Abbreviation

Temperature TEMP

Statistics Measure or term Abbreviation

Interquartile range IQR

Kendall’s coefficient of concordance, its maximum W, Wmax
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