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Abstract
Information processing in dynamical control systems influences the properties of the
perception-action loop in natural and artificial agents. The ability to causally affect environment by
agent’s actions is crucial for learning meaningful behavior and survival. Empowerment is an
information-theoretic approach to intrinsically discover this causality between actions and
observations without externally provided domain expertise such as a reward function. This form of
artificial intrinsic motivation has been successfully demonstrated to lead to the emergence of
meaningful behavior in various domains ranging from robotics to transportation. The original
formulation of the empowerment principle is based on the information flow from open-loop
actions to future observations. This is not robust to randomness and unpredictable perturbations
in environments with structures that require careful maneuvering. In this work we define a
feedback-aware empowerment variant, called process empowerment and derive a solution given by
self-consistent equations which can be used for its numerical evaluation. Process empowerment
proves to be a robust intrinsic motivation in a paradigmatic proof-of-concept example (‘Windy
Bridge’), and in scenarios with obstacles and noisy perturbation (‘Hallway’) and with occasional
adversarial action by an oracle agent (‘Race’). It demonstrates superior robustness in dealing with
noisy environments in delicate situations, and allows transferring solutions for deterministic
problems into a noisy, disruptive and occasionally adversarial variant of the problem, through
‘empowerment cushioning’.

1. Introduction

Recent successes in artificial intelligence can not disguise substantial gaps in the understanding of how
intelligent behavior can emerge in complex operation spaces. This is particularly striking when one considers
the discrepancy between the effort in terms of massive data and energy use [5, 14] and, in contrast to that,
the parsimony in terms of energy and data acquisition by organisms [4, 22]. To understand how the latter
accomplish their tasks, one has to consider that an organism interacting with its environment is not passively
exposed to a flow of data, but is instead situated in a context and environment with which it constantly
interacts.

As a consequence, when it operates in that environment, it is not merely a unidirectional computational
device that transforms an input data stream into an output data stream (and be this transformation ever so
complex), but rather inherently interacts actively with that environment, impinging on specific degrees of
freedom and eliciting particular responses. In other words, a substantial part of such an agent’s information
processing does not just consist in trying to construct a ‘digital twin’ of the environmental dynamics for its
purposes, but rather to elicit the specific reactions relevant to it and, by effectively becoming part of that
environment’s dynamics, co-opt the latter for its information-processing purposes. Stated differently, part of
the success of organismic agents emerges from causing the environment to contribute to their information
processing and being aware of that [7].
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This, in turn, has become a key insight in the development of artificial agents that mimic the principles
found in biology. If one wishes to mimic biological flexibility and information parsimony, so the assumption,
it is essential to consider the agent as situated, and specifically, embodied in its environment.

As such, environmental dynamics is increasingly made part of methodologies supporting the
decision-making of agents. Among these, in the last decades, a particular class of methods, namely intrinsic
motivations have taken a particularly central role.

Such intrinsic motivations are becoming increasingly important to define incentives for agents when
reward structures are not available, too expensive to determine for an agent with a large state space or
unnatural to postulate a priori. Among these, the subclass of information theory-based intrinsic motivations
is of particular interest due to its universality. In the present paper, we will concentrate on a specific such
incentive, empowerment.

Empowerment measures the maximum potential effect that an agent can possibly have on the
environment via its actions, when starting in a given state. Formally, empowerment is given by the channel
capacity of the external part of the action–perception loop, concretely, the channel between actions (or finite
sequences of actions) that can be chosen in the present state and the effects these actions happen to cause in
the world. This measure quantifies the influence that the agent has the potential to exert on its sensorimotor
niche in the near future; and it only considers that part of the influence that the agent can itself sense. In a
way, it measures the size of the agent’s ‘bubble of autonomy’. Another way to interpret empowerment is that
it measures how much freedom of choice the agent has in controlledly selecting its future (see also [2]).

Empowerment, denoted by E(s ′), is a scalar quantity, measured in bits, which gives a value for each state
s′ the agent finds itself in. When using it as an intrinsic motivation to generate behavior, it substitutes for a
utility function in the specific state s′3. In a concrete state s of a discrete world the agent will take the action
that moves it to the successor state s′ with the highest empowerment value; in a continuous world, it will take
the action that moves it along the largest empowerment gradient.

In summary, there are two types of actions at play here: 1. the action that the agent actually takes, which
is given, at each step, by the action that locally and greedily maximizes the immediate empowerment gain or
gradient; and 2. the probing action sequences to determine the empowerment values themselves, and which
consist of the potential future actions that the agent could take in the given state s′ under consideration. We
emphasize that these potential probing action sequences are never actually carried out by the agent: they only
indicate the potential to change the world when starting in state s′. When using empowerment to direct
behavior, they are wrapped up as part of the calculation of the empowerment value E(s ′) of the given
successor states under consideration.

Substantial past work on empowerment as intrinsic motivation considers the open-loop version of
empowerment [6, 10, 13, 15, 16, 19, 20, 24]. That is, when evaluating what the agent could do, they consider
the repertoire of the available actions or a selection of possible sequences of actions, for instance, up to a
certain maximum length, but only as as predetermined ‘action scripts’: once started in s′, each such action
sequence is sequentially executed in fixed succession until it terminates. In open-loop empowerment, the
potential to change the world is measured with respect to how strongly the agent can affect the world by the
choice of such different fixed action sequences. Since these action sequences are fixed at the beginning of the
probing, they are ‘reeled off ’ as prespecified without taking into account what may happen during the
probing. Basically, the action sequences can be seen as equivalent to atomic ‘super-action’ added to the basic
action repertoire. The term ‘open-loop’ refers to the fact that the probing action sequences are run
‘single-mindedly’, without taking into account potential changes in the world. Despite this apparent
limitation, open-loop empowerment has been shown to work effectively as an intrinsic motivation in a wide
variety of cases without any special provisions.

While successful in many scenarios, in a highly dynamic environment (e.g. one with substantial noise or
short-term reactivity such as from other agents), ‘naive’ open-endedness will give a misleading reflection of
how much the agent indeed could impact its environment in a controllable fashion in the near future. The
limitations of open-loop empowerment have been discussed before [18, 21]. To address these limitations the
authors in [8, 11] established bounds and estimates for a particular formulation of closed loop-type
empowerment via the notion of implicit and explicit options. These important studies demonstrate the need
for closing the loop in the empowerment computation; they show the usefulness of doing so by deriving
bounds and estimates for the closed-loop calculation in a number of scenarios. However, in this work,
feedback is not an inherent part of an objective and/or its bounds, but rather acts as the means for a

3 Strictly spoken, empowerment is only a ‘pseudo-utility’, as it is not certainty-equivalent, see also [23]; nonetheless, in practice it is almost
always used directly in lieu of a given utility function to produce intrinsically motivated behavior, without noticeable detriment.
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derivation of policy in the general framework of reinforcement (RL) learning. In [17], the choice of
controllers inducing variance in outcomes is suggested as another form of feedback-aware empowerment.

In the present paper, we aim at a principled generalization of the original open-loop empowerment
quantity towards closed-loop (or as we will sometimes also say), process empowerment, i.e. one that permits
the probing to consider feedback while choosing the actions. We still aim to capture the original spirit of
measuring the potential influence of the agent on the world in analogy to the open-loop formulation, but
now under the relaxed condition of allowing the agent to react to the world. In particular, we seek to obtain
an interpretable and precise value (not just a bound), and also to provide suitable methods to compute this
quantity.

We reiterate an earlier remark that empowerment consists of the information-theoretic channel capacity
of the external action–perception channel of the agent. Now, even while closing the loop introduces
feedback, note that the problem does not simply reduce to the feedback capacity of the action–perception
loop in the sense of traditional information theory: rather, it needs to be treated more carefully. The present
paper addresses this question in detail and studies several remarkable consequences and insights of
generalizing empowerment to the closed-loop (process) case.

The contribution of our current work is to rigorously define an exact objective for closed-loop/process
empowerment and to explore its properties with regard to robustness and noise compensation in the probing
actions as compared to open-loop empowerment. This rigorous approach will allow us to study the essential
properties of process empowerment rather them its bounds or estimates. Our approach provides new
insights about robust intrinsic motivation, allows to validate our formulation by designing experiments
addressing the difference between closed-loop and open-loop strategies. Furthermore, our solution admits a
decomposition into ‘future process empowerment’ and ‘past-to-future predictability’, which provides a new
understanding of intrinsic motivation in stochastic dynamics with unpredictable perturbations. The scope of
the current paper focuses on the formal definition of process empowerment and on the demonstration of its
essential properties for robust intrinsic motivation. Here, we limit ourselves to discrete environments and
will extend the approach to continuous environments in future work.

In the paper, we will begin in section 2 with a review of open-loop empowerment which we will formulate
in a way suitable for its later generalization. We will there also briefly highlight its limitation, though its
consequences will then be discussed in detail in the Experiments and Discussion sections (sections 4 and 5).

In section 3 we introduce the generalization of traditional empowerment to process empowerment, where
now the reaction of the environment is incorporated in the selection of the probing policies; we there develop
the intuition for the quantity and discuss its properties. Importantly, we will show, as a ‘sanity check’, that in
the special case of deterministic dynamics, where the actions chosen are sufficient to reconstruct the agent’s
trajectory perfectly, process empowerment precisely coincides with the traditional open-loop version, as one
would expect.

In section 4, we compare the properties of process empowerment to those of open-loop empowerment in
experiments which are specifically designed to highlight their differences, but also representative of a typical
class of problems which could not be satisfactorily treated before. Here, we will show how the characteristic
properties of process empowerment mitigate certain shortcomings of traditional open-loop empowerment. A
final concluding discussion of the approach, together with future research directions is presented in section 5.

Notations

Random variables are denoted with uppercase letters, while their specific realizations with corresponding
lowercase letters, for example st ∈ St is a particular state, st, sampled from the random variable St representing
a state at time, t. Sequences of variables are denoted with lower and upper indexes; for example, AT

0 , is a
sequence of random variables representing agent’s actions from time, t, until and including time, T, and sT1 , is
a particular realization of a state sequence, ST1 , starting at time 1 and ending at time T. Notation-wise, we may
use s0, sT1 interchangeably with sT0 . The special case of s

0
1 is the empty sequence and s00 denotes the singleton s0.

I[Y;X|Z] is the conditional mutual information computed for the conditional joint probability,
p(Y,X|Z). E [Y;X|Z] denotes the information capacity of the conditional probability, p(Y|X,Z),
(condition-dependent information channel), where the channel itself goes from X to Y, while conditioned on
Z. We will use uppercase vs. lowercase letters to distinguish between the complete probability distribution
p(X) and a concrete probability value p(x) for a specific realization x of the random variable X.

2. Open-loop empowerment

Open-loop empowerment quantifies the maximally diverse sensory response that could be predictably
caused in the immediate future by an agent’s actions. To do so, one maximizes the mutual information
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Figure 1. Illustration of open-loop empowerment in the perception-action loop of the agent. We visualize the interaction of the
agent with the world as a time-unrolled causal Bayesian network (black solid lines). Here, S denotes the random variables
representing the sensor values throughout time, A, the actuator values, andW, the external world states, with the index τ
denoting the time step. A world state is observed via the sensor at that time, and the agent then selects the action; the new world
state will depend on that action and the previous world state. We consider now a minimal example for how empowerment is
computed in a simple agent for a state sτ at some given time τ . We first disconnect the sensors from their corresponding actuators
(indicated by the crosses). Then, a distribution over action sequences, denoted by π(AT

t | sτ ), is ‘freely’ chosen, beginning at the
initial time τ and ending at time T (blue dashed lines). This sequence overrides (‘intervenes in’, in the language of causal
modeling) the respective actuator variables Aτ , . . . ,AT, without taking into account the intermediate sensor states Sτ+1, . . . ,ST in
those time steps (here only ST). This is what we refer to as the open-loop character of the action sequence. Empowerment is then
defined by the maximally achievable mutual information maxπ(AT

τ |sτ ) I[ST+1;AT
τ | sτ ], indicating the potential causal flow from

these actions to the final observation ST+1, here indicated by dotted red lines. In the concrete example here, we have T= τ + 1.
As we consider the effect of two probing action steps Aτ and Aτ+1, we speak of an empowerment time horizon of 2 steps
(T− τ + 1= 2). Note that in most of the remaining text, we will assume, without loss of generality, the initial timestep to be
τ = 0.

between the potential action sequences in the coming steps AT
0 and the subsequently observed future

sensation, ST+1, given that we start in the current state. Consider figure 1.
The dependency between AT

0 and ST+1 is described by the influence that the sequence of actions has on
the observation of the state at the end of the action sequence [10, 16, 17, 19, 23], and measured by the mutual
information between the actions taken via the probing policy π, going forward from the starting state s0:

I
[
ST+1;A

T
0 | s0

]
=
∑

sT+1,a
T
0

p
(
sT+1,a

T
0 |s0
)
log

(
p
(
sT+1|aT0 , s0

)
p(sT+1|s0)

)
(1)

=
∑

sT+1,a
T
0 ,s

T
1

T∏
t=0

[
p
(
st+1|at,at−1

0 , st1, s0
)
π
(
at|at−1

0 , s0
)]
log

(
p
(
sT+1|aT0 , s0

)
p(sT+1|s0)

)
. (2)

Here we split the action/sensor probability sequence into a product for each time step according to the
Bayesian network in figure 1. We furthermore separate the sensor sequence st0 into the initial sensor state s0
and the sequence of the following ones st1, since we have to consider the whole sensor past for the transitions
due to the system being only partially observed (and, similarly, the actuator past). Finally π(at|at−1

0 , s0)
denotes the probing probability for each action, given the previous actions. Note that the action probabilities
depend only on the starting state and the sequence of previously executed actions. Thus, the actions can be
combined into one action sequence or ‘super-action’ aT0 . These super-actions can be formally treated exactly
as if they were elementary or ‘atomic’ actions. We obtain:

I
[
ST+1;A

T
0 | s0

]
=
∑

sT+1,a
T
0

p
(
st+1|aT0 , s0

)
π
(
aT0 |s0

)
log

(
p
(
sT+1|aT0 , s0

)
p(sT+1|s0)

)
. (3)

where it proves convenient for the later optimization to instead replace the term in the logarithm by the
reverse channel q

(
AT
0 | ST+1, s0

)
=
∑

sT+1,a
T
0

p
(
sT+1 | aT0 , s0

)
π
(
aT0 | s0

)
log

(
q
(
aT0 | sT+1, s0

)
π
(
aT0 | s0

) )
. (4)

In short, in open-loop empowerment, we treat p(ST+1|AT
0 , s0) as a communication channel between AT

0

and ST+1, the information channel between potential action sequences and the following observation, which
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depends on the starting state s0. Here, the channel is fixed a priori by selecting the starting state s0 (this will
be extended to ‘adaptable channels’ in the proposed definition of ‘process empowerment’ in section 3).

Empowerment for the open-loop is finally defined as the maximum value that can be achieved in
equation (1) by suitable choice of the probing policy. This measures the maximal influence that actions can
take on the end result. Formally, this is equivalent to the information-theoretic capacity of the information
channel, namely:

E (s0) =maximum
π(AT

0 |s0)
I
[
ST+1;A

T
0 | s0

]
, (5)

where the maximization is done with regard to the probability distributions over action sequences,
π(AT

0 | s0), which, depends on the channel and, therefore on the state4 (and only on the state) s0.
In discrete environments an optimal solution can be derived by the iterative Blahut–Arimoto algorithm

[3, 10]. In continuous environments, an optimal solution can be derived by calculating the Gaussian channel
capacity [16, 17].

We reiterate that, once s0 is given, the channel is fixed and the capacity computation does not take into
account anything that happens during the action sequence until the final outcome sT+1 is observed.
Contrasting to this, in the following we proceed to formulate the process empowerment which now takes
feedback into account during the execution of the potential actions.

3. Process empowerment

Most of the literature on empowerment as intrinsic motivation focuses on open-loop empowerment. Its
effectiveness has been now shown in a wide variety of scenarios [10, 13, 16, 17, 19, 24]. However, there are a
number of scenarios where the open-loop nature of the probing action sequences fails to reflect the true
control that the agent can exert on the environment. Typical such cases are where noise can divert the agent
into irreversible (and possibly destructive) outcomes. In these, empowerment based on open-loop probing
actions is likely to underestimate the actual control that the agent could exert if only it would be able to
respond to these perturbations during the probing. Such examples will be discussed below in Experiments
(section 4). Other such typical situations where the full possibilities of the agent under consideration could
be underestimated is where one is contending with an environment that may respond adversarially (or
cooperatively) to the agent. Studying full multi agent scenarios is beyond the scope of the present paper and
will be covered in future work. Nonetheless, here we study a reduced version of such a scenario where an
oracular environment counteracts the agent’s actions, with the consequence that more reactivity by the
agent’s probing is required to elicit the full picture of how much it has control over its environment.

But first, we need to make precise how we intend to measure the causal control that the agent can exert
on the environment when the agent no longer selects among blindly running open-loop probing action
sequences (i.e. fixed scripts being automatically carried out), but instead these sequences become reactive to
the environment, i.e. closed-loop. In particular, the causal control is now no longer measured with respect to
the choice of action sequences, but of whole policies.

3.1. Problem definition and objective
We now extend the definition of open-loop empowerment towards process empowerment which takes
feedback into account. In open-loop empowerment, we had action sequences which, for one, depend on the
state in which one started (in our case, the sensor state s0), and on the past actions in the probing sequence,
without regard to external events; this is equivalent to running an automatic action script without external
input in that one keeps only track of the current timestep in a given sequence.

In closed-loop empowerment, however, this nonreactive action sequence is instead replaced by a
sequence of feedback policies which now, in addition to just depending on the time step and the past actions
(i.e. de facto being a fixed action sequence), also depend on the past sensor states observed during probing
(figure 2).

4 Note that in above consideration we take the state s0 to be the subjective sensor state of the agent. It is possible to instead compute
empowerment with respect to the objective world state w0 and in many applications, no distinction is made between w and s, i.e. the
sensor has full access to the relevant world state. These distinctions are conceptually irrelevant for the present discussion and we just
mention them for consistency with the literature.
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Figure 2. Illustration of process empowerment in the perception-action loop of the agent. We visualize the interaction of the
agent with the world as a time-unrolled causal Bayesian network (black solid lines). As in figure 1, S denotes the sensor (random)
variables throughout time, A, the actuator values,W, the external world states, and τ the time step; a world state is observed via
the sensor, which affects the action which, in turn, produces a new world state from the old one. The figure illustrates the
computation of process empowerment for the state sτ and a horizon of 2 steps into the future. Unlike figure 1, for process
empowerment, we consider a whole set of feedback policies {π(at | at−1

τ , stτ )}Tt=τ , one per horizon step (with the usual
convention that an end index earlier than the starting index indicates an empty sequence). Compared to index τ which denotes
the time step for which the empowerment is calculated, t is the running time index of the potential future policies (the probing
policies) over which the computation takes place. The blue dashed lines indicate the sequence of ‘freely chosen’ policies over the

times t= τ . . .T. Since we are in the closed loop case, at each t= τ,τ + 1, . . . ,T, the policies
{
π(at | at−1

τ , stτ )
}T

t=τ
, take into

account in each choice both the current sensor value S and previous A, this dependence on the past is indicated by the solid black
arrows (while we intervene in the actions as in figure 1, acting and sensing interact here, therefore, unlike there, here we do not
cross out the black arrows of the actions). Selecting T= τ + 1, the present diagram illustrates the calculation of T− τ + 1=
2-step process empowerment. The process empowerment value is the maximal mutual information I[ST+1;STτ+1,A

T
τ | sτ ]

achievable by suitably choosing the set of policies. The effect of these potential future interventions on the final outcome is
illustrated here with the red dotted lines from the two action steps towards the final outcome. As in figure 1, without loss of
generality, the main text assumes τ = 0 throughout.

I
[
ST+1;S

T
1 ,A

T
0 | s0

]
=
∑
sT+1
1

aT0

p
(
sT+1, s

T
1 ,a

T
0 | s0

)
log

(
p
(
sT+1, sT1 ,a

T
0 | s0

)
p
(
sT1 ,a

T
0 | s0

)
p(sT+1 | s0)

)
(6)

=
∑
sT+1
1

aT0

T∏
t=0

[
p
(
st+1|at,at−1

0 , st1, s0
)
π
(
at|st1,at−1

0 , s0
)]
log

(
p
(
sT+1 | aT0 , sT1 , s0

)
p(sT+1 | s0)

)
(7)

=
∑
sT+1
1

aT0

p
(
sT+1 | sT1 ,aT0 , s0

)
p
(
sT1 ,a

T
0 | s0

)
log

(
q
(
sT1 ,a

T
0 | s0, sT+1

)
p
(
sT1 ,a

T
0 | s0

) )
(8)

analogously to the reasoning of equations (1)–(4). Similar to there, we consider p(ST+1 | ST1 ,AT
0 , s0),

p(ST1 ,A
T
0 | s0), and q(ST1 ,A

T
0 | ST+1, s0), to be the information channel, the source, and the reverse channel

respectively. The main difference to equation (1) is that now the channels also refer to observed states
encountered during the probing . Thus, one can now no longer consider a probing policy that operates as a
policy just over super-actions. Instead one now has a sequence of probing policies, one for each possible

sensorimotor history t steps into the probing
{
π(at | at−1

0 , st0)
}T
t=0

, each depending not only on the past

actions, but on the past states, st0, and actions, a
t−1
0 , as per figure 2. It is now through these trajectory histories

that the actions affect the future state, ST+1.
In analogy to equation (5), the process empowerment is defined by the maximum value that equation (6)

can achieve over all probing policy sequences:

EPR (s0) = maximum
{π(at|at−1

0 ,st0)}Tt=0

I
[
ST+1;S

T
1 ,A

T
0 | s0

]
(9)

3.2. Interpretation
To correctly interpret the resulting value, we note that, in the computation, the logarithm term contains the
observed sensor sequence sT1 (see e.g. equation (7)). This means that the influence not only of the actions, but
also of the ensuing observed states is included in process empowerment. This specifically also incorporates
the influence of process noise (which arises by the probing policy interacting with the environment). If one
wished to separate the effect due to the agent’s actions and ignore those produced by the process itself, one
would drop the sT1 term in the logarithm in equation (7), but not in the averaging. It is that averaging that, in
this alternative formulation, takes into account the fact that one uses policies with feedback. However, the
currently introduced formulation of the process empowerment objective has the advantage of being suitable
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to be treated via a variant of the Blahut–Arimoto algorithm and thus will be the one that we will exclusively
discuss in the following.

3.3. Computation of process empowerment through self-consistent equations
In this section we show a solution to the optimization problem in equation (9) (note in particular the
formulation in equation (8) for the following) and discuss its properties. As with traditional open-loop
empowerment, the formalism itself carries over fully to partial observability since the algorithm to do so is
formulated for arbitrary control processes, both Markovian and non-Markovian.

Theorem 1. The optimization problem in equation (9) has a solution, formally given by the set of self-consistent
equations:

∀t ′ : π
(
at′ | at

′−1
0 , st

′

0

)
=

exp
(
EFPR

[
ST+1;AT

t′+1,S
T
t′+1 | at

′

0 , s
t′
0

]
+ EPPR

[
ST+1; st

′

1 ,a
t′
0 | s0

])
∑
at′

exp
(
EFPR

[
ST+1;AT

t′+1,S
T
t′+1 | at

′
0 , s

t′
0

]
+ EPPR

[
ST+1; st

′
1 ,a

t′
0 | s0

]) (10)

q
(
sT1 ,a

T
0 | s0, sT+1

)
=

p
(
sT+1 | sT1 ,aT0 , s0

)
p
(
sT1 ,a

T
0 | s0

)∑
sT1 ,a

T
0

p
(
sT+1 | sT1 ,aT0 , s0

)
p
(
sT1 ,a

T
0 | s0

) , (11)

where EFPR[ST+1;AT
t′+1,S

T
t′+1 | at

′

0 , s
t′
0 ] and EPPR[ST+1; st

′

1 ,a
t′
0 | s0] are ‘future process empowerment’, conditioned

on the past state (with respect to time t′) and action trajectories, st
′

1 ,a
t′
0 , and ‘past process empowerment’ between

the past state/action trajectories and the future state, ST+1, respectively, given by:

EFPR
[
ST+1;A

T
t′+1,S

T
t′+1 | at

′

0 , s
t′

0

]
=
∑
sT+1
t′+1

aTt′+1

p
(
sT+1,a

T
t′+1, s

T
t′+1 | at

′

0 , s
t′

0

)
log

q
(
sTt′+1,a

T
t′+1 | at

′

0 , s0, s
t′
1 , sT+1

)
p
(
aTt′+1, s

T
t′+1 | at

′
0 , s

t′
0

)


EPPR
[
ST+1; s

t′

1 ,a
t′

0 | s0
]
=
∑
sT+1
t′+1

aTt′+1

p
(
sT+1,a

T
t′+1, s

T
t′+1 | at

′

0 , s
t′

0

)
log
(
q
(
st

′

1 ,a
t′

0 | s0, sT+1

))
.

Proof. See appendix.

The solution has an interesting structure. It decomposes into (i) ‘future feedback empowerment’, EFPR,
which is the information capacity between the final states, ST+1, and the future state-action trajectories,
{AT

t′+1,S
T
t′+1}, conditioned on the particular past trajectory {at′0 , st

′

0 } so far, and (ii) ‘past feedback

empowerment’, EPPR, which is the information capacity contribution between the final state and the actual
past {at′0 , st

′

0 }, conditioned on the initial state, s0. Such past-future decomposition means that for high process
empowerment an agent needs to follow trajectories {at′0 , st

′

0 } that allow for both good controllability in the

future, EFPR and good predictability of ST+1 from the past, EPPR.
The solution in equations (10) and (11) is unique and can be found by ‘alternating maximization’ [12].

That follows from the properties of the mutual information in the objective Equation (6), which is convex

with regard to the product of the feedback policies
{
π(at | at−1, st)

}T
t=0

. Consequently, it is convex in each of
the policies.

3.4. ABA—alternating Blahut–Arimoto algorithm
We propose a practical algorithm, named ‘ABA’ for solving the set of self-consistent equations in theorem 1,
which extends the classical Blahut–Arimoto algorithm to the problem of process empowerment with a set of

input probability distributions,
{
π(at | at−1

0 , st0)
}T
t=0

.

Alternating Blahut–Arimoto (ABA) 1.

1: Init: Randomly Initialize, {π(at | at−1
0 , st0)}Tt=0

2: Iterate:

3: q(sT1 ,a
T
0 | s0, sT+1) =

p(sT+1|sT1 ,a
T
0 ,s0)p(s

T
1 ,a

T
0 |s0)∑

sT1 ,a
T
0

p(sT+1|sT1 ,a
T
0 ,s0)p(s

T
1 ,a

T
0 |s0)

▷depends on {π(at | at−1
0 , st0)}Tt=0

4: ∀t ′ : π(at′ | at
′−1
0 , st

′
0 ) =

exp
(
EFPR[ST+1;A

T
t′+1

,ST
t′+1

|at
′
0 ,st

′
0 ]+EPPR[ST+1;s

t′
1 ,at

′
0 |s0]

)
∑
a
t′
exp
(
EFPR[ST+1;AT

t′+1
,ST

t′+1
|at′0 ,st

′
0 ]+EPPR[ST+1;s

t′
1 ,at

′
0 |s0]

) ▷in an arbitrary order

5: Until Convergence
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Figure 3. Illustration of the example of a robot crossing a windy bridge. Empowerment aims to capture the ability of an agent to
affect the world and bring about certain sensory states. Open-loop empowerment though only considers probing action
sequences chosen ahead of time at the starting point. The probing for open-loop empowerment cannot take into account and
compensate noise which arises during the execution of the predetermined n-step probing sequence, in contrast to feedback-aware
empowerment, such as process empowerment. Consider two types of robots trying to cross a windy bridge. After each step the
wind might have blown them slightly off course. The robot who is actively using its sensor might be able to correct for these
deviations, and therefore an empowerment variant using feedback-aware closed-loop probing might be a more complete
evaluation of the robots capabilities, rather than assuming that the robot would ‘blindly’ attempt its probing without reacting to
displacements, which therefore underestimates the robot’s actual potentialities. (Illustration produced in part by Bing Copilot).

The update of the policy set in line 4 of algorithm 1 is linear in time (the size of the policy set). The
solution can be found by fixed-point iteration starting from an arbitrary initialization of the policy set{
π(at | at−1

0 , st0)
}T
t=0

. Practically, each of the policies in line 4 can be updated with policies from the previous
iteration in a separate thread/process, which further reduces this linear factor. We made our code repository
publicly available for the reproduction of our results and further research.

In summary, we introduced process empowerment as a generalization of empowerment. In process
empowerment, the agent, when probing its ability to choose the future, now has the additional freedom to
use policies that react to feedback from changes in the environment as the probing progresses, as opposed to
traditional open-loop empowerment which only uses fixed action sequence without feedback. We offer a
self-consistent algorithm to compute process empowerment. The remarkable structure of the algorithm is a
generalized Blahut–Arimoto which iterates the computation of the reverse channel vs. the probing policies,
of which there is one per probed time step. For each such time step, the policy update derives from the future
expected channel capacity with respect to the end state, together with the contribution of the current past to
that end state. This iteration runs until convergence. In the appendix we prove the algorithm.

4. Experiments

To demonstrate the properties and advantages of process empowerment in comparison to open-loop
empowerment, we consider the following experiment settings: (a) stochastic dynamics with no velocity nor
oracle. The latter prescribes actions that constitute a solution to some given task under unperturbed
dynamics and without delayed memory effects that would arise by including a velocity term; (b) stochastic
dynamics, now with velocity, and a varying balance between agent actions and oracle actions which denote
the optimal behavior in the deterministic setting. In both settings we compare between the robustness of
process and open-loop empowerment with regard to the noise level and the trade-off balance between oracle
action and empowerment-induced behavior. All experiments are formulated in in the discrete setting. The
implementation of the ABA algorithm 1 for further research and development, and code for the experiments
is available at [1].

4.1. Experiment: narrow ‘Windy Bridge’
TheWindy Bridge is a paradigmatic demonstration of the effect of noise on empowerment. It is a stochastic
environment with trap states (the agent’s ‘death’ states). In it, empowerment shows a drastically different
profile, depending on whether the probing actions are run in an open-loop fashion or incorporate feedback.
In the first case, once the probing starts, they are ‘reeled off ’ automatically and thus subject to the vagaries of
the noise encountered. In the second case, however, or they are permitted to incorporate feedback to
compensate said noise. Thus, the second more realistically models the true capacity of the agent to control its
futures.
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Figure 4. ‘Windy Bridge’ with a narrow corridor in the first column, connected by a three-step bridge in the columns 2–4 between
the black blocks denoting water (termination/death states for the agent), to a free space with many potential future states to the
right of the bridge, which is considered a desirable region from an empowerment point of view. The green point denotes the
agents before crossing the bridge. The blue arrows denote the dynamics of noise on the bridge. The brightness of the different
fields indicates the empowerment values: bright colors denote high values of empowerment in ‘nats’, while dark ones denote low
values. The insets shows the empowerment values attained when in column 1. . .8 in the middle path. The right figure shows
‘process empowerment’ calculated by algorithm 1 with a gradually increasing empowerment through the bridge towards the free
space with many potential states. The left figure shows that ‘open-loop empowerment’ is unable to see the potential in the future
due to the noise ‘fog’ over the bridge and the lack of the compensation by feedback. This paradigmatic example shows the
importance of feedback for intrinsic motivation, and, more broadly, for judging the truly causal power that an agent’s actions can
have on the environment.

As an intuitive motivation of the idea, consider figure 3. Traditional open-loop empowerment measures
the potentially controllable future states, but, only based on action sequences fixed at the beginning of the
probing. In the figure, this corresponds to the blindfolded robot who executes the respective probing action
sequence according to a predefined plan. On a windy bridge, this will be outperformed by a probing policy
which allows the agent to react to deviations.

The ‘Windy Bridge’ is implemented as a simple environment with static state-to-state movement, fully
controlled by the agent. In particular, it does not yet include velocity or prescribed oracle actions, as the
model from section 4.2. Here, we have a gridworld with a single agent (green circle), where there is a
relatively narrow passage from the left side of the world to the right side of the world. This passage is
squeezed between death states, i.e. states in which the agent can no longer affect anything, and in which
empowerment drops to 0). This scenario models a bridge connecting the colored region on the left with that
on the right in figure 4; this bridge is squeezed between the black regions which indicate the death states the
agent might fall off into if taking a mis-step.

Importantly, the scenario includes stochasticity in dynamics (‘wind’), schematically indicated by the blue
arrows. The colors in figure 4 show the value of empowerment for the different states in the world, with the
death states showing vanishing empowerment in black.

When probed by open-loop empowerment, the bridge now appears as an obstacle in the following sense:
the empowerment values in the left region are moderately high, but drop when moving towards the middle
of the bridge, before climbing again when that empowerment ‘valley’ is crossed. In other words, open-loop
empowerment cannot ‘see’ through the ‘fog’ created by the noisy wind that there is a high-empowerment
region with lots of optionality on the right side of the bridge until the bridge has been crossed halfway. This
dip in open-loop empowerment is visible in the inset of figure 4, left. Since the probing is carried out in an
open-loop fashion, all the probing sequences are predefined at the beginning, and cannot react to the
perturbation by the noise, which leads to a drop in detected control over the future. Only once the middle of
the bridge is crossed does open-loop empowerment pick up the availability of a rich diversity of controllable
outcomes.

Figure 4, right, shows the same data, but for process empowerment. Now, we have probing policies
instead of fixed sequences and these are allowed to respond to noise, thus generally reducing the probability
that the agent will fall to its death in the probing phase.

In summary, traditional open-loop empowerment is not able to guide an agent from the left to the right
side of the bridge, despite its much larger state space. The wind noise causes a large portion of probing
sequences to fall off the bridge and creates a dip in empowerment which keeps the agent trapped on the left
side, if empowerment gradients are exclusively used as drive. Once we consider process empowerment which
allows the inclusion of feedback during probing, the noise can be compensated, and the agent is able to ‘see’
already on the left side that it has an improved choice of controllable outcomes when moving towards the
right side of the bridge.
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Figure 5. Effectiveness of process empowerment versus open-loop in the ‘Windy Bridge’ scenario. Each point on the curves
represents the average empowerment value in the ‘Windy Bridge’ environment over all states. For example, the average of the
process empowerment landscape of figure 4 appears on the blue curve with coordinates (0.3, 2.49). The top-left corner shows that
the values of process and open-loop empowerment are identical in deterministic environments and thus consistent with
expectation. With increasing noise level, they both drop, with the gap between them increasing.

4.1.1. State representation and dynamics
For completeness, we now list the details of the model. In this experiment, the state is represented as
st = (xt,yt), where xt and yt are the x and the y coordinates of the agent in the grid at time t. The gridworld is
bounded. The agent has the same action set in every state, at ∈ A= (→,↓,↑,←), and the transition
probability, P(st+1 | st,at) is given by:

P(st+1 | st,at) =

{
st+1 = f(st,at) with probability 1−α

st+1 = randomManhattan neighbor to st with probability α
(12)

where st+1 = f(st,at) = st + at is the deterministic transition function in the environment with the
component-wise addition, ′+ ′, between s= (x,y) and the actions ↑= (0,1),→= (1,0), ↓= (0,−1), and
←= (−1,0).

Figure 4 compares the values of open-loop and process empowerment in the Windy Bridge scenario,
calculated by the classical Blahut–Arimoto algorithm [3] and the ‘ABA’ algorithm 1, respectively, both of
which we run for the same number of iterations.

We begin with a first sanity check to establish the consistency of process empowerment with traditional
open-loop empowerment: for this, note that, in deterministic environments with noise level α= 0, one
would expect process empowerment to be precisely equal to open-loop empowerment: given the starting
point, the future state is fully determined by the action sequences, and thus feedback will not improve upon
that, as the subsequent states can be fully predicted from the actions only. Figure 5 shows that this is indeed
the case.

In stochastic environments, however, feedback is able to compensate for noise introduced into the
probed trajectories. With feedback, the agent can detect that it has better control of the future than when
probing the future with nonreactive open-loop trajectories. Thus, even while noise reduces controllability in
general, now process empowerment becomes larger than open-loop empowerment. Also, the gap between
the compensated (closed-loop) and uncompensated (open-loop) empowerment increases with growing
noise, as shown at figure 5.

4.2. ‘Empowerment cushioning’ in environments with unpredictable perturbation and (Adversarial)
action
We now investigate environments which show how process empowerment can help to make traditional
deterministic solutions more robust when the original conditions are modified or made more noisy. More
concretely, we will start out with deterministic policies solving basic scenarios (which we will model by oracle
actions). The scenarios will then be perturbed, rendering the original solutions unsuitable. We will then
enhance them with help of the different empowerment variants and show how this help overcome the
perturbations.

We specifically consider environments where the agent is limited in its abilities to affect the entire state.
Specifically, the state is comprised of position and velocity, and the agent’s actions can only accelerate,
i.e. only change the velocity components. Furthermore, there is an additional parameter which determines
the balance between the agent choosing the intrinsically motivated action vs. the predefined oracle action
(which solves a simpler, noiseless problem). This setting allows to examine the robustness of intrinsically
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motivated agents with regard to both the noise level and the balance coefficient. Here, we found process
empowerment to be significantly more robust in comparison to open-loop empowerment. This suggests a
new approach for the design of robust strategies for stochastic dynamics: namely, consider first solutions for
a deterministic version of the problem which are usually simpler to derive; after that, endow them with
‘empowerment cushioning’ to deal with the stochastic variant of the problem.

We now proceed by defining the scenarios in detail. We will consider a hallway with obstacles scenario
and a circular racetrack scenario. Importantly, both will use the same underlying movement dynamics which
we will therefore define first.

4.2.1. State representation and dynamics
We now provide the definitions for the state representation and the transition functions used in the following
examples. These incorporate the following: 1. acceleration control only (only velocity can be controlled);
2. environmental noise; 3. oracle actions solving the basic problem; 4. empowerment-induced actions
climbing the empowerment gradient. The formal definitions follow.

In the following experiments we consider environments with a four-dimensional state given by:

st = (xt,yt,vt,ut) (13)

determining xt,yt,vtand ut with a two-dimensional position (xt,yt) and the respective velocity (vt,ut). The
deterministic transition function for the states st+1 = f(st,at) is given by(

xt+1,yt+1,vt+1,ut+1

)
=
(
xt + vt,yt + ut,vt + axt ,ut + ayt

)
(14)

with at = (axt ,a
y
t ) ∈ A= (→,↓,↑,←), where the actions are given by→= (0,1) and the three other cardinal

directions, effecting a velocity change (‘acceleration’). However, note that, while the accelerations are
confined to the cardinal directions, the movement itself can be diagonal, due to the lingering velocity.

In the next step, we enhance the model by assuming that there is a solution,D, to an unperturbed version
of the problem in question: the solution to that problem may, for example, have been derived by standard
methods in deterministic optimal control (OC) or Deterministic RL policy, or simply assumed to be given by
an oracle. The latter prescribes an action at every state, named the oracle action, d(st) ∈ D. Here, d(st)
denotes a function, that at every state, st, returns a two-dimensional oracle vector representing a velocity
change d(st) = (dx,dy); this acts as a deterministic policy/controller which could have been computed e.g. via
OC/RL or provided via a hand-crafted or otherwise predefined solution. Note that oracle actions are not
limited to accelerations in cardinal directions and could also be diagonal.

Also, in principle, d(st) could be replaced by a stochastic policy/controller as well, but for the purpose of
demonstrating how empowerment can support the oracle policy, we will confine ourselves to deterministic
policies.

Consider now above environment dynamics and how it combines velocity, noise, empowerment action
and prescribed ‘oracle-action’. First, noise is applied with a given probability α. If no noise applies, an action
is chosen, the empowerment-induced action with probability η, and the oracle action otherwise. Formally,
the transition probability, P(st+1 | st,at;α,ζ), where α and ζ are the noise and mixing parameters,
respectively, is given by:

P(st+1 | st,at;α,ζ) =


with probability 1−α :



st+1 = f(st,at) with probability ζ
xt+1

yt+1

vt+1

ut+1

=


xt+1

yt+1

dx

dy

with probability 1− ζ

with probability α : st+1 = randomMoore neighbour of st .

(15)

This means that, with probability α, the agent moves to a random neighboring state; if that does not happen,
with probability ζ , the agent carries out the empowerment-induced action (i.e. picking the action that
maximizes the empowerment gradient achieved by this action); and, when that is not the case, it executes the
oracle action d(st) for that state st.

In the following experiments we consider two scenarios, Hallway and Race. The agent’s default
empowerment-induced policy consists of ascending the gradient of empowerment, i.e. picking that action
which maximizes the empowerment gain in that step. This corresponds to the standard strategy of all
empowerment-based intrinsic motivation behavior models in various scenarios [17, 19, 24]. However, here
we mix it with goal-directed behavior derived from a deterministic task which is represented as the oracle
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Figure 6. Hallway: robustification of a solution derived in an unperturbed environment. The environment consists of a
rectangular region with a horseshoe obstacle in its middle. The arrows indicate the oracle action. The possible noise is indicated
by the rosettes at each location, indicating the possible eight directions the noise can accelerate the agent towards. The oracle
action would naively move the agent towards the right edge, if no noise or obstacle were present. For the deterministic case, the
pure oracle policy will get stuck in the obstacle in the middle row; with noise, it may sometimes avoid the trap for the middle row,
but now can sometimes additionally trap the upper and lower row case. Consider the green paths, derived by following the
gradient of empowerment (here, we choose horizon T= 3, in all cases). In the left column, the green path for ‘open-loop’
empowerment is effective in guiding the agent around the obstacle in the case in the absence of noise (α= 0); however, it ceases to
become effective for noise probability of α= 0.2 and larger. In contrast to that, the right column shows that the process
empowerment gradient enables the agent to navigate to the right without getting stuck in the obstacle even in the presence of
noise. This can be interpreted as empowerment ‘cushioning’ the agent with a ‘local soft-controllability envelope’, creating a robust
route around obstacles and absorbing noise. This effect is significantly more effective with process empowerment.

action. With this setup, we demonstrate how process empowerment can be useful for the robustification of
policies obtained from a deterministic basic scenario when newly confronted with stochastic dynamics and
unpredictable obstacles. The purpose of this is to study how empowerment can ‘widen’ and robustify policy
solutions obtained for a basic scenario to more general settings. This opens up various applications such as
transfer learning, domain adaptation, or sim-to-real transition; in short, wherever a solution in one
environment is needed to be robustly updated to another environment with potentially unpredictable
perturbations.

4.2.2. Experiment: hallway with unpredictable perturbation
In this setting we examine the robustness of process and open-loop empowerment for different levels of
noise, α, and different values of empowerment mixing coefficient, ζ .

Figure 6 compares the performance of the agent with open-loop vs process empowerment. The
preselected oracle actions prescribe a move from left to right for all states and are shown by the blue arrows.
They correspond to the task of moving down the hallway towards the right under the assumption of a
deterministic dynamics and the absence of the obstacle in the middle.

Obviously, with the obstacle present, and a deterministic dynamics, an agent appearing on the left side of
the hallway will get stuck in the obstacle a third of the time. Now, when empowerment is admixed with
proportion ζ , as long as there is no noise, both open-loop and process empowerment manage to navigate the
agent around the obstacle trap (green lines): the empowerment values reflect the loss of freedom in the
cul-de-sac and the empowerment gradient pushes them out of it and towards the free lines of the trajectories
induced by the oracle.

This situation changes when, additionally, noise (its possible presence indicated by the black rosettes at
the center of each field) is added to the movement dynamics. In this case, open-loop empowerment is no
longer able to contend with the noise—however, process empowerment with the same planning horizon,
T= 3, is able to compensate the noise and helps the oracle effectively to navigate around the obstacle even in
the presence of noise. In effect, empowerment, and especially process empowerment, ‘cushions’ the agent’s
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Figure 7. Open-loop and process empowerment landscapes for the ‘Hallway environment’ from figure 6 are shown in the left and
right figures, respectively. Each tile shows the average value of empowerment over the four-dimensional (section 4.2.1) state space
of the ‘Hallway environment’ for the given parameters. Note that the noise level (horizontal axis) drops from high to low from the
left to the right. Process empowerment is effective in maintaining a higher empowerment value for a significantly larger
parameter set of α and ζ in the transition dynamics, equation (4.2.1).

dynamics by a ‘local soft-controllability envelope’. It incentivizes the agent to maintain a local environment
or niche which remains under de facto control of the agent and thus allows the oracle actions to remain
executable, rather than getting trapped. Notably, in our proof-of-concept scenario, process empowerment is
significantly more effective at that.

We finally show the overall effect of noise intensity α and empowerment contribution ζ on open-loop
and process empowerment in figure 7. The values of open-loop (left) and process (right) empowerment are
computed using the standard Blahut–Arimoto algorithm [3] and algorithm 1, respectively.

4.2.3. Experiment: race with adversarial oracle-action
As a final proof-of-concept scenario, we investigate a relatively intricate scenario. We consider the task of
going in a circle similar to the classic racetrack scenario. The state representation and dynamics in this
environment is similar to that in ‘Hallway’ given in section 4.2.1 The oracle-action prescribes a motion in a
circle around a discretized racetrack, simulating a racing car scenario. We note that, due to the
acceleration-based dynamics model equation (15), this is a problem that requires some planning and is a
typical example for a problem normally solved by RL learning-type algorithms.

Now, in our scenario, figure 8, the oracle takes on the role of a defective (occasionally adversarial) circular
racetrack planner. It normally pushes the agent around the track, but, at some specific states, pushing the
agent off the track into death states with zero empowerment simulating a crash. This is similar to falling off
the ‘Windy Bridge’, figure 4 from section 4.1. This happens when the agent hits the black blocks due to the
noise or if it falls of the track when the agent leaves the square while following the adversarial oracle action
that appears at some states, such as (x= 3,y= 1), (x= 4,y= 1), or (x= 6,y= 8).

Remarkably, even in this case, process empowerment provides a robust local ‘controllability envelope’ for
both the noiseless case and for the case with relatively strong noise α= 0.25 (figure 8, third and fourth from
the left). Open-loop empowerment, on the other hand, almost completely fails for that same noise level (cf
the second plot of figure 8).

The fact that process empowerment has a significantly enhanced robustness to perturbations and even
adversarial actions makes it a promising candidate for as a robust intrinsic viability measure. Similar to
traditional open-loop empowerment, process empowerment is also a local quantity. That is, it does not need
to be computed throughout the state space, but only along the probed trajectory and no further than its time
horizon. However, the present results demonstrate that process empowerment considerably exceeds that of
open-loop empowerment in terms of robustness. This extends its applicability into further domains.

5. Discussion

Empowerment in its various guises (including some variants, see e.g. [2]) has been studied in its open-loop
form for some time now. It has proven to be an effective local intrinsic motivation which can replace or
enhance given task-driven behaviors of agents. Its information-theoretic formulation makes it universally
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Figure 8. Race scenario with (sometimes) adversarial oracle actions. The agent dies if it leaves the square (due to adversarial
oracle actions) or hits the black fields (green lines with an open end such as in (1, 5) indicate a local optimum in which the
empowerment gradient does not lead further).

applicable across many scenarios involving sensorimotor loops. Beyond that, it has close links to quantities
from dynamical systems [19]. In all these scenarios, its sometimes unexpected effectiveness is achieved using
open-loop action probing. In this probing, empowerment evaluates to which degree a ‘cloud’ of states can be
controllably reached by the agent in the near future of the present state. An empowerment-driven agent then
moves along the gradient of this empowerment value towards states which afford it more such control.

Despite its success, there are situations, such as the scenarios discussed in the present paper, where the de
facto reachable ‘cloud’ of states is underestimated by open-loop empowerment. Open-loop probing commits
to action sequences ahead of the probing only. For this reason, it will not detect higher-empowerment states
further ahead in time if one would need to compensate for perturbations in order for the probing to reach
these states.

Despite a wide array of scenarios having been studied in past work, these scenarios had the property in
common to have been ‘forgiving’ in one aspect: as noise gradually increases the effect of perturbation, the
probing is gradually disrupted, but does not undergo substantial or qualitative shifts. With increasing noise,
the effect on empowerment changes only gradually.

The scenarios discussed here open up a new class of environments for empowerment. Traditional
open-loop empowerment will not ‘see’ higher-empowerment states further down its probing horizon if they
are to be reached through narrow, perilous passages. The reason is that they can not be reached through
pre-planned action scripts, but need to be carefully navigated with an active probing policy that is able react
to a perturbation.

The formulation of a quantity that achieves this requires some care, and we formulated it in the form of
process empowerment. Here, the probing policies are no longer confined to the distribution of action
sequences predetermined at the starting state for which empowerment is computed; instead, actions are
adapted to the particular state in which the agent finds itself during the probing. Thus, it can compensate to
some extent for perturbations induced by noise also in treacherous passages. It can push through disruption
in these passages to discover potential states with high controllability beyond that passage. This was
demonstrated in the bridge example from section 4.1 which is a typical representative of this type of
scenarios.

However, process empowerment has additional advantages over traditional open-loop empowerment, as
the examples from section 4.2 demonstrate. In these examples, an oracle action simulated the existence of a
solution to an underlying implicit deterministic OC problem. The problem was then disrupted, by obstacles,
by a narrow racetrack and by noise; in the race-track, the oracle action was not only imperfect, but in some
states even adversarial. However, when the oracle action was admixed with empowerment, the agent could
again cope with the obstacles or racetracks well in both variants, that of open-loop as well as of process
empowerment.

The introduction of moderate noise does not substantially change the effect of process empowerment,
but open-loop empowerment ceases to be useful and can collapse. Empowerment, in essence, ‘cushions’ the
agent’s dynamics by a ‘local soft-controllability envelope’, but it does so more effectively for process
empowerment than for open-loop empowerment. Note that, despite empowerment being a local quantity, in
many examples studied in previous work, aiming for higher empowerment values is consistent with finding
desirable solutions on larger or problem-global scale [9, 19]. While the reason for this interaction between
local and global scale has not been well understood beyond heuristical arguments, it is, so far, consistently
observed in examples. Process empowerment, with its additional resilience to noise in sensitive scenarios,
substantially extends the domain of scenarios in which empowerment is applicable.
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The experiments with the adversarial racetrack indicate that process empowerment may be suitable if not
necessary to satisfactorily deal with scenarios where one needs to compute empowerment for two or more
closely interacting agents. Open-loop empowerment is neglecting substantial aspects of agent-agent
interaction, since the probing sequences of two interacting agents should not consist of pre-determined
action sequences being rattled off, but react directly to each other, even during the probing. In particular, as
they interact with the world, they will likely interfere with each other if uncoordinated, and thus we can
expect that a reactive probing such as that of process empowerment is necessary to fully capture the agents’
causal capacity to affect their environment. For this reason, process empowerment promises to be a far more
relevant estimation of realistic ‘bubbles of autonomy’ than open-loop empowerment, whenever multiple
agents are involved.

Despite the clear-cut advantages with respect to traditional open-loop empowerment, there are still a
number of issues with process empowerment. We first discuss a conceptional issue. As already mentioned in
section 3.2, process empowerment includes the intermediate sensory observations when quantifying the
influence on the final observation. This is due to the particular construction of the objective. For a more
puristic version of feedback-aware empowerment, one would drop the intermediate sensor observations and
focus on quantifying purely the effect that the actions have, even while these continue to depend on the
intermediate sensor observations. Concretely, in this modified objective, the intermediate observations
inside the logarithmic term would be marginalized over. This new objective does, however, not immediately
offer a ready Blahut Arimoto-style convergent iteration algorithm as we employed here to compute process
empowerment. Whether it is possible to conceive an analogously elegant algorithm for this modified
objective will be explored in the future.

Secondly, the computation expands that of open-loop empowerment in discrete worlds. The complexity
of latter empowerment computation, in its basic form, is exponential in the time horizon of the action
sequences, as all of these are probed and their number grows exponentially with each decision inside the time
horizon. While there are various ways to prune and probe these sequences, the difficulty remains, unless one
moves to the continuum. There, however, substantial progress had been recently made. In [19], under the
assumption of locally linear approximations around zero actions, the complexity is now linear in the number
of discretization steps of the given time horizon. Since the convergence to the empowerment value obtained
for infinite discretization is very benign, the complexity is much reduced in this continuous approximation.

Process empowerment is more involved as it involves the computation of policy rather than action
sequences. However, we note that the essence of the computation is analogous to the open-loop case.
Furthermore, the policies at different time steps can be updated in parallel and independently of each other,
which means that the computation can be significantly sped up on a parallel computer. Additionally, we
envisage that the idea could be transferable to the continuum in analogy to open-loop empowerment. In this
case, we expect that not only will there be insightful connections to other fields of control and dynamical
systems, but also a substantially faster algorithm for its computation.

Summarizing, process empowerment is a conceptually grounded, algorithmically accessible (at least in
principle) extension of open-loop empowerment which addresses scenarios for which the latter was not
equipped to deal with. This particularly includes scenarios which require compensatory behavior during
probing, especially navigation/manipulation in noisy, but delicate and possibly adversarial environments.
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Appendix

Proof. (To theorem 1) For the present proof the control dynamics is considered Markovian, i.e. the following
state depends only on the current state and the action taken,

EPR (s0) = maximum
{π(at|at−1,st)}T

t=0

I
[
ST+1;S

T
1 ,A

T
0 | s0

]
(16)

subject to: ∀t :
∑
at

π
(
at | at−1, st

)
= 1 (17)

with the corresponding Lagrangian with T multipliers:

L
({

π
(
at | at−1, st

)}T
t=0

,
{
λ
(
at−1, st

)}T
t=1

)
= I
[
ST+1;S

T
1 ,A

T
0 | s0

]
+
∑
at−1

st

λ
(
at−1, st

)(∑
at

π
(
at | at−1, st

)
− 1

)
, (18)

where the mutual information of the joint probability, p(sT+1, sT1 ,a
T
0 | s0), is given by:

I
[
ST+1;S

T
1 ,A

T
0 | s0

]
=
∑
sT+1
1

aT0

p
(
sT+1 | sT1 ,aT0 , s0

)
p
(
sT1 ,a

T
0 | s0

)
log

(
q
(
sT1 ,a

T
0 | s0, sT+1

)
p
(
sT1 ,a

T
0 | s0

) )
(19)

with p(sT+1 | sT1 ,aT0 , s0), p(sT1 ,aT0 | s0), and q(sT1 ,a
T
0 | s0, sT+1), the channel, the source, and the reverse channel

respectively. The source and the reverse channel at particular time t′ factorize as follows:

p
(
sT1 ,a

T
0 | s0

)
= p

(
sTt′+1,a

T
t′+1 | st

′

0 ,a
t′

0

)
p
(
st′ ,at′ | at

′−1
0 , st

′−1
0

)
p
(
at

′−1
1 , st

′−1
1 | a0, s0

)
π (a0 | s0) (20)

q
(
sT1 ,a

T
0 | s0, sT+1

)
= q
(
sTt′+1,a

T
t′+1 | st

′

0 ,a
t′

0 , sT+1

)
q
(
st′ ,at′ | st

′−1
0 ,at

′−1
0 , sT+1

)
q
(
st

′−1
1 ,at

′−1
0 | s0, sT+1

)
. (21)

The probability distributions in equations (20) and (21) are factorized as following:

p
(
sT1 ,a

T
0 | s0

)
=

T∏
t=1

(
π
(
at | at−1

0 , st0
)
p
(
st | st−1

0 ,at−1
0

))
π (a0 | s0) (22)

=
T∏

t=t ′+1

π
(
at | at−1

0 , st0
)
p
(
st | st−1

0 ,at−1
0

)
π
(
at′ | at

′−1
0 , st

′

0

)
p
(
st′ | st

′−1
0 ,at

′−1
0

)
(23)

×
t′−1∏
t=1

π
(
at | at−1

0 , st0
)
p
(
st | st−1

0 ,at−1
0

)
π (a0 | s0) (24)

= p
(
sTt′+1,a

T
t′+1 | st

′

0 ,a
t′

0

)
π
(
at′ | at

′−1
0 , st

′

0

)
p
(
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′−1
0 ,at

′−1
0

)
× p
(
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′−1
1 , st

′−1
1 | a0, s0

)
π (a0 | s0) (25)

q
(
sT1 ,a

T
0 | s0, sT+1

)
=

T∏
t=1

(
q
(
st,at | st−1

0 ,at−1
0 , sT+1

))
q(a0 | s0, sT+1) (26)

= q
(
sTt′+1,a

T
t′+1 | st

′

0 ,a
t′

0 , sT+1

)
q
(
st′ ,at′ | st

′−1
0 ,at

′−1
0 , sT+1

)
q
(
st

′−1
1 ,at

′−1
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)
(27)

δp
(
sT1 ,a

T
0 | s0

)
δπ
(
at′ | at

′−1
0 , st

′
0

) ={ ∏T
t=1
t ̸=t ′

(
π
(
at | at−1

0 , st0
)
p
(
st | st−1

0 ,at−1
0

))
π (a0 | s0) ∀t ′ ∈ [1, . . . ,T]∏T

t=1

(
π
(
at | at−1
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)
p
(
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0 ,at−1
0
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t ′ = 0.

(28)
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Furthermore, for any t′:

I
[
ST+1;S

T
1 ,A

T
0 | s0

]
=
∑
sT+1
1

aT0

p
(
sT+1 | sT1 ,aT0 , s0
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(
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log

q
(
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(
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0

)

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∑
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p
(
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)
p
(
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T
0 | s0
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log
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(
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π
(
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)
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(
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)

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∑
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(
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(
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T
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log
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(
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′−1
1 ,at

′−1
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(
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′−1
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′−1
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)
 . (29)

The functional derivative of the Lagrangian in equation (29) with regard to policy, δL
δπ(at′ |at

′−1,st′ )
, is

∑
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t′+1

aTt′+1

p
(
sT+1 | sT1 ,aT0 , s0

) δp
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−
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)
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T
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) 1
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(
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′
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∑
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(
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′−1
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′
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where the functional derivative δp(sT1 ,a
T
0 |s0)

δπ(at′ |a
t ′−1
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′
0 )

is given by
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(
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′
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Then,

∑
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−
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Summing over (sT+1
t′+1,a

T
t′+1) and noting the normalized probabilities, equation (38) reduces to the term
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′
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∑
sT+1
t′+1

aTt′+1

p
(
sT+1 | sT1 ,aT0 , s0

)
p
(
aTt′+1, s

T
t′+1 | at

′

0 , s
t′

0

)
log

q
(
sTt′+1,a

T
t′+1 | st

′

0 ,a
t′
0 , sT+1

)
p
(
sTt′+1,a

T
t′+1 | at

′
0 ,a

t′
0

)
 (41)

+
∑
sT+1
t′+1

aTt′+1

p
(
sT+1 | sT1 ,aT0 , s0

)
p
(
aTt′+1, s

T
t′+1 | at

′

0 , s
t′

0

)
log

 q
(
st′ ,at′ | st

′−1
0 ,at

′−1
0 , sT+1

)
π
(
at′ | at

′−1
0 , st

′
0

)
p
(
st′ | st

′−1
0 ,at

′−1
0

)
 (42)

+
∑
sT+1
t′+1

aTt′+1

p
(
sT+1 | sT1 ,aT0 , s0

)
p
(
aTt′+1, s

T
t′+1 | at

′

0 , s
t′

0

)
log

q
(
st

′−1
1 ,at

′−1
0 | s0, sT+1

)
q(a0 | s0, sT+1)

p
(
at

′−1
1 , st

′−1
1 | a0, s0

)
π (a0 | s0)

 (43)

+λ
(
at

′−1
0 , st

′

0

)
= 0. (44)

Equation (43) does not depend on the past policies p(at
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where only the denominators from t′ onwards survive. It follows:∑
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splitting the reverse channel into a part up to and following t′

+
∑
sT+1
t′+1

aTt′+1

p
(
sT+1 | sT1 ,aT0 , s0

)
p
(
aTt′+1, s

T
t′+1 | at

′

0 , s
t′

0

)
log
(
q
(
st

′

1 ,a
t′

0 | s0, sT+1

))
(51)

−
∑
sTt′+1

aTt′+1

p
(
aTt′+1, s

T
t′+1 | at

′

0 , s
t′

0

)
log
(
p
(
aTt′+1, s

T
t′+1 | at

′

0 , s
t′

0

))
(52)

− log
(
π
(
at′ | at

′−1
0 , st

′

0

))
+λ

(
at

′−1
0 , st

′

0

)
= 0. (53)

Combining equation (50) with equation (52) for the optimal future policies gives ‘future process empower-
ment’ and ‘past process empowerment’ along the past process, respectively:
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Then, the equations (50)–(53) appear as:
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and, the optimal policy and the optimal reverse channel normalized by the means of λ(at
′−1
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0 ) are given by:
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