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1. Introduction and summary

Twisting of physical theories [1--4] has attracted great interest in the physics literature. In particular, the pure spinor 
formalism [5--10] (see reviews in [11,12]), which naturally describes such theories as supergravity [13,14], supersymmetric 
Yang–Mills theory [15,16] and M2-brane models [17--19], accommodates twisting naturally [20,21].

Physical theories come with representations of spacetime symmetry algebras, such as (super-)Poincaré algebras and 
(super-)conformal algebras. It has been long known that for theories with more than four supercharges it is often difficult 
to manifest this symmetry ‘off shell’, that is, without using equations of motion. The pure spinor formalism provides a 
means of producing off-shell supermultiplets by introducing appropriate infinite towers of auxiliary fields and furthermore 
shows that the on-shell supermultiplets in fact carry a homotopy representation of the spacetime symmetries; the higher 
components of the action then correspond to the equations of motion needed to make the symmetry algebra close.

In this paper, we argue that holomorphic twists of supersymmetric field theories naturally come with more than just 
the holomorphic symmetry but rather a certain L∞-extension of holomorphic symmetry. The extension is not visible at the 
level of strict representations, but spacetime fields naturally form a homotopy representation of this extended symmetry. 
We shall treat in detail the example of the holomorphic twist of ten-dimensional supersymmetric Yang–Mills theory. This 
twisted theory is holomorphic Chern–Simons theory on C5 [4,20,22], which enjoys a manifest 𝔦𝔰𝔩(5) = 𝔰𝔩(5)⋉ 5 symmetry. 
As we shall see, it naturally comes with the extended holomorphic symmetry L∞-algebra

˜︁𝔦𝔰𝔩(5) :=
(︂
𝔰𝔩(5)⋉ 10

0−→ 0
0−→ 5

)︂
(1)

equipped with a certain higher bracket μ4; and this L∞-algebra acts on C[z1, z2, z3, z4, z5] (with appropriate grading) in the 
L∞-algebraic sense. This may be seen as a non-strict L∞-algebra action of ˜︁𝔦𝔰𝔩(5) on the (graded version of) five-dimensional 
complex a�ine space A5.

We work with minimal models (of both the symmetry algebra and the field content), which canonically separates the 
physical information and makes clear the presence of higher-order structures (L∞-algebras and their representations), rather 
than a larger strict model, which is not canonical and mixes in the physical degrees of freedom together with the unphysical 
auxiliary fields; this ensures that all information that we recover is physical and independent of the choice of auxiliary fields.

One way to think about this is to recall that twisting is akin to dimensional reduction [23] in which, rather than elim
inating dependence on bosonic coordinates, we eliminate dependence on fermionic coordinates (restrict to Q -closed fields 
for a supersymmetry Q ), which results in the ‘pair annihilation’ of bosonic and fermionic coordinates. From this perspec
tive, we have an ‘as above, so below’ heuristic: the actions of twisted theories resemble those of their twistings, just like 
dimensional reduction preserves the forms of actions. Using the pure spinor formalism, ten-dimensional supersymmet
ric Yang–Mills theory may be formulated as a holomorphic Chern–Simons theory on a complex (21|16)-dimensional pure 
spinor superspace (with 10 complexified ordinary spacetime coordinates, 16 ordinary superspace fermionic coordinates, and 
11 bosonic pure spinor coordinates). The twisted theory has the same form of a Chern–Simons theory, but this time on 5|0 
dimensions, where we have killed 16|16 coordinates. Under this ‘dimensional reduction’, the ten-dimensional 𝒩 = 1 super
Poincaré symmetry, which is (55|16)-dimensional, reduces to a (39|0)-dimensional extended holomorphic symmetry. This 
dimensional reduction corresponds to twisting the supersymmetry algebra and taking the minimal models of the symmetry 
algebra and its homotopy representation on the field content. The additional factor 10 in (1) and the concomitant μ4 are 
the ‘dimensionally reduced’ remnants of ten-dimensional super-Poincaré symmetry.

The discussion of the present paper is limited to the kinematics, that is, ignoring interactions and considering the lin
earized theory. This is not an essential restriction. A discussion of the interaction terms should make use of the L∞-algebra 
formalism [24--26] for scattering amplitudes; after colour-stripping, we should get a C∞-algebra [27], on which the extended 
holomorphic symmetry should act, forming an example of an open–closed homotopy algebra [28--30]. This, however, we 
leave to a future work.

While we focus on ten-dimensional supersymmetric Yang–Mills theory as a special case, the discussion is generic and 
applies, in principle, to the twists of any supersymmetric field theory. However, the twists in other dimensions often pro
duce either a strict representation (with the ˜︁𝔦𝔰𝔩(d)-representation factoring through an 𝔦𝔰𝔩(d)-representation) or a higher 
representation of an L∞-superalgebra on a�ine superspace (with odd coordinates); A5 is one of the few nontrivial purely 
bosonic examples that carry a higher symmetry. (For more discussion, see section 4.)

All of our discussion is classical; there may be obstructions to quantization in the form of anomalies. For our main 
example of the holomorphic twist of ten-dimensional supersymmetric Yang–Mills theory, the twist (five-dimensional holo
morphic Chern–Simons theory) is known to have anomalies unless it is coupled in a consistent fashion to Kodaira–Spencer 
gravity [31,32].

Local operators in a holomorphic theory are expected to form higher analogues of vertex algebras [33--36]. Although 
the additional L∧2 symmetry that we find does not seem to be part of a higher Virasoro algebra (since it is not part of 
holomorphic symmetries), it may arise as modes of some local operator, in which case it will be part of a higher vertex 
algebra, and the μ4 that we find may be part of the higher brackets of the higher vertex algebra.
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1.1. Outlook

The technical computation in this paper suggests the possibility that the holomorphic twist of ten-dimensional super
symmetric Yang–Mills theory �- and, more generally, various holomorphic field theories obtained via twisting �- naturally 
live on a broader class of ‘spaces’ than ordinary complex 5-manifolds. Ordinary complex manifolds may be seen as subsets 
of complex a�ine space glued together by biholomorphisms on overlaps. However, as this paper shows, the complex a�ine 
5-space on which holomorphically twisted supersymmetric Yang–Mills theory lives enjoys an L∞-algebra of higher symme
tries, which one may try to use to glue together overlaps in a ‘higher’ fashion to obtain what may be a ‘complex 5-manifold 
up to homotopy’.

1.2. Organization of this paper

This paper is organized as follows. Section 2 reviews the generalities of twisting L∞-algebras and modules over them 
and the appearance of higher components of the spacetime symmetry algebras and higher components of nonstrict rep
resentations of L∞-algebras, both in the untwisted and twisted cases. Section 3 then computes the higher components of 
the representation of supersymmetry for ten-dimensional supersymmetric Yang–Mills theory, the higher products of the 
corresponding twisted extended holomorphic algebra, and the higher components of its representation on the twisted su
permultiplet. Section 4 briefly surveys phenomena that appear in dimensions other than ten.

In the body of the paper, we will usually refer to irreducible representations of 𝔰𝔩(5) using their Dynkin labels, supple
mented by Young tableaux where they are helpful.

2. Mathematical background

Here we briefly review the relevant concepts of twisting of L∞-algebras and their modules. For more detailed reviews, 
see [37--40].

2.1. L∞-algebras

An L∞-algebra is a homotopy generalization of the concept of a Lie algebra.

Definition 1. An L∞-algebra (𝔤, {μk}k≥1) consists of a graded vector space 𝔤 = ⨁︁
i∈Z 𝔤i together with skew-symmetric, 

multilinear maps μk : 𝔤∧k → 𝔤 of degree 2 − k for k ∈ {1,2,3, . . . } that satisfy the identity

0 =
∑︂

i+ j=n
σ∈Sh(i, j)

(−1) jχ(σ , x)μ j+1(μi(xσ (1), . . . , xσ (i)), . . . , xσ (i+ j)) = 0. (2)

In the above, Sh( j1, . . . , jk) denotes the collection of shuffles, which are permutations σ of {1, . . . , j1 + · · · + jk} such that 
σ(1) < · · · < σ( j1) and σ( j1 + 1) < · · · < σ( j1 + j2) and so on up to σ( j1 + · · · + jk−1 + 1) < · · · < σ( j1 + · · · + jk). The 
symbol χ(σ , x) denotes the skew-symmetric Koszul sign

x1 ∧ · · · ∧ xk = χ(σ , x)xσ (1) ∧ · · · ∧ xσ (k), (3)

defined for homogeneous elements x1, . . . , xk ∈ 𝔤 inside the exterior algebra 
⋀︁• 𝔤.

In what follows, we will often leave the products {μ𝔤
k }k≥1 implicit, and simply refer to an L∞-algebra through its under

lying graded vector space. The identities (2) imply that μ1 ◦ μ1 = 0 so that 𝔤 is in particular a cochain complex.

Definition 2. A morphism of L∞-algebras ϕ : (𝔤, {μ𝔤
k }k≥1) ⇝ (𝔥, {μ𝔥

k }k≥1) consists of skew-symmetric, multilinear compo
nent maps

ϕ(n) : 𝔤∧n → 𝔥 (4)

of degree 1 − n for n ∈ {1,2, . . . }, satisfying the following coherence relations:∑︂
j∈{1,...,i}

k1+···+k j=i
σ∈Sh(k1,...,k j)

ζ(σ ,k, x)

j! μ
𝔥
j

(︁
ϕ(k1)(xσ (1), . . . , xσ (k1)), . . . , ϕ

(k j)(xσ (k1+···+k j−1+1), . . . , xσ (i))
)︁

=
∑︂

j+k=i
σ∈Sh( j,k)

(−1)kχ(σ , x)ϕ(k+1)
(︁
μ
𝔤
j (xσ (1), . . . , xσ ( j)), xσ ( j+1), . . . , xσ (i)

)︁
, (5)
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where

ζ(σ ,k, x) := χ(σ , x)(−1)
∑︁

1≤m<n≤ j kmkn+∑︁ j−1
m=1 km( j−m)+∑︁ j

m=2(1−km)
∑︁k1+···+km−1

k=1 |xσ (k)|. (6)

We shall sometimes omit the μk and just write 𝔤⇝ 𝔥. L∞-morphisms compose associatively, so that one has the category 
whose objects are L∞-algebras and whose morphisms are L∞-morphisms between them.

An L∞-morphism is an L∞-(quasi-)isomorphism if the first component map is a (quasi-)isomorphism of the underlying 
cochain complexes.

Homotopy transfer of L∞-algebras. L∞-algebras admit a good homotopy theory in the sense that minimal models exist 
and can be computed by homotopy transfer using a strong deformation retract. Let us sketch how this works. Concretely, 
given an L∞-algebra (𝔤, {μ𝔤

k }k≥1) one can always choose a strong deformation retract, denoted by a triple (i, p,h), from the 
underlying cochain complex (𝔤,μ1) to its cohomology H(𝔤):

(𝔤,μ1) (H(𝔤),0)
p

h
i

(7)

(i.e. pi = idH(𝔤) and ip = id𝔤 −[d,h]). Then there exists an L∞-algebra structure on the cohomology H(𝔤) together with an 
L∞-quasi-isomorphism

e  : H(𝔤) ⇝ 𝔤, (8)

whose first component is e(1) = i; furthermore, there exist explicit formulae for the L∞-algebra structure of H(𝔤) and the 
quasi-isomorphism e in terms of (i, p,h) [37], e.g. using the tensor trick [41], which can be interpreted as a sum over 
Feynman diagrams [25,42]. For example the ternary bracket μH(𝔤)

3 , is (modulo relative signs) the sum

h

p

ii i

μ2

μ2
+ h

μ2

μ2

p

ii i

+ h

p

ii i

μ2

μ2
+

p

ii i

μ3
. (9)

More generally, μH(𝔤)

k is computed by a sum1 over all rooted trees with k leaves, where one decorates the leaves with i, the 
n + 1-ary vertices with μn , the internal edges with h, and the root with p. The L∞-algebra structure on H(𝔤) is called the 
minimal model of 𝔤; minimal models are unique up to L∞-isomorphisms.

Twisting L∞-algebras L∞-algebras also admit a notion of twist with respect to a Maurer–Cartan element; for reviews, see 
[38--40]. In the definitions below, for a L∞-algebra (𝔤, {μk}k≥1), we assume for simplicity that μi = 0 for sufficiently large 
i; this can be relaxed [39].

Definition 3 ([24,40]). Let (𝔤, {μ𝔤
k }k≥1) be an L∞-algebra such that μi = 0 for sufficiently large i. A Maurer–Cartan element 

Q ∈ 𝔤1 of 𝔤 is an element of degree 1 such that

∞ ∑︂
i=1 

1 
i!μi(Q , . . . , Q ) = 0. (10)

Definition 4 ([40]). Let (𝔤, {μ𝔤
k }k≥1) be an L∞-algebra such that μi = 0 for sufficiently large i. Let Q ∈ 𝔤1 be a Maurer--

Cartan element. The twist of 𝔤 with respect to Q is the L∞-algebra 𝔤Q whose underlying graded vector space is that of 𝔤
but whose brackets μQ

k are

μQ
k : 𝔤∧k

Q → 𝔤Q

(x1, . . . , xk) ↦→
∑︂
i≥0 

1 
i!μi+k(Q , . . . , Q , x1, . . . , xk).

(11)

1 The explicit relative signs between the trees can be worked out by using the aforementioned tensor trick, for example.
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2.2. L∞-representations

The notion of a representation of (or module over) a Lie algebra generalizes to the setting of homotopy algebras as 
follows.

Definition 5 ([24,43,44]). An L∞-representation of an L∞-algebra (𝔤, {μ𝔤
k }k≥1) on a graded vector space M is an L∞-algebra 

structure {μ𝔤⋉M
k }k≥1 on the direct sum 𝔤⊕ M such that

μ
𝔤⋉M
k (x1 ⊕ 0, . . . , xk ⊕ 0) = μk(x1, . . . , xk) (12)

and μ𝔤⋉M
k+1 (x1, . . . xk,m) ∈ 0 ⊕ M for x1, . . . , xk ∈ 𝔤 and m ∈ M , and such that μ𝔤⋉M

k vanishes whenever at least two of its 
arguments belong to 0 ⊕ M ⊂ 𝔤⊕ M . We will write 𝔤⋉ M to refer to L∞-algebras of this form. We write

ρ(k)(x1, . . . , xk) := μ
𝔤⋉M
k+1 (x1, . . . , xk,−)  : M → M. (13)

Observe that, in particular, ρ(k) carries degree 1−k. Note that ρ(0) defines a differential on M , making it a cochain complex. 
We call an L∞-representation strict whenever ρ(k) = 0 for k > 1.

The L∞-algebra homotopy Jacobi identities (2) then can be written as a series of coherence relations amongst the ρ(k) ’s 
and μ𝔤

j ’s.
As with L∞-algebras themselves, L∞-representations admit a good homotopy theory in that minimal models exist and 

homotopy transfer is possible. That is, given an L∞-algebra 𝔤 and a 𝔤-representation M , we can always choose a strong 
deformation retract

(𝔤⊕ M,μ1 + ρ(0)) (H(𝔤) ⊕ H(M),0)
(h,h′)

(p,p′)

(i,i′)
(14)

and perform homotopy transfer of L∞-algebra structures along this retract to obtain an L∞-algebra on H(𝔤) ⊕ H(M), which 
then defines the L∞-representation of H(𝔤) on H(M).23

Given an L∞-algebra 𝔤 and a 𝔤-representation M with structure maps ρ(k) , then it is clear by inspection that a Maurer--
Cartan element Q ∈ 𝔤 is also Maurer–Cartan element of 𝔤⋉M and that the twist (𝔤⋉M)Q factorizes as (𝔤⋉M)Q = 𝔤Q ⋉M Q

[39], where M Q comes with the structure maps

ρ
(k)
Q (x1, . . . , xk) :=

∞ ∑︂
i=0 

1 
i!ρ

(i+k)(Q , . . . , Q , x1, . . . , xk). (15)

3. Higher symmetry of twisted ten-dimensional supersymmetric Yang–Mills theory

In the Batalin–Vilkovisky formalism [45--49], the field content of a perturbative gauge theory is a graded vector space 
(ℱ ,dℱ ) that comes equipped with a differential. Field theories often respect symmetry algebras such as the super-Poincaré 
algebra, the (super-)conformal algebra, the (super-)(anti-)de Sitter algebra, the (super-)Galilean algebra, etc. The action of 
such a symmetry algebra may be off shell (i.e. on ℱ itself) or merely on shell (i.e. only on the space of solutions to the equa
tions of motion4). The symmetry algebras are usually ungraded or Z/2Z-graded (i.e. superalgebras), and correspondingly 
the field space is Z/2Z-graded into bosons and fermions (in addition to the Z-grading corresponding to ghost number). 
This Z/2Z grading may be often lifted to a Z grading; correspondingly, the Z/2Z grading of the field space may also be 
lifted to a Z-grading.5 The Z-grading enables a good homotopy theory of L∞-algebras and L∞-representations, and in par
ticular off-shell realizations of symmetries can be in most cases lifted to a non-strict L∞-representation of the corresponding 
symmetry [7].

We turn now to our main example of interest, which is the twist of ten-dimensional super-Yang–Mills theory. (For 
simplicity and convenience with twisting, we assume all symmetries and fields to be complexified.)

2 The induced brackets on H(𝔤) ⊕ H(M) automatically satisfy the conditions given in Definition 5. Indeed, as there are no brackets in 𝔤⊕ M that reduce 
the number of factors of M , no such brackets can arise through composition.

3 This is the minimal model for the two-coloured operad of pairs of L∞-algebras and their L∞-representations, rather than the minimal model for the 
uncoloured operad of L∞-representations over a fixed L∞-algebra 𝔤.

4 Since we ignore interactions, for us this is the linearized equations of motion, but in general one should consider the interacting case.
5 In order to lift the Z/2Z grading of field space to Z, we work with polynomials over spacetime rather than smooth functions. This simplification can 

be avoided; see [7].
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We first discuss the twisted super-Poincaré algebra itself. Let

V ∼ = C10 (16)

be a ten-dimensional complex vector space equipped with a nondegenerate symmetric bilinear form. The ten-dimensional 
𝒩 = (1,0) super-Poincaré superalgebra is the Lie superalgebra

𝔬(V )⋉ (ΠS+ ⊕ V ) (17)

where S± are the two 16-dimensional Weyl spinor representations of 𝔬(V ) and Π denotes parity reversal. The Z/2Z
grading of the super-Poincaré superalgebra can be lifted to a Z-grading as the graded Lie algebra

𝔭 := 𝔬(V )⋉ (S+[−1] ⊕ V [−2]) (18)

in which the elements are graded as twice the conformal dimension (i.e. rotations in degree 0, supertranslations in degree 
1, translations in degree 2). For convenience, we can pick a basis rμν , dα , eμ of 𝔭0, 𝔭1, 𝔭2 respectively. Then the structure 
constants for [𝔭1,𝔭1] ⊂ 𝔭2 are

[dα,dβ ] = 2γ
μ
αβeμ, (19)

where γ μ
αβ are the chiral gamma (or Pauli) matrices in ten dimensions, i.e. the branching for the 𝔬(V )-representation 

S+ ⊗ S+ → V .

3.1. The minimal model of the holomorphic twist algebra

Suppose we pick a nonzero Maurer–Cartan element of 𝔭, i.e. a nonzero Q = Q αdα ∈ S+ such that [Q , Q ] = 0, that is,

γ
μ
αβ Q α Q β = 0. (20)

This picks out a subspace

L = [Q , S+] ⊂ V . (21)

This subspace L is a maximal isotropic subspace with respect to the bilinear form on V . Indeed, using the Fierz identity

2γ
μ
α(β

γμ|γ )δ = −γ
μ
βγ γμαδ, (22)

we have

Q β Q γ γ
μ
αβγμγδ ∝ (Q β Q γ γ

μ
βγ )γμαδ = 0; (23)

given now any elements ψ,χ ∈ S+ , consider the elements [Q ,ψ], [Q ,χ ] ∈ L. We have

[Q ,ψ]μ[Q ,χ ]μ = (Q β Q γ γ
μ
αβγμγδ)ψαχδ = 0. (24)

Thus L is indeed contained in its own orthogonal complement, i.e. it is an isotropic subspace. Isotropy implies dim L ≤
5. Furthermore, since the Maurer–Cartan condition is 𝔬(V )-invariant, it follows from the classification of spinors in ten 
dimensions [50, Prop. 2] that set of Maurer–Cartan elements of 𝔭 consists of two 𝔬(V )-orbits, namely nonzero ones and 
{0}; and a straightforward explicit computation shows that, when Q ≠ 0, then dim L = 5. That is, L is indeed a maximal 
isotropic subspace.

Thus, we have the short exact sequence of vector spaces

0 → L → V
q−→ L∗ → 0 (25)

where the quotient q is via the composition V
∼−→ V ∗ ↠ L∗ in which V

∼−→ V ∗ is given by the bilinear form on V . Let us 
choose a splitting of (25) to write

V = L ⊕ L∗. (26)

This decomposition then fixes Lie subalgebras 𝔰𝔩(L) ⊂ 𝔤𝔩(L) ⊂ 𝔬(V ), under which the ten-dimensional representation V
canonically decomposes into 𝔰𝔩(L) irreducible representations as

V ∼ = 𝔰𝔩(L) L ⊕ L∗ ∼ = 𝔰𝔩(L) (1000)𝔰𝔩(L) ⊕ (0001)𝔰𝔩(L) (27)

(Here and elsewhere we write (i jkl)𝔰𝔩(L) for the irreducible representation with these 𝔰𝔩(L) Dynkin labels, i.e. for the irre
ducible representation with highest weight iω1 + jω2 + kω3 + lω4 where ω1, . . . ,ω4 are the fundamental weights.)
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Similarly, the adjoint representation of 𝔬(V ) decomposes into irreducible 𝔰𝔩(L)-representations as

𝔬(V ) ∼ = 𝔰𝔩(L) C ⊕ 𝔰𝔩(L) ⊕ L∧2 ⊕ (L∗)∧2

∼ = 𝔰𝔩(L) (0000)𝔰𝔩(L) ⊕ (1001)𝔰𝔩(L) ⊕ (0100)𝔰𝔩(L) ⊕ (0010)𝔰𝔩(L),
(28)

and the spinor representations S± decompose as

S+ ∼ = 𝔰𝔩(L)

2 ⨁︂
i=0 

(L∗)∧(2i) ∼ = 𝔰𝔩(L) (0000)𝔰𝔩(L) ⊕ (0010)𝔰𝔩(L) ⊕ (1000)𝔰𝔩(L), (29)

S− ∼ = 𝔰𝔩(L)

2 ⨁︂
i=0 

(L∗)∧(2i+1) ∼ = 𝔰𝔩(L) S∗+ ∼ = (0001)𝔰𝔩(L) ⊕ (0100)𝔰𝔩(L) ⊕ (0000)𝔰𝔩(L). (30)

Our chosen element Q ∈ S+ spans the one-dimensional 𝔰𝔩(L)-submodule C ∼ = (L∗)∧0. The twist of 𝔭 by Q is [20, Prop. 3.3]

𝔭Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
(0000)𝔰𝔩(L)

(L∗)∧0[−1]
(0000)𝔰𝔩(L)

(L∗)∧2

(0010)𝔰𝔩(L)

(L∗)∧2[−1]
(0010)𝔰𝔩(L)

(L∗)∧4[−1]
(1000)𝔰𝔩(L)

L[−2] 
(1000)𝔰𝔩(L)

𝔰𝔩(L)
(1001)𝔰𝔩(L)

⋉ L∧2

(0100)𝔰𝔩(L)

L∗[−2] 
(0001)𝔰𝔩(L)

id

id

id

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (31)

We work in an explicit basis (ri
j,ri j,ri j,d,di j,di,ei,ei) of 𝔭 given in appendix A. In particular, the basis elements ri

j

span 𝔤𝔩(L), and we shall write

r̃i
j := ri

j − 1

5
δi

jr
k

k (32)

for the basis elements of 𝔰𝔩(L).
For a reason to become apparent in the theorem below, let us note that the representation L∗ ⊗ (L∧2)∧3 of 𝔰𝔩(L) decom

poses into irreducibles as

L∗ ⊗ (L∧2)∧3 ∼ = (0021)𝔰𝔩(L) ⊕ (0110)𝔰𝔩(L) ⊕ (1001)𝔰𝔩(L) ⊕ (2010)𝔰𝔩(L) ⊕ (2002)𝔰𝔩(L). (33)

In particular, the adjoint representation 𝔰𝔩(L) ∼ = (1001)𝔰𝔩(L) occurs with multiplicity one. We shall write

P L∗⊗(L∧2)∧3→𝔰𝔩(L) (34)

for the projector onto this irreducible component.

Theorem 1. The minimal model of the ten-dimensional twisted Z-graded 𝒩 = (1,0) super-Poincaré algebra 𝔭Q is the L∞-algebra 
whose underlying graded Lie algebra is

H(𝔭Q ) = 𝔰𝔩(L)⋉
(︂

L∧2 ⊕ L∗[−2]
)︂

, (35)

and whose higher brackets μi (i ≥ 3) are all zero except for μ4 , whose only nonvanishing component is given by

μ4(ei,r
jk,rlm,rnp) = −δ

[ j
i ε

k]lmqrδ
[n
q r̃

p]
r + δ

[ j
i ε

k]npqrδ
[l
q r̃

m]
r

− δ
[l
i ε

m]npqrδ
[ j
q r̃

k]
r + δ

[l
i ε

m] jkqrδ
[n
q r̃

p]
r

− δ
[n
i εp] jkqrδ

[l
q r̃

m]
r + δ

[n
i εp]lmqrδ

[ j
q r̃

k]
r

=: P jklmnp;
i

r
qr̃

q
r,

(36)

where P jklmnp;
i

r
q is the projector

L∗ ⊗ (L∧2)∧3 → 𝔰𝔩(L), (37)

and where the skew-symmetrizations are unnormalized.
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Proof. From eq. (31), we see that there is an evident 𝔰𝔩(L)-equivariant strong deformation retract (i, p,h) of cochain com
plexes

(𝔭Q ,adQ ) (H(𝔭Q ),0)h
p

i
(38)

from 𝔭Q to its cohomology

H(𝔭Q ) = (𝔰𝔩(L)⋉ L∧2 0−→ 0
0−→ L∗). (39)

(The remaining 𝔰𝔩(L) irreducible representations present in eq. (31) participate in trivial pairs; one defines the homotopy 
h to act as the inverse to the differential on these.) The Lie algebra structure μ2 on this cohomology H(𝔭Q ) is given by 
restriction.

It remains to check what higher brackets μi are induced by homotopy transfer. We are to sum over rooted binary trees 
in which each vertex corresponds to the binary bracket μ𝔭

2(−,−) = [−,−] of 𝔭 (and thus of 𝔭Q ), each internal edge to the 
homotopy h, each leaf to i and the root to p [37].

We will use Feynman-diagrammatic terminology, referring to elements as ‘states’ (see [25,42]). Recall our notation 
(ri

j,ri j,ri j,d,di j,di,ei,ei) for the basis elements of 𝔭 (whose underlying graded vector space we identify with that of 
𝔭Q ) as given in appendix A. We will refer to a state as intermediate if it lies in the image of h.

Using the strong deformation retract (i, p,h), we try to construct the possible intermediate states, keeping track of the 
representations under 𝔰𝔩(L). Using the embedding i : H(𝔭Q ) ↪→ 𝔭Q , we will identify the basis elements r̃i

j,ri j,ei in 𝔭Q

with those of H(𝔭Q ). The products μi for i > 2 can then be computed in a top-down recursive fashion by starting with two 
elements x, y ∈ H(𝔭Q ), and then compute which intermediate states are allowed by considering

h[i(x), i(y)]. (40)

The next intermediate states are then computed by plugging (40), and one element a ∈ i(H(𝔭Q )) ⊕ Im(h[i, i]), into [−,−]. 
If the result lies in H(𝔭Q ), we apply p, and we are done. If not, we apply h to obtain new intermediate states and then 
continue the procedure of pairing (using [−,−]) the newly obtained intermediate states with each other or with previously 
obtained intermediate states or states in the cohomology.

Starting with two elements of H(𝔭Q ), applying h[−,−] can only yield the intermediate states

h[ek,r
i j] = δi

kd
j − δ

j
kd

i . (41)

Using di together with r̃i
j,ri j,ei , we can only further create

[di,d j] = 0, (42a)

[di,e j] = 0, (42b)

h[ri j,dk] = −1

2
εi jklmrlm, (42c)

[r̃i
j,d

k] = −1

5
δi

jd
k + δk

jd
i . (42d)

Among these, [r̃i
j,dk] does not belong to the cohomology, i.e. it is not Q -closed, nor can it produce a new intermediate 

state since h([r̃i
j,dk]) = 0. Thus the only intermediate state we can create is given by h[ri j,dk] ∝ rlm . Applied to (41), we 

obtain

h[h[ek,r
i j],rlm] = h[δi

kd
j − δ

j
kd

i,rlm] = 1

2

(︂
δi

kε
jlmnp − δ

j
kε

ilmnp
)︂
rnp . (43)

Using the new intermediate state ri j together with the previously created intermediate state di and the cohomology 
(r̃i

j,ri j,ei), we can create the following new states:

[ri j,ek] = 0, (44a)

[ri j,d
k] = 0, (44b)

[r̃i
j,rkl] = −δi

kr jl − δi
lrkj + 2

5
δi

jrkl, (44c)

[ri j,rkl] = δi
kr

j
l − δ

j
kr

i
l − δi

lr
j
k + δ

j
l r

i
k, (44d)

[ri j,rkl] = 0. (44e)
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Now, all these states sit in degree 0 and are thus killed by h, so that none of them can create further intermediate states. 
The only nontrivial thing we can now do is to project to the cohomology: [r̃i

j,rkl] never lies in the cohomology, whereas 
the traceless part of [ri j,rkl] does. Applied to (43), we obtain

p[h[h[ek,r
i j],rlm],rqr] = −1

2

(︂
δ

j
kε

ilmnp − δi
kε

jlmnp
)︂

[rnp,rqr]
=

(︂
δ

j
kε

ilmnp − δi
kε

jlmnp
)︂(︁

δ
q
nr

r
p − δr

nr
q

p
)︁

= δ
[ j
k εi]lmnpδ

[q
n r̃

r]
p .

(45)

After graded-skew-symmetrization among the three arguments of the form ri j , this yields the only nonvanishing component 
of μ4.

There are no other μi since we have systematically constructed all possible nonzero tree Feynman diagrams (by con
structing all possible intermediate states that occur in them). □

One may doubt whether the nonstrictness and existence of a 4-bracket in H(𝔭Q ) is model-independent (i.e. holds for 
all minimal models) or an accidental feature of the specific minimal model in question. By the general theory of minimal 
models, H(𝔭Q ) is unique up to L∞-isomorphisms. Concretely, we may ask whether there exists a strict minimal model of 
H(𝔭Q ) (hence with no higher brackets). The answer is no.

Lemma 1. Let 𝔥 be a minimal strict graded L∞-algebra defined on the graded vector space H(𝔭Q ) ∼ = 𝔰𝔩(L) ⊕ L∧2 ⊕ L∗[−2]. There 
exists no L∞-isomorphism ϕ : H(𝔭Q ) ⇝ 𝔥.

Proof. Suppose to the contrary that such an L∞-isomorphism ϕ : H(𝔭Q ) ⇝ 𝔥 exists with component maps ϕ(k) . Without 
loss of generality, we may identify the underlying graded vector spaces of H(𝔭Q ) and 𝔥 via ϕ(1) . Since H(𝔭Q ) (and hence 𝔥) 
are concentrated in even degrees, even-order components of ϕ (which have odd degree) vanish: ϕ(2k) = 0. The coherence 
relations eq. (5) then implies that ϕ(1) is a Lie-algebra isomorphism of the underlying graded Lie algebra structures on 
H(𝔭Q ) and 𝔥. Moreover, the coherence relation on four elements reads

ϕ(1)(μ
H(𝔭Q )

4 (ep,ri j,rkl,rmn)) = μ
𝔥
2 (ϕ(1)(ep),ϕ(3)(ri j,rkl,rmn)) + permutations. (46)

Now, the left-hand side is nonzero and lies in the copy of 𝔰𝔩(L) inside 𝔥. But since μ𝔥
2 agrees with μH(𝔭Q )

2 , by virtue of ϕ(1)

being a Lie algebra morphism, we have that μ𝔥
2 is 𝔰𝔩(L)-equivariant, and hence the right-hand side cannot lie in 𝔰𝔩(L), a 

contradiction. □
3.2. Action on A5

The pure spinor formalism [7,8] associates certain sheaves on (a derived replacement of) the variety of Maurer–Cartan 
elements to off-shell representations of the super-Poincaré algebra. In particular, for the ten-dimensional 𝒩 = (1,0) super
Poincaré algebra, it associates to the structure sheaf of the Maurer–Cartan variety SpecC[λα]/(γ μ

αβλαλβ) the pure spinor 
supermultiplet [7]

M :=C[xμ, θα,λα]/(γ μ
αβλαλβ)

∼ = 
(︂⨀︂

(10000)𝔬(V )

)︂
⊗

(︂⋀︂
(00010)𝔬(V )

)︂
⊗

(︄ ∞ ⨁︂
i=0 

(000i0)𝔬(V )

)︄
(47)

where 
⨀︁

R denotes the symmetric algebra on R , and the 𝔬(V )-representation has been specified by Dynkin labels; we use 
the index notation where V indices are μ and S+ indices are α (hence S− ∼ = S∗+ indices are α ). The formal variables x, θ, λ

transform as V , S−, S− respectively under 𝔬(V ), which in turn determines the 𝔬(V )-representation on M . The generators 
carry the degrees6

|x| = −2 |θ | = −1 |λ| = 0. (48)

The differential is [7, (3.14), (3.19)]

d := λα

(︃
∂

∂θα
− γ

μ
αβθβ ∂

∂xμ

)︃
. (49)

6 In fact, this grading can be refined into a bigrading [7, (3.15) ff.], and the 𝔭-representation respects this bigrading. But we do not need this fact.
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The 𝔬(V )-representation of M extends to a strict representation of 𝔭 as

ρ
(1)
0 (eμ) = ∂

∂xμ
, (50a)

ρ
(1)
0 (dα) = ∂

∂θα
+ γ

μ
αβθβ ∂

∂xμ
. (50b)

We can twist this 𝔭-representation to obtain a (strict) representation of 𝔭Q on M Q ; the action of 𝔭Q is through (50), but 
the differential on M Q is now d + ρ

(1)
0 (Q ). The cohomology of M Q is the ring of regular functions on A5.

Theorem 2 ([20, Theorem 3.A]). The cohomology of M Q is

H(M Q ) = C[zi], (51)

where zi = (z1, . . . , z5) is a formal variable of degree −2 transforming under 𝔰𝔩(L) as the defining representation L, such that the 
L∞-representation of the subalgebra 𝔦𝔰𝔩(L) := 𝔰𝔩(L)⋉ L∗[−2] of H(𝔭Q ) is

ρ(1)(r̃i
j) = zi ∂

∂z j
− 1

5
δi

j z
k ∂

∂zk
, ρ(1)(ei) = ∂

∂zi
, (52)

with ρ(k) = 0 for k ≥ 2.

This corresponds to the fact that the holomorphic twist of ten-dimensional supersymmetric Yang–Mills theory is 
holomorphic Chern–Simons theory [4,20,22], whose space of fields is7 the algebraic Dolbeault complex of A5, namely 
C[zi, z̄i,dz̄i], and whose cohomology is therefore C[zi].

Furthermore, the cohomology C[zi] = H(M Q ) is included into M Q as a 𝔰𝔩(L)-subrepresentation [20]. Since 𝔰𝔩(L) is sim
ple, there exists an 𝔰𝔩(L)-equivariant strong deformation retract of cochain complexes

𝔭Q ⊕ M Q H(𝔭Q ) ⊕ H(M Q ),(h,h′)
(p,p′)

(i,i′)
(53)

whose restriction to 𝔭Q ↔ H(𝔭Q ) is the strong deformation-retract (i, p,h) given in (38). Thus, by taking the minimal model 
of (𝔭Q , M Q ) along the strong deformation retract (53), the above 𝔦𝔰𝔩(L)-representation extends into an L∞-representation of 
the entirety of H(𝔭Q ), and such minimal models are unique up to quasi-isomorphisms of L∞-algebra representations. This 
minimal model is an L∞-representation of the L∞-algebra H(𝔭Q ) on H(M Q ) =C[zi]. The following theorem computes this 
minimal model explicitly.

Theorem 3. The minimal model of the L∞-representation of 𝔭Q on M Q obtained using the strong deformation retract (i, i′; p, p′;h,h′)
is the H(𝔭Q )-representation on H(M Q ) =C[zi] given by

ρ(1)(r̃i
j) = zi ∂

∂z j
− 1

5
δi

j z
k ∂

∂zk
,

ρ(1)(ei) = ∂

∂zi
,

ρ(3)(ri j,rkl,rmn) = 1

2

(︄
z[iε j]klp[mzn] − z[iε j]mnp[kzl]

+ z[kεl]mnp[i z j] − z[kεl]i jp[mzn]

+ z[mεn]i jp[kzl] − z[mεn]klp[i z j]
)︄

∂

∂zp

=: P ijklmn;r
pqzp zq ∂

∂zr
,

(54)

with all other components vanishing (in particular, ρ(1)(ri j) = 0), where P ijklmn;r
pq is the projection

(0100)∧3
𝔰𝔩(L) = (0020)𝔰𝔩(L) ⊕ (2001)𝔰𝔩(L) → (2001)𝔰𝔩(L) (55)

in terms of 𝔰𝔩(L) Dynkin labels or, in Young tableau notation,

7 Up to issues such as holomorphic versus algebraic functions, which we ignore.
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∧3 = ⊕ → . (56)

Proof. First, note that for degree reasons, we can only have nonzero ρ(k) for odd k since C[zi] and H(𝔭Q ) are all con
centrated in even degree and ρ(k) carries degree 1 − k. The leading component ρ(1) is fixed simply by restriction of the 
𝔭Q -representation ρ0 on M Q to i(H(𝔭Q )) ⊂ 𝔭Q and i′(H(M Q )) ⊂ M Q as

ρ(1)(x) = p′ ◦ ρ0(i(x)) ◦ i′ (57)

for x ∈ H(𝔭Q ) (so that i(x) ∈ 𝔭Q ); in particular, ρ(1)(ri j) = 0. Furthermore, the ρ(k) vanish whenever one of the arguments 
is r̃i

j except when k = 1 (Lemma 2).
Hence, it suffices to determine ρ(3), ρ(5), ρ(7), . . . where all arguments are either ri j or ei . Now, the possibilities of 

ρ(k) are constrained by the fact that all operations μk , ρ(k) , and the strong deformation retract (i, i′; p, p′;h,h′) are 𝔰𝔩(L)
equivariant. Suppose that ρ(k) does not vanish when fed p arguments of the form ri j and q arguments of the form ei with 
p + q = k ≡ 1 (mod 2). Then, representation-theoretically, it must yield a nontrivial 𝔰𝔩(L)-representation that is a direct 
summand of(︂

L∧2
)︂∧p ⊗ (L∗)∧q. (58)

On the other hand, it must carry the degree (1 − p − q) + 2q = 1 − p + q, and hence be a sum of terms of the form{︄
zn

(︁
∂
∂z

)︁n+(1−p+q)/2
if 1 − p + q ≥ 0

zn−(1−p+q)/2
(︁

∂
∂z

)︁n
if 1 − p + q ≤ 0,

(59)

where zn refers to a product zi1 · · · zin , and similarly for ( ∂
∂z )

n . Since zi transforms as L and ∂/∂zi as L∗ , this must transform 
under 𝔰𝔩(L) as a direct summand of{︄

L⊙n ⊗ (L∗)⊙(n+(1−p+q)/2) if 1 − p + q ≥ 0

L⊙(n−(1−p+q)/2) ⊗ (L∗)⊙n if 1 − p + q ≤ 0,
(60)

where the superscript ⊙n denotes the n-th symmetric power. Thus, the two 𝔰𝔩(L)-representations (58) and (60) must share 
some nontrivial subrepresentations if the corresponding ρ(k) is to not vanish. Lemma 3 shows that this is only possible for 
(p,q) = (3,0) and (p,q) = (4,3), corresponding to

ρ(3)(ri j,rkl,rmn) = P ijklmn;r
pq

(︃
α0zp zq ∂

∂zr
+ α1zp zqzs ∂2

∂zr∂zs
+ · · ·

)︃
(61)

and

ρ(7)(ri j,rkl,rmn,rpq,er,es,et) = P ijklmnpq;
rst

u
v

(︃
β0zv ∂

∂zu
+ β1zv zw ∂2

∂zu∂zw
+ · · ·

)︃
, (62)

respectively, where P ijklmn;r
pq is the projector (0100)∧3

𝔰𝔩(L)
→ (2001)𝔰𝔩(L) as in (55) and P ijklmnpq;

rst
u
v is the projector 

(0100)∧4
𝔰𝔩(L)

⊗ (0001)∧3
𝔰𝔩(L)

→ (1001)𝔰𝔩(L) .

Now, we must solve the coherence relations. One L∞-representation coherence relation states8

[ρ(1)(ei),ρ
(3)(r jk,rlm,rnp)] = ρ(1)(μ4(ei,r

jk,rlm,rnp)). (63)

Substituting ρ(1)(ei) = ∂/∂zi and (61) into (63) yields[︃
∂

∂zi
, P jklmnp;s

qr

(︃
α0zqzr ∂

∂zs
+ α1zqzr zt ∂2

∂zs∂zt
+ · · ·

)︃]︃
= P jklmnp;

i
r
qzq ∂

∂zr
, (64)

where P jklmnp;
i

r
q is the projector (37). Solving this yields α0 = 1 and αn = 0 for n > 0.

Next, we have the L∞-module coherence relation9

0 =
[︂
ρ(7)(ri j,rkl,rmn,rpq,e[r,es,et),ρ

(1)(eu])
]︂
. (65)

8 In this coherence relation, in our case, terms of the form [ρ(0), ρ(4)], [ρ(2), ρ(2)], ρ(4)(μ1), ρ(3)(μ2), and ρ(2)(μ3) vanish.
9 In this coherence relation, terms of the form [ρ(0), ρ(8)], [ρ(2), ρ(6)], [ρ(3), ρ(5)], [ρ(4), ρ(3)], ρ(1)(μ8), ρ(2)(μ7), . . . , ρ(8)(μ1) vanish.
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Plugging in the ansatz (62) into (65) yields

0 =
[︃

P ijklmnpq;
[rst|

v
w

(︃
β0zw ∂

∂zv
+ β1zw zx ∂2

∂zv∂zx
+ · · ·

)︃
,

∂

∂z|u]

]︃
. (66)

Solving this shows that the coefficients β0, β1, . . . must all vanish since non-constant-coe�icient differential operators do 
not commute with ∂/∂zl . □
Lemma 2. In the L∞-representation of the L∞-algebra H(𝔭Q ) on C[zi] obtained by homotopy transfer from M Q using the 𝔰𝔩(L)
equivariant strong deformation retract (i, i′; p, p′;h,h′), we have

ρ(k)(r̃i
j, . . . ) = 0 (67)

if k ≥ 2.

Proof. We are to perform a homotopy transfer of L∞-algebras along

𝔭Q ⊕ M Q H(𝔭Q ) ⊕ H(M Q ).(h,h′)
(p,p′)

(i,i′)
(68)

Let us again use Feynman-diagrammatic terminology to refer to elements as ‘states’. If ρ(k)(r̃i
j, . . . ) ≠ 0, this would mean 

that there is at least one tree Feynman diagram with at least one external leg corresponding to r̃i
j . Assuming that k ≥ 2, 

we have the following possibilities.

(i) The vertex connected to this leg may be directly connected to p′ as

p′(ρ0(r̃
i

j)X) =

p′

Xr̃i
j

, (69)

where X ∈ M Q . In this case, we may assume X to be an intermediate state X = h′( X̃). (The alternative, that X lies in 
the cohomology, only yields ρ(1) .)

(ii) The vertex connected to this leg may feed into h and connect to the rest of the tree as

p′(· · ·h′(ρ0(r̃
i

j)X) · · · ) =
h′

.

.

.

Xr̃i
j

, (70)

where X ∈ M Q may be either an intermediate state X = h′( X̃) or belong to the cohomology (X ∈ i′(H(M Q ))). In either 
case, we have h(X) = 0.

(iii) The vertex connected to this leg may feed into h and connect to the rest of the tree as

p′(· · ·h[r̃i
j, x] · · · ) =

h

.

.

.

xr̃i
j

, (71)
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where x ∈ 𝔭Q is either an intermediate state x = h(x̃) or belongs to the cohomology (x ∈ i(H(𝔭Q ))). In either case, 
h(x) = 0.

In the first case (69), since the strong deformation retract (i, i′; p, p′;h,h′) is 𝔰𝔩(L)-equivariant, p′(ρ0(r̃i
j)h′( X̃)) can be 

nonzero only if p′(h′( X̃)) is already nonzero. But this cannot be the case since (i′, p′,h′) forms a strong deformation retract, 
whose definition requires p′ ◦ h′ = 0.

Similarly, in the latter case (70), since the strong deformation retract (i, i′; p, p′;h,h′) is 𝔰𝔩(L)-equivariant, h′(ρ0(r̃i
j)X)

can be nonzero only if h′(X) is already nonzero, but this is not possible.
Finally, in the last case (71), again, since the strong deformation retract (i, i′; p, p′;h,h′) is 𝔰𝔩(L)-equivariant, h[r̃i

j, x] can 
be nonzero only if h(x) is already nonzero, which is not possible. □
Lemma 3. For p + q odd and p + q ≥ 3, the 𝔰𝔩(L)-representation

R p,q := (L∧2)∧p ⊗ (L∗)∧q (72)

has no irreducible components in common with

R̃ p,q :=
{︄⨁︁∞

n=0 L⊙n ⊗ (L∗)⊙(n+(1+q−p)/2) if 1 + q − p ≥ 0⨁︁∞
n=0 L⊙(n−(1+q−p)/2) ⊗ (L∗)⊙n if 1 + q − p ≤ 0

(73)

except when (p,q) = (3,0) or (4,3), in which case the irreducible components in common are (2001)𝔰𝔩(L) and (1001)𝔰𝔩(L) respec
tively.

Proof. We must compute the tensor product appearing in R̃ p,q . For 1 + q − p ≥ 0 and any nonnegative integer n ≥ 0, it is 
easy to see that

(︁
n000

)︁ ⊗ (︁
000(n + (1 + q − p)/2)

)︁ =
n ⨁︂

i=0 

(︁
i00(i + (1 + q − p)/2)

)︁
. (74)

Similarly, for 1 + q − p ≤ 0 we have

(︁
(n − (1 + q − p)/2))000

)︁ ⊗ (︁
000n

)︁ =
n ⨁︂

i=0 

(︁
(i − (1 + q − p)/2))00i

)︁
. (75)

Thus, R̃ p,q only contains irreducible representations of the form{︄(︁
i00(i + (1 + q − p)/2)

)︁
if 1 + q − p ≥ 0(︁

(i − (1 + q − p)/2)00i
)︁

if 1 + q − p ≤ 0
(i ∈ {0,1,2, . . . }). (76)

Given this, iterating over10 p ∈ {0,1, . . . ,10} and q ∈ {0,1, . . . ,5} and verifying whether an irreducible representation of the 
above form appears in R p,q (using e.g. a computer algebra system), one can see that (p,q) ∈ {(3,0), (4,3)} are the only 
possible solutions. □
4. Other dimensions and amounts of supersymmetry

The above construction works for general supersymmetry algebras and general supermultiplets. This raises the ques
tion of how special (or generic) the ten-dimensional 𝒩 = (1,0) super-Poincaré algebra analysed above is. Without claiming 
an exhaustive analysis, let us remark in this section that there do not seem to be very many examples (besides the ex
ample analysed above) that nontrivial and purely bosonic higher products, at least if one considers those superalgebras 
that commonly arise in physics; a glance at [4] shows that this is the only case in which the cohomology of the twisted 
supermultiplet is simply a polynomial ring in bosonic variables.

In general, for sufficiently large dimension n, the number of spinorial components in a super-Poincaré algebra increases 
as 𝒪(2n) whereas bosonic components increase as 𝒪(n2). Indeed, already at 14 dimensions, the minimal spinor has 128 
components while 𝔦𝔬(14) has 105 components. So we are restricted to 13 or fewer dimensions even if one did not take into 
consideration no-go theorems about higher-spin theories (since we ignore dynamics here). Similarly, the 11-dimensional 
case (starting with the supergravity multiplet) is discussed in [20,21]. There are two possible cases. In one case [20], H(𝔭Q )

10 Recall that (L∧2)∧k and (L∗)∧l are zero for k > 10 and l > 5.
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contains fermionic elements. Then we expect the action of H(𝔭Q ) to contain a ρ(2) involving the remaining fermionic 
elements. In the other case [21], however, we expect to see a higher action of

H(𝔭Q ) = (𝔤2 ⊕ 𝔰𝔩(L) ⊕ V 7 ⊗ L ⊕C)⋉ L (77)

(which should carry nontrivial μ2 and μ4) on

A(L∗) = SpecC[z1, z2], (78)

where L is a two-dimensional vector space and V 7 is a seven-dimensional vector space; here, C[z1, z2] = H(Ω0,•(L) ⊗
Ω•(V )) is the cohomology of the Dolbeault–de Rham complex on two complex and seven real dimensions.

On the other hand, if there are too few dimensions, empirically it appears that higher products often simply vanish. 
For example, for the four-dimensional 𝒩 = 1 super-Poincaré algebra, the twist gives a decomposition of four-dimensional 
complexified spacetime V as V = L ⊕ L∗ , where L is a two-dimensional vector space, with the twisted super-Poincaré 
algebra being [20]

𝔭Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(L∗)∧2 L∧0

(𝔰𝔩(L)⋉ L∧2) ⊕ 𝔤𝔩(1)R L∧1 L

𝔤𝔩(1)tr L∧2 L∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (79)

where 𝔤𝔩(1)R is the R-symmetry and 𝔤𝔩(1)tr is the trace part of 𝔤𝔩(L). Following the proof of Theorem 1, we see that there 
are no higher brackets for H(𝔭Q ) by constructing all possible intermediate states: apply μ2(L∧2,−) to L∗[−2] to get L[−2]; 
applying the homotopy h yields L∧1; but now applying another μ2(L∧2,−) simply kills everything.
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Appendix A. Conventions

In a basis adapted to the choice of pure spinor Q ∈ S+ , the super-Poincaré algebra 𝔭 = 𝔭0 ⊕ 𝔭1 ⊕ 𝔭2 in ten dimensions 
has the basis elements

ri
j,r

i j,ri j ∈ 𝔭0, d,di j,d
i ∈ 𝔭1, ei,ei ∈ 𝔭2, (80)

with ri j = −r ji , ri j = −r ji , and di j = −d ji . The graded-skew-symmetric Lie brackets among these basis elements are[︂
ri

j,r
k

l

]︂
= δk

jr
i
l − δi

lr
k

j

[︂
ri

j,r
kl
]︂

= δk
jr

il + δl
jr

ik[︂
ri

j,rkl

]︂
= −δi

kr jl − δi
lrkj

[︂
ri j,rkl

]︂
= δi

kr
j
l − δ

j
kr

i
l − δi

lr
j
k + δ

j
l r

i
k[︂

ri
j,e

k
]︂

= δk
je

i
[︂
ri

j,ek

]︂
= −δi

ke j[︂
ri j,ek

]︂
= δ

j
ke

i − δi
ke

j
[︂
ri j,e

k
]︂

= δk
i e j − δk

jei[︂
ri j,d

]︂
= 0

[︁
ri j,d

]︁ = −di j[︂
ri j,dkl

]︂
= (δi

lδ
j
k − δi

kδ
j
l )d

[︁
ri j,dkl

]︁ = −εi jklmd
m[︂

ri j,dk
]︂

= −1

2
εi jklmdlm

[︂
ri j,d

k
]︂

= 0[︂
ri

j,d
]︂

= 1

2
δi

jd
[︂
ri

j,dkl

]︂
= 1

2
δi

jdkl − δi
kd jl − δi

ldkj[︂
ri

j,d
k
]︂

= −1

2
δi

jd
k + δk

jd
i

[︂
d,di

]︂
= ei[︂

di,d jk

]︂
= δi

ke j − δi
jek

[︁
di j,dkl

]︁ = −εi jklme
m

(81)
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with all remaining brackets of basis elements vanishing. Here the indices i, j, . . . run over {1,2,3,4,5}, and we employ the 
Einstein summation convention. Here ri

j span 𝔤𝔩(5). The basis elements of the subalgebras 𝔰𝔩(5) are

r̃i
j := ri

j − 1

5
δi

jr
k

k. (82)
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