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Abstract

Most available smart meters sample at low rates and transmit the acquired measurements
to a cloud server for further processing. This article presents a prototype smart meter
operating at a high sampling frequency (15 kHz) and performing energy disaggregation
locally, thus negating the need to transmit the acquired high-frequency measurements. The
prototype’s architecture comprises a custom signal conditioning circuit and an embedded
board that performs energy disaggregation using a deep learning model. The influence of
the sampling frequency on the model’s accuracy and the edge device power consumption,
throughput, and latency across different hardware platforms is evaluated. The architecture
embeds NILM inference into the meter hardware while maintaining a compact and energy-
efficient design. The presented smart meter is benchmarked across six embedded platforms,
evaluating model accuracy, latency, power usage, and throughput. Furthermore, three
novel hardware-aware performance metrics are introduced to quantify NILM efficiency
per unit cost, throughput, and energy, offering a reproducible framework for future NILM-
enabled edge meter designs.

Keywords: smart meter; energy disaggregation; non-intrusive load monitoring (NILM);
Al on the edge

1. Introduction

The electrical energy consumption of consumer and commercial buildings accounts for
36% of the total electrical demand in the US and 25% in Europe [1,2], with an approximate
increase of 3.4% per year [3]. In parallel, studies indicate that detailed analysis and real-time
feedback on energy consumption can lead to up to 20% savings in energy consumption
by detecting faulty devices and poor operational strategies [4]. Therefore, in the last
few decades, extensive research in smart metering technologies, smart grid architectures,
and data processing techniques has been carried out to reduce energy consumption [5].
To achieve this, accurate and fine-grained energy monitoring is needed [6], and energy
disaggregation or Non-Intrusive Load Monitoring (NILM) has proven to be an essential
technology for this [7].

NILM splits the energy consumption signal at the device level by measuring only the
aggregated signal at the main inlet of a utility customer, i.e., with only one smart meter.
The recorded aggregated energy measurements are typically transmitted via an IoT setup
to a cloud server for further processing by an algorithm, like a deep machine learning
pre-trained NILM model [8], to perform the energy disaggregation. Therefore, there is no
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need to connect a separate smart meter to each load to be monitored, since each of the target
loads/appliances are monitored by the same single smart meter after Al-based processing
of the recordings.

Common sampling rates of smart meters vary from one sample per second to one
sample per ten minutes. The accuracy of NILM algorithms is proportional to the sampling
frequency [9], due to the number of harmonics in the signature of each load that can be
captured, however acquiring the aggregated signal at higher sampling frequencies would
require a larger bandwidth to transmit the data to the cloud server and potentially more
storage space within the cloud. Recent developments in edge Al computing [10] can be used
to relocate the deep learning NILM to the edge, i.e., on the smart meter, to transmit only
the detected load consumptions instead of the high sampling frequency measurements.

This article presents an instrumental prototype architecture of a smart meter with em-
bedded capabilities for high-frequency NILM on the edge. The hardware implementation
of the NILM smart meter is described and evaluated according to the analog measurement
error of current and voltage signatures in the time and frequency domain. The proposed
design combines a custom analog front-end and a real-time embedded Al pipeline, result-
ing in an edge-processing meter. The prototype architecture is evaluated for measurement
fidelity, embedded runtime performance, and hardware efficiency across six microprocessor
platforms. Additionally, we propose three new benchmarking metrics—accuracy-per-cost,
accuracy-per-throughput, and accuracy-per-power—to guide hardware-software co-design
in NILM-enabled smart meters, and to assess trade-offs and practical deployment consider-
ations specifically in resource-constrained environments.

The remainder of the article is structured as follows: Section 2 provides an
overview of the related works. In Section 3 the proposed architecture is presented. In
Section 4 the performance is evaluated. Discussion and conclusions are provided in
Sections 5 and 6, respectively.

2. Related Works

The majority of the NILM approaches are software-based and have been evaluated
mostly on publicly available datasets [7], while transfer learning approaches have been used
in a few studies [11,12]. Only a few NILM approaches have been evaluated on hardware and
tested using hardware implementations of smart meter architectures. Specifically, in [13],
rule-based energy disaggregation was performed on a laboratory-based smart meter tested
at a sampling frequency of 2 kHz. In [14], a smart meter and data acquisition method
that characterizes load signatures based on the fingerprint of the root mean square (RMS)
current, its average, and standard deviation was presented, which uses a dynamic window
of samples based on the appliance type and a resolution of 24 bits at the analog—digital
converter (ADC). In [15], time-frequency analysis was performed using signatures with
2D resolution based on short-time Fourier transform using a sampling frequency of 2 kHz
and an ADC resolution of 12 bits. In [16], a real-time capable solution based on the
Karhunen-Loeve expansion was used to perform disaggregation at low frequencies. The
approach used a commercially available smart meter, the EKM-Omnimeter I v.3 [16], with
a sampling frequency of 1 Hz and a measurement error of £0.5%.

Some papers have introduced NILM-specific smart metering solutions. In [17], a
low-cost smart meter was proposed that was based on an ARM Cortex-M4 processor
architecture, while measurements were performed using split-core transformers. The meter
had a WiFi interface for transmission of the measured data. The sampling frequency of the
meter was 10 kHz, the delay for sending the data packages was 0.5 s, and the approximated
cost was EUR 50. In [18], a proposed smart meter in the shape of a load plug was developed
to use a voltage transformer and a hall effect current sensor. An Arduino Pro Mini with
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an external ESP8266 Wi-Fi module was used. The smart meter measured active power
at a sampling frequency of 1 Hz. In [19], a Raspberry Pi-based smart metering solution
for NILM was proposed to measure active and reactive power at a sampling frequency of
10 Hz, with a measurement error of approximately 3.5%, power consumption of 3.57 W,
and approximate estimated cost in 2023 of EUR 50 for the materials and EUR 200 in
total. In [20], a cost-effective embedded NILM smart meter was proposed that works with
an internal sampling frequency of 10 kHz, 12-bit data resolution, and output processed
values every 0.5 s. The measurement circuits used split coil transformers, while the data
processing used a TI CC3200 MCU. In [21], a convolutional neural network (CNN) solution
was proposed using an FPGA, with a sampling frequency of 4 kHz using a Zybo z7-20
board, and the acquired data were reshaped, forming 64 x 64 input windows. A data
resolution of 3 bits was used in the CNN model.

In addition to NILM-specific metering solutions, general smart metering solutions
have been proposed. An overview of smart meter technologies and specifically proposed
metering solutions is provided in [22]. Another survey [23] focused on smart meters’
capabilities to detect energy fraud. In [24], a smart meter for general IoT applications
in smart grids was proposed, working at a sampling frequency of up to 50 kHz and
24-bit resolution, and was based on an NI RIO 9626 board supported by a Xilinx LX45
FPGA architecture. The smart meter computed a set of 30 features, including electrical
and statistical values suitable for NILM [25], and an error of less than 0.1% for current and
voltage measurements was reported. In [26], an Arduino-based low-cost smart meter with
a GSM module for data communication was proposed, achieving a measurement error of
0.8%. In [27], a secure energy smart meter was proposed that used encrypted data transfer
and measured active and apparent power twice every 15 minutes.

3. Architecture

For a set of M — 1 known loads/devices each consuming power p,, € RN, with
1 <m < M—1and N being the total number of samples within a time window, the
aggregated power paee € RN measured by the sensor will be:

M-1 M
Pugg:f(Plr"'/PM—lfe): Z pm+e= me 1)
m=1 m=1

where ¢ = py; € RN is the noise generated by one or more unknown devices (also
referred to as ghost power [11]) and f(-) is the aggregation function. An NILM algorithm
finds estimations p,, € of the power consumption of each device m using an estimation
method f~!(-) with minimal estimation error and p5; = ¢, i.e.,

N

P = {ﬁl/ﬁZ/ e /ﬁM—l/é} = fﬁl(Pagg) (2)

The hardware architecture and the software architecture are described in
Sections 3.1 and 3.2, respectively.

3.1. Hardware Architecture

The hardware architecture of the instrumental SM-NILM used in this work is presented
in Figure 1a, and the hardware implementation of the smart meter in Figure 1b. The archi-
tecture comprises two parallel circuits, split into voltage and current waveform capturing
and conditioning, which output the high-frequency voltage and current waveforms.
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Figure 1. Hardware architecture and hardware implementation: (a) Architecture of the instrumental
smart meter with embedded NILM including device under test (DUT), analog voltage, current
measurement, and embedded boards. (b) Hardware implementation of the proposed smart meter.
(1) Voltage measurement, (2) current measurement, (3) over-voltage protection, (4) low-pass filtering,
(5) output decoupling, (6) embedded board.

The voltage measurement circuit uses a custom-made instrument voltage transformer
(ratio: 20:1, power rating: 0.01 VA, voltage factor: 1.2, compliant to IEC 61869-1&3 [28,29])
to isolate and reduce the mains supply (230 V) with a following voltage divider reducing
the voltage level to 12 V and 1.3 V, respectively. The current measurement circuit uses a
custom-made current transformer (ratio: 2000:1, power rating: 0.0085 VA, compliant to IEC
61869-1&2 [28,30]) in parallel to a resistor to transform the current consumed by the device
under test (DUT) into a voltage waveform, with the voltage of the waveform being a linear
conversion of the current. The resistor connected in parallel to the current transformer
provides a maximum of 1.3 V at a nominal load of 3000 W, thus providing compatibility
with audio-line levels.

Each circuit utilizes duplicated signal conditional sub-circuits, providing waveform
amplitude limiting, anti-aliasing filtering, output load matching, and decoupling, following
regular audio circuit compatibility. To bound the waveform’s amplitude, a pair of back-to-
back Zener diodes is used in parallel to the output voltage signals (1.3 V) after the voltage
divider and the current transformer, respectively. Therefore, the waveform amplitude
is bounded at £1.7 V to avoid damaging the following components. To select a suitable
design point for the sampling frequency of the smart meter, the WHITE dataset [31] was
used to investigate the frequency response of different devices.

As shown in Figure 2, each signal component appears in a specific frequency band,
e.g., the AC at 30-700 Hz and the lamp at 30-7000 Hz. Visual investigation shows that the
spectral content from all devices appears sufficiently up to 7 kHz, and thus a sampling
frequency of 15 kHz was selected as the design point for the smart meter hardware to
satisfy the Nyquist criterion and capture relevant frequency content from appliances.
Consequently, an anti-aliasing filter is implemented using an active second-order low-pass
filter, with a 6dB roll-off set to 7.5 kHz, thus allowing suitable high-frequency attenuation
to mitigate aliasing for ADCs with a sampling rate of 15 kHz or greater. An operational
amplifier (072 OPAMP) was used for each voltage and current measurement circuit. Finally,
a decoupling capacitor was used to filter signals lower than 20 Hz (DC removal), thus
ensuring 50 Hz mains voltage and current signals and higher frequency components could
be passed to the ADC.
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Figure 2. Current spectrum of four different devices from three manufacturers, each recorded at
44 kHz. Black dashed lines denote the relevant frequency content of each appliance.

3.2. Software Architecture

The block diagram of the software architecture for the edge deployment is shown in
Figure 3, showcasing the data flow from reading the raw electrical samples to executing
the CNN model performing the disaggregation. A software application was developed
to compare the performance of different hardware platforms, in terms of the accuracy
of the models, the execution time of each stage (latency), and the overall throughput.
The difference between the hardware setups lies in the CNN inference engine and the
underlying technology for its acceleration. The rest of the data pipeline was kept the same
as described below.

Signal Hardware Platform
Conditioning
Circuit

Steps

Seq2Point }—»' R i |—>| Nor

-1 Voltage 1

Feature -
Extraction

Domains R
: Frequenc fiigh
Device Under quency Frequency

Test

Framing ——»| Pre-Processing ——»{ CNN P Results

NILM Regression
Model

Figure 3. Software architecture including framing, feature extraction, pre-processing, and

CNN regression.

Each frame consists of 275 samples for the high-frequency domain, and 55 samples
for the time and frequency domain using sub-sampling with a factor of five. Feature
extraction is conducted on a frame basis, where various time domain and frequency
domain features are derived from the signal. Although the same types of features are
extracted across both frequency levels, the size of the FFT window used differs between
the levels. Various pre-processing steps are applied to format the incoming data before
sending it to the CNN. First, seq2point [32] is used to buffer ten consecutive frames into
a single array using a sliding window approach with a step size of one sample. This
technique takes the midpoint value of the target sequence using a sliding window of
input data. This array is then reshaped into the appropriate single-point precision (FP32)
format: Batch x Frame x Feature x Channels, where Batch and Channels are equal to
one. Additionally, five different normalization techniques were explored (A)—(E) and are
tabulated in Table 1, with (A) corresponding to "Without Normalization’'.
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Table 1. Normalization methods (Norm) for input features.

Norm Amplitude Range Equation

A Without Normalization X =x
! X—Xmin
B [OI 1] x :/ Xmax —Xmin
C Z-Score X ==
D [—128, 127] x = X Xmin 255 — 128
, xmux*’imjt(n )

E [0, 255] X = ——fmin_ x D55

Xmax — Xmin

In Table 1, x is the raw input signal and x’ is the pre-processed (normalized) input
signal. Furthermore, X, /;nqx is the minimum /maximum value, y is the mean value, and ¢
is the standard deviation of the training data. The last module in the software architecture
is the CNN model for NILM. The CNN architecture in [32] illustrated in Figure 4, using ten
frames as input, was used for the regression step of NILM.

5x5x50

© 1) ) 1x512 1x512 1x512 1 x Appliances

[1 x Frames x Features x 1] ‘ ¢ ‘ ¢
A 0 Y 0 I o .
——input——->

CONV2D + ReLu Dropout

= ;
Max Pooling 2D @ rully Connected + ReLu
Flatten . Fully Connected + Linear

Figure 4. CNN architecture including five CNN and three DNN layers. The CNN layers are written
in the format ‘conv(x,y)” where x is the kernel size and y is the number of filters.

The architecture shown in Figure 4 was also used in [9] and in a similar form in [33,34],
reporting competitive accuracy on high-frequency data for the UK-DALE dataset [35] and
for low-frequency on the Ideal dataset [36].

3.3. Feature Extraction

The NILM features are split into two categories, namely the time and frequency
domain, each consisting of nine features. Two sampling frequencies are considered. The
features used in our evaluation are tabulated in Table 2.

Table 2. Time and frequency domain features.

Time ID Time Name Freq. ID Freq. Name
T-1 Minimum F-1 Spectral Amplitude
T-2 Maximum F-2 Spectral Centroid
T-3 Variance F-3 Spectral Spread
T4 Standard Deviation F-4 Spectral Skewness
T-5 25% Percentile F-5 Spectral Kurtosis
T-6 50% Percentile F-6 Spectral Entropy
T-7 75% Percentile F-7 Spectral Flatness
T-8 Kurtosis F-8 Spectral Crest
T-9 Skewness F-9 Spectral Slope

Based on the features calculated in Table 2, the available electrical measurements of the
smart meter, and the different normalization approaches, several evaluation scenarios were
considered, and are listed in Table 3. Specifically, there are five feature domain scenarios,
four measurement scenarios, and five normalization scenarios, resulting in 100 scenarios.
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Table 3. Abbreviations for different experimental protocols, including feature domain, measurement,
and normalization.

Abv. Feature Name Feature Abv. Meas. Name Meas. Abv. Norm. Name Norm.
T Time \Y Voltage A None
F Frequency I Current B [0, 1]
HF High Frequency P Power C Z-Score
TF Time + F VIP All D [—128, 127]
TFHF Time + F + HF - - E [0, 255]

4. Performance Evaluation

The smart meter with embedded NILM architecture presented in Section 3 was evalu-
ated in terms of the quality of the signal conditioning circuit implementation (Section 4.1),
the NILM model accuracy (Section 4.2), and memory usage and runtime (Section 4.3).

4.1. Signal Conditioning Circuit

The previously described experimental setup was implemented to evaluate the smart
metering precision quality of the analog circuit. In this setup, a voltage probe was connected
directly to the Live (L) and Neutral (N) wire, and a current probe clamp was attached to the
Live supplying the DUT. The outputs of the voltage and current probes were connected to
channels one (Ch1) and two (Ch2) of a high-speed oscilloscope (LeCroy SDA 760Zi-A). The
voltage and current outputs from the smart meter hardware were then connected to channels
three (Ch3) and four (Ch4) of the same oscilloscopes, allowing a direct comparison of the
waveforms in the time domain. Specifically, two different DUTs were evaluated. The first
one (DUT-1) was a purely resistive load (kettle), and the second one (DUT-2) was a highly
nonlinear load (fluorescent lamp). The output waveform of current and voltage, as well as the
distribution of the residual signals, are illustrated for one fundamental cycle in Figure 5.

Timedomain line voltage Timedomain line voltage
1 ——r— = . !
= 0.5 _sm = 0.5
2 oF = 0
2 —0.5 2 —0.5
= 1 | = 1
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Figure 5. Comparison of waveforms of current and voltage measurements of one fundamental cycle
for (a) DUT-1 (resistor kettle) and (b) DUT-2 (nonlinear fluorescent lamp) including error distribution
for current and voltage waveforms as well as their harmonics.
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As shown in Figure 5, the voltage and current waveforms of both DUTs are measured
with a maximum error of less than & 2%. The error was averaged over ten electrical
periods for the two DUTs. The measurement error results for current and voltage signals
are tabulated in Table 4.

Table 4. Averaged measurement errors (in percentages) of voltage and current waveforms for
DUT-1 (resistor kettle) and DUT-2 (nonlinear fluorescence lamp).

DUT Current Waveform Voltage Waveform
MAE RMSE MAE RMSE
1 0.71% 0.85% 0.43% 0.53%
2 0.49% 1.17% 0.34% 0.39%

As tabulated in Table 4, voltage measurement errors are below 0.5% and the current
MAE is below 1.0%, while only the current RMSE exceeds 1.0% in the case of the DUT-2.

4.2. NILM Modeling

To evaluate the performance and training of the NILM models, the REDD [37] dataset
was employed, as the most widely used NILM dataset containing low- and high-frequency
data. The REDD dataset is described in Table 5.

Table 5. Overview of the REDD dataset.

Houses Year Country Devices Feature Sampling
1 15 p 1/3Hz
2 9 P 1/3Hz
3 19 V,ILP 15 kHz
4 2011 Us 17 P 1/3Hz
5 22 p 1/3Hz
6 14 V.LP 15 kHz

The high-frequency data of house three of REDD were used, and the performance was
evaluated in terms of estimation accuracy as described in (3):

i T | ph — Pl
2y 2k

©)

Eacc=1-

where p!, and p!, are the predicted and the ground-truth power consumption for the
m-th device and the t-th frame. The NILM performance was evaluated for the experimental
protocols described in Section 3.3, and the results are tabulated in Table 6.

As shown in Table 6, voltage-only based features (#1, 5, 9, 13, 17) have the lowest
accuracy values across all normalization approaches (A-E), as voltage in residential settings
is typically regulated by the utility and remains relatively constant, thus offering minimal
discriminative information on appliance-level energy usage. Consequently, voltage-only
feature sets were excluded from the further analyses in the remainder of the study. Among
current-based features, TF-I (#14) achieved the highest accuracy at 83.83% (under normal-
ization scheme C), suggesting that time-frequency domain features extracted from current
signals are particularly informative for appliance disaggregation. Similarly, HF-I (#10) and
F-1 (#6) also showed robust performance, with accuracies of 82.67% and 81.97%, respectively.
These results show that current signal variations provide a rich source of information to
distinguish appliance signatures, especially when enhanced through frequency-domain
analysis or time-frequency representations. In the power-based features, T-P (#3) achieved
the highest overall accuracy of 85.54%, under the normalization scheme C. This suggests
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that temporal patterns of power consumption are particularly distinctive and can effectively
capture the operating states of various appliances. Furthermore, other power-based fea-
tures such as TF-P (#15) and TFHF-P (#19) also demonstrated high showing the importance
of the power signal in energy disaggregation. Waccuracies (above 83%),hen combining volt-
age, current, and power features, configurations like T-VIP (#4) and TF-VIP (#16) reached
accuracies of 85.09% and 85.94%, respectively, under normalizations C and A. These results
indicate that multi-modal feature fusion can further enhance NILM performance, as it
enables the model to combine complementary information across electrical domains.

Table 6. NILM accuracy (E scc) for different feature setups and normalization approaches (A-E).

Setup Features A B C D E
1 -V 64.84% 64.79% 57.03% 64.84% 64.79%
2 T-1 82.81% 64.80% 81.53% 79.91% 82.69%
3 T-P 84.23% 64.79% 85.54% 65.22% 82.61%
4 T-VIP 85.65% 80.59% 85.09% 68.07% 82.60%
5 EF-V 64.75% 64.78% 63.15% 64.80% 64.77%
6 F-1 82.08% 77.46% 81.97% 78.93% 81.81%
7 F-P 81.85% 77.51% 80.30% 76.47% 80.41%
8 F-vIP 81.84% 78.24% 79.96% 80.93% 81.87%
9 HE-V 64.78% 64.79% 61.95% 64.80% 64.80%
10 HEF-1 82.67% 81.64% 82.06% 79.23% 81.54%
11 HF-P 80.22% 81.11% 80.82% 78.72% 78.37%
12 HE-VIP 81.60% 77.77% 79.05% 82.53% 77.30%
13 TE-V 64.79% 64.84% 61.21% 64.80% 64.80%
14 TF-1 80.50% 81.91% 83.83% 83.06% 84.58%
15 TF-P 83.03% 79.40% 83.91% 78.19% 82.95%
16 TF-VIP 85.94% 81.47% 84.96% 72.32% 82.79%
17 TFHE-V 64.80% 59.06 60.60% 64.84% 56.12%
18 TFHEF-I 83.00% 64.82 82.19% 77.89% 82.65%
19 TFHE-P 83.30% 81.69 82.72% 80.44% 82.14%
20 TFHF-VIP 83.93% 83.59 82.48% 65.06% 83.77%

The next step was to optimize the best-performing model (#3) using state-of-the-art
acceleration frameworks, namely the TF-Lite, eIQ, OpenVINO, TensorRT, and Vitis-AlL
Table 7 tabulates the NILM accuracy of the best model (#3) for different acceleration
frameworks and the corresponding difference from the baseline framework without
acceleration (TensorFlow). The average acceleration improvement across all NILM models
using Z-score normalization without voltage-only features is also tabulated in Table 7.

When models were quantized for INT8 deployment without normalization, significant
drops in E 4cc were observed, with models losing up to 50% accuracy. Upon investigating
the data, it was found that overflows occurred when the activations and weights were
converted to INT8, which caused these substantial accuracy drops. This was not observed
with models using normalization (B, C, D, E). For the normalization using C (Z-score),
when quantizing to FP16, there was no loss in NILM accuracy. However, for INT8 quanti-
zation, there was a noticeable drop in E 4¢c¢c, with some hardware acceleration frameworks
(TFLITE-PTQ INTS, TensorRT INTS, Vitis-Al PTQ INT8 and QAT INTS8) presenting a
loss of up to 6.0%. The exception was elQ PTQ-INTS, where quantization of the model
reduced the accuracy by 47.5%, while the TF-LITE had a loss of up to 7.7%. Notably,
QAT consistently outperformed PTQ approaches, demonstrating improved resilience in
quantization-induced distortions. When using FP16 quantization, the original FP32 perfor-
mance was preserved across all frameworks, including TF-Lite, TensorRT, and OpenVINO.
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Table 7. Accuracy of optimized NILM models for different hardware acceleration frameworks and

data types.
T-P (#3) Average
Framework Data Type Eacc Delta Eacc Delta
TensorFlow FP32 85.54% - 82.43% -
FP16 85.54% 0.00% 82.42% 0.01%
TF-Lit DINTS8 85.76% —0.22% 82.63% —0.20%
¢ PTQ INTS 77.83% 7.71% 70.55% 11.88%
QAT INTS 84.12% 1.42% 80.43% 2.00%
10 FP16 85.54% 0.00% 82.42% 0.01%
¢ PTQ INTS 38.06% 47 .48% 55.54% 26.88%
OpenVINO FP16 85.54% 0.00% 82.42% 0.01%
T RT FP16 85.54% 0.00% 82.42% 0.01%
ensor INTS 83.85% 1.69% 80.59% 1.84%
Vitis-Al PTQ INTS 76.26% 9.28% 76.42% 6.00%
QAT INTS 80.76% 4.78 % 77.85% 4.57%
4.3. NILM on Edge Hardware
Six hardware boards were evaluated for the NILM edge implementation: the
Raspberry Pi 4 (RP4), Intel Neural Compute Stick 2 (NCS2), NXP iMX 8M Plus
(IMX8), NVIDIA Jetson Nano (NANO), Jetson Xavier NX (XAVIERNX), and lastly the
Ultra96vl (ULTRA96V1) AMD-Xilinx MPSoC FPGA. The core features of the evaluated
boards are tabulated in Table 8, showing their differences in processors, memory, deep
learning acceleration, power consumption, and cost.
Table 8. Hardware boards evaluated and their core features. TDP stands for thermal design power
(in watts).
HW Board CPU Memory Accelerator TDP (W) Cost ($)
RP4 Cortex-A72 8 GB - 9 75
NCS2 (+RP4) N/A 500 MB VPU 2.509) 99 (75)
IMX8P Cortex-A53 6 GB NPU 15 449
NANO Cortex-A57 4GB 128 CUDA 10 99
XAVIERNX Carmel v8.2 8 GB 384 CUDA 20 399
ULTRA96V1 Cortex-A53 2GB B2304 DPU 24 249

An end-to-end NILM on the edge evaluation was performed using the above boards.
Every benchmark was executed for 30 s to average the results and remove outliers.
Five metrics of performance were considered, namely the power consumption (W), feature
extraction latency (ms), NILM model latency (ms), energy efficiency (FPS/W), and cost
efficiency (FPS/$). In the context of this article, frames per second (FPS) is the number of
frames of energy data that can be processed in one second.

(1) Power Consumption: To measure the power consumption, a power meter was
used to calculate the standby, the runtime, and the peak power consumption. The average
power consumption of the different NILM models for the evaluated hardware boards is
shown in Figure 6. The board with the lowest runtime power consumption was NANO,
while XAVIERNX had the highest power consumption.
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Figure 6. Average power consumption (standby, runtime, and peak operation) for different boards.
RP4 utilizes one thread (RP4:1) and four threads (RP4:4).

(2) Feature Extraction Latency: Table 9 tabulates the latency of feature extraction
for one frame on the CPU of each board. Voltage/current/power measurements had
the same execution times. For the time- and frequency-domain, RP4 (64-bit OS) offered
the lowest latency, due to the highest CPU frequency and the wide SIMD instruction set,
enabling more operations per second, and is only outperformed by XAVIERNX in the
high-frequency domain. Lastly, the slowest board was ULTRA96V1 in all cases, as it had
the lowest CPU frequency.

Table 9. Feature extraction latency (ms) for different hardware platforms in the time- and
frequency-domain.

Hardware Time Low-Frequency High-Frequency
RP4_64bit 0.074 0.831 3.092
RP4_32bit 0.087 0.990 3.682
IMX8P 0.182 1.530 5.740
NANO 0.127 1.456 5.406
XAVIERNX 0.098 0.839 2.949
ULTRA%6V1 0.186 1.780 6.644

(3) Model Latency: The execution times of the best-performing model (#3) for each
hardware accelerator, except RP4 which does not support Al acceleration, are shown in
Table 10. The five smallest models in terms of number of parameters (#2, 3, 4, 6, 7) have
the lowest latency on IMX8P, while XAVIERNX achieved the best latency results across
all models. The slowest performing device is the RP4 when using a single thread (RP4:1),
except for the three smallest models (#2, 3, 4), where NCS2 is the slowest board. The
XAVIERNX board has the smallest variation in execution time (0.57-0.91 ms) across all
tested models, followed by IMX8P (0.49-2.82 ms), and NANO (0.98-3.63 ms), while the
largest variation was on RP4:1 (1.19-45.37 ms).

(4) Energy Efficiency: To benchmark the energy efficiency of each hardware board,
throughput per watt was evaluated. Throughput included the end-to-end NILM data
pipeline, the pre-processing, and the NILM model inference. Figure 7 shows the efficiency
results for each board. On average, the most efficient across all models is the IMX8P with
40.5 FPS/watt, while the least efficient is the XAVIERNX with 13.8 FPS/watt.
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Table 10. NILM model execution time (ms) for different hardware boards and features.
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Figure 7. Energy efficiency (FPS/watt) of the boards, including minimum, maximum, median, and

average values.

(5) Cost Efficiency: Similarly, the cost efficiency in terms of throughput per cost was

evaluated, and the results are illustrated in Figure 8. On average, NANO was the best in
cost efficiency with 1.57 FPS/$, while the worst board was XAVIERNX with 0.27 FPS/$.
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Figure 8. Cost efficiency (FPS/$) of the evaluated boards, including minimum, maximum, median,

and average values.
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5. Discussion

Further to the performance evaluation of the prototype smart meter presented in
Section 4, the measurement error during transient events is investigated in Section 5.1, new
NILM-on-Hardware metrics are introduced in Section 5.2, and analysis on the trade-off
between NILM models’ size and accuracy is provided in Section 5.3.

5.1. Measurements During Transient Events

In addition to disaggregating the household energy consumption, some approaches
focus on identifying device operation [38]. Therefore, the transient switching instances
between on/off operations are used in feature extraction and evaluation of appliance
activity in the time, frequency, or time—-frequency domain. To accurately compute these
features, measuring with precision during transient operations is crucial. Therefore, the
transient behavior of the non-linear DUT-2 (fluorescent lamp) is investigated as it has the

. al 1 .. © s
largest rate of change in current (d—”;h). A switching event is illustrated in Figure 9.
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Figure 9. Transient current waveform of DUT-2 (fluorescent lamp) for an on/off switching event.

As shown in Figure 9, even for transient events shorter than 1 ms, the maximum error
in the current measurement is well below +10%, while the average error over the transient
period is approximately 1.1%. Statistical current features during transient events were
calculated using the smart meter and oscilloscope measurements for reference. The relative
and absolute errors for some of the most widely-used statistical features are tabulated
in Table 11.

Table 11. Relative (%) and absolute error for statistical features during a transient event for a non-
linear load. "Max’, ‘Min’, “Avg’, ‘Rms’, ‘Std’, and ‘En’ denote the signal’s maximum, minimum,
average, root-mean-square, standard deviation, and energy value.

Error Max Min Avg Rms Std En
Relative (%) 191 0.56 1.87 1.76 1.71 1.38
Absolute 1.78 0.26 0.23 0.38 0.30 1.03

5.2. NILM-on-Hardware Performance Metrics

Three new performance metrics are introduced to evaluate the NILM performance
for the utilized hardware. First, the Egcc per energy metric (Eocc/Watt) normalizes
the energy disaggregation accuracy to the energy consumption of the hardware. Second,
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the E scc per cost metric (Ecc/$) normalizes the energy disaggregation accuracy to the
cost of the hardware. Third, the Ecc per FPS metric (E4cc/FPS) estimates the energy
disaggregation accuracy per hardware throughput (FPS) and assesses the accuracy loss due
to the hardware deployment. The three metrics consider the hardware limitations affecting
NILM performance when implemented on the edge (on a smart meter device). The results
for all evaluated boards are tabulated in Table 12.

Table 12. Proposed NILM-on-Hardware performance for the different evaluated boards using the
best-performing feature setup T-P (#3).

Board Eacc/Watt Eacc/$ Eacc/FPS
RP4:1 18.7 1.07 1.39
RP4:4 171 1.07 1.44
NCS2 12.7 0.78 1.30
IMX8P 16.8 0.16 0.86
NANO 20.1 0.83 1.01
XAVIERNX 10.5 0.20 1.46
ULTRA96V1 12.6 0.32 0.79

As shown in Table 12 the NANO is the best-performing board concerning energy-
efficient NILM, achieving 20.6% NILM accuracy per watt. However, the most cost-efficient
NILM board is the Raspberry Pi (RP4) achieving 1.07% accuracy per $ of hardware cost.
The best NILM accuracy was achieved by XAVIERNX with 1.46% NILM accuracy per FPS.

5.3. Model Size and Accuracy

Since the memory requirements and the runtime are mostly determined by the number
of the parameters of each NILM model, the relationship of the NILM model size to the
NILM accuracy was investigated for the setups of Table 6 using z-score normalization. The
results are illustrated in Figure 10.
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Figure 10. Relation of the NILM model size to the NILM accuracy for different feature and domain se-
tups. Each dot represents a setup as defined in Table 6.

As shown in Figure 10 model #3 (time domain and power) provides the best trade-off
between the number of model parameters and NILM accuracy achieving energy disaggre-
gation accuracy of 85.5% using 6.7 x 10> model parameters.
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6. Conclusions

The architecture of a smart meter prototype for high sampling frequency and energy
disaggregation on the edge was presented. The smart meter prototype consists of a custom
signal conditioning circuit interconnected to an embedded board performing energy disag-
gregation using a deep-learning model. Different feature setups and sampling frequencies
were evaluated with respect to the accuracy of the energy disaggregation models and
the edge device power consumption, throughput, and latency across different hardware
platforms. In addition, three new metrics were introduced to assess the performance of
NILM on edge hardware.

The evaluation of the smart meter prototype showed state-of-the-art accuracy in the
analog measurements, including measurements at transient periods of devices. Moreover,
the achieved energy disaggregation performances of the hardware-accelerated NILM mod-
els indicated the ability to execute NILM algorithms on the edge, instead of transmitting
the measurements to the cloud, which would be prohibitive for high sampling frequencies.
We deem the presented architecture to be used for instrumentation purposes, and in further
development of smart meters with NILM on-edge capabilities.
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