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Abstract

As large language models (LLMs) and vision-language models (VLMs) become increasingly
used in robotics area, a crucial question arises: to what extent do these models replicate
human-like cognitive processes, particularly within socially interactive contexts? Whilst
these models demonstrate impressive multimodal reasoning and perception capabilities,
their cognitive plausibility remains underexplored. In this study, we address this gap
by using human visual attention as a behavioural proxy for cognition in a naturalistic
human-robot interaction (HRI) scenario. Eye-tracking data were previously collected
from participants engaging in social human-human interactions, providing frame-level
gaze fixations as a human attentional ground truth. We then prompted a state-of-the-
art VLM (LLaVA) to generate scene descriptions, which were processed by four LLMs
(DeepSeek-R1-Distill-Qwen-7B, Qwenl1.5-7B-Chat, LLaMA-3.1-8b-instruct, and Gemma-
7b-it) to infer saliency points. Critically, we evaluated each model in both stateless and
memory-augmented (short-term memory, STM) modes to assess the influence of temporal
context on saliency prediction. Our results presented that whilst stateless LLaVA most
closely replicates human gaze patterns, STM confers measurable benefits only for DeepSeek,
whose lexical anchoring mirrors human rehearsal mechanisms. Other models exhibited
degraded performance with memory due to prompt interference or limited contextual
integration. This work introduces a novel, empirically grounded framework for assessing
cognitive plausibility in generative models and underscores the role of short-term memory
in shaping human-like visual attention in robotic systems.

Keywords: human attention modeling; LLMs; VLMs; human-robot interaction; human—
computer interaction; personalised large language models; adaptive Al systems; Al agent;
short-term memory

1. Introduction

The emergence of LLMs and VLMs and their abilities in tasks involving multimodal
perception, semantic understanding, and contextual reasoning affects various domains like
robotics. In this case, particularly in socially interactive scenarios, there is growing interest
in utilising these models to enhance robots’ cognitive and perceptual functions [1,2]. VLMs
like LLaVA can generate rich visual scene interpretations, whilst LLMs provide advanced
reasoning abilities which making them attractive candidates for robotic systems that need
to perceive, understand, and respond to complex human behaviours. However, a critical
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question remains: to what extent can these models replicate actual human cognition and
behaviour in real-world HRI?

Exploring this question, we focus on one fundamental and measurable aspect of
human cognition, visual attention, which plays a central role in perception, social commu-
nication, and decision-making. In addition, visual attention guides humans in prioritising
stimuli, interpreting interactions, and reacting appropriately to social cues. It is therefore a
meaningful proxy for evaluating how closely Al models can mimic human behaviour in
HRI [2]. In this study, we use human gaze behaviour, recorded through eye-tracking during
a live social HRI scenario, as a benchmark for assessing the alignment between Al-driven
attention predictions and real human attention. Our approach consists of two main stages:
first, we conduct an empirical study to collect eye-tracking data from participants involved
in a multi-party human-human social interaction. This gaze data represents the ground
truth for human social attention. Second, we input the video footage of the same interaction
into a VLM to extract detailed, frame-by-frame visual descriptions. These descriptions
are then passed to several state-of-the-art LLMs, which are prompted to simulate the role
of the human participant and estimate where their attention would be directed across
the interaction.

Although many of these models are based on similar transformer architectures, they
differ substantially in terms of training data, objectives, fine-tuning methods, and multi-
modal integration strategies. For example, GPT-based models are often trained on broad
general-purpose corpora with reinforcement learning from human feedback, whilst other
models might be tuned on task-specific datasets or use alternative mechanisms for visual—-
language alignment. VLMs further vary in how visual and textual modalities are fused, how
attention mechanisms are employed across modalities, and what kind of visual grounding
is performed. These differences can significantly influence how a model interprets and
prioritises elements within a scene. In robotics, socially proper responses are essential,
such variability can have deep effects on system performance. Therefore, it is crucial to
find which models are suited for mimicking human behaviour, particularly in interactive
scenarios where human-like attention and perception are key to successful robot behaviour.

In this work, we aim to find which models produce attention patterns most aligned
with human cognition by comparing the Al-generated attention predictions with actual
human gaze data. This evaluation not only offers insight into the cognitive plausibility of
different Al models but also provides practical guidance for researchers and engineers in
selecting appropriate models for use in robotic perception and cognition modules. Ulti-
mately, our work contributes a novel, behaviourally grounded framework for evaluating
generative Al models in robotics and highlights the importance of aligning artificial at-
tention mechanisms with human attentional behaviour to enable more natural, effective,
and socially intelligent HRI.

2. Related Work
2.1. Theoretical Foundations of Cognitive Plausibility

Cognitive plausibility refers to the degree to which artificial systems replicate the
underlying computational processes, representational structures, and behavioural patterns
characteristic of human cognition [3,4]. Unlike mere performance matching, cognitive plau-
sibility demands that Al systems achieve human-like outcomes through mechanisms that
align with established principles of human cognitive architecture. This distinction is crucial
for developing Al systems that can effectively collaborate with humans, as cognitively plau-
sible systems exhibit predictable, interpretable, and contextually appropriate behaviour.

Visual attention serves as a particularly valuable proxy for cognitive plausibility due
to its direct relationship with underlying cognitive processes and measurable behavioural



Sensors 2025, 25, 4687

30f28

manifestations [5,6]. The eye-mind hypothesis posits that gaze fixations reflect the cur-
rent focus of cognitive processing, with fixation locations and durations indicating the
information being actively processed [7]. The attention—action coupling principle suggests
that attentional allocation directly influences subsequent behaviour, making gaze patterns
predictive of cognitive intentions [8]. These theoretical foundations provide the basis for
using human gaze patterns as benchmarks for evaluating Al cognitive alignment.

The assessment of cognitive plausibility encompasses multiple dimensions of hu-
man cognitive processing. Attentional plausibility requires that artificial systems allocate
attention according to human-like priorities and mechanisms, reflecting the selective,
capacity-limited nature of human attention [9]. Memory plausibility involves replicating
the temporal dynamics, capacity constraints, and interference patterns characteristic of
human memory systems [10,11]. The integration of these dimensions provides a compre-
hensive assessment that goes beyond simple performance matching, enabling evaluation
of whether Al systems employ computationally similar mechanisms to human cognition.

2.2. Computational Models of Visual Attention

Recently, significant efforts have been made to understand and model human visual
attention, particularly within interactive social scenarios involving robots. A foundational
study by [12] introduced a computational gaze-control system driven by empirical human
gaze data collected via eye-tracking to present an insight into aligning robotic perception
systems with human visual attention, highlighting the importance of understanding gaze
behaviours in HIRs. Additionally, the framework proposed in [13], which has deeply
influenced our understanding of social attention mechanisms, emphasises their role in
effective social communication and cognitive behaviours. Building upon these theoretical
foundations, [14] explored advanced computational models that incorporate semantic and
contextual information. These studies collectively contributed to a broader finding of
the cognitive significance of attention mechanisms. However, they primarily focused on
singular computational models or isolated theoretical analyses, lacking comprehensive
empirical validations within dynamic, multimodal interaction contexts.

2.3. Advances in Large Language Models and Vision-Language Integration

Concurrently, advances in LLMs have significantly enhanced our capabilities to sim-
ulate human cognitive behaviours and complex reasoning processes. The authors of [15]
present this by evaluating the ability of models like GPT-4 to encode and utilise expert
clinical knowledge, suggesting imperceptible alignments between artificial and human
cognitive processes. Similarly, ref. [16] proposed a landmark by demonstrating GPT-3's
remarkable few-shot learning capabilities, effectively simulating diverse human cognitive
behaviours. Extending these insights, ref. [17] explored emergent reasoning and cognitive
abilities in LLMSs, particularly through novel prompting methods such as chain-of-thought,
emphasising the models’ potential for deeper cognitive alignment.

Additionally, the vision and language models integration has been increasingly recog-
nised as crucial for accurately modelling complex multimodal human cognition. LLaVA
was introduced as a fine-tuned VLM to enhance visual reasoning capabilities, thereby
aligning visual perception with linguistic understanding more effectively [18]. In addi-
tion, ref. [19] integrated visual foundation models with ChatGPT-3 to facilitate interactive
multimodal dialogues for mimicking natural human communication processes. More-
over, ref. [20] discussed the abilities of cognitive grounding using LLMs through simula-
tions, highlighting the potential for language models to replicate human perceptual reasoning.
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2.4. Research Gaps and Contributions

Although there are these significant advances, notable research gaps remain. The
existing literature has largely examined cognitive alignment either in abstract theoretical
constructs or within isolated computational frameworks, rarely extending evaluations into
real-world interactive scenarios. Comprehensive empirical validations integrating multi-
modal information, specifically visual and linguistic data, within dynamic HRI contexts
are especially limited. Additionally, temporal context and memory dynamics, which are
fundamental to human cognitive processes, have been largely overlooked or insufficiently
explored in existing evaluations.

This work introduces a novel evaluation framework that comprehensively assesses
the cognitive plausibility of various LLMs and a VLM using human gaze data captured via
eye-tracking to address these gaps. Our work extends beyond static or isolated scenarios by
embedding evaluations within realistic HRI settings. By incorporating STM analysis, we ex-
plicitly investigate the impact of temporal context on models’ cognitive alignment, offering
deeper insights into the underlying processes of visual attention and human cognition.

Thus, our study successfully fills existing gaps by not only advancing theoretical
and computational understandings but also rigorously evaluating cognitive plausibility
within dynamic, real-world multimodal interaction scenarios. Our comprehensive empiri-
cal results will significantly contribute to developing socially intelligent robotic systems
capable of authentically replicating human-like visual and cognitive behaviours in real-time
interactive contexts.

3. Human Social Attention Exploration: Experimental Study

The development of our proposed model is grounded in empirical insights derived
from prior investigations into human attention patterns during social interactions, as de-
tailed in [12]. In particular, we employed eye-tracking methodologies to systematically
record and analyse the gaze dynamics of participants observing video sequences of dyadic
conversations. This approach facilitated a fine-grained understanding of how individuals
distribute their attention across diverse social cues, including both verbal communication
and non-verbal gestures.

Participants: This study involved 11 participants recruited from the Department of Me-
chanical Engineering at the Technical University of Munich—nine male and two female—with
a mean age of 27.3 years (range: 22-35 years). Participation was incentivised through the
provision of chocolate. All participants provided informed consent for data collection and
subsequent analysis, including the current research application.

Experimental Protocol: During the experiment, participants viewed a video depicting
two individuals engaged in a discussion on various research topics. The scenario was
structured to include naturalistic elements: sequential room entry, seated discussion, and in-
dividual departures. To heighten engagement, the interlocutors occasionally addressed
the camera directly, simulating a triadic interaction and suggesting the presence of a third
party. The complete session lasted 7 min and 20 s and was recorded using an eye-tracker.
It was employed comprising a scene camera to capture the visual field and an infrared
camera to monitor participants’ left-eye movements. Participants were seated approxi-
mately 75 cm from a 23-inch monitor in a controlled laboratory environment. Prior to each
session, the system was carefully calibrated for each participant to ensure accurate pupil
tracking. All sessions were conducted under standardised lighting conditions to minimise
interference from ambient light sources.

Data Processing: Gaze recordings were annotated frame-by-frame in ELAN to mark
fixations on Person A (left), Person B (right), or Environment regions, and to note when the
non-speaking individual produced a non-verbal cue. Log files of fixation durations (ms)
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and targets were exported for analysis. We computed the average attention proportions to
each person during speaking and non-verbal-cue intervals as well as over the entire video.
The aggregated gaze trace revealed both high-frequency (saccadic) and low-frequency
(non-saccadic) shifts. For instance, 100% of participants immediately looked at Person A
upon entry, and 82% shifted to Person B upon that person’s arrival.

Study Scope and Limitations

The current investigation represents a foundational study establishing a novel evalu-
ation framework for assessing cognitive plausibility in Al systems through human gaze
benchmarks. The empirical evaluation is deliberately constrained to a controlled dyadic
interaction scenario to enable rigorous methodological validation whilst maintaining exper-
imental control. This controlled approach, whilst limiting the immediate generalisability of
findings, provides several methodological advantages essential for framework establishment.

The single-video scenario involving two individuals engaged in seated conversation
represents a well-defined interaction context that facilitates systematic comparison across
Al models whilst minimising confounding variables. The 11-participant sample size, whilst
modest, aligns with established practices in eye-tracking research where within-subject
designs and controlled stimuli enable robust statistical analysis [5,6].

The constrained experimental scope reflects a deliberate methodological choice to
establish proof-of-concept for the evaluation framework rather than immediate broad
generalisation. This approach parallels established practices in cognitive psychology and
HRI research, where controlled laboratory studies provide foundational insights that inform
subsequent field validation [21-23]. The controlled setting enables precise measurement
of gaze patterns, systematic manipulation of memory conditions, and rigorous statistical
analysis that would be challenging to achieve in more naturalistic environments.

However, we acknowledge that this controlled approach limits the immediate applica-
bility of our specific findings to diverse HRI contexts. The single-interaction scenario cannot
capture the full complexity of real-world human-robot interactions, including multi-agent
scenarios, task-oriented behaviours, dynamic environmental conditions, or cultural varia-
tions in social attention patterns. Future validation studies employing diverse interaction
contexts, larger participant samples, and varied demographic populations will be essential
for establishing the broader applicability of our framework.

4. Proof-of-Concept Study

This study presents a comparative analysis of one VLM, LLaVA [18], and four LLMs,
DeepSeek [24], Qwen [25], Llama [26], and Gemma [27], to determine their suitability
for robotic applications. The use case centres on identifying saliency points within an
environment—a fundamental capability for interactive and perceptually aware robotic
systems. This experiment identified areas of interest (saliency points) selected by human
observers and subsequently proposed a computational model simulating the human visual
attention system. We replicate the same scenario using the corresponding video footage,
but rather than relying on human participants and eye-tracking, we employ a VLM and
four LLMs to analyse each video frame and determine salient regions. Figure 1 illustrates
our agentic system, which runs all models in parallel for performance comparison.

We investigate two analytical approaches. The first involves processing each frame
independently to predict the saliency point. The second incorporates a short-term memory
mechanism by aggregating outputs across five consecutive frames. Specifically, LLaVA is
employed to generate descriptive captions for each frame sequentially. Descriptions from
five consecutive frames are concatenated and input into each of the four LLMs to identify
salient regions, thereby allowing the models to reason over short-term temporal context.
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Figure 1. Overview of the evaluation pipeline. The vision-language model processes each video frame
to generate textual descriptions, which are passed to four large language models. The system operates
in two modes: stateless (frame-by-frame) and memory-augmented (STM), where concatenated frame
descriptions are provided. Cosine similarity with human-annotated gaze data is used to assess
alignment between model predictions and human saliency. The highlighted points in the frames
show the attention pattern of human participant observers. The implementation source code can be
find at https://ghamati.com/seelikeus/ (accessed on 15 June 2025).

Additionally, we evaluate LLaVA’s own saliency detection capabilities under two
settings: (1) processing frames individually, and (2) sequentially incorporating previously
detected saliency outputs into the prompt for subsequent frames. In the latter method,
the output from frame ¢ is retained and passed along with frame t 41 to LLaVA, with a
prompt modified to inform the model of prior context. This iterative process continues
until the final frame, effectively enabling LLaVA to track changes in saliency over time.

All results are evaluated against the average human gaze model obtained in [12] to
estimate each model’s alignment with human visual attention.

4.1. Vision—Language Model

We utilise LLaVA for two primary purposes. First, to generate textual descriptions of
each incoming frame, which are subsequently passed to the LLMs for saliency detection
(image-to-text pipeline); and second to directly identify the saliency point from each frame
using an alternative prompt designed specifically for saliency detection.

For the first use case, each frame is fed into LLaVA with a general instruction prompt
to describe the visual content. The resulting textual descriptions are then provided as input
to the four LLMs for further saliency analysis. In the second use case, each frame is input
directly into LLaVA using a distinct saliency-focused prompt to extract the salient regions.

Table 1 outlines the two types of prompt styles employed in this process. Moreover,
to enable LLaVA to incorporate temporal context, we re-invoke the model after the initial
saliency detection. The outputs from previous frames are passed as a form of STM to inform
the processing of the subsequent frame, allowing for more consistent and temporally aware
saliency predictions. This mechanism is visualised in Figure 1, where the orange arrow
indicates the flow of contextual information from prior frames to the model.
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Table 1. Prompt configurations used with LLaVA for saliency detection and frame description.
The saliency prompt directly elicits attention-focused responses, while the description prompt gathers
neutral contextual information per frame. The STM prompt incorporates outputs from previous
frames to simulate temporal continuity, encouraging the model to reason about changes and confirm
or revise prior interpretations.

LLaVA Prompts Prompt Text

Assuming you are sitting in the environment while you see the
Saliency Detection scene presented in the image. What would you gaze at, thats
grabs your attention. The result must be in 30 words.

Assuming you are sitting in the environment while you see the

rame Description o e presented in the image. What is the context of this image?

You're still in the environment, watching the next moment of the
scene unfold—just like watching a video in real life.

Previous Frame Summary: {previous frames results}

Now that you're seeing the next frame: 1. Did anything change?
Did someone start doing something new, stop what they were
doing, or move? 2. What’s happening now? Describe the current
activity as clearly and naturally as possible. 3. Are you confident
in your interpretation? Or is it hard to tell because of something in
the image (e.g., occlusion, blur)? 4. Based on what you can see,
does the current moment confirm or challenge what you thought
was happening earlier?

Talk about the scene like you're actually there—use natural
human language and describe what you’d notice if you were part
of the environment.

STM

Specifically, after each frame is processed for saliency, the output is sent both to the
visual interface for user inspection and to the STM module for storage. In the memory-
augmented saliency detection mode, LLaVA receives the cumulative saliency outputs
from frames f to ¢, along with frame t + 1, to assess whether incorporating prior context
improves the precision of saliency identification compared to single-frame processing.
Technical Constraints and Memory Configuration: The different memory implementa-
tions between LLaVA (full cumulative memory) and LLMs (STM-5) were necessitated
by computational limitations. During preliminary testing, DeepSeek and Qwen reached
GPU memory saturation after 5 cumulative frames, LLaMA after 9 frames, and Gemma
after 7 frames, while LLaVA demonstrated sufficient memory efficiency for full 60-frame
evaluation. The STM-5 configuration represents the maximum context length universally
supported across all LLMs, whilst LLaVA’s superior computational efficiency enabled
evaluation under both bounded and extended memory conditions. The following subsec-
tions detail the implementation of the agent and the methodologies employed to derive
the results.

4.2. Large Language Models and Cognitive Memory Architecture

We employed four LLMs: DeepSeek, Qwen, LLaMA, and Gemma, each representing
a lightweight version capped at a maximum of 8 billion parameters to ensure the feasibility
of self-hosted deployment. Table 2 summarises the models and their configurations. Each
LLM was utilised in two experimental configurations designed to assess temporal context
integration capabilities and cognitive alignment with human memory processing patterns.

Cognitively-Informed Temporal Context Framework: Our temporal context imple-
mentation incorporates several principles derived from cognitive memory research to ap-
proximate human short-term memory processing. The sliding context window maintains
a bounded memory buffer of five recent frames, reflecting capacity limitations observed
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in human working memory [11]. This bounded approach prevents unlimited context
accumulation that would violate cognitive plausibility principles, whilst enabling sys-
tematic assessment of how temporal context affects saliency detection across different
architectural paradigms.

Table 2. Large language models and the vision-language model used in this study, along with their
corresponding model identifiers and parameter counts. All models were selected with parameter
sizes under 8 billion to allow self-hosted deployment.

Model ID Number of Parameters
DeepSeek DeepSeek-R1-Distill-Qwen-7B 7B
Qwen Qwenl.5-7B-Chat 7B
LLaMA llama-3.1-8b-instruct 8B
Gemma gemma-7b-it 7B
LLaVA (VLM) llava-1.5-7b-hf 7B

The five-frame window provides temporal coherence whilst respecting both compu-
tational constraints and cognitive plausibility principles. This design choice aligns with
established findings that human visual attention benefits from recent contextual informa-
tion whilst showing interference effects when memory load exceeds capacity limits [28].
The temporal aggregation enables models to leverage recurring visual patterns and main-
tain attentional consistency across brief temporal intervals, mimicking the human tendency
to anchor attention on stable visual elements whilst adapting to dynamic scene changes.

Architectural Diversity and Cognitive Strategies: The selected models represent di-
verse approaches to language processing and temporal integration, enabling systematic
evaluation of how different architectural strategies handle bounded memory constraints.
DeepSeek’s distilled architecture provides efficient context processing optimised for rapid
inference, whilst Qwen’s multilingual training enables assessment of cross-lingual cognitive
alignment. LLaMA’s instruction-tuned architecture offers insights into how fine-tuning
affects temporal reasoning capabilities, whilst Gemma’s compute-efficient design reveals
how resource constraints influence memory integration performance.

In each iteration, LLaVA-generated frame descriptions were passed to all four LLMs
in parallel, accompanied by either stateless prompts for immediate attention assessment or
temporally augmented prompts incorporating the sliding context window for memory-
enhanced processing. This parallel evaluation design enables direct comparison of how
different architectural approaches handle temporal context integration, providing insights
into which models demonstrate human-like benefits from bounded memory versus those
that suffer from context interference effects.

The sliding context window implementation treats recent frames as contextual priors
that inform current attention allocation, similar to how human visual attention leverages
recent gaze history to maintain stable focus on relevant targets whilst adapting to changing
visual dynamics. This approach enables systematic evaluation of temporal context effects
whilst maintaining cognitive plausibility through bounded memory constraints that parallel
human working memory limitations. The temporal context provides models with access to
recent attention history, enabling detection of recurring visual elements and maintenance
of attentional coherence across temporal sequences.

Memory Integration Assessment: The experimental design specifically examines how
each model integrates temporal context with immediate visual information, assessing
whether the integration demonstrates cognitively plausible patterns such as improved
consistency for stable visual elements, appropriate forgetting of irrelevant information,
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and adaptive attention allocation based on changing visual dynamics. This evaluation
framework provides insights into which architectural approaches most closely approximate
human cognitive strategies for temporal attention integration in dynamic social environments.

Table 3 presents the prompts employed for both the sliding context window and state-
less configurations, designed to enable fair comparison whilst accommodating the specific
capabilities and constraints of each model architecture. The prompt design maintains con-
sistent evaluation criteria whilst allowing each model to leverage its architectural strengths
for optimal performance in both immediate attention and temporal integration tasks.

Table 3. Temporal context configurations evaluated in this study. Models were tested under two
regimes: stateless (no memory) and STM-5 (five-frame sliding window). These configurations assess
the impact of contextual history on saliency prediction performance.

LLMs Prompts Prompt Text

Based on llava result, if were a human, what is the most
prominent region(salient point) that you will gaze at that attracts

Stateless (No STM)  your attention. keep in your mind, it could be a human or object
ot any area of the environment. Once you selected the target, give
me a flag to help me find that in the image

You are analyzing a short sequence of 5 consecutive frames from a
dynamic scene. In each frame, a viewer—situated in the
environment—described what grabbed their attention in natural,
human-like language.
Here are the attention descriptions for those 5 frames:

STM-5 {stm}
Based on this progression, identify the final target of
attention—the person, object, or area that ultimately becomes the
main focus by the end of the sequence.
Your output should name this target clearly and concisely,
and briefly explain why it stands out based on the descriptions.

4.3. Memory Implementation Design, Technical Constraints, and Computational Infrastructure

The asymmetric memory implementations between LLaVA (cumulative full mem-
ory) and LLMs (sliding context window) were necessitated by significant differences in
computational efficiency and memory requirements across models. During preliminary
testing, we observed that LLaVA could process cumulative memory contexts without
GPU memory saturation throughout the entire 60-frame sequence. However, the LLMs
exhibited severe memory limitations when processing extended contexts: DeepSeek and
Qwen reached GPU memory saturation after 5 frames of cumulative context, LLaMA after
9 frames, and Gemma after 7 frames.

These hardware constraints prevented fair comparison using identical memory im-
plementations across all models. The sliding context window of five frames was selected
as the maximum feasible context length that all LLMs could process reliably without
memory overflow. Conversely, LLaVA’s superior memory efficiency allowed testing of
both bounded and unbounded temporal contexts to assess the impact of extended con-
text on vision-language models. This computational asymmetry reflects fundamental
architectural differences: LLaVA's integrated vision-language processing appears more
memory-efficient for temporal sequences, whilst pure language models require signifi-
cantly more GPU memory when processing concatenated textual contexts of equivalent
temporal span.

Our experimental framework operates within a carefully controlled computational
environment designed to ensure reproducibility whilst maintaining consistency across all
model evaluations. The computational infrastructure employs dual NVIDIA RTX A6000



Sensors 2025, 25, 4687

10 of 28

GPUs with 48 GB VRAM each (total 96 GB), providing substantial memory capacity for
simultaneous deployment of multiple language models whilst maintaining stable inference
performance. The system operates with CUDA 12.2 and driver version 535.230.02.

Environment validation procedures enable systematic verification of implementation
consistency across computational environments. Baseline validation processes predeter-
mined frames with documented expected outputs to verify model configuration accuracy
and prompt formatting consistency. Automated consistency checks ensure TF-IDF vec-
torisation produces identical results across different computational environments, whilst
reference similarity calculations provide implementation verification benchmarks for sys-
tematic replication validation.

Beyond computational constraints, our memory implementations exhibit fundamen-
tal limitations in cognitive plausibility. The sliding context window approach for LLMs
and cumulative memory for LLaVA both lack essential characteristics of human mem-
ory systems. Human short-term memory operates through capacity-limited, selective,
and temporally sensitive mechanisms that our implementations do not capture [28,29]. Our
concatenation-based approach treats all temporal information equally, exhibits no forget-
ting mechanisms, and provides no selective attention processes for filtering relevant from
irrelevant information. These limitations mean that observed "memory effects” may reflect
simple responses to increased textual context rather than genuine cognitive alignment with
human memory processes.

We acknowledge that this asymmetric design limits direct comparability between
LLaVA and LLM memory configurations, whilst the simplified memory implementations
constrain claims about cognitive plausibility in temporal processing. The hybrid deploy-
ment approach, combining local GPU inference with external API services, introduces
additional variables but enables comprehensive architectural comparison across diverse
computational paradigms. Future work should investigate more sophisticated memory
mechanisms that better approximate human cognitive architecture whilst addressing com-
putational constraints through alternative approaches. The comprehensive technical speci-
fication provided enables systematic replication whilst offering flexibility for adaptation to
alternative computational resources, ensuring that observed cognitive alignment patterns
reflect genuine architectural differences rather than implementation variations.

4.4. Multimodal Attention Evaluation and Cognitive Alignment Assessment

Our comprehensive evaluation framework integrates multiple assessment approaches
to provide robust measurement of cognitive alignment between Al models and human
attention patterns. The methodology combines semantic similarity assessment, statistical
validation, and temporal coherence analysis to evaluate both immediate attention accuracy
and memory integration capabilities across different Al architectures.

Semantic Attention Alignment Framework: We employ TF-IDF cosine similarity as
a principled approach for assessing semantic alignment between Al-generated attention
descriptions and human gaze patterns. This text-based similarity metric captures the
conceptual overlap between Al attention allocation and human visual focus, enabling com-
parison across different linguistic expressions of attention whilst maintaining sensitivity to
semantic content and attentional relevance. The TF-IDF vectorisation approach transforms
both Al outputs and ground truth labels into high-dimensional semantic representations
that capture the importance and distinctiveness of attention-related terms.

Formally, for each frame i, the similarity score is computed as:

Tmodel,i * Dlabel,i 1)

Score; = cos(f) = (b
abel,i

 ||Zmodel,i
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where Upodel,; and Tjape) ; are the TF-IDF vectors of the model prediction and the ground-
truth label. This approach enables robust comparison between varied linguistic expressions
of attention (e.g., “man in dark clothing” vs. “person wearing black shirt”) whilst penalising
irrelevant or distracting content. The cosine similarity metric provides scale-independent
comparison that treats both brief and verbose outputs equitably, focusing on semantic
content rather than output length or stylistic variations.

Cross-Modal Cognitive Assessment and Ground Truth Integration: The evaluation
framework addresses the fundamental challenge of comparing discrete Al attention de-
scriptions with categorical human gaze data through systematic semantic grounding and
cognitive alignment assessment. Human gaze categories (Person A, Person B, and En-
vironment) are expanded into rich textual descriptions based on frame-specific visual
characteristics, enabling meaningful comparison with Al-generated attention descriptions
whilst preserving the semantic intent of human attention allocation.

The categorical-to-textual mapping process involves systematic annotation of each
frame’s salient target based on visual content analysis, with descriptive labels generated
according to visible characteristics and spatial context. Al descriptions mentioning specific
individuals are mapped to corresponding person categories based on visual verification
of clothing, position, and actions visible in each frame. Environment-related descriptions
are systematically mapped to the Environment category based on object identification and
spatial reference. This mapping process was conducted independently by two researchers
to ensure consistency and reduce subjective interpretation bias.

Temporal Context Evaluation and Memory Assessment: To evaluate the contribu-
tion of temporal context and assess memory-like processing capabilities, each model was
tested under multiple configurations designed to reveal cognitive alignment patterns.
The stateless configuration processes each frame independently, providing baseline at-
tention accuracy without temporal context. The STM-5 configuration provides models
with concatenated descriptions of the preceding four frames alongside the current frame,
enabling assessment of bounded memory integration capabilities. The full-memory config-
uration, applied exclusively to LLaVA, accumulates complete temporal context throughout
the sequence to assess the effects of unlimited context accumulation.

We utilise the following analytical framework to quantify temporal context effects:

Ai(m) = s;(m, memory) — s;(m, stateless) ()
si(m) = 3 (511 (m) +5i(m) + 5151.(m)) ®

where A;(m) represents the instantaneous cognitive benefit or cost attributable to memory
integration for model m and frame i, whilst s;(m) provides temporal smoothing to sup-
press transient effects and reveal underlying cognitive patterns. This framework enables
systematic assessment of whether models demonstrate human-like benefits from bounded
memory or exhibit non-cognitive patterns such as unlimited context accumulation without
capacity constraints.

Advanced Statistical Validation Framework: Our statistical analysis employs sophis-
ticated non-parametric approaches designed specifically for the bounded, non-normal
distribution of similarity scores observed in attention evaluation studies. Initial examina-
tion revealed significant departures from normality and heteroscedasticity across model
conditions, necessitating robust statistical approaches that account for these distributional
characteristics whilst providing valid inference about cognitive alignment patterns.

We employed a repeated-measures design treating the 60 video frames as the unit
of analysis, with each frame evaluated across ten model-regime conditions including
LLaVA-stateless, LLaVA-full memory, DeepSeek-stateless, DeepSeek-STM, Qwen-stateless,
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Qwen-STM, LLaMA-stateless, LLaMA-STM, Gemma-stateless, and Gemma-STM. This
approach accounts for the inherent dependency structure where identical visual content
is evaluated by all models, providing greater statistical power than independent-samples
designs whilst controlling for frame-specific variance that might otherwise confound
cognitive alignment assessment.

The analysis commenced with a Friedman test to evaluate the global null hypothesis
that all model-regime conditions demonstrate equivalent cognitive alignment. This non-
parametric equivalent of repeated-measures ANOVA assesses whether median similarity
scores differ significantly across conditions whilst accounting for temporal dependencies
and individual frame characteristics. The omnibus Friedman test yielded highly significant
results, x?(9) = 215.8, p < 0.001, indicating substantial cognitive alignment differences
warranting detailed pairwise examination.

Following significant omnibus results, we conducted targeted pairwise comparisons
using Wilcoxon signed-rank tests for theoretically motivated contrasts that address specific
cognitive alignment hypotheses. These included comparisons between immediate attention
accuracy (stateless conditions), memory integration capabilities (within-model memory
effects), and cross-model cognitive strategy assessment. All pairwise comparisons em-
ployed Holm-Bonferroni adjustment to control family-wise error rates whilst maintaining
statistical power for detecting meaningful cognitive alignment differences.

Effect sizes were calculated using r = Z/+/N where N = 60 frame pairs, providing
standardised measures of practical significance that quantify the magnitude of cognitive
alignment differences beyond statistical significance. Following Cohen’s conventions,
r = 0.10 indicates small cognitive alignment differences, r = 0.30 indicates medium
differences, and r = 0.50 indicates large cognitive alignment differences with substantial
practical implications for human-robot interaction applications.

Cognitive Plausibility Metrics and Human Alignment Assessment: The evaluation
framework incorporates multiple cognitive plausibility indicators that assess whether Al
models demonstrate human-like attention strategies rather than arbitrary performance pat-
terns. These include temporal consistency measures that assess whether models maintain
stable attention allocation for persistent visual elements, adaptive attention measures that
evaluate appropriate attention shifting for dynamic visual content, and memory integration
measures that assess whether temporal context provides cognitively plausible benefits
without violating capacity constraints.

Key Cognitive Alignment Findings: The statistical analysis reveals several critical
insights about cognitive architecture differences, as detailed in Table 4. LLaVA’s immediate
attention superiority over the best memory-enhanced competitor (DeepSeek-STM) achieves
a large effect size (r = 0.63), establishing a clear cognitive processing hierarchy amongst
the evaluated architectures. The comparison between LLaVA's stateless and full-memory
conditions demonstrates a substantial negative impact (r = 0.70) from unlimited context
accumulation, providing strong statistical evidence for cognitively plausible capacity limi-
tations. DeepSeek’s reliable improvement from bounded memory integration (r = 0.55)
confirms that appropriate temporal context can enhance language-centric architectures
without causing interference effects.

The framework enables systematic assessment of cognitive strategies employed by
different Al architectures, providing insights into which approaches most closely approx-
imate human cognitive mechanisms for attention allocation and temporal processing in
dynamic social environments. This cognitive assessment extends beyond simple perfor-
mance measurement to evaluate the underlying strategies and mechanisms that drive
attention allocation, enabling identification of models that achieve performance through
cognitively plausible rather than arbitrary computational approaches.
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Table 4. Cognitive alignment assessment through statistical comparison of attention processing
strategies (N = 60 frame pairs). Large effect sizes (r > 0.50) indicate substantial differences in
human-like cognitive processing, while small effects suggest similar cognitive strategies. Statistical
significance (Holm-adjusted p < 0.05) confirms reliable cognitive architecture differences.

Cognitive Architecture Comparison z PHolm r Human Cognitive Analogy

Vision-Language Supremacy
LLaVA-stateless vs. DeepSeek-STM

Immediate visual processing
6.13 <0.001 0.63 vs. memory-enhanced
language reasoning

Memory Overload Effect
LLaVA-stateless vs. LLaVA-full

Working memory capacity
6.75 <0.001 0.70 limits causing cognitive
interference

Working Memory Benefit
DeepSeek-stateless vs. DeepSeek-STM

Selective attention and
425 <0.001 055 rehearsal mechanisms
enhancing performance

Capacity Saturation
LLaVA-stateless vs. Gemma-STM

Cognitive resource
6.58 <0.001 0.68 limitations preventing
memory utilisation

Cross-Lingual Cognition
LLaVA-stateless vs. Qwen-STM

Linguistic expression
6.72 <0.001 0.69 vs. underlying
attention mechanisms

Adaptive Memory Limitation
LLaMA-stateless vs. LLaMA-STM

Inflexible memory
201 0.090 0.26 integration under
dynamic conditions

Memory Strategy Contrast
DeepSeek-STM vs. LLaVA-full

Bounded vs. unlimited
594 <0.001 0.61 memory accumulation
with different outcomes

4.5. Al Output to Human Gaze Mapping and Evaluation Methodology

Our evaluation framework compared Al-generated textual saliency predictions against
categorical human gaze data from the original eye-tracking study. The LLMs and VLMs
generated natural language descriptions of salient regions such as “man in black shirt,”
“wooden table,” or “person gesturing,” whilst the human ground truth consisted of categor-
ical fixation targets (Person A, Person B, and Environment) derived from frame-by-frame
gaze analysis. This comparison required systematic mapping between Al textual outputs
and categorical human gaze targets, representing a fundamental methodological challenge
in multimodal evaluation studies.

To enable quantitative comparison, we developed a systematic mapping protocol be-
tween Al textual outputs and categorical human gaze targets. Al descriptions mentioning
specific individuals were mapped to the corresponding person category based on visual ver-
ification of clothing, position, and actions visible in each frame. For instance, Al-generated
descriptions such as “man in black shirt” were mapped to Person B when that individual
was indeed wearing dark clothing in the corresponding frame. Similarly, environment-
related descriptions including “table,” “monitor,” or “room” were systematically mapped
to the Environment category. This mapping process was conducted independently by two
researchers to ensure consistency and reduce subjective interpretation bias.

Following the mapping process, we converted both Al outputs and the mapped cate-
gorical labels into TF-IDF vectors for cosine similarity calculation. The categorical labels
were expanded into standardised textual descriptions based on frame-specific visual charac-
teristics to enable meaningful lexical comparison. For example, “Person A” was expanded
to “man in striped shirt” when that individual’s clothing represented the most visually
prominent feature in the corresponding frame. This expansion process maintained consis-



Sensors 2025, 25, 4687

14 of 28

tency with the original categorical annotations whilst providing the textual representation
necessary for TF-IDF analysis.

Cross-lingual Output Handling and Evaluation Limitations: A significant method-
ological limitation emerged during data collection regarding cross-lingual model outputs,
particularly from Qwen, which produced approximately 40% of responses in Mandarin
Chinese despite English prompting. This cross-lingual behaviour fundamentally challenges
the fairness and validity of our TF-IDF-based evaluation framework, which relies on lexical
overlap between Al outputs and English ground truth labels.

Our current evaluation protocol handles non-English outputs through exclusion, map-
ping Mandarin text to zero vectors and assigning cosine similarity scores of 0.0. This
approach, whilst maintaining consistency in our similarity calculations, systematically un-
derestimates Qwen’s actual cognitive alignment capabilities. The model may demonstrate
appropriate attention allocation and reasoning processes whilst expressing these insights
in a different language, yet our evaluation framework cannot capture this alignment due
to the lexical mismatch. This limitation represents a broader challenge in evaluating
multilingual Al systems using monolingual benchmarks, where TE-IDF vectorisation be-
comes inappropriate when applied across languages with different lexical structures and
semantic representations.

Several methodological approaches could address this limitation in future work.
Translation-based evaluation could employ automatic translation services to convert non-
English outputs to English before similarity calculation, though this introduces additional
sources of error and semantic drift. Multilingual embedding approaches using cross-lingual
sentence transformers could enable direct comparison across languages whilst preserving
semantic content. Language-specific ground truth generation could involve creating Man-
darin labels for comparison with Qwen’s outputs, though this requires additional human
annotation and cultural considerations regarding attention patterns.

This mapping process introduces subjective interpretation in determining correspon-
dence between Al descriptions and categorical human gaze targets, representing a method-
ological limitation that affects evaluation outcomes. The accuracy of this mapping directly
influences similarity calculations, as misalignment between Al descriptions and human
attention could stem from either genuine model limitations, mapping errors, or funda-
mental language incompatibilities. The cross-lingual challenge with Qwen exemplifies
how evaluation methodology constraints can systematically disadvantage certain models,
highlighting the need for more sophisticated approaches that can assess semantic alignment
across languages whilst maintaining evaluation fairness.

4.6. Prompt Engineering Considerations and Bias Analysis

Memory evaluation presents inherent methodological challenges, as providing tem-
poral context necessarily requires more complex prompts than stateless configurations.
Analysis of our actual prompts reveals significant disparities in both length and structural
complexity. The stateless prompts employed for LLMs comprise approximately 67 tokens,
utilising single-sentence, direct instructions, whilst the STM prompts contain 119 tokens
plus a concatenated 5-frame context, employing multi-paragraph, structured reasoning
frameworks with numbered instructions and conditional logic. For LLaVA specifically,
the stateless saliency detection prompt contains approximately 44 tokens, whilst the STM
configuration employs 65-207 tokens depending on frame position, with the first frame
requiring extensive contextual setup involving numbered instructions and explicit reason-
ing scaffolding. This represents a 1.8x to 4.7x increase in prompt length accompanied by
qualitatively different cognitive demands.
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The STM prompts incorporate structured reasoning instructions that could influence
performance through multiple pathways, either facilitating reasoning through clearer
guidance or impairing performance through cognitive overhead. The inclusion of num-
bered steps, conditional logic, and explicit attention cues in STM prompts represents a
qualitatively different cognitive task compared to the direct, single-instruction format of
stateless prompts. This asymmetry raises questions about whether observed performance
differences stem from genuine memory effects or prompt complexity artefacts.

Several factors suggest our findings reflect genuine memory effects rather than prompt
complexity artefacts. If prompt complexity alone drove results, we would expect consistent
degradation across all models with increased prompt length. Instead, only DeepSeek bene-
fits from STM whilst others suffer, indicating model-specific architectural responses rather
than universal prompt-length sensitivity. Performance changes evolve differently across
the video timeline for each model, suggesting content-specific rather than prompt-structure
effects. The specific failure modes align with known architectural limitations—Qwen’s
cross-lingual drift and Gemma'’s capacity saturation—rather than prompt comprehension
issues, indicating that underlying model capabilities, rather than instruction complexity,
primarily determine performance variations.

The fundamental challenge in memory evaluation is that providing temporal con-
text inherently requires more complex prompts. A truly controlled comparison would
require either artificially lengthening stateless prompts with irrelevant content or pro-
viding memory content without instructional scaffolding—both approaches introduce
different biases and potentially confound the evaluation of genuine memory effects. This
represents a methodological limitation inherent to comparative memory studies in large
language models.

This prompt asymmetry limits our ability to isolate pure memory effects from instruc-
tion complexity effects. However, the heterogeneous model responses across architectures
suggest that model-specific capabilities, rather than prompt design, drive the majority
of performance variations. The observation that DeepSeek uniquely benefits from com-
plex STM prompts whilst other models with similar parameter counts suffer degradation
indicates that architectural differences in attention mechanisms, contextual integration,
and working memory capacity predominantly determine outcomes. Future work should
employ systematic prompt ablation studies, varying instruction complexity independently
of memory content, to definitively isolate memory effects from prompt engineering artefacts
and establish more robust evaluation frameworks for temporal reasoning in multimodal
Al systems.

5. Results

Our comprehensive evaluation reveals distinct cognitive strategies employed by dif-
ferent Al architectures for attention allocation and temporal context integration, with each
model demonstrating unique patterns of alignment with human visual attention mecha-
nisms. The analysis examines both immediate attention accuracy and temporal processing
capabilities, providing insights into which architectural approaches most closely approxi-
mate human cognitive strategies for visual attention in dynamic social contexts.

The results demonstrate three distinct cognitive profiles amongst the evaluated mod-
els, each reflecting different computational strategies for attention allocation and memory
integration. LLaVA exhibits exceptional immediate attention alignment with human gaze
patterns (mean cosine similarity = 0.311) but shows systematic degradation when pro-
vided with extended temporal context, suggesting architectural optimisation for rapid
visual-linguistic integration rather than memory-dependent processing. This pattern mir-
rors human visual attention during initial scene processing, where immediate saliency
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detection operates efficiently but can be disrupted by excessive contextual interference.
DeepSeek demonstrates the complementary pattern, showing modest immediate attention
performance (0.038) that improves significantly with bounded temporal context integra-
tion (0.057), indicating architectural capabilities for leveraging recent contextual informa-
tion without suffering interference effects. This improvement pattern suggests memory
integration mechanisms that approximate human working memory benefits, where re-
cent information enhances current processing without overwhelming cognitive resources.
The remaining models (Qwen, LLaMA, and Gemma) exhibit varied responses to temporal
context that reflect their specific architectural constraints and training paradigms.

Formal statistical analysis confirms that observed performance differences represent
genuine cognitive alignment variations rather than random fluctuation. The omnibus Fried-
man test (x*(9) = 215.8, p < 0.001) establishes significant differences in cognitive alignment
across model-regime conditions, enabling detailed pairwise examination of specific cogni-
tive capabilities. Table 4 presents the comprehensive pairwise analysis that validates these
cognitive alignment patterns. The effect sizes confirm three empirically supported conclu-
sions with robust statistical backing: vision-language integration architectures demonstrate
superior immediate attention alignment; unlimited memory accumulation produces cog-
nitively implausible interference effects; and bounded memory integration can provide
human-like cognitive benefits for language-centric architectures. LLaVA’s immediate at-
tention superiority over the best memory-enhanced competitor (DeepSeek-STM) achieves
a large effect size (r = 0.63), establishing a clear cognitive processing hierarchy amongst
evaluated architectures. The comparison between LLaVA'’s stateless and full-memory
conditions demonstrates substantial negative impact ( = 0.70) from unlimited context
accumulation, providing strong statistical evidence for cognitively plausible capacity limi-
tations. DeepSeek’s reliable improvement from bounded memory integration (r = 0.55)
confirms that appropriate temporal context can enhance language-centric architectures
without causing interference effects.

The temporal emergence of DeepSeek’s performance improvements during frames 31—
50 demonstrates systematic context utilisation that can be quantitatively measured through
lexical overlap analysis. Examination of DeepSeek’s outputs reveals consistent reuse of
specific phrases (particularly “man in black shirt”) across temporal windows, with phrase
recycling occurring in 25 of the final 30 frames. This pattern represents a measurable
computational strategy for maintaining attentional consistency that achieves statistical
significance (r = 0.55, p < 0.001) when compared to stateless processing. The quantitative
analysis demonstrates that this lexical recycling mechanism correlates positively with
improved attention alignment (Pearson » = 0.73; p < 0.01), providing empirical evidence
for the effectiveness of this computational approach.

LLaVA’s systematic performance degradation under extended context provides mea-
surable evidence of capacity-limited processing. Quantitative analysis reveals that per-
formance decline follows a predictable pattern: initial degradation begins at a context
length of 7-9 frames, accelerates between frames 15 and 25, and stabilises at reduced per-
formance levels thereafter. This pattern can be modelled using exponential decay functions
(R?* = 0.89), demonstrating systematic rather than random degradation. The measurable
capacity limitations observed align with computational principles of bounded processing
systems, where information overload produces predictable interference patterns that can
be quantified through performance metrics.

The frame-by-frame analysis reveals sophisticated temporal patterns that illuminate
how different Al architectures process dynamic visual information over time. These
patterns extend beyond simple accuracy measurement to reveal underlying cognitive
strategies for attention allocation, memory integration, and adaptive processing in response
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to changing visual dynamics. The resulting per-frame scores, visualised in Figure 2, reveal
five distinct temporal profiles that demonstrate different cognitive processing strategies
across architectures. Figure 3 provides additional perspective on stateless performance
patterns across all models, enabling direct comparison of immediate attention capabilities
without temporal context confounds.
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Figure 2. Cosine similarity between model-predicted saliency and human-annotated ground truth
across 60 video frames. Each trace represents a different model and configuration—stateless (dashed
lines) versus STM-5 (solid lines). The figure highlights performance divergence over time, showing
that short-term memory improves DeepSeek’s consistency while degrading LLaVA’s alignment due
to prompt saturation.
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Figure 3. Stateless saliency similarity across models, demonstrating immediate attention alignment
capabilities without temporal context confounds. The comparison reveals distinct baseline cognitive
capabilities that inform understanding of each architecture’s fundamental attention processing
strengths and limitations.

The stateless version of LLaVA achieves peak performance with a cosine similarity of
0.83 in frame 13, where optimal visual-linguistic alighment occurs between model output
and reference labels. However, the full-memory configuration demonstrates systematic
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degradation starting from frame 14, where expanding prompt context introduces inter-
ference effects that skew attention allocation away from current visual content. The delta
score A;(LLaVA) becomes consistently negative after frame 15, falling below —0.40 by
frame 27, and never recovers. The smoothed performance envelope s; peaks at 0.65 in
frame 19 and decays steadily to 0.12 by frame 58, demonstrating cognitively plausible
capacity limitations through context saturation effects.

During the initial 30 frames, DeepSeek’s stateless and bounded memory scores remain
nearly identical (mean gain A = —0.002), indicating minimal immediate benefit from
temporal context. From frame 31 onwards, the introduction of dynamic visual content en-
ables DeepSeek to demonstrate sophisticated context utilisation through lexical anchoring
mechanisms. The model strategically recycles relevant phrases from its context window,
producing positive deltas in 25 of the final 30 frames, with modal gains of +0.09 and
peak performance of +0.21 at frame 48. This results in DeepSeek’s histogram in Figure 4
exhibiting a distinctly positive distribution, indicating consistent cognitive benefits from
bounded memory integration that approximate human working memory mechanisms.

Distribution of ACosSim across frames
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Figure 4. Distribution of per-frame cognitive benefit scores (A; = S?TM - s?tateless) across all 60 frames
for each model. Positive values indicate improved attention alignment through temporal context
integration, whilst negative values reflect cognitive interference effects. DeepSeek shows consis-
tently positive memory benefits, whilst other models demonstrate varied patterns reflecting their

architectural constraints and memory processing capabilities.

Approximately 40% of Qwen’s outputs consist of Mandarin text, representing sophisti-
cated cross-lingual cognitive processing that demonstrates attention allocation capabilities
across linguistic modalities. This multilingual behaviour occurs despite English prompt-
ing and reflects the model’s training on diverse linguistic corpora, suggesting cognitive
flexibility that transcends single-language constraints. In the remaining 60% where En-
glish outputs were produced, Qwen demonstrated moderate performance with similarity
scores comparable to other models during stateless operation (mean similarity ~ 0.046 for
English-only frames), indicating functional attention allocation mechanisms that operate
independently of linguistic expression modality. The bounded memory configuration
creates mixed-language responses that reveal interesting cognitive processing patterns,
though these cannot be adequately assessed through monolingual evaluation frameworks.
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Between frames 10 and 22, during stable visual conditions, LLaMA’s bounded memory
configuration demonstrates superior performance (similarity reaching 0.27) compared to
stateless processing (remaining around 0.16), indicating beneficial memory integration
under appropriate visual conditions. However, as visual dynamics increase through
camera movement, the accumulated context appears to lag behind current visual content,
causing A; to average —0.04 across the final 30 frames. This context-induced degradation is
evident in LLaMA’s left-skewed histogram in Figure 4, suggesting memory mechanisms
that provide benefits under stable conditions but lack adaptive capabilities for dynamic
visual environments.

Although Gemma shares similar parameter counts with other 7B-scale models, its
compute-efficient training paradigm results in reduced contextual processing capabilities.
The introduction of five additional context sentences consumes a substantial fraction of its
attention capacity, resulting in the disappearance of eight out of ten positive performance
spikes when transitioning from stateless to bounded memory processing. This drives the
global delta to —0.075, with the model spending 70% of processing time with zero similarity
scores. The A-histogram lies almost entirely to the left of zero with a median gain of —0.04,
indicating systematic cognitive interference from temporal context that exceeds the model’s
integration capabilities.

Long-Horizon Memory Analysis and Cognitive Capacity Assessment

Figure 5 tracks the cumulative mean s;(LLaVA) as the temporal context expands from
single-frame processing to full sixty-frame history accumulation. This analysis reveals cog-
nitive capacity boundaries and optimal memory window sizes for maintaining human-like
attention processing. The bounded memory plateau (cosine similarity of 0.12) serves as a
cognitive plausibility benchmark, beyond which unlimited context accumulation becomes
counterproductive for attention allocation accuracy. LLaVA crosses this cognitive capacity
threshold at frame 43, indicating that beyond this point, each additional contextual sentence
reduces overall attention processing fidelity. This pattern demonstrates cognitively plausi-
ble capacity limitations that parallel human working memory constraints, where excessive
information accumulation leads to interference effects rather than enhanced processing.

LLaVA full-memory degradation curve
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Figure 5. Cumulative cognitive performance analysis for LLaVA under unlimited memory accu-
mulation. The curve demonstrates how expanding temporal context affects cognitive alignment,
revealing capacity limitations and optimal memory window boundaries for maintaining human-like
attention processing.
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LLaMA and Gemma reach their respective cognitive capacity limits much earlier,
at frames 12 and 4, respectively, highlighting their narrower processing margins and greater
sensitivity to contextual complexity. In contrast, DeepSeek emerges as a clear outlier in
memory processing capabilities. Its cumulative mean continues to rise steadily across all
sixty frames, reaching a final value of 0.057 without indication of capacity saturation. This
suggests architectural capabilities for beneficial context integration that maintain cognitive
alignment benefits even under extended temporal processing demands, indicating sophisti-
cated memory mechanisms that approximate human selective attention and information
filtering capabilities.

Table 5 provides qualitative insights into cognitive processing patterns across criti-
cal video segments, condensing 600 individual comparisons into interpretable cognitive
behaviour patterns. LLaVA exhibits transparent cognitive processing where memory con-
sistently reduces performance compared to immediate attention processing, with the most
dramatic degradation occurring at frame 25 (similarity falling from 0.637 to 0.120) due to
contextual interference from accumulated irrelevant information. DeepSeek demonstrates
the opposite cognitive pattern, where bounded memory integration consistently provides
benefits without substantial losses, delivering optimal or near-optimal performance in six
of ten critical checkpoints. The most significant advances occur at frames 45 and 58, where
strategic lexical anchoring enables sustained attention allocation that aligns with human
gaze patterns through temporal consistency mechanisms.

Table 5. Cognitive processing patterns across critical video segments, showing model behaviour
during key visual transitions and attention allocation challenges. Each row presents stateless (S) and
memory-enhanced (M) similarity scores, revealing distinct cognitive strategies for handling dynamic
visual content and temporal context integration.

LLaVA DeepSeek Qwen Llama Gemma
Frame Visual Context and Attention Target
S M S M S M S M S M
0 Environment (scene establishment) 0.000 0.034 0.019 0.072 0.000 0.000 0.000 0.015 0.000 0.068
6 Man'’s eye (facial attention focus) 0.068 0.057 0.000 0.000 0.033 0.000 0.000 0.044 0.110 0.047
12 Sitting man on chair (stable social focus) 0.190 0.054 0.060 0.000 0.062 0.000 0.083 0.078 0.152 0.021
19 Man in striped shirt (person identification) 0.305 0.059 0.055 0.017 0.018 0.000 0.059 0.043 0.113  0.000
25 Man in black shirt (optimal visual clarity) 0.637 0120 0.000 0.080 0.054 0.000 0.241 0.100  0.000  0.000
32 Man in striped shirt (visual transition) 0.000  0.023 0.024 0.000 0.000 0.000 0.015 0.030 0.046 0.000
38 Man in striped shirt (attention consistency) 0.305 0.107 0.024 0.022 0.008 0.000 0.015 0.000 0.046  0.000
45 Black shirt + bottle (object integration) 0.515 0.443 0.000 0.076 0.054 0.000 0241 0.100  0.000  0.000
51 Black shirt, bottle (multi-target attention) 0587 0132 0.000 0.087 0.000 0.000 0.165 0.147 0.234  0.000
58 Black shirt, walking left (dynamic movement) ~ 0.278  0.241 0.142 0.180 0.118 0.000 0.182 0.087  0.028  0.020

Table 6 presents comprehensive cognitive architecture assessment that reveals dis-
tinct processing strategies across models. LLaVA in immediate processing mode achieves
superior cognitive alignment through rapid vision-language integration that mirrors hu-
man bottom-up attention mechanisms. When supplied with unlimited temporal context,
performance degradation confirms cognitively plausible capacity limitations that parallel
human working memory constraints. DeepSeek demonstrates complementary cognitive
capabilities, where bounded memory integration provides reliable improvements that
approximate human strategic attention allocation and working memory benefits. The tem-
poral emergence of these benefits indicates sophisticated adaptive processing that adjusts to
environmental demands rather than applying rigid computational patterns. These cognitive
processing insights provide guidance for optimal deployment strategies in human-robot
interaction applications, suggesting that different models excel under different cognitive
demands and environmental conditions.
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Table 6. Comprehensive cognitive architecture assessment and reliability analysis for saliency pre-
diction task. Models ranked by mean cosine similarity demonstrate distinct cognitive processing
strategies, from immediate vision-language integration to memory-enhanced temporal reasoning,
with reliability characteristics that inform optimal deployment strategies for human-robot interac-

tion applications.

Model/Cognitive Strategy

Mean Cosine

Cognitive Processing Characteristics

Reliability and Deployment Insights

LLaVA—Immediate Visual Processing

LLaVA—Memory-Enhanced Processing

Gemma—Immediate Processing

Llama—Immediate Processing

DeepSeek—Memory Integration

Llama—Memory Integration

Qwen—Immediate Processing

DeepSeek—Immediate Processing

Gemma—Memory Integration

Qwen—Memory Integration

Rapid vision-language integration; exceptional

Most reliable for immediate attention demands;

0.311 performance on isolated visual targets with clear optimal for real-time applications requiring rapid
semantic content. response without memory overhead.
Demonstrates cognitively plausible capacity Illustrates importance of bounded memory for
limitations under unlimited context accumulation; R o .

0.121 NPT . . maintaining cognitive alignment; useful for
maintains linguistic fluency despite attention H .

. understanding memory interference patterns.
degradation.
Efficient processing under o nimal computatlonal Suitable for resource-constrained applications;

0.088 demands; appropriate attention allocation for . .

. . . requires careful scene complexity management.
simple visual scenarios.
Consistent performance under stable visual Requires environmental stability for reliable

0.075 conditions; sensitive to dynamic visual changes performance; best suited for static interaction
and camera movement. scenarios.

Sophisticated temporal context utilisation through ~ Optimal for applications requiring temporal

0.057 lexical anchoring; demonstrates human-like consistency; provides cognitive benefits in
working memory benefits. dynamic environments.

Mixed temporal processing capabilities; beneficial =~ Context-dependent reliability; requires adaptive

0.057 under static conditions but degraded performance  deployment strategies based on environmental
during visual dynamics. conditions.

Functional attention allocation with multilingual Requires multilingual evaluation frameworks;

0.046 cognitive flexibility; demonstrates cross-lingual potential for diverse linguistic deployment
processing capabilities. contexts.

Foundation-level attention capabilities that benefit Demonstrates importance of memory .

0.038 S . . augmentation; illustrates architectural potential
significantly from temporal context integration. . o

under appropriate context conditions.
Capacity limitations prevent effective temporal Highlights importance of computational capacity

0.013 context utilisation; demonstrates cognitive for memory integration; requires careful resource
overload under extended context. management.

Cross-lingual processing capabilities masked by Requires specialised evaluation frameworks;

0.000 monolingual evaluation constraints; potential represents broader challenges in multilingual AT

cognitive alignment not captured.

assessment.

The comprehensive analysis indicates that effective cognitive alignment may require
hybrid approaches that leverage architectural strengths for specific cognitive functions
rather than attempting to optimise single models for all attention allocation requirements.
Figure 3 illustrates the baseline cognitive capabilities across all models under stateless
conditions, providing clear perspective on immediate attention processing strengths that
can inform hybrid system development strategies.

6. Discussion

This comprehensive cognitive architecture evaluation reveals fundamental insights
into how contemporary Al systems process visual attention and temporal context in ways
that approximate human cognitive mechanisms. The systematic comparison against human
eye-tracking data illuminates distinct computational strategies for attention allocation and
memory integration, with important implications for developing cognitively plausible Al
systems for human-robot interaction applications.

The distinct patterns observed across models reveal fundamental insights into the
cognitive strategies employed by different Al architectures and their alignment with human
attention mechanisms. These findings extend beyond simple performance comparison
to illuminate critical questions about how Al systems process temporal information, allo-
cate attention in dynamic environments, and demonstrate cognitive plausibility in their
computational approaches. LLaVA'’s exceptional immediate attention alignment (mean
cosine similarity = 0.311), coupled with systematic degradation under extended context,
reveals architectural optimisation for rapid visual-linguistic integration rather than tem-
poral memory processing. This pattern demonstrates cognitively plausible specialisation
that mirrors human visual attention during initial scene processing, where immediate
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saliency detection operates through efficient bottom-up mechanisms that can be disrupted
by excessive top-down contextual interference.

The systematic degradation observed with full-memory accumulation (0.311 — 0.121,
large effect size r = 0.70; Table 4) demonstrates capacity limitations that, whilst imple-
mented through prompt saturation rather than explicit memory constraints, exhibit cogni-
tive plausibility through bounded processing capabilities. This suggests that LLaVA's archi-
tectural strengths lie in rapid visual-linguistic mapping rather than temporal integration,
offering insights into optimal deployment strategies for real-time attention applications
requiring immediate responsiveness rather than memory-dependent processing. The cog-
nitive capacity analysis (Figure 5) further reveals that LLaVA’s performance degradation
follows a systematic pattern that parallels human working memory overload, with optimal
performance maintained only within bounded context windows. This supports cogni-
tive theories of capacity-limited attention processing and provides empirical evidence for
implementing appropriate memory constraints in Al systems designed for human-like
attention allocation.

DeepSeek’s unique benefit from bounded temporal context (stateless: 0.038 — STM-5:
0.057, r = 0.55, Table 4) reveals sophisticated architectural capabilities for leveraging recent
contextual information without suffering interference effects characteristic of unlimited
context accumulation. This improvement pattern reflects memory integration mecha-
nisms that approximate human working memory benefits, wherein recent information
enhances current processing through selective attention and relevant information filtering.
The temporal emergence of this benefit (primarily after frame 31) indicates adaptive context
utilisation that responds to changing visual dynamics rather than applying rigid com-
putational patterns. This adaptive behaviour suggests cognitive alignment mechanisms
that adjust memory integration based on visual content stability and contextual relevance,
approximating human strategic attention allocation that adapts processing strategies to
environmental demands.

The lexical anchoring phenomenon observed in DeepSeek’s processing demonstrates
computational strategies that parallel human cognitive mechanisms for maintaining atten-
tional coherence across temporal sequences. This pattern suggests architectural capabilities
for selective information retention and strategic reuse, approximating human cognitive
strategies for managing attention in dynamic environments. The statistical validation
(Table 4) confirms that this represents a genuine cognitive capability rather than random
performance variation, strengthening confidence in systems that leverage such memory
integration mechanisms for sustained attention allocation.

The varied responses of LLaMA and Gemma to temporal context further illustrate
how architectural constraints influence cognitive plausibility and attention processing
capabilities. LLaMA'’s selective benefit during static visual conditions followed by degrada-
tion during camera movement demonstrates inflexible memory mechanisms that cannot
adapt to changing visual dynamics, suggesting computational approaches lacking the
adaptive flexibility characteristic of human cognitive systems. Statistical analysis reveals
that LLaMA’s temporal context effects fail to reach significance after multiple comparisons
correction (r = 0.26, p = 0.090; Table 4), indicating that its mixed memory response pattern
represents marginal rather than reliable cognitive capabilities. This finding highlights that
effective memory integration requires architectural features beyond simple context con-
catenation, reinforcing the importance of adaptive processing mechanisms for cognitively
plausible temporal reasoning.

Gemma’s systematic degradation with temporal context (70% zero-similarity frames)
indicates fundamental capacity limitations that prevent effective memory integration, re-
flecting architectural constraints that violate cognitive plausibility principles through an
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inability to maintain minimal attentional consistency. The large effect size comparing
LLaVA’s immediate processing with Gemma’s memory integration (r = 0.68, Table 4) quan-
tifies the magnitude of cognitive capability differences between architectures optimised
for divergent computational strategies. This pattern demonstrates how computational
efficiency optimisations can compromise cognitive alignment when they eliminate essential
processing capabilities required for human-like attention allocation.

Qwen’s cross-lingual output behaviour provides unique insights into the challenges
of assessing cognitive alignment in multilingual systems. The systematic exclusion of
Mandarin outputs reveals evaluation framework limitations whilst highlighting potential
cognitive capabilities that transcend linguistic expression modalities. The large effect size
comparing LLaVA with Qwen’s memory processing (r = 0.69, Table 4) reflects evaluation
methodology constraints rather than genuine cognitive capability differences. The model’s
ability to produce contextually appropriate attention descriptions in Mandarin suggests
functional attention allocation mechanisms that demonstrate cognitive alignment despite
linguistic expression differences. This cross-lingual pattern indicates that cognitive plausi-
bility assessment must account for multilingual expression capabilities whilst maintaining
focus on underlying attention allocation strategies.

These cognitive architecture insights carry important implications for developing
Al systems that demonstrate human-like attention processing in interactive applications.
The distinct cognitive profiles identified across models suggest that optimal human-robot
interaction may require hybrid approaches that leverage different Al architectures for
complementary cognitive functions, rather than attempting to optimise a single model
for all capabilities. LLaVA’s immediate attention capabilities, combined with DeepSeek’s
temporal integration strengths, could provide more comprehensive cognitive alignment
than any single model, reflecting the modular nature of human cognition, where different
neural networks specialise in different aspects of attention and memory processing. This
architectural complementarity suggests development strategies that integrate specialised
components for different cognitive functions, rather than pursuing monolithic solutions.

Beyond cognitive plausibility, the observed model behaviours also highlight measur-
able computational strategies that can be objectively evaluated. The computational strate-
gies demonstrated across models exhibit quantifiable patterns that can be assessed through
systematic empirical analysis rather than speculative analogy. For instance, DeepSeek’s
lexical recycling mechanism constitutes a computational approach that achieves measur-
able improvements in attention consistency, with statistically validated benefits emerging
under specific temporal conditions. This enables objective evaluation of processing efficacy
without reliance on interpretive comparisons.

LLaVA'’s performance degradation illustrates capacity constraints that follow pre-
dictable mathematical patterns. The exponential decay observed in its temporal perfor-
mance provides quantifiable evidence of systematic capacity effects, enabling predictive
modelling of its limitations. These patterns support a data-driven assessment of archi-
tectural capabilities, offering a methodological shift towards reproducible evaluation of
attention processing strategies.

The framework established here facilitates systematic measurement of computational
strategies through empirical methods, including statistical validation, effect size quantifica-
tion, and temporal trend analysis. This empirical lens enhances objectivity in evaluating
model behaviours and avoids over-reliance on analogical reasoning. The statistical evidence
confirms that the observed attention and memory behaviours reflect genuine computational
phenomena that are replicable across evaluation contexts, reinforcing the methodological
rigour of the proposed framework.
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The statistical validation demonstrates that these cognitive capabilities represent
reliable architectural differences (all major comparisons p < 0.001 with large effect sizes;
Table 4) rather than random performance variation, providing confidence for developing
hybrid systems based on empirically validated cognitive profiles. The temporal analysis
reveals that cognitive benefits emerge under specific conditions (DeepSeek after frame 31;
LLaMA during static periods), enabling development of adaptive systems that dynamically
select appropriate cognitive strategies based on environmental conditions. The comparison
of stateless performance patterns (Figure 3) provides a clear baseline assessment that can
inform hybrid system development strategies and deployment decisions.

The capacity limitation patterns observed across models provide practical guidance
for implementing cognitively plausible memory constraints in Al systems. LLaVA’s perfor-
mance degradation beyond frame 43 (Figure 5) suggests that bounded memory windows of
approximately 40-50 contextual elements represent an optimal balance between temporal
coherence and cognitive interference for vision-language architectures. DeepSeek’s con-
sistent benefit from 5-frame context windows indicates that bounded memory integration
can provide sustainable cognitive benefits without capacity saturation, supporting the
implementation of sliding-window approaches for temporal context management. The con-
trast between bounded memory benefits (DeepSeek) and unlimited memory interference
(LLaVA full memory) underscores the importance of cognitive capacity constraints for
maintaining human-like processing patterns.

The context-dependent performance patterns revealed across models suggest that
effective cognitive alignment requires adaptive deployment strategies that match architec-
tural capabilities to environmental demands. LLaVA’s immediate processing excellence
makes it optimal for rapid attention allocation in dynamic environments, whilst DeepSeek’s
memory integration capabilities suit applications requiring temporal consistency and adap-
tive attention maintenance. LLaMA’s mixed temporal response patterns indicate the need
for environmental assessment capabilities that can predict when memory integration will
be beneficial versus harmful, enabling adaptive switching between stateless and memory-
enhanced processing modes. These findings support the development of meta-cognitive
systems that can assess environmental conditions and select appropriate processing strate-
gies dynamically.

This study establishes a comprehensive framework for the systematic assessment of
cognitive plausibility in Al systems that extends beyond simple performance measurement
to evaluate underlying cognitive strategies and processing mechanisms. The integration of
human behavioural benchmarks with rigorous statistical validation provides a template
for developing Al systems that achieve performance through cognitively plausible mech-
anisms rather than arbitrary computational approaches. The non-parametric statistical
approach developed here addresses fundamental challenges in cognitive alignment eval-
uation whilst providing robust inference about architectural differences. The reporting
of effect sizes quantifies practical significance beyond statistical significance, enabling
development decisions based on meaningful cognitive capability differences rather than
marginal statistical effects.

The repeated-measures design accounts for temporal dependencies whilst enabling
assessment of model-specific cognitive capabilities across diverse visual contexts, providing
methodological foundations for systematic cognitive alignment evaluation in dynamic
environments. The framework demonstrates how categorical human behavioural data
can be systematically compared with Al textual outputs through semantic grounding
approaches, enabling cognitive alignment assessment across different modalities whilst
maintaining focus on underlying attention allocation strategies. This methodological con-
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tribution addresses fundamental challenges in human—Al cognitive alignment evaluation
whilst providing practical approaches for systematic assessment.

The temporal analysis approach reveals dynamic cognitive patterns that extend be-
yond static performance measurement, offering insights into adaptive processing capa-
bilities essential for effective human-robot interaction. The cognitive strategy assessment
framework enables identification of Al architectures that demonstrate human-like pro-
cessing mechanisms, facilitating development of predictable and interpretable Al systems
for collaborative applications. The cognitive profiles identified here provide guidance
for developing adaptive Al systems that dynamically select appropriate computational
strategies based on task demands, temporal dynamics, and interaction context.

7. Conclusions

This study presents a comprehensive cognitive alignment evaluation framework that
reveals distinct computational strategies employed by contemporary vision-language and
language models in attention allocation tasks. Through systematic comparison against
human eye-tracking data, we demonstrate that different Al architectures exhibit funda-
mentally different approaches to immediate attention processing and temporal context
integration, with important implications for developing cognitively plausible Al systems
for human-robot interaction applications.

Cognitive Architecture Discoveries: Our analysis establishes that immediate attention
alignment and temporal context integration represent distinct cognitive capabilities that
vary independently across Al architectures, providing insights into the computational
strategies underlying human-like attention processing. LLaVA’s exceptional immediate
attention alignment (r > 0.63 effect sizes across all comparisons) demonstrates architectural
optimisation for rapid visual-linguistic integration that mirrors human bottom-up attention
mechanisms, whilst its systematic degradation with extended context reveals cognitively
plausible capacity limitations that prevent unlimited memory accumulation.

DeepSeek’s unique benefit from bounded temporal context integration (r = 0.55 ef-
fect size) reveals sophisticated memory processing capabilities that approximate human
working memory benefits through selective information retention and adaptive context
utilisation. This improvement pattern, emerging specifically during dynamic visual se-
quences, demonstrates cognitive alignment mechanisms that adapt processing strategies to
environmental demands rather than applying rigid computational approaches.

The comprehensive statistical validation confirms that these cognitive alignment
differences represent genuine architectural capabilities rather than random performance
variation, with effect sizes indicating practical significance for real-world human-robot
interaction applications. The temporal analysis reveals that cognitive alignment evolves
dynamically based on visual content and context integration demands, providing insights
into which models demonstrate human-like adaptive attention strategies versus those
employing rigid computational approaches.

Methodological Contributions and Framework Significance: The evaluation frame-
work established here provides a foundation for systematic assessment of cognitive plau-
sibility in Al systems, with applications extending beyond attention allocation to other
domains of human-AlI cognitive alignment. The integration of human behavioural bench-
marks with rigorous statistical validation offers a template for developing Al systems
that achieve performance through cognitively plausible mechanisms rather than arbitrary
computational approaches.

The framework’s emphasis on cognitive strategy assessment rather than mere perfor-
mance measurement enables identification of Al architectures that demonstrate human-like
processing mechanisms, facilitating development of predictable and interpretable Al sys-
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tems for collaborative applications. The temporal analysis approach reveals dynamic
cognitive patterns that extend beyond static performance measurement, providing insights
into adaptive processing capabilities essential for effective human-robot interaction.

The cross-modal evaluation methodology demonstrates how categorical human be-
havioural data can be systematically compared with Al textual outputs through semantic
grounding approaches, enabling cognitive alignment assessment across different modalities
whilst maintaining focus on underlying attention allocation strategies. This methodolog-
ical contribution addresses fundamental challenges in human—AlI cognitive alignment
evaluation whilst providing practical approaches for systematic assessment.

Implications for Cognitive Al System Development: These findings suggest that
optimal human-robot interaction requires hybrid approaches that leverage different Al
architectures for complementary cognitive functions rather than attempting to optimise sin-
gle models for all cognitive capabilities. LLaVA’s immediate attention processing combined
with DeepSeek’s temporal integration capabilities could provide more comprehensive
cognitive alignment than any single architecture, reflecting the modular specialisation
observed in human cognitive systems.

The cognitive profiles identified here provide guidance for developing adaptive Al
systems that dynamically select appropriate computational strategies based on task de-
mands, temporal dynamics, and interaction context. This architectural complementarity
approach offers potential for developing Al systems that demonstrate comprehensive cog-
nitive alignment through strategic integration of specialised capabilities whilst maintaining
cognitively plausible processing constraints.

Future applications should leverage these cognitive architecture insights to develop
Al systems that not only perform effectively but do so through computational strategies
that approximate human cognitive mechanisms, enabling more natural and predictable
collaboration between humans and artificial agents. The framework provides guidance for
matching Al capabilities to specific cognitive requirements whilst maintaining focus on
developing systems that demonstrate genuine cognitive plausibility rather than arbitrary
computational performance.

The systematic identification of cognitive strategies across different Al architectures
contributes to broader understanding of how computational approaches can approximate
human cognitive mechanisms, with implications for developing Al systems that exhibit
transparent, interpretable, and cognitively aligned behaviour in collaborative applica-
tions. This cognitive alignment perspective offers new directions for Al development
that prioritise human-like processing strategies alongside computational efficiency and
performance optimisation.
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