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A B S T R A C T

To optimize the backfilling of ground source heat pump drilling mud and boost the thermal 
conductivity of drilling materials, this study proposes using a mixture of limestone sand and loess, 
typical in karst regions, as backfill for buried pipe heat exchangers. Through indoor experiments, 
152 limestone sand-loess mixtures were prepared and their thermal conductivities tested. Ana
lyses explored the impacts of limestone sand content, moisture content, dry density, and particle 
size distribution. Results show that artificially graded materials generally outperform natural ones 
in thermal conductivity, with grading’s influence decreasing as moisture rises. At 8 % moisture, 
grading increases thermal conductivity by 18.57 % (0.069–0.124 W/(m⋅K)); at 20 %, the increase 
is 7.63 %. High moisture and limestone sand content can yield a thermal conductivity of 1.508 
W/(m⋅K). When using graded materials, geological conditions and aquifers should be considered, 
and they suit strata with moderate moisture. A backpropagation neural network - based predic
tive model for thermal conductivity, developed from experimental data, achieved 6.4 % average 
absolute percentage error, indicating good accuracy.

1. Introduction

As a renewable energy source, geothermal energy offers significant advantages, including substantial reserves, widespread dis
tribution, and environmental cleanliness [1–3]. It holds considerable potential for development. Meanwhile, the ground source heat 
pump (GSHP) represents an energy-efficient system that harnesses shallow geothermal energy for heating and cooling buildings. This 
system has garnered considerable attention due to its benefits, such as stable year-round operation, high heat exchange efficiency, and 
contributions to energy conservation and environmental protection [4,5]. The GSHP system facilitates heat exchange with the sur
rounding geotechnical medium through an underground heat exchanger. The backfill material functions as the heat exchange medium 
between the underground heat exchanger and the surrounding geotechnical body, and its thermal conductivity is essential for 
enhancing the overall heat exchange performance of the GSHP [6].

Enhancing the thermal conductivity of backfill materials is crucial for boosting the heat exchange capacity and improving the heat 
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transfer efficiency of heat exchangers. To this end, a diverse range of backfill materials has been developed. These include sand - 
bentonite - based composites [7], cement - based mixtures [8], phase change materials [9,10], quartz sand as a bentonite substitute 
[11], and high - thermal - conductivity additives such as graphite [12] and steel slag [13,14]. Previous studies have demonstrated that 
an appropriate increase in the thermal conductivity of backfill materials can effectively augment the heat exchange of heat exchangers, 
reduce the total borehole length [15,16], and mitigate thermal buildup [17]. With the continuous advancement and widespread 
adoption of ground source heat pump systems, the development of high - thermal - conductivity materials and novel phase change 
materials has emerged as a focal point in the research on backfill materials. However, modern new materials encounter significant 
challenges. Their development is often arduous and costly, resulting in elevated initial investment expenses. Moreover, much of the 
research on these advanced materials remains confined to numerical simulations, with limited practical application in real - world 
projects. In general, traditional backfill materials (including pure and mixed materials) are still predominantly used in ground source 
heat pump systems, accounting for approximately 90 % of applications, compared to only 10 % for modern backfill materials [18]. 
Consequently, there is an urgent need to explore the reprocessing of drilling grouts, which holds great promise for enhancing the 
operational efficiency of buried - pipe systems.

Although high thermal conductivity is generally beneficial for heat exchangers, for backfill materials in ground - source heat pump 
systems, higher values do not always guarantee improved performance. Research suggests that the optimal thermal conductivity of 
backfill materials should be marginally higher than that of the surrounding rock and soil [19]. Drilling mud, with its thermal con
ductivity closely matching that of the original soil layer, is considered a suitable candidate for backfilling. However, direct use of 
untreated drilling mud can undermine the efficiency of ground - source heat pump systems. This inefficiency can occur due to 
stratification within the backfilled layers, causing a mismatch in thermal conductivity between the drilling mud and the underlying 
strata, or because of inconsistent particle sizes in the mud, which can negatively impact the compactness of the backfill [20]. These 
issues can lead to a decrease in thermal conductivity, ultimately deteriorating the heat exchange performance between the heat 
exchanger and the surrounding rock. As a result, reprocessing the main aggregates of drilling mud to enhance its thermal conductivity 
for backfilling represents a more effective approach. In karst regions, where the geology of ground - source heat pump drilling is 
predominantly bedrock, using highly conductive bedrock gravel as backfill material is advisable. For example, previous studies have 
shown that adding silica sand to bentonite slurry can increase the thermal conductivity of the enhanced bentonite slurry by 30 % [21]. 
Compared with the development of high - thermal - conductivity materials and phase - change materials, backfilling with the original 
slurry is more cost - effective and environmentally friendly. Drilling mud is mainly composed of sand, gravel, and soil, and sandy soil is 
a three - phase mixture of solid, liquid, and gas [22]. Its thermal conductivity is affected by factors such as aggregate content [23], 
particle size [24], moisture content, and dry density [25]. Given the complex heat - transfer mechanism involved, further investigation 
is required. Thus, it is essential to explore the effects and underlying mechanisms of factors like aggregate content, moisture content, 
and particle size on thermal conductivity.

The sand-soil mixtures obtained from drilling slurry exhibit low thermal conductivity. To enhance the thermal conductivity of these 
mixtures, one can utilize sand and gravel with superior thermal conductivity, increase the aggregate content, and modify the particle 
sizes to expand the contact area between particles. For instance, Kong et al. [26] addressed the low thermal conductivity of loess in the 
Loess Plateau region by incorporating iron tailings, which possess better thermal conductivity, as an aggregate. Similarly, Xu et al. [27] 
proposed a waste steel slag-calcium clay mixture as a backfill material for buried pipelines. In addition to selecting materials with 
improved thermal conductivity as aggregates, both researchers also employed grading techniques to enhance the void space between 
particles, thereby increasing the contact area and, consequently, improving the thermal conductivity of the backfill material. Grading 
significantly influences heat and mass transfer among particles in sand-soil mixtures. Wen et al. [28] examined the pore structure 
characteristics and hydraulic properties of granite residual soils with varying particle grading. Nagaraj et al. [29] experimentally 
assessed the impact of the sand proportion and its grading on the undrained strength behavior of the soil, while Liu et al. [30] 
manipulated particle size and grading to modify the number and volume of pores, thereby affecting the calcium carbonate precipi
tation process. Particle grading can enhance the mutual contact area among soil particles and influence the proportional distribution of 
solids, water, and air, which directly impacts the thermal conductivity of the mixture [31,32]. Therefore, incorporating particle 
grading into sand-soil mixtures and reusing limestone sand as a thermally conductive aggregate presents a cost-effective and efficient 
method for improving the thermal conductivity of drilling slurries.

Numerous factors influence the thermal conductivity of soil, rendering the relationship between soil thermal conductivity and its 
influencing factors quite intricate [33–35]. While traditional theories and experimental models of soil thermal conductivity have 
addressed the labor-intensive nature of experimental measurements, most models are applicable only to specific soil types or con
ditions, which do not accurately represent real-world scenarios, resulting in certain distortions in predictive outcomes [36,37]. With 
the advancement of machine learning techniques, neural network algorithms have gained widespread application in predicting the 
properties of various materials [38–40], including the thermal conductivity of materials based on dry density and moisture content 
[41]. These algorithms can establish more precise models that correlate thermal conductivity with numerous influencing factors [42,
43], thus becoming a powerful tool for addressing complex thermal conductivity function formulas [44–47]. Consequently, employing 
neural network algorithms to develop a thermal conductivity prediction model for limestone sand-loess mixtures presents a viable 
approach to enhancing the accuracy of predictive data.

In conclusion, previous researchers and scholars have conducted comprehensive studies on the thermal conductivity of soil and 
sand. Most investigations concerning backfill materials have primarily focused on cement grouting, bentonite-based materials, and the 
development of novel phase-change backfill materials. However, there is a relative scarcity of studies on the utilization of sand-soil 
mixtures for backfill purposes [48]. Researchers have frequently concentrated on pure materials rather than mixed materials when 
examining traditional backfill options for buried pipe heat exchangers. Furthermore, the mechanisms governing the coupled heat 
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transfer relationship between the thermal conductivity of the mixture and influencing factors such as moisture content, dry density, 
and gradation remain unclear, necessitating additional sample data for further research and clarification. This paper selects common 
loess from the surface and limestone-based sand and gravel from the karst region as aggregates for investigation and analysis. The dry 
density, water content, and thermal conductivity of sand-soil mixtures were measured, and the impact of material properties on 
thermal conductivity was examined using scanning electron microscopy (SEM). Additionally, the varying degrees of influence that 
changes in gradation have on the thermal conductivity of materials under different water contents of sand-soil mixtures were 
comparatively analyzed. A nonlinear BP neural network prediction model for the thermal conductivity of limestone-soil mixed ma
terials was developed and optimized. It is also recommended that to enhance the heat transfer efficiency of GSHP systems, appropriate 
material gradation should be selected based on the specific engineering geology and underground aquifer conditions.

2. Experimental research

2.1. Experimental materials

The aggregate materials used in this experiment were sourced from the drilling slurry of a local GSHP project. The primary 
component of the slurry was limestone, and loess was selected from the common loess found at the project site. The basic physical 
properties of these materials are provided in Tables 1 and 2. The physical parameters of the materials were measured in accordance 
with Wan et al. [49]. Specific gravity, density, and moisture content were determined using the specific gravity meter method and the 
ring knife method. The weight difference before and after oven drying was used to calculate moisture content. Additionally, the void 
ratio and dry density were calculated based on the measured density, moisture content, and specific gravity.

The liquid and plastic limits were determined using the combined liquid-plastic limit method, with the plasticity index being 
calculated as the difference between the liquid limit and the plastic limit. Limestone, a primary component of karst terrain, is mainly 
composed of calcite and possesses excellent properties, including high thermal conductivity, strength, water absorption, imperme
ability, sound insulation, polish, cementation, and workability.

2.2. Description of experimental apparatus

The FOX50 thermal conduction meter is a testing instrument for the heat transfer coefficient that complies with ASTM and ISO 
8301 standards. It features a temperature measurement range from − 10 to 110 ◦C and a thermal conductivity measurement range from 
0.1 to 10 W/(m⋅K). The measurement accuracy is ±3 %. The optical encoder facilitates the most precise digital measurement of sample 
thickness. Its unique thin film thermal flow sensor provides a distinctive measurement of thermal flux density. Sample dimensions are 
in the form of circular disks with a diameter of 50 mm and a height varying between 10 and 20 mm. Upon launching the instrument’s 
software, set the temperatures for the top and bottom cold and hot plates, and then insert the test sample into the gap between the two 
plates, which will automatically close after the test. The operational procedure for the thermal conductivity tester is illustrated in 
Fig. 1.

The FOX50 thermal conductivity tester primarily comprises a thermal conductivity main unit, a circulating water cooler, and a 
nitrogen bottle. The thermal conductivity main unit is designed to hold the test materials, while the water cooler supplies the upper 
and lower plate temperatures necessary for the operation of the thermal conductivity tester. Additionally, the nitrogen bottle provides 
the force required to press the upper and lower plates of the thermal conductivity tester together. The tablet press is capable of 
compressing the materials into a disc shape, thereby facilitating the measurement of the thermal conductivity coefficient of the 
materials. The instrument is illustrated in Fig. 2.

2.3. Sequential experimental procedures

Crush the limestone gravel and loess into granular form using a crusher, and then bake in an oven at 120 ◦C for 24 h until dry. The 
materials are categorized into natural gradation and artificial gradation. The experimental materials consist of crushed rock mass and 
soil, which must be analyzed using sieve analysis to establish the natural gradation curve. Select characteristic ranges that encompass 
coarse, medium, and fine particles, with the sample’s natural gradation concentrated within the range of 0.1–20 mm. At this stage, four 
ranges can be identified: 0~1.5 mm (very fine), 0.5~2 mm (fine), 2~5 mm (medium), 5~10 mm (coarse), and 10~20 mm (gravel), 
ensuring the inclusion of key parameters such as the 10 % passing particle size, 60 % median particle size, and 90 % passing particle 
size [50,51]. For the natural gradation component, simply mix the materials according to the specified proportions. For the artificial 
gradation component, the materials are screened using international standard sieves with particle sizes of 0.16 mm, 0.25 mm, 0.315 
mm, 0.63 mm, 1 mm, 1.25 mm, 2.5 mm, 3 mm, 5 mm, and 8 mm, and then mixed according to the specified proportions to create 
artificial gradation materials.

Table 1 
Basic physical properties of loess material.

Parameter Dry density (g/ 
cm3)

Density (g/ 
cm3)

Moisture content 
(%)

Specific 
gravity

Void 
ratio

Plastic limit 
(%)

Liquid limit 
(%)

Plasticity index 
(%)

Value 1.52 1.68 12.3 3.42 0.75 19.36 13.53 32.89
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Thus, the materials were categorized into two groups: natural grading and manmade grading. The five test materials (loess, mixture 
1, mixture 2, mixture 3, and limestone) were denoted as (L, LM1, LM2 and LM3, S), where the natural graded limestone gravel was 
referred to as NS, and mixture 3 in the manmade grading category was abbreviated as MM3. The grading and proportions of the test 
materials used in this study are listed in Table 3. The grading curves were determined using the sieve analysis method, and the 
corresponding grading curves of the test materials are presented in the figure below. These curves reflect the particle size distribution 
of the soil, enabling the determination of the percentage of the total dry weight represented by each particle size range.

In geotechnical engineering, the grading coefficient (Cc) and the uniformity coefficient (Cu) are used to assess the quality of soil 
gradation. The corresponding calculation methods are outlined below: 

Table 2 
Basic physical properties of limestone sand material.

Parameter Specific gravity Dry density (g/cm3) Moisture content (%) Void ratio

Value 2.66 1.68 22.6 0.7

Fig. 1. Schematic diagram of the FOX50 heat flow meter method for thermal conductivity testing.

Fig. 2. Experimental equipment.

Table 3 
Mixing ratios and quantities of materials.

Material composition Gradation

Natural gradation Manmade gradation

Loess ((100 % Loess+0 % Limestone) NC MC
Mixture 1 ((70 % Loess+30 % Limestone) NM1 MM1
Mixture 2 ((50 % Loess+50 % Limestone) NM2 MM2
Mixture 3 ((30 % Loess+70 % Limestone) NM3 MM3
Limestone (0 % Loess+100 % Limestone) NS MS
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Cc =
d2

30
d10 × d60

(1) 

Cc =
d60

d10
(2) 

where d10,d30,d60 represent specific particle sizes (in mm), corresponding to the diameters on the particle size distribution curve where 
10 %, 30 %, and 60 % of the total mass of particles are smaller than these values, respectively. A larger value of the uniformity co
efficient Cu indicates a more dispersed particle composition, while the grading coefficient Cc reflects whether the particle size dis
tribution curve lacks an intermediate range of soil particles. According to standard textbooks and national specifications, a soil 
gradation is considered good if the grading coefficient Cc lies between 1 and 3, and the uniformity coefficient Cu is greater than 5. 
Otherwise, the gradation is deemed poor. In this study, the natural graded limestone exhibited a uniformity coefficient Cu = 10 and a 
grading coefficient Cc = 19.36. For the natural loess gradation, Cu = 5.5 and Cc = 0.88. The manmade limestone gradation had Cu =

13.3 and Cc = 2.1, while the manmade loess gradation showed Cu = 6.6 and Cc = 2.2. Based on these results, it can be concluded that 
the natural gradations of loess and limestone do not meet the criteria for optimal gradation, whereas the manmade gradations satisfy 
the required standards. The corresponding gradation curves are shown in Fig. 3 below.

Mix the dry limestone sand and loess in varying proportions uniformly, then add an appropriate amount of water, stir, and fill the 
molds. Utilize a small hydraulic pump to compact the mixture, applying pressure to achieve a set pressure of 30 MPa for 30 s to 
facilitate setting. Subsequently, place the molds in an oven at 120 ◦C for 48 h to dry, with the objective of allowing the loess and 
limestone sand mixture to dry and set. After stabilizing the shape, measure the height to determine the volume of a single sample, and 
weigh its dry weight using a balance. Calculate the dry density value based on the mass-to-volume ratio. Determine the amount of 
water required based on the dry weight and moisture content, and uniformly drip pure water into the sample using a dropper. Seal the 
sample and allow it to sit for 24 h to ensure even distribution of moisture, then measure its thermal conductivity. The quantity of water 
added each time is calculated based on the target moisture content, and the aforementioned steps are repeated for each moisture 
content to create four samples.

In order to investigate the effect of moisture content on the thermal conductivity of backfill materials, water was added to dry- 
formed loess and limestone sand, as well as their mixtures, at specified mass percentages. The experimental materials consist of 
porous media such as soil and rock, with natural moisture content typically ranging from 0 % to 30 %. According to the data presented 
in Tables 1 and 2, the initial moisture content of the limestone and loess utilized in this study is 22.6 % and 12.3 %, respectively. 
Furthermore, the moisture content range of the materials must encompass typical working conditions including dry state, moderate 
humidity, and near saturation. A specific gradient pattern is maintained throughout the moisture content tests, with the moisture 
content of the materials controlled at 2 %, 8 %, 14 %, and 20 %, thereby covering common humidity levels encountered in most 
engineering scenarios (the moisture content of soil layers above the groundwater level is generally <15 %), which corresponds to the 
sensitive variation range of material mechanical properties [52,53]. The moisture content of limestone sand cannot be measured for 
thermal conductivity when it reaches 20 %; therefore, its moisture content is controlled at 2 %, 8 %, and 14 %. The experimental 
scheme for measuring the thermal conductivity of the mixed backfill is outlined in Table 4.

2.4. Validation of experimental reliability

The thermal conductivity meter must adhere to specific accuracy standards when measuring thermal conductivity. However, due to 
potential setup errors or measurement inaccuracies, the thermal conductivity values obtained from the instrument may not be reliable. 
Therefore, it is essential to verify the errors associated with the thermal conductivity meter. Under room temperature conditions, the 
upper and lower plates are maintained at temperatures of 30 ◦C and 10 ◦C, respectively. The ordinary crown glass sample is measured 
four times under these specified temperature conditions, with the results being calibrated against the established standard thermal 
conductivity. It is recognized that the standard thermal conductivity of ordinary crown glass at the aforementioned temperature 

Fig. 3. Material gradation curve.
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settings is 1.0 W/(m⋅K). As presented in Table 5, the relative error for each measurement group remains below 1 %, indicating that the 
thermal conductivity testing instrument satisfies the required accuracy for operational use.

Due to various reasons, the experimental materials cause a certain deviation in measuring the true values, so it is necessary to 
introduce uncertainty in assessing the measurement quality of the experimental results [54]. According to the technical parameters 
found in the manual of the FOX50 thermal conductivity tester, its testing accuracy is ±3 %, and reproducibility is ±2 %.

Accuracy serves as a component of system uncertainty, representing the deviation of measurement results from the true value. It is 
typically regarded as expanded uncertainty, utilizing a factor of k = 2, which indicates that it encompasses approximately 95.4 % of the 
measurement values. Consequently, the standard uncertainty is calculated as u1 = 3 %/2 = 1.5 %. Reproducibility, on the other hand, 
constitutes a component of random uncertainty, reflecting the extent of dispersion observed in multiple measurements. Likewise, it is 
also treated as expanded uncertainty, resulting in a standard uncertainty of u2 = 2 %/2 = 1 %. The combined standard uncertainty, uc, 
can be derived as follows: 

uc =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u1 + u2

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1.52 + 12

√
= 1.80% (3) 

This level of accuracy complies with the standards set for scientific research (1.8 % < 2 %), and the reliability of the result is 

Table 4 
Experimental protocol for measuring thermal conductivity of materials.

Group Material type ω/% ρ/(g/cm3)

NO.1 NO.2 NO.3 NO.4

1 NC 2 % 1.684 1.719 1.783 1.827
2 NC 8 % 1.323 1.424 1.506 1.543
3 NC 14 % 1.603 1.704 1.758 1.833
4 NC 20 % 1.463 1.546 1.618 1.677
5 MC 2 % 1.716 1.784 1.826 1.864
6 MC 8 % 1.374 1.474 1.558 1.612
7 MC 14 % 1.618 1.727 1.783 1.853
8 MC 20 % 1.483 1.608 1.659 1.737
9 NS 2 % 1.726 1.862 1.974 2.015
10 NS 8 % 1.822 1.858 1.945 2.054
11 NS 14 % 1.829 1.903 1.984 2.032
12 MS 2 % 1.753 1.854 1.945 2.054
13 MS 8 % 1.845 1.922 1.984 2.074
14 MS 14 % 1.856 1.905 1.953 2.054
15 NM1 2 % 1.524 1.663 1.712 1.788
16 NM1 8 % 1.631 1.785 1.832 1.865
17 NM1 14 % 1.733 1.826 1.913 1.957
18 NM1 20 % 1.467 1.586 1.628 1.682
19 MM1 2 % 1.579 1.655 1.748 1.834
20 MM1 8 % 1.683 1.748 1.837 1.922
21 MM1 14 % 1.783 1.854 1.963 2.043
22 MM1 20 % 1.532 1.583 1.673 1.743
23 NM2 2 % 1.688 1.732 1.843 1.955
24 NM2 8 % 1.583 1.633 1.764 1.829
25 NM2 14 % 1.727 1.834 1.894 2.044
26 NM2 20 % 1.622 1.762 1.864 1.918
27 MM2 2 % 1.753 1.783 1.837 1.894
28 MM2 8 % 1.628 1.684 1.753 1.846
29 MM2 14 % 1.755 1.832 1.926 2.063
30 MM2 20 % 1.654 1.734 1.828 1.934
31 NM3 2 % 1.583 1.653 1.732 1.867
32 NM3 8 % 1.639 1.724 1.844 1.919
33 NM3 14 % 1.694 1.763 1.832 1.915
34 NM3 20 % 1.832 1.921 2.062 2.127
35 MM3 2 % 1.635 1.743 1.864 1.974
36 MM3 8 % 1.688 1.787 1.863 1.978
37 MM3 14 % 1.715 1.783 1.873 1.933
38 MM3 20 % 1.843 1.963 2.073 2.183

Table 5 
Calibration results of the thermal conductivity meter.

Test Number Thermal conductivity (W/(m⋅K)) Residual (W/(m⋅K)) Relative error (%)

1 0.9984 − 0.0016 − 0.16
2 0.9985 − 0.0015 − 0.15
3 1.0021 0.0021 0.21
4 0.9982 − 0.0018 − 0.18
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significantly high.

3. Results and discussion

3.1. Effect of material properties on thermal conductivity

The thermal conductivity of backfill materials is influenced by the properties and structural characteristics of the constituent 
materials. Fig. 4 presents the SEM images of loess and limestone sand. As shown in Fig. 4 (a), at a magnification of 500×, the loess 
particles appear as powdery clumps with numerous surface cracks. At a higher magnification of 5000× (Fig. 4 (b)), the surface 
structure of loess reveals a small amount of flocculent texture. In contrast, Fig. 4 (c) and 4 (d) illustrate that limestone sand particles 
exhibit varying block sizes, with numerous voids between the particles and a lack of stable structural cohesion. The surface of the 
limestone sand is characterized by numerous razor-like features.

Limestone sand particles have high hardness but exhibit uneven particle sizes and poor bonding, while loess particles are smaller, 
uniform, and possess good cohesion, which contributes to its lower thermal conductivity. Although limestone sand has a higher 
intrinsic thermal conductivity, the numerous internal voids within the mixture result in insufficient particle contact, and the trapped 
air within these voids increases the thermal resistance of the material. This limits the heat transfer efficiency in the borehole. In 
contrast, the fine, cohesive nature of loess compensates for the drawbacks of limestone sand, such as its large voids and lack of 
compactness. Therefore, mixing limestone sand with loess is expected to enhance the overall thermal conductivity of the composite 
material compared to the individual components.

To evaluate the impact of material properties on thermal conductivity, the variation in thermal conductivity with respect to dry 
density was analyzed for materials containing 70 % limestone sand and gravel, as well as 100 % limestone sand and gravel, at moisture 
contents of 2 % and 14 %. As shown in Fig. 5, the thermal conductivity of all materials increases with an increase in dry density. 
Additionally, the thermal conductivity of the manmade gradation materials generally exceeds that of the naturally graded materials. In 
Fig. 5 (a), it can be observed that the thermal conductivity of NS (natural graded limestone sand) is higher than that of NM3 (man-made 
graded material 3), and the thermal conductivity of NM3 is higher than that of NC (natural graded loess), indicating that an increase in 
limestone sand content enhances the thermal conductivity of the material. Furthermore, the effect of grading on the thermal con
ductivity varies with different limestone sand contents, suggesting that both the material composition and grading significantly in
fluence the thermal conductivity performance.

As the moisture content increases from 2 % to 14 %, it is observed that the difference in thermal conductivity between NS (natural 
graded limestone sand) and NM3 (man-made graded material 3) decreases. In contrast, the change in thermal conductivity between NC 
(natural graded loess) and NM3 is not significant. This phenomenon can be attributed to the increased contact area between the loess 

Fig. 4. SEM images of loess and limestone sand: (a) Loess ( × 500); (b) Loess ( × 5000); (c) Limestone sand ( × 500); (d) Limestone sand ( × 5000).
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and limestone sand particles after mixing, with moisture filling the interstitial spaces and forming liquid bridges. This coupling effect 
enhances heat transfer between the materials. Additionally, the overall thermal conductivity of the manmade gradation material is 
superior to that of the naturally graded material. This improvement is due to the gradation process, which fills the voids between 
particles, reduces the particle size gaps, and increases material density. The enhanced density, combined with the effect of moisture, 
further improves the heat transfer performance. The thermal conductivity of the materials under varying moisture content is shown in 
Fig. 6.

3.2. Effect of dry density and moisture content on thermal conductivity

The sand-soil mixture, as a solid-liquid-gas three-phase mixture, is significantly influenced by both moisture content and dry 
density in terms of thermal conductivity. The dry density of the material is governed by factors such as porosity, void size, particle size 
distribution, void curvature, and structural characteristics. Dry density plays a crucial role in determining the thermal conductivity of a 
porous medium. As moisture fills the voids between particles, it displaces the air, and since water has a higher thermal conductivity 
than air, the presence of moisture substantially enhances the overall thermal conductivity of the material. To assess the influence of dry 
density and moisture content on thermal conductivity, the maximum moisture content of the materials was set to 20 %, with limestone 
sand having a maximum moisture content of 14 % and the minimum moisture content of all materials set at 2 %. The variation in 
thermal conductivity with respect to dry density at the minimum and maximum moisture contents for each material is illustrated in 
Fig. 7.

It is illustrated in Fig. 7 that the thermal conductivity of both man-made graded and natural graded materials increases with rising 
dry density and moisture content. The impact of dry density and moisture content on thermal conductivity is more pronounced at 
higher moisture levels. For instance, when the dry density of natural loess increased from 1.684 g/cm3 to 1.827 g/cm3 at a moisture 
content of 2 %, the thermal conductivity increased from 0.284 W/(m⋅K) to 0.356 W/(m⋅K), representing a 25.35 % increase. At a 
moisture content of 20 %, the dry density of natural loess increased from 1.463 g/cm3 to 1.677 g/cm3, and the thermal conductivity 
increased from 0.683 W/(m⋅K) to 0.853 W/(m⋅K), a 24.89 % increase.

For manmade loess, at 2 % moisture content, the dry density increased from 1.716 g/cm3 to 1.864 g/cm3, and the thermal 

Fig. 5. Thermal conductivity of differently graded materials at 2 % and 14 % moisture content. (a) ω = 2 %; (b) ω = 14 %.

Fig. 6. Schematic illustration of the effect of grade change and moisture to improve heat transfer materials.
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conductivity rose from 0.296 W/(m⋅K) to 0.452 W/(m⋅K). At 20 % moisture content, the dry density of manmade loess increased from 
1.483 g/cm3 to 1.737 g/cm3, with thermal conductivity increasing from 0.738 W/(m⋅K) to 0.954 W/(m⋅K), corresponding to increases 
of 52.70 % and 29.26 %, respectively.

In general, samples with higher moisture content and dry density exhibit higher thermal conductivity. The effect of moisture 
content on thermal conductivity is more significant than that of dry density. At lower moisture content, the thermal conductivity of 
each material increases moderately with rising dry density. However, at higher moisture content, the increase in thermal conductivity 
becomes more rapid.

3.3. Effect of gradation on thermal conductivity of materials under different moisture content conditions

Effective gradation enhances the compaction of sand-soil mixtures, which is directly reflected in the dry density of the material. 
Manmade gradation sample materials typically exhibit slightly higher or more favorable thermal conductivity compared to naturally 
graded materials. However, the thermal conductivity of graded materials varies under different moisture contents and limestone sand 
contents. To assess and analyze the influence of gradation on thermal conductivity, error bars representing the standard deviation are 
presented for materials with different moisture contents.

3.3.1. The effect of gradation on the thermal conductivity of materials at 2 % moisture content
The dry density histograms and thermal conductivity curves for both man-made and naturally graded materials at a moisture 

content of 2 % are presented in Fig. 8. It is evident from the figure that both the thermal conductivity and dry density of man-made 
graded materials are generally superior to those of natural graded materials.

As shown in Fig. 8, an increase in limestone sand content leads to a corresponding increase in the thermal conductivity of both man- 

Fig. 7. Relationship between thermal conductivity and dry density for different materials at the same moisture content: (a) Natural graded material 
(ω = 2 %); (b) Manmade gradation sample material (ω = 2 %); (c) Natural graded material (ω = 14 %); (d) Manmade gradation material (ω = 14 %).
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made and natural graded materials, with a gradual upward trend. This is attributed to the enhanced thermal conductivity resulting 
from the higher limestone sand content, with the most significant increase observed when the limestone sand content rises from 70 % 
to 100 %.

The most direct effect on thermal conductivity at low moisture content is the increase in the proportion of aggregate. However, 
when both limestone sand content and moisture content are fixed, manmade gradation can further enhance the material’s thermal 
conductivity. As shown in Table 6, at 2 % moisture content, for a given limestone sand content, grading leads to an increase in thermal 
conductivity ranging from 9.12 % to 21.23 %, corresponding to a change in thermal conductivity of 0.055–0.088 W/(m⋅K).

Among the materials, loess shows the greatest improvement in thermal conductivity after grading, followed by Mix 3. As the 
limestone content increases, the rate of thermal conductivity improvement due to grading in loess is 21.33 %, with a tendency to 
stabilize in the middle range. The lowest improvement of 9.12 % is observed when the limestone sand content reaches 100 %.

3.3.2. The effect of gradation on the thermal conductivity of materials at 8 % moisture content
Fig. 9 illustrates the thermal conductivity of artificial graded materials and natural graded materials at a moisture content of 8 %. At 

this moisture level, as the content of limestone sand increases, the thermal conductivity of both natural and artificial graded materials 
displays a similar increasing trend. Furthermore, the thermal conductivity of artificial graded materials consistently surpasses that of 
natural materials, with the most rapid growth rate observed when the limestone sand content constitutes 50 %–70 %, demonstrating a 
pattern of initially gradual and subsequently steep increase.

Compared to the growth rate of thermal conductivity at 2 % moisture content, the fastest increase occurs in the range of 50 %–70 % 
limestone sand content at 8 % moisture content. This can be attributed to the significant impact of moisture amount and distribution on 
the thermal conductivity of the soil. In dry or low-moisture soils, heat transfer primarily relies on contact point conduction. As moisture 
content increases, capillary action forms liquid bridges between solid soil particles, enhancing particle contact points and thereby 
improving thermal conductivity. Since water has a higher thermal conductivity than air, the replacement of air in the soil’s voids with 
water further strengthens heat transfer, making increased moisture content a contributing factor to improved thermal conductivity.

As shown in Table 7, the increase in thermal conductivity due to gradation ranges from 13.81 % to 33.77 % at 8 % moisture content, 
with changes in thermal conductivity ranging from 0.069 to 0.124 W/(m⋅K). The increase in water content enhanced the improvement 
in graded loess from 21.23 % at 2 % moisture content to 33.77 % at 8 % moisture content. This can be attributed to the fact that well- 
graded materials improve particle structure, and with higher water content, water can more effectively fill the voids to form liquid 
bridges, which further enhances heat transfer. Additionally, with an increase in limestone sand content, the trend in the increase of 
thermal conductivity for graded materials remains consistent with that observed at 2 % moisture content.

3.3.3. The effect of gradation on the thermal conductivity of materials at 14 % moisture content
The thermal conductivity of natural and man-made graded materials at 14 % moisture content is presented in Fig. 10. At this 

moisture level, as the proportion of limestone sand increases, the thermal conductivity improves at a faster rate than at the lower 
moisture contents. Notably, the gap between the thermal conductivity coefficients of natural and man-made grades diminishes, 
suggesting that as water content increases, the influence of gradation on the thermal conductivity coefficient weakens. Furthermore, 
with higher moisture content, the rate of change in thermal conductivity for materials with limestone sand content from 0 % to 50 % is 
faster than the rate observed at 2 % and 8 % moisture content, indicating a more pronounced effect of moisture on heat transfer in this 
range.

As shown in Table 8, at a moisture content of 14 %, the increase in thermal conductivity due to gradation ranges from 8.96 % to 
17.05 %, with the change in thermal conductivity spanning from 0.083 to 0.113 W/(m⋅K). As the limestone sand content increases, the 
influence of gradation on the rate of thermal conductivity increase gradually diminishes.

With rising water content, the enhancement of thermal conductivity in graded material pairs becomes more influenced by the 
reduction in moisture content. Compared to 8 % moisture content, at 14 %, the thermal conductivity of materials with limestone sand 
content ranging from 0 % to 50 % shows a faster change trend, and the overall impact on thermal conductivity is more pronounced. At 

Fig. 8. Thermal conductivity of natural and man-made graded materials at 2 % moisture content.
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this stage, the distribution of moisture increases, not only surrounding the particle contact points but also filling the voids within the 
soil, with most of the air being replaced by water. This results in water connecting the pores in the soil. Therefore, as moisture content 
increases, the impact of water on thermal conductivity becomes more significant, while the influence of gradation on thermal con
ductivity diminishes.

Table 6 
Increase in thermal conductivity of materials due to gradation at 2 % moisture content.

Materials Dry density (g/cm3) Thermal conductivity change (W/(m⋅K)) Growth rate (%)

Natural gradation Manmade gradation

Loess 1.753 1.798 0.065 21.23 %
Mixture 1 1.672 1.704 0.055 15.22 %
Mixture 2 1.804 1.817 0.077 18.32 %
Mixture 3 1.709 1.804 0.088 20.17 %
Limestone 1.894 1.902 0.065 9.12 %

Fig. 9. Thermal conductivity of natural and manmade gradation materials at 8 % moisture content.

Table 7 
Increase in thermal conductivity due to gradation of materials at 8 % moisture content.

Materials Dry density (g/cm3) Thermal conductivity change (W/(m⋅K)) Growth rate (%)

Natural gradation Manmade gradation

Loess 1.449 1.505 0.124 33.77 %
Mixture 1 1.778 1.798 0.069 14.29 %
Mixture 2 1.702 1.728 0.074 15.66 %
Mixture 3 1.782 1.829 0.111 15.31 %
Limestone 1.920 1.956 0.118 13.81 %

Fig. 10. Thermal conductivity of natural and manmade gradation materials at 14 % moisture content.
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3.3.4. The effect of gradation on the thermal conductivity of materials at 20 % moisture content
As shown in Fig. 11, at a moisture content of 20 %, the thermal conductivity of both natural and man-made graded materials 

increases linearly with the increase in limestone sand content, ranging from 0 % to 100 %. At this high moisture content, the sand-soil 
mixture is saturated with moisture, and the impact of gradation on the thermal conductivity becomes negligible. In this case, the 
limestone sand aggregate content predominantly influences the thermal conductivity. It is evident that as the moisture content in
creases from 2 % to 20 %, the effect of gradation on the material’s thermal conductivity progressively diminishes.

From Table 9, it is evident that at a moisture content of 20 %, the increase in thermal conductivity resulting from grading ranges 
from 5.79 % to 9.04 %, corresponding to a change in thermal conductivity of 0.070–0.091 W/(m⋅K). At this moisture level, the effect of 
grading on thermal conductivity is minimal, with the increase in thermal conductivity at a moisture content of 20 % being 2.38 to 3.73 
times greater than the increase caused by grading at a moisture content of 8 %. Furthermore, as the proportion of limestone sand 
increases, the impact of grading on the rate of increase in the material’s thermal conductivity exhibits a progressively decreasing trend, 
with the increase in thermal conductivity for mixture 3 due to grading being merely 5.79 %.

Under the various moisture content conditions outlined above, the thermal conductivity of artificial materials consistently sur
passes that of natural materials due to the influence of grading. Table 10 presents the composition of bentonite-based backfill materials 
along with their thermal conductivity [55]. In artificial graded materials, at a moisture content of 20 %, the thermal conductivity of 
MM2 is measured at 1.483 W/(m⋅K), which is comparable to that of conventional bentonite-based backfill materials containing 20 % 
bentonite and 80 % quartz sand. However, traditional bentonite-based backfill materials, Sodium-based bentonite, for example, is 
priced at CNY 800–1500/t. Resulting in higher investment costs for ground source heat pumps. Moreover, bentonite exhibits expansion 
upon contact with water and contraction when it loses moisture, potentially leading to voids and disrupting the continuity of heat 
transfer. In contrast, limestone sand and loess, when graded, feature closely connected particles that do not expand upon contact with 
water. Additionally, due to loess’s excellent water retention properties, its mixed materials are particularly well-suited for karst regions 
where groundwater is plentiful.

4. BP neural network prediction

4.1. Establishment of the BP neural network model

The construction and fundamental operational principles of neural networks are based on the organization and functional 
mechanisms of the human brain, serving as a simplified imitation of the complex neural networks found within the brain. The 
Backpropagation (BP) neural network is the most widely used model in neural network applications.

Its core operational principle is as follows: For n input learning samples “x1 x2 x3 x4 x5 … xn ", the corresponding m output samples 
“p1, p2, p3 … pm " are known. The error between the actual output (z1 z2 z3 z4 z5 … zm)of the neural network and the target vector (p1, p2, 
p3 … pm) is used to adjust the weights, such that the predicted output z becomes as close as possible to the desired output t, thereby 

Table 8 
Increase in thermal conductivity of materials due to gradation at 14 % moisture content.

Materials Dry density (g/cm3) Thermal conductivity change (W/(m⋅K)) Growth rate (%)

Natural gradation Manmade gradation

Loess 1.725 1.745 0.083 17.05 %
Mixture 1 1.857 1.911 0.099 14.31 %
Mixture 2 1.875 1.894 0.112 12.67 %
Mixture 3 1.801 1.826 0.113 11.70 %
Limestone 1.937 1.942 0.108 8.96 %

Fig. 11. Thermal conductivity of natural and manmade gradation materials at 20 % moisture content.
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minimizing the error in the output layer of the network. Through iterative weight adjustments, a BP neural network model is obtained 
that operates within an acceptable error range.

Assuming that the input vector of the neural network is denoted as X=(x1 x2 x3 x4 x5 … xn) T, and the number of neurons in the 
hidden layer is h, the output vector of the hidden layer is then Y= (y1, y2, y3 … yh) T. The number of neurons in the output layer is m, 
and the corresponding output vector of the output layer is Z= (z1, z2, z3, z4, z5 … zm) T. The activation function from the hidden layer to 
the input layer is denoted as f, and the activation function of the output layer is represented by g.

Thus there is the output value of the jth neuron of the hidden layer: 

yj = f

(
∑n

i=1
Wij xi − θ

)

= f

(
∑n

i=1
Wij xi

)

(4) 

The output value of the kth neuron of the output layer: 

zk = g

(
∑h

j=0
wjkyj

)

(5) 

The error between the output value and the target value is: 

ε=1
2
∑m

k=1
(tk − zk)

2 (6) 

The weight adjustment formula is: 

Δwpq = − η δε
δwpq

(7) 

The normalization function employed in this study is the Mapmaxmin function. The syntax for the Mapmaxmin function is as 
follows: 

y=
(ymax − ymin) × (x − xmin)

xmax − xmin
+ ymin (8) 

Let Wij denote the synaptic connectivity weights linking the input neuron i in the first layer to the corresponding encrypted neuron j 
in the subsequent layer. The output value of the input neuron is represented as xi, while η denotes the learning rate. The term ∂δε/δwpq 
represents the partial derivative of the loss function ε with respect to the weight wpq. Additionally, y is the normalized result matrix 
obtained by standardizing the data matrix x.

Subsequently, the Newff function is utilized to invoke MATLAB’s neural network toolbox, where appropriate parameters are 
configured: the activation function is set to “Tansig”, the training algorithm is defined as “Trainlm”, and the weight update rule is 
specified by the learning function “Learngdx".

Tansig hyperbolic tangent S-shaped function: 

f(x)=
2

1 + e− x − 1( − 1< f(x)<1) (9) 

The traingdx gradient row change rule is: 

wnew =wold − η.∇E(wold) + μ.
(
wold − wprevious

)
(10) 

Table 9 
Increase in thermal conductivity due to gradation at 20 % moisture content.

Materials Dry density (g/cm3) Thermal conductivity change (W/(m⋅K)) Growth rate (%)

Natural gradation Manmade gradation

Loess 1.576 1.622 0.070 9.04 %
Mixture 1 1.591 1.633 0.091 9.01 %
Mixture 2 1.792 1.788 0.080 6.66 %
Mixture 3 1.986 2.016 0.079 5.79 %

Table 10 
Bentonite-based backfill material.

Bentonite base Bentonite content Thermal conductivity (W/(m⋅K))

Backfilling bentonite 1 Containing 20 %–30 % solids 0.73–0.75
Backfilling bentonite 2 Containing 20 % bentonite and 80 % quartz sand 1.47–1.64
Backfilling bentonite 3 Containing 15 % bentonite and 85 % quartz sand 1.00–1.10
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bnew = bold − η.∇E(bold) + μ.
(
bold − bprevious

)
(11) 

The structural design of this model primarily involves determining the number of nodes in the input layer, hidden layer, and output 
layer, as well as selecting appropriate activation functions. In this study, the factors influencing the thermal conductivity of the 
limestone sand and loess mixed backfill material are primarily moisture content, dry density, and material type. As illustrated in 
Fig. 12, given that there are three influencing factors identified in this paper, the number of nodes in the input layer is set at three. The 
hidden layer is denoted as the Hidden Layer, and following the empirical formula nh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ni + no

√
+ a (where nh represents the number of 

nodes in the hidden layer, ni = 3 is the number of nodes in the input layer, no is the number of nodes in the output layer, and a can take 
values from 1 to 10), after preliminary estimation and experimental adjustments, the number of hidden nodes has been determined to 
be five.

In this model, both the hidden layer and the output layer utilize the Sigmoid function as the activation function. The various 
influencing factors demonstrate a complex nonlinear relationship with thermal conductivity, and the Sigmoid function can effectively 
capture these relationships, thereby enhancing the model’s predictive accuracy. The derivative of the Sigmoid function has a 
straightforward form, facilitating its computation during the error backpropagation process, which is advantageous for the training 
and optimization of the model. The expression of the Sigmoid function is presented in Eq. (12): 

σ(z)= 1
1 + e− z (12) 

in the equation, z represents the input to the function and may take the form of a scalar, vector, or matrix. When z is a vector, the 
function will compute each individual element within that vector.

4.2. Training and optimization of the BP neural network

After building the prediction model, it is necessary to train the constructed model so that it can meet the actual prediction needs and 
ensure that the results predicted by this model have considerable reliability. The training parameters for the constructed prediction 
model are as follows: the number of iterations is set to 1000, the target error is 1 × 10− 6, and the learning rate is 0.01.

This article performs a Pearson correlation analysis to examine the relationship between various factors and the thermal con
ductivity test results. The types of materials represent different gradation combinations of limestone and loess. The results of the 
correlation analysis indicate that the material type, moisture content, and dry density are all positively correlated with the thermal 
conductivity of the backfill materials, with correlation coefficients of 0.1218 (P < 0.01), 0.7544 (P < 0.01), and 0.4984 (P < 0.01), 
respectively.

Upon configuring all parameters, the constructed neural network prediction model can be trained using MATLAB. This experiment 
gathered a total of 152 sets of data. Each experimental dataset includes three influencing factors: material type, moisture content, and 
dry density, with the output being the thermal conductivity. From this dataset, 130 sets of data were randomly selected to serve as the 
training set. By inputting this data into the neural network and calculating the error between the network output and the actual values, 
this paper employs the backpropagation algorithm to iteratively adjust the weights and thresholds of the neural network in order to 
minimize the prediction error. This process continues through multiple iterations until the error reaches a predetermined threshold or 
the maximum number of iterations is achieved. Fig. 13 illustrates the error variation curve throughout the network training process. At 
the 192nd training step, the output error was recorded at 0.00926, thereby satisfying the error target requirement.

Upon completion of the training phase, the remaining 22 datasets were utilized as a test set to evaluate the model’s fit and pre
diction performance. The test set data were input into the trained neural network, which generated the corresponding predicted 
values. The error between the predicted and actual values was then calculated. The results of both model training and testing are 
presented in Figs. 14 and 15, where the red line represents the actual values, while the blue line indicates the predicted values 
generated by the model based on the sample data. The model’s fitting performance is depicted in Figs. 16 and 17.

The performance of the model in both training and testing phases was evaluated using several metrics, including the coefficient of 
determination (R2), mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE).

The results indicate that the R2 value for the training set is as high as 0.9944, which is very close to 1, suggesting an excellent fit of 
the model to the training data and that it explains 99.44 % of the variance in the data. This high R2 value demonstrates that the model 
successfully captures the majority of patterns and information in the training dataset. For the test set, the R2 value is 0.9859, which 

Fig. 12. Structure diagram of neural network model.
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remains relatively high, indicating strong generalization ability of the model when applied to new, unseen data. The R2 value 
exceeding 0.9 for the test set further emphasizes the stability and predictive accuracy of the model.

In addition, the MAE and MAPE values for both the training and test sets reflect the model’s solid performance. The MAE for the 
training set is 0.03, while for the test set, it is even lower at 0.05. The MAPE values for the training and test sets are 4.8 % and 6.4 %, 
respectively, which are both very low, indicating that the model’s prediction accuracy is high.

The RMSE, another critical evaluation metric, also demonstrates the model’s predictive capability. The RMSE for the training set is 

Fig. 13. Neural network error variation curve.

Fig. 14. Neural network training results.

Fig. 15. Neural network test results.
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0.04, and for the test set, it is 0.06. Notably, the RMSE for the test set is lower than that for the training set, suggesting that the model’s 
predicted values are very close to the actual values.

Overall, the BP neural network model effectively predicts the thermal conductivity of materials under various conditions and 
influencing factors, making it a valuable tool for guiding the design of thermal conductivity in backfill materials for ground-source heat 
pump systems.

5. Conclusion

The thermal conductivity of GSHP backfill materials, specifically sand-soil mixtures, is influenced by various factors. Directly 
mixing the backfill material may result in issues such as low density and poor thermal conductivity. This study investigates the impact 
of limestone sand content, moisture content, dry density, and grading on the thermal conductivity of backfill materials composed of 
limestone sand and loess. The following conclusions are drawn: 

(1) Compared to single-component backfills using pure loess or limestone sand alone, the limestone sand-loess mixture constitutes 
the optimal backfill solution. At a limestone sand content of 70 %, the thermal conductivity of the mixture ranges from 0.358 to 
1.483 W/(m⋅K). When selecting sandy soil mixtures for backfill applications, selective placement strategies can be implemented 
based on subsurface groundwater levels within the stratum. Experimental results indicate that the limestone sand-loess com
posite is suitable for selective backfilling under moderate groundwater conditions in the stratum.

(2) As the moisture content and limestone sand content increase, the thermal conductivity of the material exhibits a progressive 
upward trend. When compared with dry density, the effect of moisture content on thermal conductivity is more significant. In 

Fig. 16. Training set R coefficients.

Fig. 17. Test set R coefficients.
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general, the thermal conductivity of well-graded limestone sand-loess mixtures is higher than that of poorly graded counter
parts, with the influence of gradation on mixture thermal conductivity ranging from 8.96 % to 33.77 %. Additionally, as the 
limestone sand content increases, the gradation-induced rate of increase in thermal conductivity demonstrates a downward 
trend, with the most pronounced effect observed in loess-dominated mixtures.

(3) When the moisture content increases from 2 % to 20 %, the influence of gradation on thermal conductivity gradually weakens. 
However, considering the synergistic effect of moisture content and gradation, the absolute value of the material’s thermal 
conductivity still shows an upward trend. In scenarios where the underground moisture content is relatively high and sandy soil 
mixtures are employed for backfilling, it is recommended to optimize the gradation. This approach can enhance the thermal 
conductivity of the backfill material and improve its density, thereby ensuring better performance and stability.

(4) A predictive model for the thermal conductivity of limestone sand-loess mixed materials was developed utilizing a reverse 
neural network. The R2, MAE, MAPE, and RMSE results for both the training and testing sets demonstrate that the model 
effectively captures the majority of patterns and information present in the training data, making it applicable to new datasets. 
The MAPE values achieved were 4.8 % for the training set and 6.4 % for the testing set. Consequently, this model can serve as a 
valuable tool in guiding the design of thermal conductivity for limestone sand-loess mixtures intended for use as backfill 
materials.

This article primarily focuses on the preparation of samples through indoor experiments and investigates the effects of dry density, 
moisture content, and particle gradation on the thermal conductivity of sandy soil mixtures. It underscores the significance of particle 
gradation on the thermal conductivity of the materials under varying moisture contents and establishes a thermal conductivity pre
diction model utilizing a reverse neural network. The limitations of the current study are associated with the selection of factors, which 
solely encompass gradation, dry density, and moisture content. In practical applications, the factors influencing the thermal con
ductivity of materials are considerably more intricate, and stratified variations in underground rock and soil bodies may also affect the 
efficiency of material backfilling. Consequently, further research is warranted in future endeavors. Subsequent studies will delve 
deeper into the application of mixed materials in practical engineering, conduct cost-saving analyses, and further investigate the 
compressive strength and erosion resistance of mixed materials.
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