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1 Introduction and results

While Lagrangians determine tree-level scattering amplitudes, it is well known that sometimes
different Lagrangians give equivalent scattering amplitudes. Put differently, Lagrangians
carry redundant information. The on-shell-scattering-amplitudes programme sheds this
redundancy by constructing the amplitudes directly, often removing the necessity of a
Lagrangian altogether. This has led to both powerful computational tools and many new
insights (see [1] and references therein for reviews).

A complementary approach is to identify a natural notion of equivalence between La-
grangians that encode the same physics. The appropriate equivalence relation, adopted here,
amongst Lagrangians is given in terms of quasi-isomorphisms between the cyclic L.-algebras
governing physical theories.

The starting point of this picture is the observation that field theories described
by actions correspond to cyclic Lo.-algebras. In a nutshell, a cyclic Lo-algebra,! £ =
(V, {ptn}nen, {(—, —)v), consists of a graded vector space V = @z V* equipped with
higher n-ary brackets, u, : V x --- x V. — V_ and cyclic inner-product (or structure)
(—,—)v : V xV — R, generalising the binary Lie bracket and Cartan-Killing form of Lie
algebras. The cyclic structure and higher brackets canonically yield a homotopy Maurer-
Cartan action, which is precisely the classical Batalin-Vilkovisky (BV) action of the associated
theory. Roughly speaking, the cyclic structure (—, —)y is an inner-product on the space
of (anti)fields that yields the action,? the unary bracket ju; encodes the kinetic term of the
action, given by (¢, t11(¢))v, while the higher brackets p, encode the (n+ 1)-point interaction
terms, given by (¢, pn(o,...,d))v.

Cast in this language, semi-classical equivalence between physical theories then amounts
to quasi-isomorphisms of cyclic Lyo.-algebras. This language is fruitful in that the previous

'For notational clarity, we will write (V, {itn }nen, (—, —)v) as (V; fin, {(—, —)v').
2Typically integration over the spacetime manifold together with an invariant inner-product on the space
of internal symmetry representations carried by the fields.



sentence is but the very beginning of a large and detailed dictionary between physics and
homotopy algebras outlined in Table 1. In particular, every L,-algebra £ is equivalent
(i.e. quasi-isomorphic) to a unique® Lo.-algebra £° which has vanishing ,3,1. A representative of
this equivalence class is called a minimal model. When the cyclic structure is preserved by the
quasi-isomorphism, the higher brackets of the minimal model encode precisely the non-trivial
part of the corresponding connected S-matrix. From this perspective, off-shell Lagrangians
and scattering amplitudes are unified as quasi-isomorphic Ly.-algebras. This makes it
clear that quasi-isomorphisms are the correct notion of equivalence; all quasi-isomorphic
Lagrangians are quasi-isomorphic to the same minimal model encoding the unique S-matrix.

However, there is an important gap in the above dictionary. The cyclic L-algebra
only contains information about the nontrivial part of the S-matrix; information about the
identity part of the S-matrix must be supplied separately. Lacking the identity component,
one cannot simply exponentiate the connected diagrams — after all, the minimal model,
by definition, has no p; and, hence, no ‘propagator’ for the identity part of the S-matrix.
For Minkowski space-time, this is not a serious loss, of course, since it is the literal identity.
However, in the case of perturbation theory on nontrivial spaces such as anti-de Sitter space,
this is no longer true and the ‘trivial’ Witten diagrams encode nontrivial information such
as the CFT two-point function.

This observation is closely related to more technical aspects of the homotopy Maurer-
Cartan action in the presence of boundaries. Firstly, the putative cyclic structure, although
well-defined in the absence of a boundary, may fail to be cyclic due to boundary contributions
that appear when using integration by parts to establish the required cyclic identities. For the
same reason, the canonical homotopy Maurer-Cartan action may differ from the physically
preferred action, even if the cyclic structure is well-defined. For example, the canonical
homotopy-Maurer-Cartan scalar-field-theory kinetic term is

1 1
Sinic = 5 (6, (8) + - = /MVOIM SAG+ -+, (1.1)

which differs from the physically relevant action functional % S volur (0¢)? by a boundary
term coming from the total derivative; indeed, this term is precisely that which appears in
the computation of the CFT two-point function. Generically, for technical reasons, in the
Lo-algebraic approach to perturbation theory [2-10], the cyclic structure is defined piecewise
for the on-shell, u1(¢) = 0, and off-shell, ui(¢) # 0, components. So, if we decompose ¢
it into off-shell and on-shell components ¢ =: F' + f respectively, the linearised homotopy
Maurer-Cartan action is

1

5 (F.pn(F), (12)

Shmvc = %<¢, 11(9))

so that there is no contribution from the on-shell part f. However, as we have seen in the scalar
field example, the on-shell part can contribute to the physically relevant action functional.

All these observations are uniformly addressed by transitioning from a cyclic L.-algebra
to a relative cyclic Lo,-algebra that induces a canonical relative homotopy Maurer-Cartan
action, which form the central part of this work. A relative cyclic Loo-algebra is simply a

3Up to Loo-isomorphisms.



Homotopy Algebras Scattering Amplitudes

homotopy Maurer-Cartan action for Lo-algebras [11-15] perturbative field theory actions without boundary terms
minimal model of Ly-algebras [2-10, 16-18] nontrivial part of the connected tree-level S-matrix
minimal model of quantum Ly.-algebra [5, 8, 19, 20] nontrivial part of the connected loop-level S-matrix
further structure on Loo-algebras (e.g. BVB-algebra) [21-31] further symmetries (e.g. colour—kinematics duality)

homotopy Maurer-Cartan action for relative L.o-algebras perturbative field theory actions including boundary terms
minimal model of relative Lo-algebras connected tree-level S-matrix including trivial part

Table 1. Correspondence between homotopy algebras and quantum field theory physics. This paper
focuses on the bottom part of the table.

pair of cyclic Lo-algebras, £ and £y, with a cyclic morphism 7 : £ — £5 relating them.
This is the homotopy relaxation, via Koszul duality, of relative metric Lie algebras, i.e. pairs
of homomorphic Lie algebras m : g — gg equipped with inner-products preserved by 7.
The key idea is to supplement the original cyclic Loo-algebra £, the ‘bulk’, with another
cyclic Lo-algebra £y, the ‘boundary’. The raison d’étre of the boundary L..-algebra is
to simultaneously correct the failure of cyclicity while introducing the physically relevant
boundary terms that are not present in the canonical homotopy Maurer-Cartan action. In
particular, the bulk-to-boundary morphism 7 generates the boundary terms in the relative
homotopy Maurer-Cartan action. Every relative Lo.-algebra 7 : £ — £g is equivalent to
a minimal relative L.o-algebra T — £5. As before, the higher brackets, ﬁk, of the
minimal model encode the non-trivial connected S-matrix, while the ‘trivial’ part is recovered
from boundary contributions to the relative minimal model given by 7. In conclusion, we
thus arrive at an abstract structure, relative cyclic Ly.-algebras, that encodes the physics
associated to (asymptotic) boundaries, from S-matrices to Witten diagrams, uniformly.

Related works. The work [32] is similar in spirit to our discussion of L.-algebras for
theories with boundary in Section 2.1 and holography in Section 3.1.2 and, in part, inspired
the present contribution. However, it differs substantially in the technical approach. It would
be interesting to understand how these (at least superficially) distinct perspectives are related.

In particular, rather than recovering the boundary contributions to the BV-action via
the pullback from the boundary BFV theory, as would follow from the standard BV-BFV
formalism [33], the bulk and boundary are treated within a single L.-algebra in [32], with
modified antifields, products and cyclic structure. In particular, the space of antifields is
enlarged to include boundary antifields and the differential p1 and cyclic structure are adjusted
to reproduce the desired bulk action. It is then shown to be possible to homotopy transfer to
a boundary theory, which corresponds to a certain non-minimal quasi-isomorphic Ly.-algebra.
The corresponding homotopy Maurer-Cartan action then computes the boundary action
for on-shell field configurations, precisely as one would like for holography. However, the
resulting boundary theory is not the minimal model of the modified L.,-algebra, since it has
non-trivial differential, see [32, (3.38)]. It is possible, then, that the minimal model itself is
actually trivial with no physical fields* and thus vanishing boundary action. Correspondingly,

4For example, for scalar field theory on an oriented compact Riemannian manifold M with boundary oM,
then [32, (3.31)] has as the cochain complex

(A-m?,0y)
0 e

C> (M) C=(M) & C>(dM)

0, (1.3)



it is not possible to encode the identity component of the S-matrix, or the two-point function
of the boundary CFT in a holographic context, in terms of the minimal model.

By contrast, we prefer to regard invariance under quasi-isomorphisms as a fundamental
guiding principle: quasi-isomorphic L.-algebras should be physically equivalent. The physics,
e.g. the S-matrix or Witten diagrams, is captured by the relative minimal model, which
is unique up to Lyo-isomorphisms, with the boundary data encoded in the minimal model
morphism 7.

Our work can be related to the BV-BFV formalism as developed in [33, 35, 36], but
the discussion of the minimal model and scattering amplitudes thereof is new to the best of
our knowledge. Note that our discussion of holography focuses on the perturbative sector of
Witten diagrams and, as such, differs from (and is complementary to) the holography-related
discussion in [35], which discusses the nonperturbative aspects of AdS3/CFTy in particular.

The work [37] discusses the perturbative aspects of AdS3/CFTs using the Batalin-
Vilkovisky formalism; our discussion is related but complementary in that we connect the
BV formulation of holography to L..-algebras.

The programme by [38, 39] to formulate defects and holography using Koszul duality
shares many keywords with the current work — Koszul duality, for example, underlies the
definition of L..-algebras — but otherwise differs very much technically; homotopy algebras
do not feature heavily in that programme. Nevertheless, it would be interesting to see if the
commonalities in concepts could be extended to some sort of concrete connection.

2 Relative L_.-algebras

2.1 A motivating example

Let M be an oriented compact Riemannian manifold with metric ¢ and boundary 0M.
Consider a scalar field ¢ of mass m on M governed by the action

- Lo 1 95 1.3
S = /MvolM{2(a¢) + 5m%6% + 500 } (2.1)

where volys is the volume form associated with g and A is the cubic self-interaction coupling
constant. The variation of (2.1) with the Dirichlet boundary condition d¢|gns = 0 yields
the desired equation of motion

(A —m?)p = o> (2.2)

To encode this theory in terms of an L..-algebra, as loosely described in Section 1, one
first integrates by parts in (2.1) to arrive at

1 1 1
S = /M volas {2¢>(A — m?)¢— 3!)\¢3} -3 /8  volou 9o, (2.3)

where A is the Beltrami Laplacian, and dx the normal derivative on M. The space of physical fields in the
minimal model is given by ker(A — m?, dx). Since the Laplacian on a compact Riemannian manifold with
boundary OM has a non-positive point spectrum for Neumann boundary conditions (On¢ = 0), see e.g. [34],
for m # 0 the cohomology containing the physical states is trivial.



Here, A is the Beltrami Laplacian associated with g and dy: C*(M) — C*>°(OM) the normal
derivative to OM with respect to g.° Note that the boundary term [, o Volon @ON @ is
precisely what is needed to reproduce the equation of motion (2.2) via the variation of (2.3)
whilst imposing only the Dirichlet boundary condition on the variation, d¢|sy; = 0. Whilst
essentially trivial, this toy example captures the generic situation that an action with higher-
than-first-order derivatives of a field requires a boundary correction, the most famous instance
of which is the Gibbons-Hawking-York term.

In the present context, the key observation is that the bulk term, that is, the first
summand in (2.3), can be recast as a homotopy Maurer-Cartan action

Sinic = - 21 (0, 1(6. - 6) 24

n>2

for the Ly.-algebra which has

V = C®(M)®C>®(M) (2.5a)

as its underlying graded vector space, where the fields ¢ live in V! and the corresponding
antifields ¢* belong to V2. The non-trivial Lu.-products®

p1(¢) = (A —m®)¢ and po(d1, ¢2) = —Ap1d2, (2.5b)

of degrees 1 and 0, respectively, and the non-degenerate bilinear form

(6,6 = [ volas 6" (2.50)
M

of degree —3, which pairs fields with antifields. The latter is not cyclic for u; because of
the presence of the boundary 0M, cf. [32].

Can we describe the boundary term, that is, the second term in (2.3), in a similar
language? Naively, we have the boundary-related structures of boundary fields

Vaaive .— % (9 M) (2.6a)
H-_/
::(Vanalve)l
and the bulk-to-boundary maps
A A Z On : V. — Vhaive,
2.6b
( (Zi) = Blon, ( (Zi) - Ond, (2.65)

given by the pull-back of the natural inclusion ¢ : Vg‘ai"c — V and the normal derivative.

5More precisely, one extends the normal vector field Oy on M < M to some vector field Vy on M in an
arbitrary but smooth fashion. Then, On¢ = VN¢|3M, Note that this does not depend on the choice of the
extension Vi of .

SFor simplicity we consider only ¢* interactions given by 2, so that the L.o-algebra is merely a graded
differential Lie algebra, but arbitrary interactions may be included via higher products pn(¢1, 2, ..., ¢n) =
—An@1¢2 - - Py, of degree n — 2.



There is also the natural non-degenerate bilinear form on Vanaive

(a,a')vélaive ::/ volgar e (2.6¢)
oM

of degree —2. With these additional boundary structures it is straightforward to recast
the entire action (2.3) as

S Z d)"un . ’¢)>V - %<¢|6M7 8N¢>Véxaive' (27)

n>1

The addition of boundary functions C*°(0M) appears in Ly.-algebra of [32] for the same
reason. However, in that case it is included in the degree 2 (antifield) component of the
original L.-algebra (and is not doubled, as we shall momentarily describe), while we will
place it in a relative boundary Loo-algebra. Of course, since C*°(9M) is added as a direct
sum in [32] this is superficially identical (but the degrees are different; here C*°(9M) is
the space of boundary fields).

The presence of Vglai"e and (—, _>Vgxaive is reminiscent of the BV-BFV formalism [33, 35,
36]. The BV-BFV formalism suggests, however, that the boundary should be described by a
phase space, not a configuration space — that is, it should be double the size — and that
the two maps t*,0n: V — Vnalve should be bundled up into a single map into a phase space.
That is, the equations of motion following from the action (2.3) are of second order so that
rather considering the boundary 0M we should be considering the first-order infinitesimal
thickening along the normal bundle. Consequently, we take

Vy == C®(OM) @ C>®(OM) (2.8)

—.y1
_'VB

instead of (2.6), and combine ¢* and Jy into a single linear map of degree 0,

T V - Vo,

o) bl (2.9)
(¢+> ~ (—813@)'

Define a degree —2 bilinear form, (—, =)y : Vy x Vo — Vy, by

<<5> , <5/>>V8 = /6M volgys af’. (2.10)
1

5(m(9),m(D)v, = —% /BM volgns pON ¢ (2.11)

It then follows that

reproduces the boundary term in the action (2.3).

Note that the term [;,, volgas af is also included in the modified cyclic structure of [32]
for precisely the same reason. However, its definition and interpretation differs from (2.10).
Specifically, in [32] it is the space of antifields V2 of the Lo.-algebra (2.5) that is enlarged to



include a single copy of C°>°(OM), while in the present case we introduce a second boundary
Loo-algebra with Vg = Vi :== C®(OM) @& C®(OM) concentrated in the space of fields.

We note that the bilinear form (2.10) is degenerate and, in addition, it has no symmetry
properties. However, its graded symmetrisation and antisymmetrisation,

<$7$,>?:9m = %(<33>1',>V3 + (_1)‘x||m/|<xlvx>Va)’

1 (2.12)
(x,:c'ﬁ/l;ew = §(<ZL‘,£U/>VB — (=1)lell= |<£L‘,,x’>va),
are non-degenerate for all = (o, ) and 2’ := (/,8’),” and each component separately
plays an important role.
First note, setting m = 0 for notational simplicity,

1
*/ VOlMQﬁAQﬁ/
2/ M

= ;/M VOIM(A¢)¢/ + % /BM¢|6M8N¢’ _ ;/BM 8N¢¢/|8M (213)
= (¢, (®))v + <7T(¢),7r(¢’))s{/yam,

(6, ma(e))v

so that (—, =)™ corrects for the failure of the cyclicity of the bilinear form (2.5c) for the
differential p; of the bulk L.-algebra (2.5).

Note that on setting ¢ = ¢ the term (m(¢), 7(¢'))}." appearing in (2.13) vanishes
identically. On the other hand, the graded antisymmetric component yields

(m(0), m(9))V5™ = (m(¢), m(d))vs, (2.14)

so that we recover the boundary term in the action (2.3). If one had merely used only
(—, —}?};ew at the outset, the boundary-term of the action would be recovered, but without
any correction for cyclicity.
In summary, (—, —)?/yam corrects for the failure of the cyclicity while (—, _>%};ew corrects for
the difference between the Dirichlet action (2.1) and the homotopy Maurer-Cartan action (2.4).
It remains to determine the compatibility relation between 7 and the bulk L,.-algebra

products p; and pse. It follows that
mopu; =0 and mopp =0 (2.15)

because of degree reasons since 7 is of degree 0 and Vj is concentrated in degree 1. These
identities are consistent with the expected functoriality of 7, i.e. it should be a chain map,
mouy = pd o and a Lie algebra homomorphism 7(usa(z, 2')) = pd (7 (x), 7(2')) for all x and 2.

2.2 Basic definitions

In order to formalise the discussion in Section 2.1 and to set the stage for our later discussion,
we now present some basic definitions, motivating them by reference to the key features
exposed in Section 2.1.

"Note that, since Vjp is concentrated in degree 1, we always have |z| = |z/| = 1.



Cyclic relative L,,-algebras. We start by recalling the notion of a relative Lie algebra.

Definition 1. A relative Lie algebra (V,[—,—],Va,|[—,—]o,7) is a pair of Lie algebras
(V,[—,=]) and (Vy,[—, —]9) together with a morphism 7: (V,[—,—]) — (Vy,[—,—]a). A
morphism of relative Lie algebras (¢, ¢a): (V,Vy) — (V',V}) is a commutative square of Lie
algebra homomorphisms

|

lw l”' (2.16)

Vg —— Vé

Remark 2. The class of relative Lie algebras forms a two-coloured operad (one colour for
V', another colour for Vj). Following [40, 41], this coloured operad admits a minimal model,
i.e. the corresponding co-algebra using Koszul duality, which is the following notion.

Definition 3. A relative Loo-algebra (V, pn, Vo, ud,m) is a pair of Le-algebras (V, ),
(Va, 1%) together with a morphism m: (V, u,) — (Vi, ). Furthermore, a morphism of
relative Log-algebras (¢, ¢9): (V,Vy) — (V',V}) is a commutative square of L.-algebra
morphisms

Vv

Jﬁ lﬂ/ (2.17)

Vy —— V}

Note that a morphism 7 of Loo-algebras consists of a family of n-linear maps m, : V' x
-+ xV =V of degree 1 — n. It is then clear from the definition that the scalar field theory
described in Section 2.1 yields a relative Ly.-algebra with non-trivial brackets us, 1, ,u?
and morphism 7 with only 71 non-vanishing. In the context of theories on manifolds with
boundary, the general case articulated in Definition 3 allows for arbitrary bulk and boundary
interactions, u, and MQ.S

However, in order to formulate action principles including these interactions, we need
the notion of a cyclic structure on a relative L.,-algebra.

Definition 4. A cyclic structure on a relative L..-algebra
(V. 1m) = (Va, 1) (2.18)
consists of a non-degenerate graded-symmetric bilinear form
(== Wv:VxV =R (2.19a)
of degree —3 and a bilinear form®

<—, —>V8: Va X Va - R (2.19b)

8Boundary interactions will arise when there are derivative bulk interactions.
9We do neither assume that this bilinear form is non-degenerate nor has any symmetry properties.



of degree —2 such that for each n the multilinear maps

Vx..-xV =R,

(1, ..y xp) = [T1, . xn)y = (21, pn—1(T2, ., T0)) v (2.19¢)
+ Z (mi(z1, s 20), T (i1, - - Tn) )Wy
i+j=n
and
Vg x - xVy—=R,
(@1, s xn) = (21, walvy = (2, 1 (2, 20 (2.19d)
(el d (g, an) @)y,

are non-degenerate and also cyclic,

i ]y = (1) D e S e
21 v =(=1) [n; @1 (2.19¢)

[[1‘17 . 7-’En]]Va = (*1)n_1+(n_1)(‘x1H_lw"‘)—Hx"‘ 2:11 ‘xl|[[ n

Note that the cyclicity will directly impose crossing (Bose) symmetry of scattering
amplitudes.

Relative homotopy Maurer-Cartan action. Consider a cyclic relative Loo-algebra

(Vi tins (= =) = (Va, 12, (=, =)vs)- (2.20)

Motivated by our discussion in Section 2.1, we shall refer to £ = (V, up, (—, —)v) as the bulk
Leo-algebra and to £5 = (Va, 1%, (—, —)v,) as the boundary Le.-algebra, respectively. To
formulate an action principle that encodes all the fields, ghosts, ghosts-for-ghosts, etc. and
also their antifields, it is convenient to consider the degree shift by [1] of (2.20).!° In
particular, we have the identifications V[1] = [1] ® V and Vy[1] = [1] ® Vj as graded vector
spaces, and upon setting

_ ) ) ' for n=1
pulltl @ LS am) = {(—1)n+2?‘2 Z;:l ‘xj‘/Jan(fIfla .oy Xp) else ’
2o f 1 (2.21a)
- ) HIn1 ' or n=
Al @ - 1) ©22) = {(_1)n+2?2 Z;ll m‘,ug(xh s y)  else
and
(1) @ a1, [1] @ wa)ypy = (=1)F Nz, 22y, (2.21)
(1] @ 21, 1] @ 22)ypy 1) = (—1)|x1‘<$1, T2)V, .
as well as
(1] ® ) = [1] @ n(z), (2.21c)

we obtain the degree-shifted cyclic relative L,-algebra

(VL] fins (= =)vpp) = (ValLl @2, (=, —)vyp)- (2.21d)

9An alternative approach would be to use coordinate functions and the superfield trick [42]; see [14,

section 2.1] for a review.



Definition 5. Consider the degree-shifted cyclic relative Lo-algebra (2.21d). The associated
relative homotopy Maurer-Cartan action is the expression

1
Sinmc = Y E[JU, e Ty

n>2 "

1 (2.22)
= Z ol (<$7/~Ln1(l‘,...,l‘)>v[1] + Z <7~Tz‘(1‘7---vw)vﬁj(wv""x»Va[ﬂ)

n>2 i+j=n
for all z € V[1].

Evidently, the first term in (2.22) is the standard homotopy Maurer-Cartan action (2.4),
and this will be the only term if the manifold on which the fields live has no boundary. In
this case, (—, —)y will be cyclic. Generally, if we have a boundary, the second term will be
present. However, if there are no derivative interactions, only 7 will be non-trivial.

Remark 6. Consider a pair of cyclic Loo-algebras (V, pn, (—, —)v) and (V' ul, (—, —)y7), that
is, both (—, —)y and (—, —)y are assumed to be cyclic. Recall that a morphism

(Ve tins (= =) = (V' iy (== )v) (2.23)
is called cyclic [43] (see also [14, 15]) provided that

(z1, 22)v = (mi(z1), m1(22)) v/ (2.24a)

and
Z <7TZ‘(:L'1, cey xi), 7rj(xi+1, ey xi—i—j))V’ =0 (2.24b)
i+j=n
for all n > 3. Consequently, upon requiring the morphism 7 entering the Definitions 3
and 4 to be cyclic in this sense, the second term in the relative homotopy Maurer-Cartan
action (2.22) drops out, and we are in the standard situation where we do not have any

boundary contributions.!!

2.3 Relation to BV-BFYV formalism

A natural formalism for describing systems with boundaries is given by the Batalin-Vilkovisky-
Batalin-Fradkin-Vilkovisky (BV-BFV) formalism [33, 35, 36]. It uses the language of graded
manifolds, for which see [14, 15, 44, 45]. The central notion of the BV-BFV formalism
is that of a BV-BFV pair.

Definition 7. A BV-BFV pair (X,Q,w) LEN (X5, Qs,wy) consists of a pair of differential
graded manifolds (X, Q) and (Xp, Qg) together with a morphism II: (X, Q) — (Xa, Qy) and
closed two-forms w € Q%(X) and wy € Q%(Xp) such that

Low+1T"wsp =0 and Lg,ws =0. (2.25)

Here, £ denotes the Lie derivative.

"'Note that in this case the condition (2.24a) means that (71(¢), 71(¢))v, 1) = 0 for degree reasons.

,10,



Our notion of relative Loo-algebras relates to the BV-BFV formalism as follows. Firstly,
recall that an L.-algebra (V) u,) can equivalently be described as the differential graded
manifold (V'[1], Q) where the homological vector field @ encodes the products p,. In addition,
a cyclic structure (—, —)y of degree k on V is equivalent to a constant (and hence, closed)
non-degenerate two-form w € Q%(V[1]) of degree k + 2 such that Low = 0. We can extend
this as follows.

Proposition 8. Given a cyclic relative Loo-algebra

(‘/num<_a_>V) L (V6>M27<_3_>V0)’ (2'26)

there exists a BV-BFV pair

(V1,Q.w) T (Vo[1], Qo wa). (2.27)

where (V[1],Q) and (Va[l],Qa) are differential graded manifolds encoding the Lo -algebras
(V, 1) and (Vy, u2), respectively, and a morphism I1: (V[1],Q) — (V3[1],Qa) encoding
and where w € Q*(V[1]) and wy € Q2(Vy[1]) are the constant two-forms of degrees —1 and 0,
respectively and encoding (—, —)y and (the graded-symmetric part of) (—, —)v,, respectively.

Proof. The conditions (2.25) are simply the conditions for a cyclic structure in Definition 4. [J

2.4 Minimal model and generalised scattering amplitudes

Since we seek to describe scattering amplitudes, we need to consider the minimal model of
a relative Lyo,-algebra. Since relative Loo.-algebras are special cases of coloured oco-algebras
defined by Koszul duality, they enjoy homotopy transfer theorems; in particular, their minimal
models exist. Preserving the cyclic structure requires more work, cf. [46, 47].

Construction of the minimal model. We can construct the minimal model explicitly as
follows. Given a cyclic relative Loo-algebra (V, u,) = (Vy, u2) and deformation retracts

(" (Vi) == (H*(V).0)
l” ' (2.28)

(7}

o (Vouud) === (H*(V),0)

51

by means of the homological perturbation lemma (see e.g. [48-50]) we obtain the Luo-

morphisms

(V, i) == (H*(V), {fin>1})
l,, l;r (2.29a)

(Vo 13) === (H* (V) {1 )

with i, p, i?, and p? being Lo-quasi-isomorphisms and

T =pgoToi. (2.29Db)
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We call

(H*(V), tn>1) & (H*(Va), fin>1) (2.30)
the minimal model of (V) = (Va, u2).
Explicitly, we have the following recursion relations expressing the maps ﬁi, ﬁ?, 7; of
the minimal model in terms of the original maps pu;, u?, .
The first two bulk minimal model L.-brackets are given by

p
= (2.31a)
1 1
p p p p
) /L%\ ) /g%@\ + %\ ) ﬁ
(2.31b)

with the higher bracket given by the obvious generalisation. We recognise these as the usual
Feynman diagram expansion, with propagator h and n-point vertices .
The boundary minimal model L.-brackets are analogously given by

b
= (ud) (2.31c)
i i
p p p p
Hid) (D h (1)
= + + -

(2.31d)

Again, there is the obvious generalisation to higher brackets and Feynman diagrammatic
interpretation.

More novel is that the bulk and boundary minimal models are connected by the minimal
model bulk-to-boundary morphisms

()= (2.31e)
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Generalised scattering amplitudes. Using the minimal model, we can now define the

b A -
SYNFNV. S 3
AAk

A

generalised scattering amplitudes as follows. In a quantum field theory, the full S-matrix,

EDLAE SRR S

identity part

Soso =

comes from exponentiating the connected (Wick) diagrams,

SR

Of the diagrams that comprise Sconn, the ‘trivial’ diagram ‘|” is special. The minimal model
of an L.-algebra contains the data for all connected diagrams except for the trivial diagram,
but the trivial diagram is crucial in reproducing the full S-matrix. And, in fact, the ‘trivial’
diagram is not so trivial in general in curved geometries such as anti-de Sitter space.

Definition 9. Consider the minimal model (2.30) of a relative cyclic Loo-algebra as well its
degree shift constructed by means of (2.21). At the tree level, the associated generalised
connected n-point scattering amplitude is given by the expression

[gbl? 7¢n]H' WM = <¢17:un 1(¢27 >¢n)>H'(V)+Z <787-i(¢1a'"a¢i)a7grj(¢i+17"'7¢n)>H'(Va)
e (2.34)
for ¢1,. € H*(V)[1]."2

12pyt differently, the generalised scattering amplitudes follow from the polarisation of the relative homotopy
Maurer-Cartan action (2.22) for the degree-shifted minimal model of a relative cyclic Loo-algebra.
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Note that, whilst (—, —) gre(y) need not be cyclic with respect to IO% any failure of cyclicity
is compensated by the antisymmetric part of (—, —) ge(y;) according to Definition 4, such
that the n-point connected scattering amplitudes are guaranteed to respect crossing (Bose)
symmetry. Note also that, for the two-point scattering amplitude, whilst the first term
in (2.34) vanishes since ﬁl = 0 by construction, the second term will, in general, not be zero,
so that we recover the trivial piece of the S-matrix.

The full (rather than connected) tree-level S-matrix can be easily defined in terms
of the connected tree-level S-matrix. For the full quantum S-matrix, there is an evident
generalisation to the loop case following [5, 8], where one should consider a loop relative
Lo-algebra.

Boundary contributions to higher-point scattering amplitudes. In the above, suppose
that « is strict, that is, m,~1 = 0 and that

mioh =0 (2.35)

for h the contracting homotopy. According to explicit formulas for homotopy transfer, the
higher-order components i,~1 of the L,-quasi-isomorphism i in (2.29) satisfy

im(i,) C im(h). (2.36)

Then it follows that the boundary terms in (2.34) are trivial except for two-point scattering
amplitudes. Therefore, in this case, we only have boundary corrections to the two-point
scattering amplitudes but not to higher-point ones, consistent with the fact that the usual L.-
algebra formalism (ignoring boundary contributions) yield the correct connected tree-level
scattering amplitudes for n > 2 points.

3 Examples

Let us now discuss applications of the above setup. We start off considering the simplest ex-
amples of scalar field theory, before moving on to Chern-Simons theory and Yang-Mills theory.

3.1 Scalar field theory on a manifold-with-boundary

Having setting out the definitions in Section 2.2, we can now return to the motivating example
from Section 2.1, first concisely summarising the general setup for compact Riemannian
manifold with boundary and then presenting the corresponding relative minimal model.

We then consider the more subtle cases of Euclidean flat and anti-de Sitter space, where
the boundaries are asymptotic. In the latter case, we shall reproduce the well-known results
from the AdS/CFT literature. See also [32] for analogous results, obtained in a conceptually
similar manner (although, since our underlying framework is different, the technical details
remain distinct).

3.1.1 Compact Riemannian manifolds-with-boundary

Consider a scalar field on scalar field ¢ of mass m on an oriented compact Riemannian
manifold (M, g) with boundary OM and cubic interactions.
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Relative L-algebra. The associated cochain complex of the relative L..-algebra is'3

C>(M) L C>®(M) —— 0
lﬂ'l JO (31&)
0 —— C™(dM) ® C=(dM) 0

0

where the first row represents V' and the second row Vjp in the notation of Section 2.2. The
non-trivial brackets and components of 7 are

() = (A —=m?)¢, pa(¢,¢') = Ao,

3.1b
m1(9) = (QS?]\J;/;)) 7 ( )

where \ is the coupling constant. As in Section 2.1, dy is (the differential operator associated
with) the vector field normal to OM, and ¢|sps is the restriction of ¢ to M. Note that
the doubled function space in V3 can be seen as the space of functions on a first-order
neighbourhood of @M. Furthermore, we set

(6, ¢y = /M volpr 9’ = (¢'F, #)y  and <<g> , <g,>>va = /8M volgar a8, (3.1c)

The relative homotopy Maurer-Cartan action (2.22) for this relative L.o-algebra is

S = /M volys {%gf)(A —m?)¢ — %A&} - ;/aM volpar G0N
- /M volys {%(8@1))2 - %m2¢2 + %mf”}.

Relative minimal model. The cochain complex of the minimal model of the bulk theory is

(3.2)

0 —— ker(A —m?) e coker(A —m?) —— 0. (3.3)
The homotopy h is given by a choice of Green’s function'* G,,, for A—m? (understood to carry
Loo-degree —1). Then, the trivial embeddings of ker(A — m?) into C°°(M) and the obvious
projections id — 11 0 Gy, : C°(M) — ker(A—m?) and id— G, oy : C°(M) — coker(A—m?)
provide the homotopy retract data. The higher products ﬁn>1 then follow from the homological
perturbation lemma, using the formulae of Section 2.4. See also [3] for more details.
The boundary minimal model is trivially given by the boundary L..-algebra itself, so
the cochain complex for the relative minimal model is given by

o

0 ker(A — m?) = coker(A —m?) —— 0
lgl:ﬂ_l ker(A—m?2) J%IZO (34)
0 —— C®(0M) @ C>®(0M) 0

13This complex differs from the analogous structures in [32] (see eqq. (3.31) and (3.38) therein) in two
regards. Firstly, the ‘bulk’ and ‘boundary’ (anti)fields are contained in single relative Loo-algebra, as opposed
to belonging to quasi-isomorphic, but distinct, Loo-algebras related by homotopy retract data. Indeed, we have
a homotopy transfer from the full relative bulk+boundary relative Loo-algebra to a minimal bulk+boundary
relative Loo-algebra. Secondly, the boundary fields are doubled and the space of boundary antifields is trivial.
141f one imposes Dirichlet boundary conditions the Green’s function is unique.
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where the first row represents H*(V') and the second row H®(Vj), and there are no boundary
higher products ﬁg (since there are no derivative interactions in the bulk). The minimal
model then encodes Feynman-diagram-like perturbation theory for solutions to the classical
equations of motion.

3.1.2 Flat and anti-de Sitter spaces

In this section, we discuss field theories on manifolds with a boundary ‘at infinity’, namely
on anti-de Sitter space and flat space, to reproduce conformal-field-theory (CFT) correla-
tors (computed via Witten diagrams) and S-matrices (computed via Feynman diagrams),
respectively. Our discussion for the flat-space S-matrix will be inspired by the AdS/CFT
correspondence; for a related approach see [51]. In both cases, it is more convenient to
motivate the construction in Euclidean (rather than Lorentzian) signature, although one can
always Wick-rotate to Lorentzian structure afterwards. The idea that the trivial part of the
S-matrix arises from boundary terms also appears in [52].

Euclidean anti-de Sitter space. Consider the Poincaré patch of Euclidean anti-de Sitter
space (a.k.a. hyperbolic space) AdS;y1. The underlying manifold is AdSgy1 = {(z,%)|z €
R-o,7 € R?}, and the Riemannian metric g is given by

1 d .
gads = 5 (dz ®dz + Z dy' ® dy’) : (3.5)

=1

The conformal boundary S¢ = R? U oo lies at z = 0 and z = oc.

Euclidean flat space. We treat (d + 1)-dimensional Euclidean flat space similarly to the
hyperbolic space: the underlying manifold is {(z,%)|z € Rxg, ¥ € R?}, and the Riemannian
metric g is given by

1 d ,
JE = ;dz ®dz + Z dy' @ dy". (3.6)
i=1

Using the coordinate transformation z =: e, then (¢, %) are the usual Cartesian coordinates
for R*9. Since this is in Euclidean signature, there is only one component of the conformal
boundary (similar to hyperbolic space), which lies at z = 0, corresponding to the far past
t — —oo; there is no corresponding boundary component for the far future ¢ — —+oo.
Effectively, we are using crossing symmetry to replace outgoing legs of positive energy with
incoming legs of negative energy so that all external legs come in from the far past.

To treat the hyperbolic and flat cases uniformly, we write

1 1 a4 .
=1

with n = 0 for flat space and n = 1 for hyperbolic space, and set z =: e’.

,16,



Bulk function space. Let C be the space of smooth functions ¢: Ryg x R — R such
that there exists a function @interior: Rso X RY — R that decays superpolynomially as
z — 0 or, equivalently, superexponentially as ¢t — —oo (i.e. lim,_,¢ 2~ *®interior (2, 7)) = 0 or
limy—s 0o € “hinterior (€f, 7) = 0 at every 7 € R? and « € R) and the difference ¢py = ¢ —
Qinterior 1S a countable!® sum of functions that depend homogeneously on z as

¢(27 :lj) = ¢interior(27 g) + Z Zai ¢Oéi (g)7 (38)
i=1

where ¢, € C3°(R?) are each a compactly supported smooth function and «; € R. Note
that C' is defined so that it includes, in addition to functions that decay quickly at infinity,
on-shell plane waves as well as their products and derivatives; it is not possible to restrict
to only on-shell waves since they are not closed under products.

On C, wherever convergent, we set

G.dho= [ dx [ alg T 6l )6 ), (3.9)
using the volume density /detg = z~"4~1,
Boundary function space. For each § € R, let C’g be (a copy of) the function space
O = C®(RY) (3.10)

of smooth functions on R?. This should be thought of as the space of the ‘values at z = 0 of
‘plane waves’ with ‘dispersion relation’ characterised by d. Let Cy be the space of formal sums

Co = {i(&',@)

i=1

bi € ogz} (3.11)
such that the function

o0
(2,9) = Y 2" ¢i(7) (3.12)
i=1
converges pointwise.

Thus, for the flat space case, Cy is the space of linear combinations of on-shell plane waves.
The space Cy is chosen such that it includes the asymptotic values (i.e. ‘values at z = 0”) for
solutions to the Helmholtz equation (for both the flat and hyperbolic cases) for different values
of the squared mass m?. For the Euclidean case, solutions to the Helmholtz equation are

pEVMI exp(ip’- 9), (3.13)
/o2 152
which we regard as an element of Cy P , while for the hyperbolic case, solutions to the

Helmholtz equation are of the form

Gz, 7) = 225 () + -+ 2 s, (§) + -, (3.14a)

15We allow countable, rather than finite, sums so as to include solutions to the Helmholtz equation on

hyperbolic space.
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where

0y = — + 1/ —+m? (3.14b)

and d, is the conformal dimension of the corresponding CFT local operator,'® and ¢ "
is related to ¢5_ as

¢5
We regard this as the formal sum

(0,5 )+ -+ (04, ¢5,) +--- € Co. (3.16)

Furthermore, on Cpy, wherever convergent, we set

oo = [ 4% X S5 nas(d) (3.17)
d€R
We also have the map
(—)pw: C — C@,

(3.18)

<¢interior + Z z5i ¢Z> = 2(52) Qsz)a
i i
where @interior Was defined in (3.8), which picks out the asymptotic components of ¢ € C.

Relative L.-algebra. Inspired by our discussion from Section 3.1, the relative L.-algebra
for a scalar field ¢ of mass m with cubic interaction is

0 c . c 0
l“ lo (3.19a)
0 Cy 0
with )
= A — s s / = —)\ /,
pi(@) = (A =m7)o, p2(e, @) ol (3.19D)
m1(9) = Ppw,
where the Beltrami Laplacian is
Ag = —1+nd (az(zlfndaqu) + ag(zﬂ*"dz%ag@) (3.19¢)

and where c is a constant; it will eventually be fixed by requiring that the coefficient for
the quadratic term in (3.30) or (3.32) below is correctly normalised (when compared to the
trivial part of the S-matrix or the CFT two-point function). Furthermore,

(0,07 )v = (¢, ¢ )o = (¢, o)y and  (a,a')y, = (@, F)cy, (3.19d)

16T avoid confusion with the Beltrami Laplacian, we denote the conformal dimension by d .
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where (—, —)c¢ and (—, —)c, were given in (3.9) and (3.17), respectively.
Using these ingredients, the relative homotopy Maurer-Cartan action (2.22) becomes

s= [ — [ al5{50a -0 — 206 e [ alp (o (00 ]

(3.20)
where [---]o extracts the component that is of order O(z"). This can be recognised as a
regularised version of the standard action
_ * dz daf 1 2 L o9, 1,3
Suive = = || <t [, 47500 + 5m?0* + 500}, (3:21)

Deformation retract. We have the deformation retract (i,p, h) whose components are

T e (RY) & C2(RY)
0
p
: C(RY) & C>(RY)
(Fr o f =)= (i f-))pw
id
C@ CB
id
0 0
(3.22)
Here, i is given (for both fields and antifields) as
) o [ CGEDE =) + L @DE- (- =) (3.23)
in terms of the bulk-to-boundary propagator
B J a5+ exp(i(y —§)-p) n=0
K:t(yaz;gl) = { I'(6+) P O+ (324)
7a/20(65) (z2+(?7—?7)2> n=1,

where

5 (7) +v/m? + p? for n=0 (3.25)
+(p) = :
%:I:\/%—l—mQ for n=1

is either the on-shell energy (and its negative) for flat space or the conformal dimension (and
its conjugate) of the corresponding CFT operator for hyperbolic space, and where

0 f =0
m? > o (3.26)
-G for n=1
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Witten Diagrams Homotopy Transfer

bulk—bulk propagator homotopy h
bulk—boundary propagator 1 and p
boundary—boundary propagator (m1(=),m1(—))

Table 2. Correspondence between Witten diagrams and homotopy algebras.

is the squared mass of the particle, which obeys the Breitenlohner-Freedman bound [53, 54]
in the case of n = 1 and is non-negative for n = 0. For the flat space case, the expression
is perhaps clearer in momentum space:

Ko(f, 2,p) = 2@ exp(iif - p) = exp (6= (P)t +iif - P) , (3.27)

which is the Wick-rotated version of an on-shell plane wave.
The projection map p is given in terms of a suitable left inverse of i.

Minimal model for flat space. Let us Fourier-transform ¢ into p. Then, solutions to the
equations of motion are linear combinations of plane waves of the form

s (z,0) = 27 () (3.28a)
where
Eg = /m? + p? (3.28Db)

is the mass-shell condition.
The cochain complex underlying the minimal model for (3.19) is then

o

0 —— C®(RY) @ C®(RY) 175 ¢ (RY) @ C®(RY) —— 0
(f+,ff)H(i(f+7ff))pwl lo (3.29)
0 Cyd Cy 0

where all the ﬁn>1 are present and are given by the homological perturbation lemma as
discussed in Section 2.4. Furthermore, the relative homotopy Maurer-Cartan action (2.22)
for the minimal model is

1 I -  dz .1 .
§=3 L ATE @50~ [T [ AT, (330

where ¢(z,7) is a linear combination of the Fourier-transform of (3.28) and the ellipsis

. . . . . o .
denotes higher-order scattering amplitudes via the higher-order products p,,~;. In particular,
the two-point scattering amplitude is seen to reproduce the (Euclidean) Klein-Gordon
metric (see e.g. [55, (4.9)]), correctly pairing positive-energy (incoming) and negative-energy
(outgoing) states.
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Minimal model for anti-de Sitter space. Let us take the minimal model for anti-
de Sitter space, that is, for n = 1. In this case, solutions to the Helmholtz equation follow
the ansatz (3.14a).

As before, the cochain complex underlying the minimal model for (3.19) is

o

0 —— Cc®(RY) @ > (RY) M=% o RY) @ C®(RY) — 0
(f+»f—)~>(i(f+7f—))pwl lo (3.31)
0 Cyd Cy 0

with ,&n>1 given by the homological perturbation lemma as discussed in Section 2.4. Further-
more, the relative homotopy Maurer-Cartan action (2.22) for the minimal model is

_ 1 L 05, ()¢5 (7)) [ de S D
5= 3 Jraa WY |37—17’|25+_/o Jivd /Rdd YgAd™(,9) + - (3.32)

where the ellipsis encodes the higher-order /cln>1 generated by homotopy transfer, correspond-
ing to evaluating the sum over connected Witten diagrams; these encode the connected
(n + 1)-point correlation functions of the boundary CFT. Then, it is clear that the corre-
sponding scattering amplitudes reproduce those of Witten diagrams:

p
@ % (3.33a)
-0
p p
) /%\ ) ﬁ?\
p p

and so on, where in the homological perturbation lemma we have the correspondence in
Table 2.
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The CFT two-point correlator is not given by the usual homotopy transfer but is instead
given by (m(—),m1(—)), that is, from the boundary term of the relative Maurer-Cartan
action; this is essentially the classic derivation [56, section 2.4,section 2.5] that involves
integration by parts of the bulk AdS action to reduce it to a boundary term.!” This seeming
inhomogeneity is, in fact, natural: the two-point correlator is not part of the connected
correlator, since the full correlator is obtained by ‘exponentiating’ the connected correlator,
whose ‘identity’ component consists purely of Wick contractions involving the two-point
correlator (and other Wick contractions).

In this sense, the leftmost diagram in [57, figure 1],

) (3.34)
which is often used to represent the two-point function,
_, S | dz S L 2 L L
(O@), O(#2))crr = /AdS dyﬁ{aK(%Z;yl) FOK(7, 292) +m K(yvz;yl)K(y)ZvyZ)})
(3.35)

is misleading in that the ‘vertex’, which looks like it should be p1, in fact is not (since we have
picked up a boundary term); it can, instead, be interpreted as the AdS boundary-to-boundary
propagator.

3.2 Gauge theory on a manifold-with-boundary

Here, we consider the relative L,-algebras for Chern-Simons and Yang-Mills theory on
oriented compact Riemannian manifolds with boundary. See also [32] for an L..-algebra
approach to Yang-Mills theory on a manifold with boundary .

3.2.1 Chern-Simons theory

BV action. Consider an ordinary finite-dimensional metric Lie algebra (V, [—, =]y, (—, —)v).
The naive'® homotopy Maurer-Cartan Chern-Simons BV action on an oriented compact
Riemannian manifold (M, g) with boundary OM is given by

SCE = 1(A, dyA)v + l<Aa [A, Alv)v
e /M {2 3! (3.36)

1 1 1
- §<A+, daely = 5(e, dy A )y — (A7 [A dv)v + §<C+7 [c, C]V>V}a
where ¢ € QY(M, V) is the ghost and A € Q(M, V) the Chern-Simons gauge potential and
At € Q2(M,V) and ¢t € Q3(M, V) the corresponding anti-fields. This action is invariant

n [56] this computation is done with a bulk-to-boundary propagator, which provides the required
regularisation; the choice of the relative Lo.-algebra here encodes an equivalent choice of regulator.

'8Tn the sense that it is derived directly from the canonical symplectic Q-manifold (Q°(M,V)[1],Q,w).
See [14] for a detailed discussion of its Loo-algebra realisation.
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under the corresponding BV transformations,

1
QBVC = _5 [67 C}V?

QRpvA = Ve, (3.37)
QBVA+ =—F - [Ca A+]V7

Qpve" =V AT — e, c+]v,

where Vs == dy+[A, =]y and F = dp A+ % [A, A]y, up to a boundary term which is given by

QevSSe = /BM {(c, dyr Ay + %([c, dv, Aty + i(c, [A,A]V>V}. (3.38)

Note that one can integrate by parts to write (3.36) as

1
CS  _ oCS
Spyc = Spv —

S| e ATy, (3.39a)
2 Jom

where
cs 1 1 + L, +
Spv = - (A du Ay + (A, [A, Alv)y = (AT, Vire)y + 5 {7 [e,cv)v . (3.39b)
Note also that the inner product used to define the action is only cyclic up to a boundary term,

/<A17dMA2>V:/ (AQ,dMAl)v—/ (A1, Ao)v, (3.40)
M M oM

for all A;o € Q1(M, V). This must be rectified by a boundary term deriving from the relative
L.-algebra. However, this additional term drops out of the relative homotopy Maurer-Cartan
action, since [;,,(A, A)y =0, so it is only visible at the level of the relative L..-algebra.

Relative L.-algebra. The cochain complex of the relative L..-algebra is given by V-
valued p-forms on M and OM,

Ec €A €At €ct
—_——~ —_——~ ” ——~ —_——~
QM vy 2 ot vy £ 02(M, V) L Q3 (ML)
1 st lm (3.41&)
1] 9
QO(OM, V) s QY (oM, V)~ Q2(0M, V)
——— —_——— ———
€y ca cat
with
p(c) = due, p(A) = duA, p1(AT) = dy AT,
e, ) =lc, v, c, A) = |[c, Aly, c, AT) = [c, ATy,
aled)=fedlve e d)=fedly, A=A
pa(c, ™) = [e, Ty,
,LLQ(A,A,) = [A, A/]V, MQ(A, AH_) = [A,AH—]V.
and
7['1(6) = C‘8M7 71'1(A) = A’8M7 71'1(A+) = A+’3M (3.410)
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and
p{() =dony, () =done,  pf(at) = doma™,
H5(Y) = lve B8 (via) = Iyaly, p8(y.at) = [y, ey, (3.41d)
13 (o, ') = [, )y
In addition, we introduce the degree —2 (before grade-shiting) bilinear form has non-vanishing
components

(v,at)g = /&)M<%a+>v and (o, '), = /8M<oz,o/>v. (3.41e)

With these definitions, the relative homotopy Maurer-Cartan action (2.22) becomes

1
SSie= [ { (A, dyr Ay + 55 (A, [4 Ay

= Lty — Yo du Aty — (A A du )y + Siet e, c]v)v}
2 ? 2 M (3.42)
=5 | feany - )

— /M {;(A,dMAW + %(A, [A, Alv)v (AT, Vue)y + %(CJF? [ C]V>V}-

Relative minimal model. To construct the relative minimal model, we first consider the
cohomology of the bulk cochain complex, (2°(M,V'),dys). By the Kiinneth formula

3
Hpy (M, V) = D Hig (M;R) @V, (3.43)
p=0

where H3p (M;R) is the de Rham cohomology and for M an oriented compact Riemannian
manifold with boundary 0M (and possibly corners) we have H3y (M;R) = H*(M;R), the
real singular cohomology of M [58]. Thus, the minimal model absent interactions (higher
L-brackets) computes the real singular cohomology of M.

To identify H3g(M;R) explicitly, denote the closed, exact, co-closed, co-exact forms
and their intersections by (leaving M implicit)

CP = {we QM) | dyw = 0},
cCP ={w e Q’(M) | dj\/lw =0},
EP ={we QM) |w=dun},
cEP = {w € PP(M) | w = d}n}, (3.44)
CcC? :=CPNeC?,
EcC? := EP N eCP C CeCP,
CcEP .= CP N cEP C CcCP.

We shall also need to impose Dirichlet (relative) D and Neumann (absolute) N boundary
conditions on the space of p-forms. To do so, it is convenient to introduce local coordinates
= (y,r) on M near OM, where y are local coordinates on M and r > 0 is the normal
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distance to the boundary so that for p € OM we have r(p) = 0. We denote forms at a
boundary point p by w|,ecs a5+ which decomposes into tangential and normal components,

Wlpcom = wﬂ + pr. (3.45)
In local coordinates, this decomposition can be written
Wlpeom = ai‘, + oz;‘ Adr and ai‘,, ozIJ; € Q*(OM). (3.46)

In a coordinate-free language, w,! is given by w;u(Xl, L Xp) = w(X{', . .X,U) forall Xy,... X, €

I'(M|oar, TM) and X = X+ +X I denotes the decomposition into tangential and normal parts.
The normal component is then defined by wj; = w1|9| — w|peam- For notational clarity we will
henceforth write w!l and w for the tangential and normal components at any boundary point.

The tangential and norm components define the D (relative) and N (absolute) boundary

conditions,
(M) ={wePM)|wl =0} and QX (M) ={weQP(M)|wt=0}, (3.47)
where for (co-)exact forms the boundary conditions are applied to the pre-images
cER = dl Q8P (M) and R = dp 08 (M). (3.48)

With these conventions, the Hodge decomposition for an oriented compact, connected,
smooth Riemannian manifold with boundary is [59]

QP (M) = cER @ CcCP & ET) = cER, @ CcCk, & EcCP & EY,. (3.49)

Since EcCP @ EY, = EP, from the above, CcC%; is the orthogonal complement of the exact
forms inside the closed forms,

CP = CcCl & EP, (3.50)

and we have HI (M;R) = CcCR, = HP(M;R). See for example [60]. Note also that the

~

relative D boundary condition applied to CcCP gives the relative cohomology, CcCt, =
HP(M,0M;R), cf. [60].

Recall that when the boundary is empty, CcC? = ker(A|qgp(ar)) by Poincaré duality
and so, QP(M) = CcCP & AQP(M). Thus, the spaces of harmonic fields,?® CcCP, and
harmonic forms, ker(A|Qp( M)), are isomorphic. However, when the boundary is non-empty
there may be more harmonic forms than harmonic fields and AQP(M) = QP(M). See,
e.g. [62]. Indeed, while CcC%; and CcC?, are finite dimensional, CcC? and ker(A|gp(ar))
are infinite dimensional for 0 < p.

The deformation retract data

hC(Q'(M, V),dy) —= (CeC%,0) (3.51)

9Not to be confused with the restriction given by the pull-back of the inclusion, denoted by w|on = t*w.
20To use the nomenclature introduce by Kodaira in [61].
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is given by the trivial embedding i; and canonical projection p; given by the Hodge de-
composition.

We define the contracting homotopy by
h = d};} Pg, (3.52)

where Pg is the projector onto the image of dj; and d]T/[l is the inverse of the operator dy
restricted to the orthogonal complement of its kernel, cf. the definition of the Chern-Simons
Green function in [63]. The Hodge decomposition (3.49) then implies

id—hody —dy oh = Poes,, (3.53)

where Pcecs, is the projector onto C'cC} C Q°*(M). Explicitly, using (3.49) any p-form
can be written

w=dyra+dl, B+ dyy+0, (3.54)
where dya € EY, d}Lwﬁ € cER, v € cCP~! and 6 € CcC¥;. Consequently,
(dar o h)(w) = dpyra+dyy and  (hody)(w) = di, B3 (3.55)
and
(id—hodpy —dproh)(w) =0, (3.56)
as required.

The relative minimal model is given by

CeCO'(M,V) —2— CeCl (M, V) —2— CcC3(M,V) —2— CcC3,(M,V)
l’o” l;l F” . (3.57)
COOM, V) —2 CecCHOM, V) —2Ls CcC2(OM,V)

where 7(%1(—) = —|9ps which is uniquely determined by the tangential component w! (although
they strictly speaking belong to different spaces) and so for all w € CcCR}; we may formally
identify w|pcom = wll = w|anr- The higher products follow from the homological perturbation
lemma as discussed in Section 2.4 and give a perturbative expansion of the classical solutions
given specified boundary data.

3.2.2 Yang-Mills theory

Finally, let us discuss Yang-Mills theory in four dimensions, including a topological 6-term, in

the framework of relative L..-algebras. We work with the usual second-order formulation.?!

21For first-order formulations see e.g. [3, 14, 33].
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Relative L.,-algebra. We take the colour Lie algebra of the theory to be an ordinary
finite-dimensional metric Lie algebra (V,[—, —|v, (—, —)v). Correspondingly, the relative Loo-
algebra of Yang-Mills theory on an oriented compact four-dimensional Riemannian manifold
(M, g) with boundary dM is given by

€c €A €A™ €ct

00 1 1 1 3 p1 4
T lﬂ'l T
1] 8

QoM V) s (QNOM, V) ® Q*(OM,V)) — Q3(OM, V).
——— ———

Sl € (a,p) €at

(3.58a)

where the first row represents V' and the second row Vj. Notice that there is the extra
component Q%(9M, g) in the boundary L..-algebra Vp labelled by 3). The reason for this
is that only the gauge potential A € Q'(M,V) appears with second-order terms in the
Yang-Mills action. Furthermore, upon letting ‘x” be the Hodge operator with respect to
the metric g, we have (see e.g. [11, 12, 14])

wi(e) = w1 (A) = dyxdpr A, p1(AT) =dy AT,
(07 )= [ ] p2(c, A) = e, Aly, pa(c, AT) = [, ATy,
pa(c, ™) = [ "y,
pa(A, A = dpr A, Ay + (A, sdy Ay + (A sdurAly,  pa(A, A = (A4, Ay,
ps(A, A A" = [ (A", A"y ]y + cyclic
(3.58b)
as well as
9 domy o).
11 (y) —< 0 )» 251 (5) = dam B,
15 (7,7') = [7,7'] 15 <% (g)) = Gzﬁ] > By (v,an) = [y, ally,
M2 ((g) ) (g:)) = [avﬁlv]v + [O/vﬁ]v
(3.58¢)
and
(&) = ¢ (4) = 4 (4%) = AT]
mTCc) : CloM , 1 . *dMA—l—HdMA 1 : OM 5
(3.58d)

A O
ma(A,A) = (*[A, Ally + 9[14714/]‘/) oM
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In addition, we introduce the bilinear forms that have the non-vanishing components

() = [ ety = (¢ v, (A A= [ (4,40 = At Ay,

N (O e

Then, the relative homotopy Maurer-Cartan action (2.22) becomes

(3.58¢)

1
S = f/ {<A,dM*dMA>v + (AT duc)y — (e, dMA+>V}
M

2
+ /M {;<A,dM*[A,A]V + Q[A, *dMA]V>V + <A+7 [Av C]V>V + %<C+, [C’ C]V>V}
n ;/M<A, A, +[A, Alv]v)v

1

{(C, A+>V + <A, *dpr A+ HdMA>V}

2 Jou

1

ba /aM(A, (A, Al +0[A, Aly)y

oM

oM

= [ {SEemy + (a4 e e+ SE Ry

(3.59)
where, as before, F := dyrA + 3[A, Aly and Ve = dye+ [4, c]y.
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