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Abstract
Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce 
these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide 
polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites. These SNPs can alter TF binding affinity, leading to regulatory 
shifts: TFs may lose or gain binding sites, causing a significant rewiring of the incoming signals regulating gene expression. Understanding this 
rewiring offers critical insights into the cellular mechanisms driving IBD pathogenesis.
Methods: To investigate this rewiring, we developed a systems genomics pipeline and analyzed individual genotype data from 2636 IBD 
patients to infer the incoming signals affecting patient-specific gene regulatory networks. Our in silico approach predicted changes in the 
repertoire of TFs binding to genomic loci due to IBD-associated non-coding SNPs in each patient compared to healthy controls. By functionally 
annotating the TFs in disease and healthy states, we highlighted the rewiring of upstream signaling pathways that may arise due to IBD-
associated SNPs.
Results: We revealed that diverse non-coding SNP combinations in IBD patients lead to functional switches from healthy signals to disease-as-
sociated signals, capturing patient heterogeneity while uncovering common upstream regulators driving disease pathogenesis. Notably, rewired 
incoming signals belonged to key functional processes such as pro-inflammatory immune responses, epithelial barrier dysfunction, stress 
responses, wound healing, and antimicrobial defense pathways.
Conclusions: In summary, this work highlights the importance of personalized investigation of signaling processes upstream of genetic polymor-
phisms to gain a more comprehensive understanding of IBD pathogenesis.

Lay Summary
By studying the genome of 2,636 people with inflammatory bowel disease, we mapped how subtle genetic changes can work together to disrupt 
the normal incoming signals acting on cells, triggering processes that lead to the disease.
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Introduction
Inflammatory bowel disease (IBD) is an umbrella term for a 
group of chronic immune-mediated disorders predominantly 
affecting the gastrointestinal tract, of which Crohn’s disease 
(CD) and ulcerative colitis (UC) are the two main clinical 
subtypes.1 These disorders arise due to complex interactions 
between environmental factors and multiple genetic risk loci, 
ultimately manifesting as pathological immune activation in 
the gut. Patients with IBD experience significant morbidity 
due to symptoms such as bloody diarrhea, abdominal pain, 
and weight loss.2 Globally, the number of individuals living 
with IBD is on the rise, with most recent estimates forecasting 
prevalence rates to surpass 1% by 2030 in the United King-
dom and other Western nations.3 There is still no cure for 
IBD. In addition, despite tremendous progress with the advent 
of biologics and small molecule therapies over the past 
decade, the majority of patients fail to achieve long-lasting 
remission.4

These shortcomings highlight the need for a deeper under-
standing of the heterogeneous mechanisms that drive the 
development of IBD across the patient population. In par-
ticular, the causal mechanisms interlinking genetic risk loci 
with pathogenic signaling pathways remain largely elusive 
and need to be further characterized.5 These genetic risk loci 
encompass coding variants, non-coding variants, and struc-
tural variants (eg, insertions, deletions, inversions). Genome-
wide association studies (GWAS) in IBD have been 
particularly successful in identifying genetic variants in the 
form of single nucleotide polymorphisms (SNPs) (ie, single 
base-pair changes in the DNA). While SNPs located in cod-
ing regions, such as those affecting the NOD26 and IL23R 
genes,7 have provided important mechanistic insights into 
IBD pathogenesis, the vast majority of IBD-associated SNPs 
reside within non-coding regions of the genome which are 
challenging to functionally annotate.8 These regions contain 
transcription factor binding sites (TFBSs) that transcription 
factors (TFs) bind to regulate gene expression and influence 
downstream cell signaling networks.9 To predict the 

functional consequences of disease-associated non-coding 
SNPs on gene regulatory networks and signaling networks, 
we recently developed a systems genomics workflow: the 
integrated single nucleotide polymorphism network plat-
form (iSNP).10 By using genotype data from a cohort of UC 
patients, we modeled how disease-associated non-coding 
SNPs can disrupt downstream cell signaling networks by 
impacting the binding of TFs to TFBSs in promoter and 
enhancer regions of the genome in a patient-specific manner. 
This enabled stratification of patients into distinct clusters 
based on genotype-driven pathogenic pathways, demonstrat-
ing the power of personalized systems genomics modeling 
in uncovering molecular heterogeneity. This work focused 
on the downstream effects of non-coding regulatory SNPs 
by harnessing the power of network biology to predict the 
cumulative effect of SNPs on multiple SNP-affected proteins 
and their first neighbor interactors in the human signaling 
network.

While our previous work provided novel insights into the 
downstream impact of non-coding SNPs in IBD, little is 
known about the upstream, incoming signals that influence 
disease-associated TFs. Activation of TFs is influenced by a 
variety of incoming signals triggered by environmental and 
intrinsic cues, such as microbes and cytokines, respectively.11 
As disease-associated non-coding SNPs can result in the 
binding of different TFs in the disease state compared to the 
healthy state, different incoming signals may influence TF 
activity in patients with IBD compared to the healthy (non-
IBD) population. Characterizing and understanding these 
incoming cues could unveil valuable insights into the less-
er-known molecular drivers of IBD that via patient-specific 
non-coding genetic risk loci ultimately impact downstream 
cellular processes.

Only limited studies to date have attempted to character-
ize the upstream or incoming signaling events involved in 
IBD pathogenesis. These studies suggest that the gut micro-
biome may upregulate inflammatory pathways in IBD 
through the binding of gut bacterial peptides to host signal-
ing proteins that modulate TF activity12 or through Toll-like 
receptor activation that triggers upstream signaling cas-
cades.13 In addition to inflammation, other studies have 
identified upstream signaling pathways leading to intestinal 
permeability and wound healing in IBD.14 However, these 
investigations have not explored how incoming signals may 
impact genetic risk loci. More broadly, beyond IBD, few 
studies have attempted to connect the upstream signaling 
layer to GWAS candidate genes.15 Instead, existing research 
has largely focused on determining the downstream conse-
quences of SNP-associated genes using transcriptomics, pro-
teomics, and/or metabolomics, which measure the end points 
of signaling cascades.16

To address this gap, we present a novel in silico workflow 
that leverages systems genomics methods and patient-specific 
genotype data from a large cohort of UC and CD patients to 
characterize the putative incoming signals and regulatory rewir-
ing that establishes gene regulatory networks in IBD. To the 
best of our knowledge, this is the first study to systematically 
characterize the rewiring of upstream signaling pathways that 
may arise in the context of disease-associated regulatory SNPs 
in a patient-specific manner, thereby shedding light on a poorly 
characterized layer of IBD pathogenesis.

Key Messages 

What is already known?
• � GWAS studies have shown that most IBD-associated single-

nucleotide polymorphisms (SNPs) are located within non-cod-
ing genomic regions, but their role in IBD pathogenesis is 
largely unknown.

What is new here?
• � Using a novel systems genomics pipeline to individually analyze 

genotype data from 2636 IBD patients, we identified how IBD-
associated non-coding SNPs alter transcription factor binding 
and rewire upstream signaling pathways that regulate gene 
expression in a patient-specific manner.

How can this study help patient care?
• �These novel insights that integrate genetic susceptibility with 

extrinsic/environmental signals into the cellular signaling hier-
archy in IBD offers a promising foundation for the future devel-
opment of personalized therapies.
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Materials and Methods
Sources of SNP data
Immunochip data was obtained from participants in the Leu-
ven IBD Biobank which encompassed 1695 patients with CD 
and 941 patients with UC. All individuals provided written 
consent to participate in the Leuven IBD Biobank under the 
study protocol approved by the institutional review board 
(B322201213950/S53684). The patient demographics of this 
cohort are summarised in Table S1.

Modeling the impact of non-coding SNPs on 
transcription factor binding sites
From the patient-specific genotype data, we identified 
non-coding SNPs previously associated with IBD and then 
modeled the impact of these SNPs on TFBSs, following the 
protocol of Brooks-Warburton et al.10 Briefly, SNPs associ-
ated with IBD were first extracted from two landmark stud-
ies: Jostins et al (2012)6 and Farh et al (2015).17 Jostins et 
al performed a meta-analysis of 15 IBD GWAS, followed by 
validation using Immunochip data from an independent 
cohort, identifying 193 genome-wide significant independent 
signals (P < 5 × 10−8). Since some of these signals represented 
associations to the same underlying functional unit, the 
authors merged these signals into 163 distinct genomic loci. 
To refine our selection and focus on likely causal variants, 
we cross-referenced these GWAS hits with the fine-mapped 
SNPs from Farh et al (2015), who applied statistical 
fine-mapping based on linkage disequilibrium (LD) and 
functional annotations to identify candidate causal variants 
within each locus. In addition to SNPs that overlapped 
between the Jostins et al and Farh et al datasets, we also 
included IBD-associated fine-mapped non-coding SNPs 
uniquely identified by Farh et al, thereby broadening our 
inclusion of high-confidence candidate regulatory variants.

Next from these SNP loci, we identified those that over-
lapped with known regulatory regions of the genome (pro-
moter and enhancer regions). The distribution of SNPs and TFs 
in promoter and enhancer regions for UC and CD patients in 
our cohort is summarized in Table S2. Promoters were defined 
as sites that are 5 kilobases (KB) upstream of the transcription 
start site (TSS) and downstream until the end of the first exon 
of the particular gene, according to the UCSC genome 
browser.18 Enhancer regions were defined based on the HEDD 
database (downloaded August 13, 2023),19 which integrates 
information from ENCODE,20 FANTOM5,21 and the Epig-
enomics Roadmap.22

We evaluated the potential impact of these SNPs located 
in regulatory genomic regions on transcription factor bind-
ing. To do this, we first obtained the TFBSs of 949 TFs from 
the JASPAR database (downloaded October 10, 2023).23 
Then, we used the Regulatory Sequence Analysis Tools 
(RSAT) (version 2018.8.1)24 and Find Individual Motif 
Occurrences (FIMO) tool (version 5.1.1),25 to identify the 
TFs likely to bind to genomic loci containing non-coding 
SNPs. For further analysis, we kept TFBSs which were pre-
dicted to be perturbed either due to a gain or loss of binding 
site as a result of a regulatory SNP. To model how this com-
pares to the healthy state, we also determined the TFs 
expected to bind to the same genomic loci in the presence 
of the protective (ie, non-risk) allele. Only bi-allelic SNPs 

were included in this analysis. Two IBD-associated non-cod-
ing SNPs in our patient cohort were found to impact the 
same gene regulatory region but were not collapsed into a 
single representative SNP. Instead, they were treated inde-
pendently, in order to preserve the inherent complexity of 
regulatory architecture in complex diseases and to reflect 
the probabilistic nature of fine-mapping from Farh et al, 
which had already accounted for LD structure in causal 
inference.17

Identification of transcription factor switches and 
gene ontology switches
Subsequently, for each regulatory SNP we selected, we dis-
cerned the predicted changes in the TFs associated with the 
healthy state and the disease state. We defined these as “TF 
switches” for each non-coding SNP (Figure 1). Next, we pre-
dicted the biological processes associated with TFs in the 
healthy state and the disease state for each regulatory SNP 
using the Gene Ontology resource Biological Process domain 
(downloaded February 22, 2024). We termed the differences 
in biological processes between the healthy and disease states 
for each regulatory SNP as “Gene Ontology switches” (GO 
switches).

Shortlisting the IBD-relevant GO switches
To improve the specificity of the GO switches, we used the 
Revigo software (version 1.8.1)26 to remove redundant GO 
terms within the list of healthy and disease-associated GO 
terms. Revigo uses the SimRank algorithm to measure 
semantic similarity between GO terms, allowing the tool to 
merge similar GO terms and reduce redundancy effectively. 
We used Revigo with a 0.5 cutoff and the option to remove 
similar GO terms, with the “SimRel” semantic similarity 
measure.

Next, we implemented a manual filtering step to define 
GO switches relevant for IBD. In this step, to filter the 
remaining GO switches for relevant GO functions, two IBD 
systems medicine experts (T.K. and D.M.) independently 
created an IBD-relevant GO term list. These two lists were 
merged together resulting in 256 unique GO terms (Table 
S3). This step was necessary to reduce the number of GO 
terms from 2559 in UC and 2617 in CD to 144 and 138 
respectively, allowing us to focus our analysis on incoming 
signals that are relevant in IBD.27 While this may have 
excluded novel GO terms that are not yet well-established 
in IBD, the goal of this analysis was to connect known 
IBD-associated signals to known IBD-associated SNPs.

Then, we used another semantic similarity-based analysis 
between the healthy and disease-associated GO terms to iden-
tify GO switches containing the most contrasting GO terms. 
To do this, the healthy and disease-associated GO terms were 
converted to GO IDs using the GO.db (version 3.18.0)28 and 
AnnotationDbi (version 1.64.1)27 packages in R. Then, seman-
tic similarity analysis was performed between the healthy and 
disease-associated GO IDs for each GO switch using the 
GOSemSim package (version 2.28.1)29 in R. We used the “Rel-
evance” semantic similarity metric with a cutoff of 0.5. Fol-
lowing this, GO switches that had a semantic similarity score 
of <0.5 were kept for further analysis, representing the most 
contrasting GO switches.

https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
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In the final filtering step, we kept only those GO switches 
that contained GO terms that were enriched among IBD 
patients compared to healthy controls from real-world, clinical 
datasets. For this, we used the TaMMA resource (downloaded 
09/03/2023),30 which is the largest meta-analysis of bulk-tran-
scriptomics data in IBD involving 3853 individuals with IBD 
from 26 independent studies. In TaMMA, these studies are 
analyzed using a standardized computational pipeline and 
batch corrected for data harmonization and simultaneous com-
parisons. Thus, it is a highly powered resource for identifying 
the likely biological processes relevant in IBD patients. Differ-
ential expression gene (DEG) lists from the colon and rectum 
of UC patients compared to the colon and rectum of healthy 
individuals were downloaded from TaMMA. Gene transcripts 
with a log2-fold change of >0.5 and Benjamini-Hochbberg 
adjusted P value of <0.05 were selected for functional over- 
representation analysis against the background of gene 

transcripts present in TaMMA, using the enrichplot R package 
(version 1.22.0).31 We selected these thresholds to capture a 
broad range of disease-associated processes, including those 
with modest expression changes or those observed in only a 
subset of patients, while excluding processes that are unlikely 
to be relevant in IBD. However, we acknowledge that filtering 
based on population-level differential expression data may 
overlook rare, patient-specific pathways. GO terms with an 
adjusted P value of <0.01 were deemed to be significantly over-
represented biological functions in the UC colon and rectum 
compared to the healthy colon and rectum. The significant GO 
terms in the UC colon and UC rectum were then combined, 
and duplicates were removed. These steps were repeated using 
DEGs from the ileum, colon, and rectum of CD patients com-
pared to healthy individuals present in TaMMA. These signif-
icant disease-associated GO terms were used to create the final, 
shortened list of IBD patient-relevant GO switches.

Figure 1.  A systems genomics workflow to identify transcription factor and Gene Ontology switches from genotype data. (A) The visual representation 
of transcription factor (TF) and Gene Ontology (GO) switches. A non-coding SNP can result in different TFs binding to the same regulatory region of the 
genome, leading to distinct TFs acting in the healthy and disease states. We defined this change as TF switches. These different TFs can be associated 
with different biological processes between the healthy and disease states, which we defined as GO switches based on the processes we identified 
using the GO resource. (B) An overview of the analytical workflow. For details of each step, see the Methods.
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Patient-specific network visualization of  TF and GO 
switches
We ran this workflow for each individual patient in our cohort, 
enabling us to determine patient-specific TF switches and GO 
switches. Using Cytoscape32 (version 3.10.1), we visualized this 
information, with nodes representing GO terms and edges rep-
resenting non-coding SNPs underpinning  switches between 
GO terms mediated by TF switches  (Figure 2).

After running our workflow on each patient, we calculated 
the percentage difference in occurrence of disease-associated 
and healthy GO terms in our cohort of UC and CD patients. 
We calculated this difference between the percentage of GO 
switches using base R (version 4.3.2), allowing us to determine 
which GO terms were overall lost (percentage difference <0%) 
or gained (percentage difference >0%) as a result of IBD-
associated non-coding SNPs in our cohort of UC and CD 

Figure 2.  Patient-specific representative networks of functional rewiring in an (A) ulcerative colitis patient and a (B) Crohn’s disease patient. Edges 
represent non-coding single nucleotide polymorphism(s) underpinning the rewiring of TFs and their associated functions (ie, incoming signals acting on 
the genome) between the healthy and disease states. White nodes represent disease-associated incoming signals, black nodes represent healthy-asso-
ciated incoming signals, while grey nodes represent incoming signals that were present in both healthy and disease states. Node size is proportional to 
the number of incoming signals.

(Continued)
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patients as a whole. The GO terms with the largest percentage 
differences were visualized in R (version 4.3.2).

Sensitivity analysis
The manual filtering step in our workflow reduced the number 
of GO switches from 337 546 to 1354 in UC and from 418 152 
to 1408 in CD, making it the largest filtering step in our work-
flow. To test the sensitivity of the workflow to the manual fil-
tering step, we performed a sensitivity analysis, where we 
omitted the manual filtering step and re-ran the workflow using 

only the Revigo analysis, the TaMMA enrichment analysis, and 
semantic similarity analysis in the workflow. When the manual 
filtering step was omitted, the number of GO switches was 
reduced only to 8608 in UC and 5127 in CD, giving rise to less 
IBD-specific results. When comparing the two outputs, we 
found that the manual filtering step excluded general GO terms 
such as response to activity and limb morphogenesis, or terms 
unrelated to IBD such as germ cell migration or oocyte growth, 
which would have provided limited biologically relevant 
insights.

Figure 2.  (Continued)
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Clustering Analysis
We next evaluated whether patient heterogeneity can be cap-
tured using clustering analysis of the patient-specific GO 
switches and TF switches. Each patient was represented by the 
number of GO terms or TFs gained or lost relative to the healthy 
state. After scaling each feature matrix, k-means clustering was 
applied (scikit-learn, version 1.3.2) independently to the GO 
and TF matrices to identify subgroups of patients with similar 
switching patterns. The optimal number of clusters (k) for each 
feature set was determined empirically by evaluating both the 
silhouette score and the inertia across a range of k values to 
balance cluster compactness and separation. Principal compo-
nent analysis (PCA) was applied to each feature matrix to visu-
alize the distribution of clusters. We then identified the GO 
terms significantly enriched in specific clusters. For normally 
distributed features (tested using Shapiro–Wilk test), we applied 
one-sided t tests to compare values in each cluster higher than 
the rest. For non-normal features, we used the one-sided Mann–
Whitney U test. P values were adjusted using the Benjamini–
Hochberg method, and features with adjusted P values below 
0.05 were considered significantly enriched in the corresponding 
cluster. The average normalized values of significantly enriched 
GO terms was visualized using a heatmap.

Permutation-based statistical analysis
To evaluate the specificity of the gain and loss of GO terms in 
the context of IBD, we performed a two-stage permutation 
testing strategy.

First, we tested whether the overall number of lost and 
gained GO terms in IBD patients could be explained by random 
variation in regulatory regions, rather than disease-specific 
effects. From all possible SNPs present in the Single Nucleotide 
Polymorphism Database (dbSNP) (Build 144; downloaded 
May 14, 2025),33 we randomly selected 69 and 90 SNPs located 
in enhancers or promoters to match the total number of SNPs 
present in UC patients and CD patients in our cohort, respec-
tively. Only SNPs with no known association with IBD were 
selected. This random selection was repeated 1000 times result-
ing in 1000 random SNP sets representing 1000 non-IBD dis-
ease states. These SNP sets were then processed through our 
entire pipeline, including the generation of TF switches and 
GO switches. This enabled us to quantify the numbers of 
gained and lost incoming signals under the null model. By com-
paring the incoming signals lost or gained in IBD patients 
against the distributions of gained and lost incoming signals 
from these random disease states, we calculated z-scores (Equa-
tion 1) and P values, using the SciPy stats method. Here, rv is 
the percentage of GO terms gained or lost in IBD patients; 
random  is the average gain/loss of GO terms in the random 
disease states; and SD is the standard deviation of the random 
permutations:

	 z
rv random

SD
random

=
−

.	 (1)

This method tests the pipeline with a null hypothesis that 
there is no difference between the total number of GO terms 
gained or lost between IBD and non-IBD disease states. This 
permutation testing was undertaken both before and after the 
filtering steps in our pipeline outlined earlier. Together this 
allowed us to evaluate whether the overall network rewiring 

of GO terms observed in the IBD patients in our cohort is 
different to that expected by chance, and the extent to which 
the filtering steps influenced the expected null distribution of 
gained and lost GO terms.

Next, to identify specific GO terms that were gained or lost 
significantly more or less in IBD patients than expected by 
chance, we performed a patient-matched permutation analysis. 
For both UC and CD, we generated random non-IBD patient 
cohorts by sampling the same number of SNPs per patient as 
in our real cohort, out of the regulatory SNPs generated from 
1000 random non-IBD disease states from our first permuta-
tion test. Then, we ran the pipeline (excluding the REVIGO 
semantic similarity filter due to computational limitations) to 
capture the expected frequency distribution for each GO term 
gained or lost due to random regulatory SNPs. We calculated 
a z score for each GO term similar to eqn (1), but here rv 
denotes the proportion of UC or CD patients in our IBD patient 
cohort for whom a GO term is gained or lost; random  is  
the average proportion of patients in the random non-IBD 
patient cohorts for whom the same GO term is gained or lost; 
and SD is the standard deviation of this proportion. In this 
way, we were able to pinpoint GO terms that were significantly 
rewired in IBD patients beyond what is expected by chance.

Together, these two complementary permutation approaches 
tested both the overall and GO term-specific rewiring of incom-
ing signals in the context of IBD.

Results
Modeling patient-specific regulatory rewiring
We first identified TF switches by comparing the TFs predicted 
to bind to the risk and non-risk alleles at IBD-associated 
non-coding SNPs present in each IBD patient in our cohort. 
Across the entire cohort, 135 TFs were predicted to bind to 
SNP-affected TFBSs in UC patients, while 161 were predicted 
to bind to SNP-affected TFBSs in CD patients. Of these, 53 TFs 
were shared between both UC and CD patients (Figure S1). To 
assess the relevance of the identified TFs to IBD, we conducted 
a literature review. We focused on a total of 108 TFs that was 
gained in at least 1 patient with UC or CD. We found that the 
majority of these TFs have previously been associated with 
IBD. Among them, 55 TFs have functionally characterized 
roles, with most supported by experimental evidence and a few 
inferred through computational predictions (Table S6). Nota-
bly, 37 TFs (approximately one-third) have not been directly 
linked to IBD in the existing literature. However, many of these 
TFs may play plausible roles in IBD pathogenesis given that 
they regulate relevant pathways or biological processes. For 
instance, TEAD1 is a component of the Hippo pathway that 
has been found to exert immunomodulatory effects in murine 
models of colitis,34 and ARID5A, regulates the expression of 
genes downstream of the Th17/IL-17 axis,35,36 a pathway 
known to play a critical role in IBD pathogenesis.37

We then functionally annotated the TFs in each patient, to 
determine GO switches, which are the proxies for the change 
in upstream incoming signals (Figure 1A). With our workflow 
(Figure 1B), we identified 510 556 GO switches in UC patients 
and 544 242 GO switches in CD patients across our entire 
cohort. As these switches were often redundant, unrelated to 
IBD, or too generic, we applied a series of filtering steps (see 
Methods for details). The filtering steps identified 561 GO 
switches in UC and 393 GO switches in CD as the most 

https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
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relevant and contrasting switches between healthy and disease 
states (Table 1). Subsequent sensitivity analysis confirmed the 
role and order of each filtering step (see Methods).

Patient-specific rewiring of incoming signals
To map the putative changes of incoming signals, we visualized 
this rewiring with networks. This visualization illustrates how 
an incoming signal (GO term) in the healthy state switches to 
another incoming signal in the disease state, indicated by an 
arrow connecting the two signals (ie, forming an arrow from 
the healthy state-associated GO term to the disease state-asso-
ciated GO term). In doing so, we highlight the functional rewir-
ing of upstream signaling processes that are likely to occur in 
IBD in the context of non-coding SNPs. Using our analytical 
pipeline, we created these rewiring networks for each individual 
patient, allowing us to understand patient-specific differences. 
Representative example networks from a UC patient and a CD 
patient from the analyzed cohort are depicted in Figure 2A and 
2B, respectively.

As shown in these examples, certain incoming signals were 
relevant in both healthy and disease states by acting through 
different TFs. This indicates that the same incoming signal may 
be rewired to act on different target genes in the disease state 
compared to health due to non-coding SNPs. Our network 
visualization also revealed that non-coding SNPs in IBD 
patients may rewire multiple healthy state-associated signaling 
pathways into fewer, disease-associated key signals.

Cohort analysis reveals a significant rewiring of 
incoming signals in IBD
To gain a better understanding of the overarching rewiring of 
incoming biological signals occurring in IBD, we analyzed the 
patient-specific findings across our entire cohort of UC and CD 
patients. Then we calculated the overall difference in percentage 
occurrence of GO terms between the healthy and disease states 
in our cohort.

This analysis revealed that 144 processes and 138 processes 
were gained or lost in UC patients and CD patients, respec-
tively, compared to the healthy state. Ninety-five of these 
incoming biological signals were common to UC and CD, indi-
cating a significant overlap in the upstream signaling mecha-
nisms underpinning both types of IBD (Figure 3). In both UC 
and CD, the lost or gained signals could be grouped into 6 
categories: (1) immune signaling, (2) response to viral or bac-
terial stimulus, (3) cellular stress, (4) epithelial signals, (5) stro-
mal or wound healing, and (6) other signaling pathways (Figure 
3). We found that diverse regulatory SNPs contributed to the 
rewiring of these incoming signals, although certain SNPs 
underpinned more signal rewiring than others (Table S4 for 
UC and Table S5 for CD). This indicates pleiotropic 

mechanisms underlying the disruption of upstream, incoming 
signals in IBD, with certain variants disproportionately driving 
the loss or gain of upstream signaling pathways irrespective of 
their cohort frequency.

In both UC and CD, we observed that far more incoming 
signals were lost than gained compared to the healthy state (left 
lower quadrant, Figure 3). To assess the specificity of these 
findings to IBD, we performed permutation testing of our pipe-
line by generating null distributions of gained and lost incoming 
signals from 1000 random non-IBD disease states, each repre-
sented by a set of random non-coding regulatory SNPs not 
associated with IBD. These distributions revealed that the 
greater loss of incoming signals compared to gained signals 
was observed both in IBD and random non-IBD disease states 
after the filtering steps of our pipeline (Figure S2 A-D), indi-
cating that the consolidation of incoming signals is independent 
of regulatory SNP selection. However, we found that after fil-
tering, incoming signals were gained more frequently in IBD 
patients than expected by chance and lost less frequently than 
expected by chance (P < 0.001, z score statistical test, Figure 
S2E-H), likely reflecting the IBD specificity of the GO terms 
used in the filtering steps.

To identify the GO terms that were significantly rewired 
in IBD patients, we performed a patient-matched permuta-
tion analysis. We focused on GO terms that were lost or 
gained significantly more frequently in UC and CD patients 
than expected by chance. There were greater numbers of such 
statistically significant lost signals than gained. The top 10 
most frequently gained and lost significantly incoming signals 
for UC and CD in our cohort that deviated in this way from 
the null distribution are depicted in Figure 4A and 4B, 
respectively.

These most frequently gained and lost signals related to 
immune signaling, highlighting extensive rewiring of regulatory 
mechanisms associated with the immune system, particularly 
cytokine signaling and both innate and adaptive immune cell 
activation in IBD. Incoming signals related to host responses 
against bacteria or viruses were also frequently lost in both 
diseases (eg, negative regulation of toll-like receptor signaling), 
indicating impaired regulation of host mechanisms against 
pathogenic stimuli. The multiple mesenchymal and epithelial 
cell processes that were affected in both CD and UC suggest a 
pathological rewiring of gut barrier regeneration and mainte-
nance, which could predispose IBD patients to a “leaky gut.”38 
Signals related to cellular stress, including response to reactive 
oxygen species and autophagy, were also frequently rewired in 
both UC and CD due to a disease-associated dysregulation 
indicated by loss of multiple incoming signals.

While IBD patients had various underlying genotypes, at the 
level of incoming signal changes, we identified signals that were 
almost ubiquitously lost in all patients. For example, 93% of 
the UC patients in our cohort lost the signal related to the 
positive regulation of type 1 interferon production—a pathway 
critical to the frontline defense against viral infection (Figure 
4A). In the top 10 gained signals in UC patients, we noted 
multiple immune system and epithelial barrier function–related 
signals. This indicates a genetic predisposition in which dis-
ease-associated signals result in immune dysregulation and 
epithelial barrier dysfunction, features characteristic of UC.

In CD, the most frequently lost signals related to cell stress 
responses and autophagy (eg, lysosome localization and 

Table 1.  Gained and lost transcription factors (TFs) and signals (gene 
ontology biological processes) in UC and CD.

Disease Gained Gained 
and lost

Lost Switches

TFs UC 59   0 76 1527
Signals (GO terms) 26 58 60   561
TFs CD 75   0 86 2942
Signals (GO terms) 16 81 41   393

https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
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Figure 3.  Frequency of shared incoming signals to TF binding sites in UC and CD patients within the study cohort. The x-axis shows the percentage 
difference in the frequency of GO term occurrences in UC patients relative to the healthy state, while the y-axis displays the same percentage difference 
for CD patients compared to the healthy state. Note that processes unique to UC or CD are not shown here.

lysosome organization), which was also observed in UC. How-
ever, compared to UC, there was a higher proportion of wound 
healing and mesenchymal signaling pathways that were rewired 
in CD patients, particularly centered around vascular endothe-
lial growth factor (VEGF) signaling. These incoming signal 
changes reveal a general mesenchymal dysregulation in CD 
patients, predisposed by genetics but driven by incoming 
signals.

Incoming signals stratify IBD patients to capture 
molecular heterogeneity
Next, we investigated whether the patient-specific rewiring of 
TFs and incoming signals could dissect patient heterogeneity 
in our cohort. We found that in both UC and CD, clustering 
based on the rewiring of incoming signals, rather than TFs, 

more effectively captured patient heterogeneity by stratifying 
patients into four distinct subgroups. This was supported by 
higher silhouette scores for incoming signal-based clustering 
(Figure S4) and clearer separation of clusters in principal com-
ponent analysis (PCA) visualization compared to TF-based 
clustering (Figure 5). We then identified the most distinct 
incoming signals that were gained between patient clusters and 
visualized these as a heatmap (Figure S5). This revealed co-oc-
curring gained incoming signals that are likely to represent 
distinct molecular subgroups within UC and CD patients in 
our cohort.

Discussion
We developed a systems genomics workflow to functionally 
annotate the reassortment of transcription factors (TFs) 

https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
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Figure 5.  Principal Component Analysis (PCA) visualization of patient clusters: (A) UC patient clustering based on TFs switches; (B) UC patient clustering 
based on incoming signals; (C) CD patient clustering based on TFs switches; (D) CD patient clustering based on incoming signals.

Figure 4.  Most frequent upstream incoming signals that rewire the gene regulatory network in UC (A, B) and CD (C, D) patients. (A) Top 10 significant 
lost and gained signals in UC patients. The black line is the expected value from permutation testing. (B) Top 10 significant lost and gained signals in CD 
patients. The black line is the expected value from permutation testing. Statistics: Benjamini-Hochberg corrected z tests compared with perturbed GO 
terms. For the remaining lost and gained incoming signals see Figure S3.

https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
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between healthy and disease states driven by non-coding SNPs, 
uncovering the rewiring of incoming signals shaping gene reg-
ulatory networks in IBD. This approach revealed a previously 
underappreciated layer of the cellular signaling hierarchy 
involved in IBD pathogenesis.

Recent insights on the role of non-coding SNPs in IBD patho-
genesis indicate that they disrupt cis-regulatory gene networks 
by impacting TF binding sites in promoter and enhancer 
regions of the genome.10,39–41 This can result in changes to the 
repertoire and activity of TFs that influence gene regulation 
and ultimately gene expression between healthy and disease 
states.42 Characterizing the downstream impact of these gene 
regulatory changes due to non-coding SNPs has emerged as a 
major focus of research efforts in IBD and other complex dis-
eases in recent years. This has been facilitated by the advent of 
state-of-the-art bioinformatics tools and experimental 
approaches (eg, massively parallel reporter assays and Clus-
tered Regularly Interspaced Short Palindromic Repeats 
(CRISPR) screens).43,44 However, few studies have attempted 
to discern how biological signals acting upstream of disease-as-
sociated genomic loci differ in IBD compared to the healthy 
state. This is largely because downstream changes in cellular 
signaling and gene expression due to genomic variants are more 
readily measurable and tangible to delineate than upstream 
signaling pathways.16

Using the presented novel workflow, we first performed a 
patient-specific analysis of genotype data from a large cohort 
of IBD patients totaling 2636 individuals with UC or CD. This 
rewiring analysis revealed putative mechanisms that may con-
tribute to IBD pathogenesis at the upstream signaling layer. To 
show how non-coding IBD-associated SNPs can alter the reg-
ulation of incoming signals of specific target genes, we present 

illustrative examples in UC and CD. In UC, we found that the 
regulation of the PIGR (polymeric immunoglobulin receptor) 
gene could be altered due to the SNP rs3024495 (Figure 6A). 
PIGR is involved in immunoglobulin A sensing that is dysreg-
ulated in UC.45 In the healthy state, IRF1 is a TF that regulates 
PIGR.46 However, an IBD-associated SNP (rs3024495) makes 
IRF1 binding less probable, while increasing the binding affin-
ity of other TFs such as EGR1, TBX2, and TBX21 (TBET). 
The absence of IRF1 binding to regulate PIGR, coupled with 
the aberrant binding of other TFs to this locus, may contribute 
to the transcriptional dysregulation observed in IBD. Interest-
ingly, based on the upstream signals modulating these TFs, the 
rewired transcriptional regulation of PIGR may be driven by 
pro-inflammatory interleukin signaling via EGR1,47 retinoic 
acid response related to cell cycle regulation via TBX2,48 and 
viral response via TBET.49,50 All these upstream signals are 
known to be relevant in IBD.

In CD, the non-coding SNP rs7527462 was found to alter 
the regulation of TNFSF18, a TNF superfamily ligand that func-
tions as an immune costimulatory molecule51,52 (Figure 6B). 
Under healthy conditions, our analysis indicates that TNFSF18 
is regulated by GFI1, a transcriptional repressor that can be 
activated by lipopolysaccharide (LPS). While GFI1 is known to 
indirectly repress TNF and other TNF superfamily ligands by 
antagonising NF𝛋B activity53 in response to LPS in innate 
immune cells,54 our analysis suggests a more direct regulatory 
role for GFI1 in limiting TNFSF18 expression. In CD, we find 
that rs7527462 can result in the preferential binding of alter-
native TFs at this locus including ATF2 and FOSB that can be 
activated by oxidative stress and xenobiotic stimuli, respectively. 
These upstream signals are known activators of these TFs.55,56 
Notably, FOSB is a component of the AP-1 transcriptional 

Figure 6.  Example regulatory rewiring in UC (A) and CD (B). Based on manual curation of the literature and regulatory databases (TFLink and DoRothEA), 
we selected a known regulatory interaction that could become rewired due to an IBD-associated SNP.
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complex, which has previously been shown to upregulate 
TNFSF18.57 Collectively, this example illustrates how a non- 
coding SNP can disrupt known tolerogenic immune regulatory 
mechanisms, allowing upstream environmental cues to enhance 
the expression of an immunomodulatory molecule that could 
potentially contribute to immune dysregulation in CD.

Using network rewiring analysis and patient-specific visual-
ization (Figure 2), we revealed that various combinations of 
regulatory SNPs within an individual IBD patient can lead to 
the same outcome (ie, a switch from multiple healthy state-as-
sociated incoming signals to fewer disease-associated signals). 
To systematically quantify and assess the phenomena of incom-
ing signal rewiring in IBD, we aggregated patient-specific find-
ings across the entire UC and CD cohorts separately. This 
revealed a greater loss of incoming signals acting on the genome 
in both UC and CD, suggesting a rewiring of upstream signal-
ing networks towards fewer IBD-associated pathways com-
pared to the healthy state. While permutation testing revealed 
that this consolidation of incoming signals is independent of 
regulatory SNP selection (Figure S2), we identified multiple 
incoming signals that were lost or gained more frequently in 
IBD patients than expected by chance, with such statistically 
significant lost signals outnumbering gained signals (Figure S3).

At the same time, this analysis also unraveled nearly ubiq-
uitous disease-associated signals whose appearance as upstream 
regulators can contribute to the disease pathogenesis (Figure 
4). For instance, several pathognomonic immune pathways 
associated with IBD could be rewired in the majority of UC 
and CD patients in our cohort due to non-coding SNPs. In UC 
patients, TFs involved in the positive regulation of IL-17 and 
IL-6 production, leukocyte migration, and B cell differentiation 
were predicted to gain genomic binding sites due to disease-as-
sociated regulatory SNPs. Meanwhile in CD, regulatory SNPs 
were predicted to result in the binding of TFs functionally asso-
ciated with the positive regulation of several critical pro-in-
flammatory pathways including tyrosine phosphorylation of 
STAT protein, macrophage activation and NF𝛋B signaling 
activity. Concomitantly, TFs associated with the negative reg-
ulation of key immune pathways such as macrophage activa-
tion and MHC class II biosynthesis in UC and IL-2 production 
and receptor signaling via JAK-STAT in CD were predicted to 
lose their binding sites compared to healthy individuals due to 
IBD-associated SNPs (Figure S3). While most of these dysreg-
ulated immune pathways are already known to be pathogno-
monic in IBD,58 our findings reveal that the intestinal mucosa 
of IBD patients may be genetically poised to favor pro-inflam-
matory signaling cascades even at the proximal end of the cel-
lular signaling hierarchy.

In both UC and CD patients, some of the most common 
upstream, incoming signals predicted to be lost due to regula-
tory SNPs included those relating to various cell stress response 
pathways such as autophagy, and response to reactive oxygen 
species. While specific coding variants disrupting autophagy 
genes (eg, ATG16L1 and NOD2) have been well-characterized 
in CD,59 these findings reveal a more extensive cellular dysreg-
ulation of cell stress response pathways in both UC and CD 
patients at the upstream signaling layer. Additionally, pathways 
related to epithelial barrier function such as epithelial cell pro-
liferation were among the most frequently gained biological 
processes affected by non-coding SNPs in both UC and CD 
patients. Since epithelial barrier integrity depends on tightly 
regulated processes such as stem cell renewal, proliferation, 

differentiation, migration, and cell death, this finding highlights 
a genetic basis for disrupting this balance, potentially driving 
epithelial barrier dysfunction and excessive proliferation 
observed in IBD.60,61 Together, the upstream rewiring of incom-
ing signals relating to immune pathways, cellular stress 
responses, and/or epithelial barrier function may ultimately 
manifest in an intestinal mucosa that is genetically predisposed 
to develop overactive inflammatory responses to cellular 
insults.

Interestingly, our analysis revealed that incoming signals 
related to host response to viral infection were some of the 
most frequently rewired in both UC and CD patients, indicat-
ing an extrinsic cellular insult that patients may be more sus-
ceptible to generating pathological responses against. For 
instance, negative regulation of viral genome replication was 
frequently gained in CD patients (Figure S3), while positive 
regulation of type 1 interferon production was one of the most 
frequently lost signals in UC patients (Figure 4A). Additionally, 
negative regulation of TLR signaling was frequently lost in 
both UC and CD patients (Figure 4A and 4B). There is increas-
ing interest in the role of viruses in IBD pathogenesis, with 
some reports suggesting that gut virome dysbiosis characterized 
by an expansion of Caudovirales may drive gastrointestinal 
inflammation and epithelial barrier dysfunction.62 It remains 
unclear, however, whether viral dysbiosis is a cause or conse-
quence of gastrointestinal inflammation. Our findings indicate 
that the normal regulation of protective host mechanisms 
against viral infection may be frequently lost in the context of 
IBD-associated non-coding SNPs. Thus, the genetic back-
ground in IBD may perturb the crosstalk that normally exists 
between the gut virome and the host, leading to the emergence 
of gut virome dysbiosis. Alternatively, incoming cellular signals 
from established gut virome dysbiosis may be accentuated in 
the host due to the genotype-driven loss of homeostatic regu-
latory mechanisms, resulting in pro-inflammatory responses. 
Further work will be required to dissect the precise role of gut 
virome dysbiosis in IBD pathogenesis, but our findings suggest 
that host genetic mechanisms may be intimately linked with 
this phenomenon.

Pathways associated with wound healing and the stromal 
compartment were also frequently rewired in our analyses in 
both forms of IBD, especially in CD. In CD patients, signals 
relating to the VEGF pathway were among the most frequently 
gained and lost. VEGF has been previously identified as an 
important mediator of intestinal angiogenesis and inflamma-
tion in IBD.63 In both UC and CD patients, a substantial pro-
portion of patients gained positive regulation of epithelial to 
mesenchymal transition (Figure 4B and Figure S3). Epitheli-
al-mesenchymal transition is a key wound healing pathway, 
and dysregulation of this process has been associated with the 
development of intestinal fibrosis and epithelial barrier dys-
function in IBD.64 In UC patients, pathways relating to the 
positive regulation of endothelial cell and fibroblast prolifera-
tion were frequently gained, while extracellular matrix orga-
nization was a major lost signal (Figure S3). In recent years, 
there has been increasing recognition that pathways involving 
stromal cells and the extracellular matrix are key players in 
IBD pathogenesis,65 even offering prognostic relevance relating 
to therapeutic response.66,67 These findings indicate that there 
may be a previously unrecognized genetic basis for dysregu-
lated stromal pathomechanisms in IBD, which requires further 
study.

https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
https://academic.oup.com/ibd/article-lookup/10.1093/ibd/izaf173/#supplementary-data
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We next evaluated whether our patient-specific rewiring 
analysis could dissect patient heterogeneity in our cohort. We 
found that in both UC and CD, clustering based on the rewiring 
of incoming signals, as opposed to TFs, more effectively strat-
ified patients into distinct subgroups (Figure 5). Although the 
clustering analysis revealed four clear molecular subgroups 
comprising co-occurring incoming signals in both UC and CD 
(Figure S5), as we lacked clinical metadata (such as IBD phe-
notypes and therapeutic response), we were unable to deter-
mine whether these molecular subgroups correspond to 
clinically meaningful phenotypes. As large-scale IBD biorepos-
itories comprising genotype data and rich clinical metadata 
from patients emerge, future work will enable validation of 
these molecular subgroups in relation to clinical outcomes. 
From a translational perspective, this systems genomics frame-
work offers a promising avenue for innovative precision med-
icine approaches aimed at targeting upstream signaling 
pathways. Based on our findings, we hypothesize that reversing 
the observed lost regulatory flexibility driven by the loss and 
gain of upstream signals associated with regulatory SNPs may 
have broad therapeutic potential as they represent proximal 
regulators of key pathogenic cascades in IBD. This may be 
achieved not only through drugs targeting specific signaling 
molecules but also through modulation of environmental expo-
sures (eg, viral and bacterial triggers or xenobiotics) that feed 
into dysregulated signaling pathways.

While our systems genomics workflow yielded plausible and 
biologically relevant predictions, we acknowledge that there 
were limitations with our approach. Our method predicts TF 
binding using two complementary sequence-based approaches 
(RSAT24 and FIMO25). Such methods predict the strength of 
TF binding but can result in false-positives and do not take 
into account chromatin accessibility and epigenetic modifica-
tions that may be altered in IBD patients, which are intrinsic 
limitations of this approach.68 Moreover, we note that bench-
marking studies have shown that motif-based predictions 
alone may not reliably reflect in vivo TF binding, and experi-
mental validation with ChIP-seq or reporter assays would be 
required to confirm these predictions.69 Furthermore, although 
we used the GO database in our workflow, as it is the most 
comprehensive annotation resource of proteins,70 it may con-
tain erroneous annotations. We opted not to filter the GO 
annotation by confidence level to increase the coverage of GO 
biological processes, particularly as human TFs are well-an-
notated compared to other organisms.71 Furthermore, we 
acknowledge that not all GO terms associated with a TF may 
represent incoming signals converging on genomic loci, as 
these may also capture downstream pathways associated with 
a TF. We note that by including a manual filtering step to 
improve the IBD-specificity of the GO analysis, we may have 
introduced selection bias. However, two signaling experts 
independently performed this process, in an attempt to reduce 
this bias while increasing the IBD specificity of the workflow 
as demonstrated in our sensitivity analysis. Thus, while this 
step inevitably and intentionally led to IBD-specific results, the 
observed rewiring of these incoming signals and how they 
correspond to expected IBD phenotypes were not biased by 
the methods. Finally, we acknowledge that our in silico work-
flow necessitates experimental validation, although experi-
mental methods to dissect upstream biological pathways 
influencing gene regulatory mechanisms are currently limited 
and technically challenging.

In summary, by employing a novel systems genomics pipeline 
with genotype data from a large patient cohort, we gained 
insights into how IBD-associated genotypes can rewire the 
incoming biological signals acting on gene regulatory networks. 
This patient-specific rewiring impacts pathways relating to 
immune signaling, epithelial barrier function, stress response 
mechanisms, wound healing processes, and host response to 
infection. Such rewiring may render the intestinal mucosa 
genetically poised to favor pro-inflammatory responses, even 
at the proximal end of the cellular signaling hierarchy. These 
findings underscore the importance of investigating signaling 
processes upstream of genetic polymorphisms to gain a more 
comprehensive understanding of IBD pathogenesis.
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