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Indexing endoscopic surgical videos is vital in surgical data science, forming the basis for systematic 
retrospective analysis and clinical performance evaluation. Despite its significance, current video 
analytics rely on manual indexing, a time-consuming process. Advances in computer vision, particularly 
deep learning, offer automation potential, yet progress is limited by the lack of publicly available, 
densely annotated surgical datasets. To address this, we present TEMSET-24K, an open-source 
dataset comprising 24,306 trans-anal endoscopic microsurgery (TEMS) video microclips. Each clip is 
meticulously annotated by clinical experts using a novel hierarchical labeling taxonomy encompassing 
“phase, task, and action” triplets, capturing intricate surgical workflows. To validate this dataset, we 
benchmarked deep learning models, including transformer-based architectures. Our in silico evaluation 
demonstrates high accuracy (up to 0.99) and F1 scores (up to 0.99) for key phases like “Setup” and 
“Suturing.” The STALNet model, tested with ConvNeXt, ViT, and SWIN V2 encoders, consistently 
segmented well-represented phases. TEMSET-24K provides a critical benchmark, propelling state-of-
the-art solutions in surgical data science.

Background & Summary
Over 300 million surgical procedures are performed worldwide annually1. While surgery is a crucial healthcare 
intervention, it also carries significant risks, with surgical complications currently ranking as the third leading 
cause of global mortality2. Surgical adverse events result in major quality-of-life (QoL) issues for patients, and 
methods that critically evaluate intra-operative events have significant potential to drive up surgical standards 
and reduce morbidity. A key method for enhancing surgical standards involves the use of high-resolution endo-
scopic surgical videos (ESV). These videos capture minimally invasive surgeries (MIS) with high-definition 
visual records at 60 frames per second, producing two simultaneous full HD streams. This results in over 50GB 
of data for a single uncompressed video, with even greater volumes as surgeries lengthen, or 4K resolution 
technology is adopted. This poses significant challenges when attempting to create adequate storage capacity in 
Secure Digital Environments (SDEs), such as those recently implemented by the National Health Service (NHS), 
UK3. Despite the storage and energy costs, the value of ESV files in capturing surgical details is significant, 
especially at scale. Reduction in storage requirements without loss of vital information will inevitably lead to 
significant energy and cost savings in line with the plan to reduce the NHS Carbon Footprint to zero by 20404.
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Apart from the storage and management challenges, another major stumbling block hindering surgical scene 
understanding is the lack of richly annotated, comprehensive datasets. A meticulously assembled large dataset is 
invaluable for training machine learning models to recognise objects like instruments and anatomical structures 
in the surgical field of view and to understand procedural phases, tasks, and intra-operative actions. Such capa-
bilities in scene synthesis, facilitated by automated algorithms, are vital for elucidating the intricacies of surgical 
workflows5 and evaluating surgeon performance6. This underscores the importance of developing high-quality 
representative ESV datasets in a SDE to advance surgical data science and create state-of-the-art (SOTA) vision 
tools for clinical use.

Recent advancements in video-based analysis (VBA) using AI-driven computer vision techniques present 
substantial opportunities for enhancing surgical scene understanding through more scalable and robust meth-
odologies7. Tailoring these VBA approaches specifically for ESV is crucial for demonstrating their efficacy in 
surgical data science and their potential application in real-world clinical settings. At the core of surgical scene 
understanding is the segmentation of surgical timelines, which involves analysing video sequences to categorise 
diverse surgical elements—ranging from phases and tasks to activities and adverse events. Unlike object seg-
mentation, which focuses on image-level analysis, timeline segmentation operates at the video level, presenting a 
volumetric and “moving object” challenge far more complex than natural scenes of stationary objects. Moreover, 
the high similarity between different surgical phases, variability in surgeon styles, inconsistent labelling, ambigu-
ous workflow transitions, and the scarcity of annotated training data exacerbate the complexity. These challenges 
hinder the development of reliable digital tools for practical and widespread clinical use.

Additionally, manually reviewing extensive ESV files is time-consuming and inefficient for human clini-
cal experts. If done systematically, this can take up significant time that could be used for other clinical tasks. 
Consequently, creating digital solutions capable of conducting comprehensive and accurate evaluations of ESV 
clips becomes essential to propel advancements in the field. This study aims to: (a) establish a systematic meth-
odology for curating a high-quality, “densely” annotated ESV dataset, (b) assess the performance of cutting-edge 
video analysis models for surgical timeline segmentation, and (c) validate the most effective model for indexing 
ESV files to enhance search capabilities. This paper outlines strategies for transitioning from laboratory in-silico 
models to clinical applications, aiming to harness AI’s potential to enhance interventional care to drive up surgi-
cal standards. To integrate SOTA methodologies in surgical data science, the whole pathway from video record-
ing to annotation and analysis must be digitised. In summary, we make the following salient contributions:

	 1.	 We present timeline annotation taxonomy for TEMS procedures capturing five phases, 12 tasks, and 21 
actions for enabling end-to-end surgical timeline segmentation using machine learning.

	 2.	 We put forward TEMSET-24K—a densely annotated dataset of 24,306 TEMS microclips, each labeled us-
ing our proposed timeline taxonomy, and enriched with metadata including action type (bleeding event), 
remaining surgical time, and other contextual attributes.

	 3.	 We share our endoscopic video review (EVR) Python library with the surgical data science community to 
perform the necessary pre-processing required for curating and managing large multipart surgical video 
datasets in other surgical specialities.

	 4.	 We implement and evaluate STALNet for surgical timeline segmentation in ESV using state-of-the-art 
encoders—ConvNeXt, ViT, and SWIN V2—to demonstrate the effectiveness of our proposed taxonomy 
and multi-target formulation, benchmarking the TEMSET-24K dataset for surgical video indexing.

Related Work.  This section discusses prior work related to timeline analysis in surgical videos and 
state-of-the-art VBA methods, highlighting the potential for integrating timeline recognition with VBA to 
enhance the performance and generalisability of surgical data science solutions.

Timeline Analysis in Surgical Scenes.  Timeline analysis in surgical videos involves breaking down surgical 
procedures into distinct phases, tasks, and actions to provide a comprehensive understanding of the surgi-
cal workflow. Detailed workflow specifications capture all surgical nuances using phase/task/action triplets, 
which are essential for designing intelligent systems in the clinical operating room. These systems can provide 
context-aware decision support, monitor and optimise surgical operations, and offer early alerts for potential 
deviations and anomalies8,9.

Numerous studies have focused on surgical workflow analysis to identify missing activities in distinct phases, 
ensuring that surgeons complete necessary tasks before moving to the next phase10. Techniques for identifying 
surgical phases include data from sensors on tool tracking systems11, binary signals from instrument usage12, and 
surgical robots13. However, obtaining these signals typically requires additional hardware or time-consuming 
manual annotation, which could increase the workload associated with the surgical process14.

Recent studies have focused on deriving the workflow solely from routinely collected endoscopic videos 
during surgery15. Automatic workflow recognition from surgical videos eliminates the need for additional 
equipment16. Notable studies include the development of EndoNet, a convolutional neural network (CNN) 
architecture designed to recognise surgical phases using only visual information from cholecystectomy proce-
dures17. Other studies have employed temporal CNN models and transformer-based models for phase recog-
nition in surgical activities18,19. For instance, Funke et al. proposed a temporal model, TUNeS, which integrates 
self-attention into a convolutional U-Net architecture to enhance surgical phase recognition20.

Emergence of Video-Based Analytics.  VBA involves meticulously breaking down and examining video con-
tent to extract important insights and intra-operative key events, transforming visual streams into semanti-
cally meaningful representations that can be easily analysed at scale21,22. Understanding surgical scenes requires 
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consideration of the temporal dimension, making VBA crucial for providing an accurate understanding of sur-
gical processes by examining both spatial and temporal features23.

Real-time VBA can significantly enhance surgical care, particularly for minimally invasive techniques, by 
providing context-aware intra-operative decision support using AI models that swiftly and accurately extract 
knowledge from real-time video data. This situational guidance can improve surgical outcomes by aiding in 
applications such as calculating surgery duration, recording important events, assessing surgical skills, and pro-
viding intra-operative assistance24–26. However, timeline labels in most research often lack the detail required for 
realistic clinical tasks, providing only coarse-grained information that fails to encompass surgical phases, tasks, 
and discrete actions needed for objective assessment and benchmarking of surgical performance27,28.

Additionally, deep learning methods for surgical timeline segmentation often require large volumes of anno-
tated data, which remain scarce in surgical domains29. To address this gap, Valderrama et al. introduced the 
PSI-AVA dataset30, which offers comprehensive annotations for activity recognition in prostatectomy videos. 
The dataset supports short-term tasks such as atomic action recognition and includes 11 phases, 20 steps, 7 
instrument types, and 16 action classes. The authors also proposed the TAPIR model, leveraging transformers 
for action recognition.

Similarly, Ayobi et al. presented the GraSP dataset and the TAPIS model—another transformer-based 
approach—designed to support multilevel understanding of surgical activities, including long-term temporal 
tasks, instrument segmentation, and atomic action detection31. ESAD32 is another endoscopic surgery dataset, 
comprising 16 hours of radical prostatectomy videos annotated with 46,300 action instances across 21 catego-
ries. CholecT5033 focuses on laparoscopic procedures and includes 50 videos with around 100,900 annotated 
frames, structured into 100 triplet classes defined by combinations of 6 instruments, 10 verbs, and 15 targets.

Other notable datasets include Cholec8017, EndoScapes34, and CholecTrack2035, each offering significant 
value within their respective domains. However, most of these datasets face notable limitations. Many are lim-
ited in size, restricting their utility for training deep learning models. Some, such as CholecT50, do not publish 
their test sets, complicating model validation and reproducibility. Others may contain incomplete or inconsist-
ent annotations, limiting their generalisability and performance when used in clinical AI applications36.

By combining insights from timeline analysis and VBA, our study aims to further advance the understanding 
and evaluation of surgical procedures through the development of high-quality, deeply annotated ESV dataset 
and the establishment of robust AI models for surgical timeline segmentation.

Methods
Transanal Endoscopic Microsurgery (TEMS) Overview.  The dataset described in this paper comprises 
recordings of TEMS procedures performed on patients with early rectal cancer or large pre-cancerous polyps37. 
During the TEMS procedure, an operating scope is inserted trans-anally into the rectum. This is a stable and 
flexible platform that enables surgical access from the anorectal junction to the most cephalic aspect of the rec-
tum. The top of the rectum is roughly 15cm from the anal verge (bottom of the anal canal). Most of the rectal 
lumen can be reached with this TEMS operating scope. The surgeon adjusts the scope to reach and remove the 
tumour, manoeuvring it as needed. The procedure begins with a setup phase, which includes preparing the 
scope, instruments, and the surgical site. The rectum is inflated with carbon dioxide to a preset pressure, and fae-
cal debris and fluid are removed with a suction device to obtain clear views. The main phase involves dissecting 
the tumour, removing the specimen, and closing the rectal wall defect. Surgeons use a clockface analogy to 
navigate around the lesion site, facilitating precise removal. Dissection may be partial (mucosa and submucosa) 
or full thickness (deeper muscle tissues).

During dissection, multiple small events like surgical “smoke” fogging the lens, lens wash, tissue cauteri-
sation, tissue retraction, fluid aspiration, and bleeding may occur. These are inter-related, for example tissue 
cauterisation results in surgical smoke that fogs up the operating scope and is normally managed by scope wash 
to clean the camera lens and aspiration of any fluid in the field of view. Bleeding is controlled with diathermy 
instruments and aspiration. Various instruments are used based on surgical needs. After dissection, the spec-
imen is removed through the scope for histological analysis. In the closure phase, the surgeon uses a running 
suture to close the rectal wall defect. This involves handling the needle, driving it through the rectal wall, and 
pulling the suture to fully close the defect. Figure 1 illustrates the key steps of the surgical workflow for the entire 
TEMS procedure.

Patient Cohort.  This study included fully de-identified videos from patients with a clinical diagnosis of 
rectal polyps or cancer. Pre-operatively, patients underwent standard clinical staging, including optical endos-
copy, biopsy, endo-rectal ultrasound, magnetic resonance imaging, and computed tomography. These cases were 
discussed in a cancer multidisciplinary meeting before elective surgery was offered. A team of four specialist 
colorectal surgeons, all Fellows of the Royal College of Surgeons (FRCS), performed TEMS using a Richard Wolf 
trans-anal operating platform.

Ethical Statement and Data Compliance.  The study is registered as a clinical audit with the University 
Hospitals Birmingham (UHB), conforming to local ethical standards, under the Clinical Audit Registration 
Management System (CARMS) number 20648. The audit title was “Automated Surgical Timeline Prediction in 
Endoscopic Videos Using Computational AI Techniques” and was signed off at a divisional level and reviewed by 
the UHB Information Governance team (reference IG937). The justification for the project was to improve the 
ability of surgeons to retrospectively review operations using reliable timestamps. The surgical video analysis was 
performed by clinicians using scripts designed and shared by computational data scientists. Informed consent 
was obtained from all patients before recording fully de-identified surgical videos. Specifically, all patients signed 
institutional consent forms that gave permission to share a fully anonymised video on an open-access platform 
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that can be seen by medical professionals, researchers or members of the general public. The videos have already 
been used to train junior surgical trainees in the West Midlands (UK) region. In accordance with NHS ethical 
standards and the UK General Data Protection Regulation (GDPR), the routinely collected ESV dataset under-
went a full anonymisation procedure to ensure the removal of any identifiable information to protect patient 
privacy and ensure confidentiality. Rigorous measures were implemented to review each video by at least two cli-
nicians to ensure that patient identifiers were not accidentally captured or disclosed. Surgical scenes that extended 
beyond the abdominal cavity, capturing the surgical team or hospital surroundings, were removed by the surgical 
team. These segments, typically occurring when the camera was temporarily extracted from the endo-luminal 
cavity for cleaning purposes, were replaced by blank frames while preserving patient privacy and maintaining the 
surgical procedure’s overall chronological sequence and duration.

Data Capture & Sharing.  We used the Operating Room (OR) visualisation system for data acquisition 
comprising a stereo endoscopic 50-degree scope and eyepiece attached to the Karl Storz Image 1 Hub HD 
(high-definition) camera system. Multipart HD videos were recorded and archived using the Karl Storz AIDA™ 
system, which contains an intelligent export manager that automatically saves surgical video files during surgery. 
These files were stored on encrypted NHS hospital-based hard drives. All patient information was removed to 
ensure no metadata containing patient-related information was shared or made accessible to the project teams.

Co-Creation of Dense Taxonomy Labels for Timeline Segmentation.  In our effort to develop a 
comprehensive taxonomy for annotation, the project task group worked with specialist surgeons to define a repre-
sentative surgical workflow. This collaborative co-creation process was essential for capturing the intricate details 
necessary to describe various downstream clinical tasks, in order to facilitate precise and detailed video labelling.

To achieve this, we structured the labels into phase, task, and action “triplets”. This hierarchical frame-
work allowed for a detailed end-to-end breakdown of the surgical procedure:

•	 Phase: Represents “high level” activities encompassing a series of surgical tasks (for example setup of the 
TEMS scope or dissection phase).

•	 Task: Mid-level activities within a phase that encompass specific tasks (for example, dissection phase may 
involve landmarking the dissection plane around the tumour or mucosal dissection).

•	 Action: The most granular unit activity within a task, (for example, dissection, retraction, lens wash, identifi-
cation of bleeding, haemostasis or aspiration of fluid).

For the TEMS procedure, we identified five key high-level phases: “Setup”, “Dissection”, “Specimen Removal”, 
“Closure of Defect”, and “Scope Removal”. Each phase consists of multiple tasks, which in turn are made up of 
specific actions. This “triplet” structure ensures that every aspect of the surgery is captured in detail, facilitating 
accurate and structured analysis. (See Fig. 2 for detailed specification of our proposed TEMS surgical workflow 
taxonomy.)

Fig. 1  TEMS surgical workflow. A typical surgical flow from landmarking of the rectal polyp to dissection, 
lesion removal and closure of the rectal wall defect. The key milestones of a TEMS procedure are detailed in 
images a-j: [a] Baseline lesion in view after setup; [b] Application of landmark “dots” to outline the lesion; [c] 
Dissection of the wall through the mucosa and muscle; [d,e] Circumferential removal of the lesion; [f,g] Final 
removal and extraction of the specimen; [h,i] Closure of the rectal wall defect with a suture; and [j] Application 
of a metal clip to secure the suture and ensure complete closure.

https://doi.org/10.1038/s41597-025-05646-w
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This structured approach not only helps in the detailed documentation of the procedure but also enhances 
the ability to extract key events within an operation. This can be subsequently used to perform post-operative 
clinical assessments, either at an individual surgeon level or in comparison of techniques in a cohort of surgeons. 

Fig. 2  Proposed Taxonomy of TEMS Surgical Workflow. The TEMS operation can be split into three levels: [A] 
High level activity phase (such as Set-up, Dissection, Specimen Removal, Closure and Scope Removal), [B] Task 
based activities (such as scope insertion, instrument movement, site wash and pressure increase), [C] Small unit 
tasks (such as tissue marking, tissue retraction, smoke identification, bleeding identification and haemostasis).
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This approach ensures that every critical operative action is accounted for and can be analysed in a construc-
tive manner for measuring incremental performance improvements. This enables extremely “dense” data to 
be extracted from VBAs and analysed at scale. Large video libraries can be interrogated with the approaches 
defined above to understand changes in individual surgical performance over time as well as comparing sur-
geons against their peers.

Our proposed triplet structure was co-designed to reflect both procedural flow and anatomical specific-
ity during TEMS. This hierarchical structure enables a multi-resolution view of the surgical workflow—from 
broad procedural phases to the most granular operative actions. While some actions (e.g., washout, dissection, 
retraction) recur across multiple tasks, this repetition is intentional and reflects the practical reality of surgical 
practice, where the same action may serve very different functions depending on its anatomical and procedural 
context. For example, the action “Washout” during the task “Mucosal Dissection” typically involves clearing 
superficial debris (e.g., blood, mucus or faeces) from the mucosal layer, whereas the same action “Washout” 
in task “Circular Muscle Dissection” is often used to manage deeper cautery-induced bleeding and visual 
occlusion in the muscularis propria layer of the rectal wall. Though the action label remains the same, its clin-
ical intent, anatomical site, and operative complexity differ substantially. Likewise, the action “Dissection” in 
the triplet “Dissection.Submucosal Dissection.Dissection” versus “Dissection.Longitudinal Muscle Dissection.
Dissection” implies distinct surgical phases that require subtly differing tissue-handling skills, which are contex-
tually disambiguated by the full triplet.

This design choice ensures that surgical behaviours are not only recorded but also meaningfully classified, 
enabling accurate temporal segmentation and clinically relevant performance review. It allows the dataset to 
represent shared surgical events (e.g., bleeding, smoke) that occur across anatomical layers while preserving 
their context. Furthermore, this structure supports detailed clinical analyses—such as comparing the frequency 
of bleeding or washout events across tasks, or assessing task efficiency within specific phases. The taxonomy has 
been iteratively validated against expert-defined intraoperative workflows, ensuring consistency and clinical rel-
evance. In this way, the triplet-based classification provides both strong clinical significance and the granularity 
needed for scalable, high-resolution surgical analysis.

Infrastructure Setup, Video Annotation, and Exporting Labels.  Our ESV dataset is extracted from 
multipart videos of TEMS surgeries, with uncompressed original videos of 10.34 gigabytes (GB) in size and cov-
ering procedures lasting up to 6 hours. We evaluated several labeling platforms and found that LS (Label Studio 
version 1.12.1) is the most suitable for video annotation, despite some limitations. LS38 is a secure web-based 
annotation tool supporting text, photos, videos, audio, and sequence data. While it offers extensive features, cer-
tain constraints affected its usability for our research. First, LS requires video alongside audio tracks for timeline 
segmentation functionality, but no audio was included in this dataset construction for obvious privacy reasons. 
Second, the default video upload limit for one file in LS is 250 megabytes, which can be extended but affects anno-
tation interface performance adversely. Lastly, managing multipart ESV files within a single project is challenging, 
as LS treats each surgery as a separate project, complicating data organisation.

To address these issues, we inserted blank audio tracks into the raw videos using FFmpeg (https://ffmpeg.org/).  
We also compressed the bitrate from 13 Mbps to 1 Mbps, significantly reducing file size to enable smoother 
uploads and lower server load—without compromising visual quality. Figure 3a,b illustrates a surgical scene 
before and after compression, showing minimal loss in visual fidelity.

After preparing the videos, LS was installed on a server in a Docker container and made accessible for 
labelling by using a ngrok tunnelling platform. ESV files were uploaded into LS across several projects. For 
each project, the LS interface was customised for video-based timeline annotation. The inclusion of empty audio 
tracks enabled the use of the LS timeline component for segment-based labelling, significantly aiding efficient 
clinical annotation of large multipart ESV files. Secure logins, allowed different surgeons to perform initial 
segmentation, which was then reviewed and finalised by a panel of clinical domain experts to ensure consistent 
labelling. Finally, we exported the labels from LS in JSON format, with each multipart ESV file generating one 
JSON file for timeline segmentation.

Post-Processing of Annotations to Generate ML-ready Dataset.  We developed a systematic 
approach to transform the densely annotated multipart ESV files into a machine learning-ready dataset. The raw 
ESV footage contains approximately 3 million frames. Due to the computational challenge of handling such a 

Fig. 3  Side-by-side comparison of videos before and after pre-processing. Panels (a) and (b) show image quality 
before and after pre-processing, respectively. This shows that despite reduction in the size of the ESV file by a 
factor of 10 (from 1GB to 0.1GB), there was no loss in quality.
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large dataset, we adopted an intelligent data sampling strategy to curate 24,306 microclips. This involved identi-
fying semantically distinct anchoring frames—using cosine distance similarity—that capture significant changes 
and meaningful transitions in the surgical scene.

This approach reduced the number of anchoring points per video to an average of approximately  ~ 550, 
compared to the original  ~ 15K frames. Each anchoring frame guided the generation of a corresponding micro-
clip: a 30-second retrospective window of surgical video leading up to that point, thereby preserving the tempo-
ral dynamics of the operation. Each microclip was downsampled from 125 fps to 30 fps (yielding approximately 
900 frames), and collectively they form a large-scale, temporally rich dataset—not a static image collection. 
This structured granularity distinguishes TEMSET-24K39 from prior datasets such as CholecT5033, which, while 
impactful, offers sparse annotations and lacks a publicly released validation split. Moreover, TEMSET-24K is 
released in a machine learning-ready format, with timeline-consistent clip naming, transition-aware labels, and 
metadata such as “time-to-finish” for surgical forecasting tasks.

Importantly, these microclips are not isolated snapshots but curated temporal segments, specifically designed 
for training models to segment fine-grained surgical timeline. Advanced FFmpeg features were used to uniquely 
name each microclip by combining the surgery ID, ESV file name, and timestamp, ensuring chronological order 
and reproducibility. These microclips are stored as .mp4 files in the microclips folder.

Next, we implemented a range-based query method to map each microclip to its corresponding label from 
the Label Studio-exported JSON files. This mapping is stored in the timeline_labels.csv file, which 
initially contains the columns filename and timeline_label_raw. To enhance the annotation metadata, 
we added columns such as surgery_name, video_name, and timestamp.

We identified label overlaps at action transitions, where timeline_label_raw contained dual labels 
for boundary frames. To resolve this, we created a new timeline_label column by selecting the trailing 
label and introduced a transition column to capture such transitions. For multi-target modelling, we split 
timeline_label into three columns: timeline_phase_label, timeline_task_label, and 
timeline_action_label, each representing a different level of the TEMS taxonomy. We also added a 
valid column to indicate the suggested validation set, allowing researchers to benchmark algorithms using 
this dataset.

The detailed steps of this post-processing workflow are summarised in Algorithm 1, which outlines the proce-
dure for identifying anchoring frames, creating microclips, and mapping timeline labels from LS-generated JSON 
files. The complete codebase is available in our GitHub repository EVR (https://github.com/bilalcodehub/evr),  
which includes Python scripts such as split.py, map.py, and microclip.py to support each step. 
Designed for flexibility, the EVR library can be applied to a wide range of surgical video datasets, ensuring 
systematic processing and transformation of raw video and annotations into a structured format suitable for 
machine learning applications.

Algorithm 1 Post-Processing for Generating ESV Dataset.

https://doi.org/10.1038/s41597-025-05646-w
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Data Records
We are releasing the TEMSET-24K39 dataset to the surgical data science community to advance time-
line segmentation capabilities and video-based analytics with a focus on improving surgical performance. 
All videos are from patients who have consented for de-identified videos to be made open-source for ser-
vice evaluation, non-commercial education and research purposes. Users must agree not to attempt use for 
any other purpose. The fully deidentified video dataset is hosted and can be accessed at https://zenodo.org/
records/14016844 after completing a data sharing agreement.

The dataset is packaged as a zipped temset folder (~20GB), which includes several subfolders: videos, 
microclips, and accompanying metadata files.

The videos folder contains subdirectories for each surgical case, pseudonymised as TEMS-001, TEMS-
002, etc. Within each folder, an originals subfolder holds the high-resolution, multipart ESV recordings. 
These files were compressed to  ~ 10% of their original size using a bespoke pipeline to facilitate storage and 
handling. We stored compressed videos in the videos folder for easy access and manipulation. Each surgery 
folder also includes a corresponding expert-annotated JSON file (e.g., TEMS-001.json) exported from LS, 
containing timeline segmentation labels based on our proposed dense TEMS taxonomy. These annotations are 
aligned with the videos and serve as the foundation for generating machine learning-ready labels.

The microclips folder contains the curated 30-second retrospective clips for each identified anchoring 
frame. Each microclip is saved as an .mp4 file and named using a consistent format that combines the surgical 
ID, video part, and timestamp. These clips are not random snapshots but temporally coherent video segments 
prepared for training timeline segmentation models.

The file timeline_labels.csv, located in the root temset folder, contains the processed labels for 
all microclips. Each row corresponds to a microclip and includes a unique filename (comprising the surgical ID, 
video name, and timestamp) for reproducibility and traceability to the original ESV files. Labels are provided 
both as dot-separated triplets (timeline_label) and as separate columns: timeline_phase_label, 
timeline_task_label, and timeline_action_label to support both single- and multi-target 
formulation.

An additional column, time_to_finish, records the estimated remaining surgical time for each micro-
clip. This is computed by subtracting the microclip’s anchoring frame timestamp from the total duration of the 
surgery, enabling research into temporal prediction tasks such as surgical progress estimation.

Figure 4 illustrates the end-to-end methodology adopted to create the TEMSET-24K dataset, from surgical 
video acquisition to annotation and post-processing for timeline segmentation.

Technical Validation
Annotation Assessment.  To ensure the consistency of labelling in the dataset, we designed an annotation 
process involving a team of colorectal cancer surgery specialists, all accredited with fellowship status with the 
Royal College of Surgeons (RCS, UK). The process began with one surgeon annotating one full video in a shared 
setting to demonstrate the annotation procedure for the multipart ESV files. Following this, another surgeon 
logged into the LS server using their credentials and navigated to the project they intended to annotate, accessing 
the individual video clips for annotation. The LS user interface provided a comma-separated list of phases, tasks, 
and actions for annotating the timeline of each video clip. Annotations were initially performed by one surgeon 
and subsequently validated by at least two other surgeons for cross-checking purposes. In cases of conflicting 
boundaries between the start and end of the labelling triplets, discussions were held to finalize the annotations 
that was agreed by all surgeons. We employed multifaceted strategies involving our proposed dense taxonomy, 
collaboratively annotating one full surgery in shared settings, and holding iterative discussions to resolve conflicts 
to achieve consistent annotations of the complex workflow scenes based on all surgeons’ inputs. The final anno-
tations consisted of labels made up of five phases, 12 tasks, and 21 actions as defined by the proposed taxonomy. 
These annotations were then programmatically exported from LS in JSON format, along with the corresponding 
ESV files.

Deep Learning Model Training.  Data Pre-Processing.  To improve the field of view, irrelevant areas were 
cropped from ESV images comprising black regions. The input image was first converted to grayscale, and a 
binary threshold was used to isolate the circular surgical region from the background. This step enhanced the 
visibility of the surgical scene. Subsequently, the largest contour was identified within the thresholded image and 
computed its minimum enclosing bounding box. A mask corresponding to this circular region was created and 
applied to the original image to extract the surgical area while ignoring the background. The bounding box of the 
surgical region was cropped and this cropped image was resized to its original size using bilinear interpolation. 
This method ensures that only the relevant surgical view is retained and standardised, facilitating improved vis-
ualisation and analysis of the surgical scene.

Problem Formulation.  A key objective of this study was to learn an unknown function F that maps 
high-dimensional TEMS endoscopic surgical videos ∈ × × ×X T H W 3 to a multitarget label triplet 
Y ∈ {Phase, Task, Action}, where, T, H, and W denote the sequence length (no. of frames in the video), height, 
and width of the frames, respectively. To achieve this, this study proposes a Spatiotemporal Adaptive LSTM 
Network (STALNet) that learns the desired mapping. As shown in Fig. 5, STALNet integrates a TimeDistributed 
video encoder ET, followed by an adaptive long-short term memory network (LSTM) module having attention 
as the last layer MAA-LSTM to capture spatial and temporal dependencies in the ESV data. Let φ be the feature 
extraction function using the backbone. The output of the encoder is given by: 
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F E X X( ( )); , (1)T B T C H Wφ= ∈ × × × ×

 where, B is the batch size, T is the sequence length, C is the number of channels, and H and W are the height and 
width of the frames, respectively. We experimented with various encoders, including ConvNeXt (convnext_
small_in22k)40, SWIN V2 (swinv2_base_window12_192-22k)41, and ViT (vit_small_patch16_224)42,43. These 
encoders were chosen for their proven ability to capture detailed spatial features across different scales, which 
is crucial for accurately interpreting surgical video frames. The extracted features are fed into an Adaptive 
LSTM module. This module consists of multiple LSTM layers, where the number of LSTMs depends on the input 
sequence length T. Each LSTM processes the sequence of features and produces hidden states. Let ht represent 
the hidden state at time step t. The hidden states are computed as: 

= − −H M F h( , ),t t tAA LSTM 1

 where ∈ ×Ht
B D . Multiple LSTM layers were applied to capture temporal dependencies across the sequence. 

Incorporating LSTMs into the proposed solution in an adaptive manner significantly improved the model’s 
capacity for surgical scene understanding, as this approach leverages and preserves the temporal coherence in 
the videos, improving the stability and accuracy of the timeline predictions. The final hidden states from each 
LSTM layer are collected as H H H H[ , , , ]T

T B D
1 2 = … ∈ × ×  and their information across the sequence is 

aggregated using an attention mechanism. The attention weights are computed by applying a linear layer to the 
hidden states: 

Fig. 4  Methodology adopted for annotating TEMS surgical videos for surgical timeline segmentation 
includes six major steps. (1) TEMS surgical data acquisition (2) Data Preprocessing, (3) Data Annotation, 
(4) Annotation Verification, (5) Data Post Processing, and (6) Surgical data preparation for training timeline 
segmentation models.
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=A W Hsoftmax ( ),t a t

 where ∈ ×Wa
D 1  is the attention weight matrix. The attention-weighted output is computed as a weighted sum 

of the hidden states: 

O A H
t

T

t t
B D

1
∑= ∈ .
=

×

 The final output is obtained by passing the attention-weighted output through a fully connected layer followed 
by batch normalisation: 

Y W OBatchNorm ( ),h=

 where Wh
D P T A( )∈ × + + , with P, T, and A representing the number of phases, tasks, and actions, respectively. 

A technique was employed here for mean ensembling to create more robust learners for each model, followed by 
heuristic-based prediction correction to address sporadic predictions.

The model is trained using a custom loss function that combines the losses for phase, task, and action pre-
dictions. The total loss is given by: 

α β γ= + + ,p t aL L L L

 where Lp, tL, and aL  are the individual losses for phase, task, and action predictions, and α, β, and γ are their 
respective weights. Each of these losses is computed using the CrossEntropyLossFlat function applied to 
each of the output triplets.

DL Model Implementation.  The model described in this paper was implemented using the fastai44 library. 
A server with 4 NVIDIA LS40 GPUs was used for training and validation. To enhance model convergence, the 
default ReLU activation function was replaced with the Mish activation function, which demonstrated supe-
rior performance in our experiments. Additionally, we substituted the default Adam optimiser with ranger, 
a combination of RectifiedAdam and the Lookahead optimisation technique, providing more stable and 
efficient training dynamics. To further optimise the training process, the to_fp16() method was employed to 
reduce the precision of floating-point operations, thereby enabling half-precision training and improving com-
putational efficiency. The lr_find method was utilised to determine the optimal learning rate for the model, 
implementing a learning rate slicing technique. This approach assigned higher learning rates to the layers closer 
to the model head and lower learning rates to the initial layers, facilitating more effective training. For bench-
marking, we initially evaluated several network architectures, including a basic image classifier, to establish a 
trivial baseline. This simple approach, however, produced significant sporadic predictions due to the absence of 
sequence modelling, highlighting the necessity for a more sophisticated model.

Model Validation.  The model described in this paper was validated against the human annotator ground truth 
using the server with NVIDIA LS40 GPUs. We compared the proposed STALNet architecture with various 
encoder backbones, including ConvNeXt, SWIN V2, and ViT. The output results were analysed against the 
baseline to look at comparative performance metrics and how they captured the spatiotemporal dependencies 
that are crucial for the surgical timeline segmentation task.

Fig. 5  Proposed SpatioTemporal Adaptive LSTM Network (STALNet) for Surgical Timeline Segmentation. 
This network diagram shows the process by which ESV clips are analysed by encoders in order to apply reliable 
timeline segments.
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Statistical Analysis.  For our model evaluation, we utilised standard metrics including accuracy, F1 score, and 
ROC (Receiver Operating Characteristic) curves. To illustrate model variability, standard deviation is reported 
for accuracy and F1 scores. The following equations define these metrics: 

TP TN
TP TN FP FN

TP
TP FP

TP
TP FN

Accuracy 100%,

Precision ,

Recall ,

F1 Score 2 Precision Recall
Precision Recall (2)

= +
+ + +

×

=
+

=
+

 = ⋅ ⋅
+

.

We computed these statistics at two levels: 1) Overall Model Performance: We reported the overall accuracy 
and F1 score on the entire validation set. 2) Class-Specific Performance: These metrics were computed for each 
taxonomy triplet class (phase, task, and action) to identify which classes the model struggles with the most. 
Additionally, ROC curves were used to visually investigate model performance. True positives (TP), false pos-
itives (FP), true negatives (TN), and false negatives (FN) were derived from the predictions, which were then 
used to compute precision and recall, leading to the construction of ROC curves plotted using Scikit-learn. To 
enhance our analysis, we implemented custom visualisations showing video clips, target labels, and model pre-
dictions. We employed color coding (red for incorrect and green for correct predictions) for easy interpretation. 
All data and model results were visualised and analysed using Matplotlib, NumPy, and Scikit-learn.

Model Performance Evaluation.  Table 1 presents the accuracy and F1 scores for each model across the three 
encoder architectures. The baseline image classification learner, which predicts timeline labels based solely 
on individual images, achieved an F1 score of 72.99% with the ConvNeXt encoder, 66.7% with the SWIN V2 
encoder, and 60.87% with the ViT encoder. These results indicate the fundamental capability of deep learning 
models for surgical timeline segmentation but also highlight the limitations of relying solely on spatial infor-
mation. In contrast, our proposed STALNet demonstrated significant performance improvements over the 
baseline model. On average, STALNet achieved an F1 score of 82.78% and an accuracy of 91.69%, reflecting 
an average performance gain of 9.79% in F1 score and 11.38% in accuracy compared to the baseline model. 
These improvements underscore the importance of incorporating spatiotemporal information for surgical 
timeline segmentation. Furthermore, the performance varied between different model encoders used in the 
time-distributed layer for feature extraction. Among the evaluated encoders, the ConvNeXt encoder achieved 
the highest accuracy with 91.69%, slightly better than the SWIN V2 encoder at 91.41%. However, the highest 
performing F1 score, which is a significant metric for evaluating timeline segmentation, was achieved by the 
SWIN V2 encoder at 86.02%, which is approximately 3.24% higher than the ConvNeXt encoder’s F1 score of 
82.78%. This demonstrates that while ConvNeXt offers marginally better accuracy, SWIN V2 excels in terms of 
F1 score, highlighting its superior performance in capturing relevant features for timeline segmentation. Despite 
the higher F1 score of SWIN V2, it required substantial computation during both training and deployment 
phases. On the other hand, ConvNeXt not only delivered competitive performance but also offered a more com-
putationally efficient solution, making it a practical choice for real-world applications. Overall, the STALNet 
model, particularly with the ConvNeXt encoder, demonstrated superior performance in segmenting surgical 
timelines. This highlights the efficacy of integrating spatiotemporal features and selecting robust encoder archi-
tectures to balance performance and computational efficiency.

Sr# Model Descripton

ConvNeXt ViT SWIN V2

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

1 Baseline Vision Classifier 80.36% 72.99% 75.23% 60.87% 78.74% 66.70%

2 STALNet (Ours) 91.69% 82.78% 83.02% 68.29% 91.42% 86.02%

Table 1.  Comparison of Surgical Timeline Segmentation Models.

Phase Name

ConvNeXt ViT SWIN V2

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

[01] Setup 0.99 ± 0.09 0.97 ± 0.02 0.98 ± 0.13 0.94 ± 0.05 0.99 ± 0.10 0.97 ± 0.03

[02] Dissection 0.99 ± 0.10 0.99 ± 0.00 0.97 ± 0.17 0.97 ± 0.00 0.99 ± 0.11 0.99 ± 0.00

[03] Specimen Removal 1.00 ± 0.03 0.97 ± 0.03 1.00 ± 0.04 0.95 ± 0.05 1.00 ± 0.02 0.99 ± 0.01

[04] Closure 0.99 ± 0.09 0.99 ± 0.00 0.98 ± 0.14 0.98 ± 0.01 0.99 ± 0.08 0.99 ± 0.00

[05] Scope Removal 1.00 ± 0.03 1.00 ± 0.00 1.00 ± 0.05 0.99 ± 0.01 1.00 ± 0.03 1.00 ± 0.00

Table 2.  Performance of the STALNet model on Surgical Phases across different encoders.
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The STALNet model was also evaluated for its performance on each of the taxonomy triplets (phase, 
task, action) as shown in Tables 2, 3, and 4, respectively. The evaluation of phase segmentation reveals that the 
model performs exceptionally well across all phases, with only minor fluctuations in performance using dif-
ferent encoders. The ROC curves show its efficacy across these triplet behaviours (see Fig. 6). For example, the 
“Dissection” phase achieved an F1 score of 99.0% with no variance and an accuracy of 99.0% with a variance of 
11.0% with the SWIN V2 encoder. Similarly, the “Setup” phase showed high performance with an F1 score of 
98.0% and an accuracy of 99.0%, both exhibiting low variances (1% and 9%, respectively with ConvNeXt and 
SWIN V2 encoders). Even the “Closure” phase, despite being one of the more challenging phases due to its fewer 
instances, maintained an F1 score and accuracy of 100% for both with variances of 0% and 5%, respectively 
with the SWIN V2 encoder. These results indicate that the model effectively captures and segments the different 
phases consistently across three distinct encoders. In task segmentation, the model showed strong and consist-
ent performance across most tasks. For instance, tasks such as “Longitudinal Muscle Dissection” and “Suturing” 
achieved high F1 scores of 99% for each, with accuracies of 100% and 99%, and low variances (1% and 0%, and 
7% and 8%, respectively) with the ConvNeXt encoder. This consistency reflects the model’s robust ability to 
segment tasks accurately. Conversely, the “Site” task, which had a significantly lower F1 score of 67% with high 
variance 33% with the ConvNeXt encoder. This indicates that the model struggles more with tasks that are less 
frequently represented in the dataset. For action segmentation, the model demonstrated high performance on 

Task Name

ConvNeXt ViT SWIN V2

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

[01] Scope Setup 0.99 ± 0.10 0.96 ± 0.04 0.99 ± 0.11 0.94 ± 0.05 0.99 ± 0.09 0.96 ± 0.04

[02] Instrument Setup 1.00 ± 0.02 0.94 ± 0.06 1.00 ± 0.03 0.81 ± 0.19 1.00 ± 0.02 0.92 ± 0.08

[03] Site Setup 1.00 ± 0.06 0.83 ± 0.17 1.00 ± 0.07 0.84 ± 0.16 1.00 ± 0.07 0.82 ± 0.18

[04] Pressure Setup 0.99 ± 0.07 0.93 ± 0.07 0.99 ± 0.11 0.85 ± 0.15 0.99 ± 0.08 0.93 ± 0.07

[05] Landmarking 0.99 ± 0.07 0.98 ± 0.02 0.98 ± 0.13 0.93 ± 0.06 0.99 ± 0.09 0.97 ± 0.03

[06] Mucosal Dissection 0.98 ± 0.14 0.95 ± 0.04 0.94 ± 0.23 0.87 ± 0.10 0.98 ± 0.15 0.95 ± 0.04

[07] Submucosal Dissection 0.98 ± 0.14 0.96 ± 0.03 0.96 ± 0.20 0.91 ± 0.06 0.98 ± 0.14 0.96 ± 0.03

[08] Circular Muscle Dissection 0.99 ± 0.11 0.96 ± 0.04 0.96 ± 0.19 0.86 ± 0.12 0.98 ± 0.12 0.95 ± 0.04

[09] Longitudinal Muscle Dissection 0.99 ± 0.11 0.97 ± 0.02 0.97 ± 0.17 0.93 ± 0.06 0.99 ± 0.11 0.97 ± 0.02

[10] Specimen Removal 1.00 ± 0.03 0.98 ± 0.02 1.00 ± 0.04 0.96 ± 0.04 1.00 ± 0.02 0.99 ± 0.01

[11] Suturing 0.99 ± 0.09 0.99 ± 0.00 0.98 ± 0.14 0.98 ± 0.01 0.99 ± 0.09 0.99 ± 0.00

[12] Scope removal 1.00 ± 0.03 1.00 ± 0.00 1.00 ± 0.05 0.99 ± 0.01 1.00 ± 0.03 1.00 ± 0.00

Table 3.  Performance of the STALNet model on Surgical Tasks across different encoders.

Action Name

ConvNeXt ViT SWIN V2

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

[01] Aspiration 0.97 ± 0.18 0.85 ± 0.13 0.93 ± 0.26 0.69 ± 0.27 0.97 ± 0.18 0.85 ± 0.13

[02] Bleeding 0.99 ± 0.07 0.82 ± 0.17 0.99 ± 0.10 0.67 ± 0.33 0.99 ± 0.08 0.80 ± 0.19

[03] Clipping Suture 1.00 ± 0.07 0.88 ± 0.12 0.99 ± 0.10 0.71 ± 0.28 1.00 ± 0.06 0.91 ± 0.09

[04] Debris Wash 1.00 ± 0.01 0.50 ± 0.50 1.00 ± 0.01 0.50 ± 0.50 1.00 ± 0.01 0.50 ± 0.50

[05] Deflate Rectum 0.99 ± 0.07 0.89 ± 0.10 0.99 ± 0.10 0.77 ± 0.23 0.99 ± 0.08 0.89 ± 0.11

[06] Dissection 0.93 ± 0.26 0.87 ± 0.08 0.87 ± 0.34 0.76 ± 0.16 0.93 ± 0.26 0.86 ± 0.10

[07] Fluid Wash 1.00 ± 0.05 0.76 ± 0.24 1.00 ± 0.06 0.78 ± 0.22 1.00 ± 0.06 0.73 ± 0.27

[08] Haemostatis 1.00 ± 0.03 0.85 ± 0.15 1.00 ± 0.03 0.79 ± 0.21 1.00 ± 0.03 0.85 ± 0.15

[09] Inflate Rectum 1.00 ± 0.07 0.83 ± 0.17 0.99 ± 0.08 0.70 ± 0.29 1.00 ± 0.06 0.87 ± 0.13

[10] Instrument Positioning 0.91 ± 0.29 0.82 ± 0.12 0.81 ± 0.39 0.67 ± 0.21 0.89 ± 0.32 0.80 ± 0.14

[11] Marking 1.00 ± 0.07 0.91 ± 0.08 0.99 ± 0.10 0.80 ± 0.20 0.99 ± 0.07 0.90 ± 0.09

[12] No Action 0.97 ± 0.18 0.87 ± 0.11 0.93 ± 0.25 0.77 ± 0.20 0.96 ± 0.20 0.85 ± 0.13

[13] Out of Body 0.99 ± 0.09 0.98 ± 0.02 0.99 ± 0.11 0.96 ± 0.03 0.99 ± 0.09 0.97 ± 0.02

[14] Retraction 0.95 ± 0.22 0.78 ± 0.19 0.92 ± 0.26 0.66 ± 0.30 0.94 ± 0.24 0.77 ± 0.20

[15] Scope Insertion 1.00 ± 0.07 0.95 ± 0.05 0.99 ± 0.07 0.94 ± 0.06 1.00 ± 0.06 0.96 ± 0.04

[16] Scope Positioning 0.96 ± 0.19 0.87 ± 0.11 0.92 ± 0.27 0.73 ± 0.23 0.96 ± 0.19 0.87 ± 0.11

[17] Scope Removal 1.00 ± 0.03 1.00 ± 0.00 1.00 ± 0.05 0.99 ± 0.01 1.00 ± 0.03 1.00 ± 0.00

[18] Smoke 1.00 ± 0.07 0.87 ± 0.13 0.99 ± 0.10 0.71 ± 0.28 0.99 ± 0.08 0.82 ± 0.17

[19] Specimen Removal 1.00 ± 0.03 0.97 ± 0.03 1.00 ± 0.04 0.95 ± 0.05 1.00 ± 0.02 0.99 ± 0.01

[20] Stitching 0.98 ± 0.15 0.93 ± 0.06 0.95 ± 0.21 0.85 ± 0.12 0.97 ± 0.16 0.92 ± 0.06

[21] Washout 0.99 ± 0.11 0.91 ± 0.08 0.97 ± 0.17 0.79 ± 0.20 0.99 ± 0.12 0.90 ± 0.09

Table 4.  Performance of the STALNet model on Surgical Actions across different encoders.
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frequently occurring actions such as “Scope Insertion” and “Stitching” achieving F1 scores of 99% and 95%, and 
accuracies of 100% and 98%, respectively with the ConvNeXt encoder. The variances for “Scope Insertion” were 
1% for the F1 score and 3% for accuracy, while “Stitching” had variances of 4% and 15%, indicating stable and 
reliable performance. However, actions like “Debris Wash” and “Haemostatis,” which had lower F1 scores of 50% 
for each, also exhibited higher variances 50% for each of the above actions with the ConvNeXt encoder. These 
findings suggest that the model’s performance is consistent for well-represented actions, but struggles with less 
frequent actions.

In summary, our technical validation is deliberately structured to demonstrate the effectiveness of STALNet’s 
multi-target modelling strategy, which offers superior performance and semantic consistency compared to flat 
single-label approaches. In early experiments, we trained STALNet as a single-label classifier across all 84 triplet 
combinations. This unitarget formulation consistently plateaued at  ~ 72% accuracy and struggled to model the 
underlying dependencies between triplet components. While it did not produce invalid triplets—since each out-
put class was predefined—it lacked interpretability and failed to generalise well to complex surgical workflows.

Fig. 6  STALNet Performance Review using ROC Curves for Taxonomy Triplets. The top row of ROC curves 
shows the performance of ConvNeXt, ViT and SWIN V2 encoders on labelling high level TEMS surgical 
“Phases”. The next two rows show the performance of STALNet encoders on labelling TEMS surgical “Tasks” 
(intermediate level) and “Actions” (the fine level).
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We also explored a multi-head architecture without tailored loss weighting. This improved expressiveness 
but still resulted in clinically implausible combinations, as the model lacked guided supervision to respect the 
hierarchical structure between phases, tasks, and actions. Our final multi-target approach, with three prediction 
heads and tailored loss functions for each triplet component, enabled the model to learn semantic relationships 
across components. This design achieved up to 91.7% accuracy and 86.0% F1 score on individual elements (see 
Tables 1 to 4), while effectively avoiding unrealistic triplet outputs by learning their internal structure. Although 
the results are shown in separate tables for interpretability, they originate from a single, unified model trained 
jointly with a triplet-aware loss.

The results confirm that the STALNet model with the ConvNeXt encoder performs well and consistently 
across phases, tasks, and actions with sufficient training data, as evidenced by low variance in well-represented 
classes. However, as the number of classes increases—from five phases to 11 tasks to 21 actions—the modelling 
task becomes more challenging, leading to higher variance and lower performance for less frequent classes. This 
trend underscores the complexity of handling a larger number of classes and highlights the need to address class 
imbalance. Techniques such as weighted dataloaders and customised loss functions can mitigate these issues, 
improving the model’s robustness and performance across all categories.

The results also illustrate the model’s superior capabilities in capturing the nuances of surgical workflows. 
The ROC curves highlights that the Swin V2 encoder outperforms other encoders in terms of accuracy and F1 
score. The model’s output is visually depicted in an infographic in Fig. 7. This shows the input video clips with 
predicted and actual taxonomy triplet labels from a batch. This visualisation clearly demonstrates the trends 
discussed in the performance tables and ROC curves, providing a comprehensive understanding of the model’s 
efficacy in real-world scenarios.

The focus of this study was to provide a high-fidelity resource that enables the development of AI models 
for accurate surgical video indexing, such as our proposed STALNet architecture. While the objective is not to 
directly evaluate models for upstream tasks like surgical skill assessment—which require deeper reasoning and 
semantic understanding—this foundational work is essential for enabling scalable retrospective video analysis 
and supporting future clinical applications. To support this, the structured phase-task-action triplet taxonomy 
was co-designed with a panel of expert colorectal surgeons, aiming not only to capture workflow granularity but 
also to embed clinically meaningful signals that could potentially serve as proxies for surgical competence. For 
example, metrics derived from such factors as the frequency of intraoperative adverse events (e.g., bleeding), 
the length of inactive periods ("no action”), or the volatility of phase transitions—could, in future studies, be 
investigated as indicators of procedural fluency or surgeon expertise. These hypotheses are particularly relevant 
for distinguishing between experienced and novice operators, as variability in temporal workflow progression 
may indeed reflect differences in training or technical confidence.

Usage Notes
The dataset described in this study is available and is designed to facilitate the training and evaluation of 
machine learning models for surgical timeline segmentation based on the proposed taxonomy. Users can use 
several software packages to analyse and process the dataset, with Python being particularly useful for data han-
dling, preprocessing, and model training. Key libraries include FFmpeg and av for video processing and frame 
extraction, timm for accessing various pre-trained models, PyTorch for deep learning model implementation 
and training, fastai for simplifying the training process and integrating with PyTorch, nbdev for creating repro-
ducible and literate programs, and Matplotlib for visualising data and model performance. It is recommended 
to normalise the video frames to standardise the input data. Microclips can be generated based on custom logic 

Fig. 7  STALNet: Batch of results for visual inspection. This figure illustrates the output of the STALNet model 
compared to human annotations—the ground truth (GT). Each tile displays the first, middle, and last frames 
of a video clip, along with predictions and GT for each taxonomy triplet (Phase, Task, Action) at the top. 
Green font indicates agreement with the GT, while red font indicates disagreement. In this example, there is 
widespread agreement except for one microclip where the model predicted the action “retraction” instead of 
“dissection” as labeled by the human annotators.
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using tools like FFmpeg. Additionally, Matplotlib and pandas can be used to analyse data distribution and class 
imbalance in the dataset.

When integrating or comparing this dataset with others, it is essential to ensure consistent preprocessing 
steps to maintain uniformity. Utilising common evaluation metrics can help effectively compare performance 
across different datasets. Considering the temporal nature of surgical workflow data when combining it with 
static datasets is crucial to preserve contextual information. This project has been formally registered, and 
patients have given consent for their fully anonymised data to be shared openly to support surgical quality 
improvement, education and research. All consent forms have been checked by the core clinical team. All data 
has been fully anonymised in line with UK GDPR and NHS information governance standards, ensuring that 
individuals cannot be identified. Surgeons and data scientists can access the dataset at the following link(after 
signing the data sharing agreement): https://zenodo.org/records/14016844. By following these guidelines and 
using the tools and recommendations provided, researchers can effectively leverage this dataset to advance the 
field of surgical timeline segmentation and related applications. For additional resources, code, and tools, please 
refer to the Code Availability section.

In this study, the proposed timeline segmentation model has been employed to index a large number of 
trans-anal endoscopic microsurgery procedures, potentially creating an intuitive front-end platform for sur-
geons, educators and surgical training committees to analyze surgical videos effectively in a time-effective man-
ner. The methodology described here is generalizable and can be used in any form of surgery where video 
recording is performed. It is possible to create search capabilities of the ESV searching platform, which leverages 
the timeline segmentation models to efficiently analyze multipart surgical videos of a single video or across a 
large library of videos. Surgeons will have the ability to search within a single video or across their entire “per-
sonal” surgical video bank using the timeline labels generated by the model. Taking this to the next level, service 
evaluation, training or NHS governance committees would be able to do this at scale to ensure quality of surgical 
procedures are maintained at scale and across surgical domains. This personalised searching capability is crucial 
for improving surgical technique and demonstrating effectiveness in various governance tasks, such as service 
evaluation or appraisal.

Currently, trainees or surgeons do not routinely submit VBAs for appraisal. This is polyfactorial but may be 
due to video file size, difficulty scrolling through large videos to find “key steps” and lack of a reliable standard-
ised process to index videos. The model demonstrated here has the potential for clinicians to use STALNet to 
index their videos so that they can quickly locate video clips of specific intra-operative surgical events from large 
video datasets. Once the model has been validated in a clinical  trial, a future project may focus on video library 
analysis to identify key behaviors that can be modified to improve future surgical performance. The timeline also 
enables comparisons between surgeons based on their surgical behavior, task efficiency, end-to-end operative 
progression, and intraoperative risk management. Any future clinical feedback system should allow users to 
reliably and securely filter and sort videos by type, speciality, and hospital, providing a powerful tool for detailed 
clinical data science analysis. This sets the foundation for continuous improvements in surgical practice in a 
large cohort of surgeons. The possibilities offered by this system are vast, empowering clinicians to conduct 
comprehensive reviews of intra-operative tasks to improve surgical outcomes for patients.

Code availability
The necessary scripts used in the generation and processing of the dataset for this study is available in the GitHub 
repository at https://github.com/bilalcodehub/evr. This repository contains all the necessary scripts and tools 
for working with the dataset. Included are data preprocessing scripts for normalising video frames, generating 
microclips using FFmpeg, and handling data distribution and class imbalance with pandas and Matplotlib. 
Additionally, the repository provides model training and evaluation scripts for implementing and training deep 
learning models using PyTorch and fastai, with configurations for integrating pre-trained models from timm. 
There are also tools for evaluating model performance using metrics like accuracy, F1 score, and ROC curves, as 
well as for visualising data and model results with Matplotlib.To ensure reproducibility, nbdev scripts for creating 
reproducible and literate programs are included.

The repository also provides detailed documentation on the versions of software used and instructions on how 
to set up and run the scripts. Specific variables and parameters used to generate, test, and process the current data-
set are provided within the scripts, ensuring the study can be replicated accurately. We aim to facilitate the reuse 
of our dataset and the replication of our study, allowing other researchers to build upon our work in the field of 
surgical timeline segmentation. For further assistance, please refer to the documentation in the GitHub repository 
or contact the corresponding authors.
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