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ABSTRACT: The tree-level scattering amplitudes for tr(¢?) theory can be interpreted as a
sum over the vertices of a polytope known as the associahedron. For each graph G, there
exists a natural generalisation of the associahedron, which is constructed by considering tubes
and tubings of the underlying graph. This family of polytopes are called graph associahedra.
The classical associahedra then arise as the graph associahedron for the path graphs. It
is therefore natural to associate to each graph associahedron an amplitude-like object, we
refer to as the amplitube, defined via a sum over its vertices. Recently, also in the context
of tr(¢?) theory, progress has been made towards defining a new geometric object, coined
the cosmohedron, which computes not the amplitude, but the cosmological wavefunction
as a sum over its vertices. This polytope can be constructed by consistently blowing up
all boundaries of the associahedron to co-dimension one. Building on these results, in the
present paper, we generalise the notion of the wavefunction for arbitrary graphs. These new
expressions, which we call cosmological amplitubes, are defined via a sum over the vertices of
a corresponding polytope, the graph cosmohedron. The graph cosmohedra are constructed by
considering regions and regional tubings of the underlying graph which we introduce. Like
the cosmohedron, the graph cosmohedra can be obtained by consistently blowing up all
boundaries of the corresponding graph associahedron to co-dimension one. This new family
of polytopes constitutes a vast generalisation of the cosmohedron, and we provide explicit
embeddings for them, which builds upon an ABHY-like embedding for the graph associahedra.
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1 Introduction

In recent years the study of scattering amplitudes has fostered a rich interplay between
mathematics and physics. As research progresses, it becomes increasingly clear that much of
the structure of scattering amplitudes is governed by purely geometrical, or perhaps even
combinatorial, principles. In fact, the observation that cubic Feynman diagrams can be
used as labels of the vertices of a polytope, the associahedron, provides the first hint of a
possible geometrical interpretation of amplitudes. In the amplitudes inspired description of
the associahedron each facet corresponds to a factorisation channel of the n-point amplitude,
and each vertex corresponds to a cubic Feynman graph. The tree-level scattering amplitudes
of tr (¢3) theory for example can then be viewed as a sum over vertices of the associahedron.
In this context the familiar statements of locality and unitarity of the amplitude translate into
statements about factorisation properties of boundaries of the associahedron. By taking the
planar dual of the tree-level Feynman diagram this can be phrased in terms of triangulations of
an n-gon. In this way each boundary of the associahedron is labelled by a partial triangulation
of an n-gon, with the vertices corresponding to full triangulations, and the facets corresponding
to single chords. The sum over vertices of the associahedron then becomes

1
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where the sum is over all triangulations of the n-gon and X;; correspond to the chords of
the triangulation. Upon identifying the X;; with the planar Mandelstam variables, which
are the squares of sums of consecutive momenta, the above expression recovers the tree-level



amplitudes of tr(¢3) theory. This combinatorial statement was made concrete by the discovery
of the ABHY associahedron [1], a positive geometry [2] that provides a realisation of the
associahedron in the kinematic space of n-point massless scattering whose canonical form
encodes tree-level amplitudes in tr(¢)® theory.

More recently techniques developed in the study of scattering amplitudes have started to
be applied in a cosmological setting, see [3—10] and references therein for advances in this
direction. The object of study in this context are the cosmological wavefunctions. At the
level of combinatorics the wavefunction is described not by triangulations of an n-gon but
rather by nested polyangulations or Russian dolls [3]. In terms of nested polyangulations
the wavefunction takes the following form

v, =Y ]I P (1.2)

Here the sum is over all maximal sets P of non-overlapping!' sub-polygons of the n-gon,
and the Pp are variables associated to the perimeter of each sub-polygon P. Much like the
associahedron, the nested polyangulations can be used to define their own polytope named
the cosmohedron [3]. The facets of the cosmohedron correspond to all partial triangulations
of the n-gon, and as such are in bijection with the boundaries of the asociahedron, whereas
the vertices correspond to maximally nested polyangulations.

Meanwhile, in the mathematics literature, the above developments have lead to the
study of amplitude-like expressions which satisfy their own versions of locality and unitarity.
These include for instance the CEGM amplitudes of [11] which provide a grassmannian
generalisation of the tr(¢3) amplitudes. Other examples of amplitude-like constructions
include those provided by matroids [12] and the surface functions of [13]. To motivate the
main topic of study in this paper, we consider yet another interpretation of the boundary
stratification of the associahedron in terms of tubes and tubings of a path graph on (n — 3)
vertices. A tube of a graph is defined as a subset of vertices of the graph which induce a
connected subgraph. Whilst a tubing is a collection of tubes which are either nested or do not
intersect and are not adjacent on the graph. In this language the facets of the associahedron
are labelled by single tubes of the path graph, and the vertices are labelled by maximal
tubings. The advantage of this definition is that it can immediately be applied to arbitrary
graphs in which case the associahedron is replaced with the larger set of polytopes named
graph associahedra [14]. Since the amplitude associated to the associahedron is defined via a
sum over its vertices it is natural to extend this definition to arbitrary graph associahedra,
where we refer to the corresponding functions as amplitubes defined as

Ac= ) H}é, (1.3)
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where 7 sums over all maximal tubings of the graph G, and X; are formal variables associated
to each tube . In the case where we take G to be the path graph the above formula reduces
to the familiar tr(qﬁ?’) amplitudes. For the amplitube, the analogue of locality is that the
variables appearing in the denominator of Ag all correspond to connected subgraphs, and

!By non-overlapping we mean that the chords defining each sub-polygon are non-overlapping.



unitarity states that upon taking a residue at X; = 0 the amplitube factorises into a product
of two simpler amplitubes. Furthermore, there exists an ABHY-like embedding of the graph
associahedra in the graph kinematic space spanned by the set of X;. By calculating the
canonical form of the graph associahedron and pulling-back to an appropriate subspace one
recovers the associated amplitube.

The focus of this paper will be to extend the notion of amplitubes into a cosmological
setting by generalising nested polyangulations into tubing notions which can then be applied
to arbitrary graphs in order to define cosmological amplitubes. Guided by the results for
tr(¢3) theory, we will see that the cosmological amplitubes are naturally defined in terms
of objects we refer to as regional tubes and regional tubings as

Vo= Y H%. (1.4)

peq:,lcr;ax rep (s

Here we sum over all maximal regional tubings p and take the product over all regions r of p,
which play the role of nested polyangulations and sub-polygons, respectively, for arbitrary
graphs. Just as for the tr (¢3) wavefunctions, these functions also have their own geometric
counterpart which we refer to as graph cosmohedra whose boundary structure encode the
cosmological amplitubes. As such each facet of the graph cosmohedron will correspond
to a boundary of the corresponding graph associahedron. As we shall explain the graph
cosmohedra can be realised in the graph kinematic space by building upon the ABHY-like
embedding of the graph associahedra. In the case of the empty graph, path graph and fully
connected graph we show that graph cosmohedra reproduce the permutohedron, cosmohedron
and permutoassociahedron respectively. In this way the graph cosmohedra can be seen as an
interpolation between the permutohedron and the permutoassociahedron [15]. This suggests
that, from a mathematical perspective, the graph cosmohedra constructed here might more
naturally be referred to as graph permutoassociahedra.

This paper is organised as follows. In section 2 we introduce the notions of tubes and
tubings of graphs which are needed to define the amplitubes and their associated graph
associahedra. Many of the properties of the graph associahedra have already appeared in
the literature and we will spend the majority of the first part of the paper collecting and
rephrasing these results in term of tubings. Most importantly this will include an ABHY-like
embedding, we refer to as the tubing embedding, for general graph associahedra which can
be simply stated when phrased in terms of tubes. In section 3 we introduce the notion
of regions and regional tubings of arbitrary graphs which are needed in order to define
the cosmological amplitubes and their corresponding graph cosmohedra. Having defined
the combinatorial object of interest, we turn to providing a geometric realisation of the
graph cosmohedra. We provide an explicit embedding of the graph cosmohedra in the graph
kinematic space and present explicit examples of graph cosmohedra for the empty, path
and complete graph. At the end of this section we discuss the factorisation properties of
graph cosmohedra on the co-dimension one facets. In section 4 we conclude and comment
on possible future research directions.
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Figure 1. An illustration of the four possible configurations of tubings: intersecting, adjacent, nested
and non-adjacent non-intersecting tubes. The last two pairs of tubes are compatible.

2 Graph associahedra

We start in this section by recalling the definition and basic facts about tubes and tubings of
a graph. Our discussion will follow closely the definitions provided in [14]. These definitions
will allow us to define the corresponding amplitube of a graph. After the combinatorial
construction, we provide an embedding of the graph associahedra, which we refer as the tube
embedding, that will be the starting point for the definition of graph cosmohedra in the next
section. The tube embedding for graph associahedra we provide combines the original ABHY
embedding of the associahedron [1] with the embedding in [16] for general graph associahedra.

2.1 Tubes and tubings

Let G be a graph with the vertex set Vi and edge set Eg. A tube t = {v1,v9,... ,v‘t|} C Vo
on G is a proper non-empty subset of vertices of G such that the induced subgraph G[t] is
connected. The set of all tubes of G is denoted by Ti;. We also define Tg = Tg U {Vg},
and in this context, we call the graph vertex set Viz the root. We introduce the following
terminology relating two tubes ¢; and t2 on a given graph: we say that

o t1 and ty intersect if t; Nty # 0 and t1 ¢ to and to Z tq,

o t1 and ty are adjacent if t; Nty =0 and t; Uty € T,

e t1 is mested in tg if ¢; is a proper subset of to: t; C to,

e 11 and to are compatible if they do not intersect and they are not adjacent.

These concepts are easily visualised as displayed in figure 1.

A subset of tubes 7 = {t1, 12, ... ,tm} C T¢ is called a tubing of G if all tubes in 7 are
mutually compatible and the set Vi \ U; t; is not empty. A tubing is said to be mazimal if
no more compatible tubes can be added. We denote the set of all tubings of G by ' and
the set of all maximal tubings by I'®*. Given a tubing 7 of G, we define T = 7 U V5. Then
we can define a graded poset Pz(G) on the set of tubes ¢ € T by inclusion, where the rank
function is given by the number of tubes in 7 between a given tube and the root. Examples
of tubings 7 and their corresponding posets Pz(G) are

r(e=l)- A r(E=)- A (&) | e

where the top vertex of each poset corresponds to the root, which is represented as the
rectangle around the graph G. The set of tubings I'¢ for a given graph G, together with
inclusion, defines a partially ordered set which describes the boundary stratification of
a convex polytope called the graph associahedron of G and denoted as Ag. As such all



boundaries of Aq are labelled by tubings, with the facets labelled by tubings containing a
single tube, and the vertices labelled by maximal tubings. Two facets in Ag are adjacent,
i.e. intersect along a co-dimension-two boundary, if the tubes in their corresponding tubings
are compatible. At the level of tubings the intersection of two compatible facets is given
by taking the union of the tubings labelling them. The co-dimension of each boundary is
specified by the cardinality of the corresponding tubing. In the following we will provide an
explicit embedding of the graph associahedra that will realise the combinatorics described
here. The graph associahedra contain familiar families of polytopes including;:

o for the path graph with n + 1 vertices, denoted by P,1, the graph associahedron of
P41 is the classical n-dimensional associahedron,

o for the graph with n + 1 vertices and Eg = (), denoted N,, 11, the graph associahedron
is the n-dimensional simplex,

e for the complete graph on n + 1 vertices, denoted K,+1, the graph associahedron is the
n-dimensional permutohedron.

An important property that we wish to emphasise is that all graph associahedra satisfy
factorisation properties on their boundaries. Let the reconnected complement G¥ of a tube
t € T be the graph with the vertex set Vi \ ¢ such that two vertices a and b are connected
by an edge in G7 if either of the induced graphs G[{a,b}] or G[{a,b} Ut] is connected, as
illustrated in the example below

G = tOI —  a=_7] (2.2)

Then the facet of the graph associahedron of G corresponding to the tubing 7 = {t¢}, containing

the single tube ¢, factorises as the Cartesian product of two simpler graph associahedra
O (Ac) = Agpy x Ac; - (2.3)

Similar to the definition above, we can define the reconnected complement for a tubing
7 = {t1,...,t7} that contains pairwise non-adjacent and non-intersecting tubes, by iterating
the above procedure for each t € 7. We denote the resulting graph as Gy = ((G},);, - - .)ZT‘.

2.2 Amplitubes

Having defined the graph associahedron of G combinatorially we can proceed by associating
the corresponding amplitube Ag, that is the function defined as

Ac= Y H);, (2.4)

TGFE&aX ter

where the sum is over all maximal tubings of G and we have introduced a variable X; for
each tube. We collectively refer to the set of all variables {X;}e7, as the graph kinematic
space for graph G.



As an example of an amplitube, let us consider the path graph G = P, 1. If we label its
vertices using labels {1,2,...,n + 1} from left to right, then each tube is labelled by a string
of consecutive integers [i,j] = {7,i+1,...,j} for i < j. Then, upon replacing X; j — Xj 2,
where the latter are planar Mandelstam variables defined in [1], the amplitube (2.4) recovers
the familiar tree-level amplitudes in tr (¢3) theory. Under this mapping, the tubes encircling
a single vertex X|; ;) are mapped to the Madelstam invariants X; ;2. For example, the
amplitube for the path graph on three vertices P5 is given by

1 1 1 1 1
= + + + - :
XyXpy XXy Xy ¥es X Xes  XopXs

Another example is provided by the amplitube for the complete graph on three vertices
K3 that takes the following form

1 1 1 1 1 1
= + + + + + :
Xy Xy Xy Xy Xy Xesy Xy Xesy XopXasy XX
(2.6)

Ag,

At the level of the amplitube, the factorisation property of the graph associahedra (2.3) is
reflected by the following factorisation of its residue

Ag) = Agy - Ag- 2.
}}tgso( c) = Acpy - Acs (2.7)
As an example, again considering the complete graph on three vertices K3, we have

1 1
Res (A = — 4+
xaeo (A5) Xy Xy

= Ap, - Ap,, (2.8)

which reflects the correct factorisation of the facet Xy 2y = 0 of the graph associahedron
AK3, since Kg[{l,Q}] = P2 and (K3)?1,2} = Pl.

To translate to the language of physics it is easy to see that the analogue of locality for
the amplitubes is given by the fact that the variables appearing in the denominator of Ag
each correspond to connected subgraphs of G, whilst the analogue of unitarity is the fact
that the residues of amplitubes are given by products of simpler amplitubes.

2.3 Associahedron embedding

We will now turn the combinatorial statements of the last section into geometric ones by
providing a realisation of the graph associahedra as convex polytopes. First, we want to
point out that in the case of the path graph P,1, there exists an embedding intimately
connected to the kinematics of n-particle scattering in tr(qbg) theory, commonly referred to as
the ABHY associahedron. It is this construction which we wish to modify and then generalise
to arbitrary graph associahedra. We will refer to the embedding introduced in this section
as the tube embedding. Our prescription follows closely the one originally laid out for the
associahedron in [1] together with earlier work on realisations of graph associahedra in [16].
Similar constructions have already appeared in the literature, for instance see [17, 18].
We fix the graph G. For each tube t € T, in addition to the kinematic variable X, we
also introduce a cut-parameter c;, which we take to be a positive real number. We impose



that the kinematic variables satisfy the following linear constraints

Xe==> v, (2.9)
t'Ct
where the sum runs over all tubes that are subsets of t. Additionally, we impose a similar
relation also for the variable Xy, associated to the root:

Xvg=— Y o. (2.10)
tETG

Importantly, in the case where the tube ¢ = {v} contains a single vertex v, we have Xy =
—C{y}, which allows one to re-express the linear relations (2.9) as

X =) Xp— D, v (2.11)

vet t'Ct, |t >1

Here the sum over c’s runs over all tubes ¢’ that are subsets of ¢ and contain more than
one vertex. The tube embedding of the graph associahedron can now simply be stated in
terms of the variables Xy, as

Ag = {(X{l}, R 7X{\Vg\}) S RlG‘ : (VteTG X > O) and (XVG = 0)} (2.12)

In the case of the classical associahedra Ap, ,,, corresponding to the path graph G' = Py 1,
the tube embedding agrees with the one obtained by ABHY in [1], after the latter is projected
on an appropriate n dimensional subspace? of the kinematic space. Examples of the tube
embedding for the graph associahedra associated to the path graph Py, the cycle graph Cy
and the complete graph K, are displayed in figure 2.

To make a further comparison with the ABHY embedding, we can invert (2.9) to obtain
an expression for the ¢’s in terms of X’s. The expressions for the cut parameters then take
the form of an alternating sum as

o =X+ > X — >, X+ D>, Xyy—.... (2.13)

t1Cto t2Ct1Cto t3CtaGt1 Cto

In the case of the classical n-dimensional associahedron Ap, . ,, the above formula reduces

+1)
to the familiar conditions

lig) = Xpi—15] + Xj—1) — Xpig) — Xji—1,5-1]» (2.14)

where the X|; j can again be identified with the square of sums of consecutive momenta
i.e. the planar Mandelstam variables.

We emphasize that the definition (2.12) is different from the one provided in the original
ABHY construction for classical associahedra. In our case, the polytope Ag sits on a
hyperplane Xy, = 0 inside a |V|-dimensional Euclidean space. In the original construction,
the space was parametrised by (g) — n planar Mandelstam variables, and the polytope was
residing on the intersection of the conditions (2.14). Our construction also reduces to the
one provided in [18] when all cut-parameters ¢; are set to 1.

20ne needs to project the ABHY associahedron on the space parametrised by the planar Mandelstam
variables X; ;42 fori=1,2,...,n— 2.



Figure 2. Embeddings of three-dimensional graph associahedra for the path graph, cycle graph, and
complete graph on four vertices. These polytopes are examples of the three-dimensional associahedron,
cyclohedron and permutohedron, respectively.

Finally, every graph associahedron Ag is a simple convex polytope, i.e. a d-dimensional
polytope with all vertices incident to exactly d facets. Therefore one can find its canonical
differential form using the general formula

Q(Ag) = Y sign, /\ dlog(Xy), (2.15)

TEFgax teT

where the sum runs over all vertices of Ag, and the signs can be determined by requiring
that the canonical form Q (Ag) is projectively invariant. The amplitube (2.4) can then be
recovered from the canonical forms as

Q(Ag) = Ag duc, (2.16)

where dug = dXy AdXy A ... AdXy, -1y and we solved the condition Xy, = 0 to
eliminate Xy} from our expressions.

2.4 Examples of graph associahedra

Before moving on to discuss graph cosmohedra, we take a closer look at some two-dimensional
examples of graph associahedra that correspond to graphs with three vertices, which we
will return to in the next section. Consider first the empty graph N3 on three vertices,
ie. Vn, = {1,2,3} and En, = 0. The inequalities defining the graph associahedron Ay,
in this case are

Xy 20, X320, Xpz3>0, Xpgy+ Xpop + X3y = cp12.3) (2.17)

and the resulting polytope is a two-dimensional simplex, i.e. a triangle. Next, consider
the path graph P; on three vertices. In this case the inequalities that define the graph
associahedron Ap, are given by

X320, Xy 20, Xyg 20,
Xy + Xp2p 2 ey Xqop + Xigy 2 ¢y
Xpy + Xy + X3y = c2y T ¢28) +cu23) (2.18)



Graph G | dimension | codim-1 | codim-2 | codim-3

o o 1 2
—e 1 2
o o o 2 3 3
—o o 2 4 4
—o—o 2 9 5)

\]
(@)
(@)

—o—o o 3 9 21 14
Y 3 10 24 16

3 12 30 20

3 14 36 24

Table 1. The number of boundaries of various co-dimension of the associahedron on graph G.

These inequalities carve out a pentagon i.e. the classical two-dimensional associahedron.
Finally, consider the complete graph K3 on three vertices. The resulting set of inequalities is

Xy 20, X020, X3 >0,
Xy +Xqoy 2 ey, Xpoyp + Xyzy 2 ca3y, Xy + Xgy 2 cqsp
Xy + Xqoy + X3y = cq12) +¢q2.3) +cq13) +¢(12,3) (2.19)

which produce a hexagon i.e. the two-dimensional permutohedron. We provide a list of
combinatorial data associated to graph associahedra for various graphs with two, three and
four vertices in table 1.

3 Graph cosmohedra

We now wish to promote the amplitubes introduced in the last section into a cosmological
setting, the result of which we will refer to as cosmological amplitubes. As we shall explain
these functions are most naturally written in terms of regions and regional tubings of the
graph, which we introduce. In the case of the path graph the expression for the cosmological
amplitube reduces to that of the wavefunction for tr (¢3) theory. As was the case for the graph
associahedra and the amplitubes in the previous section, we will see that the cosmological
amplitubes also have a geometric counterpart we refer to as graph cosmohedra. Graph
cosmohedra are a new class of convex polytope that interpolate between the permutohedron
and the permutoassociahedron. We will provide explicit embeddings for the graph cosmohedra
which will rely on the already introduced variables for the graph associahedra. In the case of
the path graph, the graph cosmohedron and its embedding recovers the recently introduced
cosmohedron and the embedding provided in [3].
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Figure 3. The fifteen regions for the graph Ps.

3.1 Regions and regional tubings

In the case of the path graph our goal is to reproduce the cosmohedron of [3] whose combi-
natorics is governed by sub-polygons and their nested polyangulations. Therefore, in order
to extend this to an arbitrary graph we will need to generalise the notions of sub-polygons
and nested polyangulations to regions and nested regionalisations. These will become the
regional tubes and regional tubings we now introduce.

We say that r = {t1,1o, ... ,t|7,|} C Tg¢ is a region of the graph G if

o 7 is a subset of T such that all tubes of r are compatible as tubes,
o the poset defined by inclusion on the elements of r has a single maximal element,

o all other tubes in r are compatible with each other and not nested.

We refer to the element in r that is maximal with respect to inclusion as the parent t,(f) and

all other elements as the children tg;). Note, the parent will either correspond to a tube
tg) € Tg or to the root tg") = V. In other words every region r is a graded poset with
at most two layers, with one parent and a (possibly empty) set of children. Every tubing
T € Iy defines a collection of regions that we denote as R(7). To construct the set R(7) we
take for each t € T the region with ¢ as the parent together with all its children t D ¢’ € 7.
An example of this procedure is given by the following

M=) - (=] e o o)

Although the notion of the regions is well defined for any graph, we can get an intuitive

understanding by considering planar graphs. In this case, we can depict the regions by
shading in the area between the parent and the children in the planar embedding of the
graph. For example, for the path graph Ps there are 15 possible regions, six of which have
the root as the parent, as depicted in figure 3. Moreover, since the graph Ps is related to the
two-dimensional associahedron that labels triangulations of a pentagon, there is a natural
bijection from the set of regions of Ps to the set of subpolygons of a pentagon.

We say two regions r and r’ of G are compatible if we have

(rur)\ Vg € lg, (3.2)

,10,
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Figure 4. An example of the sub-region relation <., for a subset of the regions of Ps.

which means that all tubes in the union of r and 7’ form a tubing of G. A region ' is a
sub-region of r if it can be realised as a region on the graph G(") := G[t,(f)]*t(r) , that is a

region in the reconnected complement in the graph induced by the parent tube tg) of all

children tubes tg:i). An example of the sub-region relation, denoted 71 <y e 72 for r1 is a
sub-region of r9, on a subset of the regions of Ps is given in figure 4.

Given two compatible regions that are not sub-regions of one another, we refer to their
intersection as the border. The border will necessary be empty or contain a single tube.
The set of vertices V(") = t;(f) \ U; t((;) covered by a region r is defined as the complement
of the set of vertices in the children inside the set of vertices of the parent. A collection
of sub-regions {r;} of r is said to cover r if V(") = U;V (") and V(") are mutually disjoint.
When we have such a covering, we use the notation r = U;r;. Again, these definition are
much easier to visualise in a simple case, for example

e | = [ | U (. (3.3)

An alternative example of a covering of the same region is given by?

o | = |G| U e (3.4)

Finally, we define the notion of regional tubing p = {r1,...,7|,} of the graph G as a subset
of mutually compatible regions for which:

o for every region r € p there either exists no sub-regions of r in p,
e or r is covered by a collection of sub-regions in p.

We denote the set of tubes appearing as borders between the regions of p as B(p). For
example, the following collection of regions

pv={| | [ ] & G === o},

®

3Relations (3.3) and (3.4) can be interpreted as two triangulations of a particular quadrilateral inside
a hexagon.

— 11 —



is a regional tubing of the path graph P, whose set of borders is given by

B(p) = { €&, ®. ® I (3.6)

The sub-region relation on the set of regions contained in p, is displayed in figure 5. In
this case the regional tubing labels a non-simple vertex of the graph cosmohedron for the
path graph on four vertices. This can be seen by noting that the number of regions in the
bottom layer, corresponding to the facets meeting at this vertex, exceeds the dimension of
the graph cosmohedron, which is three in this instance.

A regional tubing p is said to refine another regional tubing p’ if p’ C p. The set of
regional tubings together with inclusion defines a partially ordered set which, as we will
argue in the following section, gives the boundary stratification of the graph cosmohedron
Cq. All boundaries of the graph cosmohedron Cg are then labelled by regional tubings, with
the vertices labelled by maximal regional tubings, i.e. the regional tubings that are maximal
elements with respect to inclusion. We will denote the set of all regional tubings by ®g,
and the set of maximal regional tubings by ®&2*.

There exists an alternative diagrammatic representation of regional tubings which arises
by endowing tubings with an integer label. Let p be a regional tubing and consider the poset
on the elements of p defined by the partial order relation: r; < 72 if 71 is a sub-region
of ro. We define the depth w of a region r in this poset as the maximal length of a chain
T = Tw <reg Tw—1 <reg - -- <reg 70 = ra. For all regions in p of a fixed depth w we take the
union of their pairwise borders and assign each element the label w. This results in a tubing
where each tube receives an integer label. Note, the region rg associated to the root trivially
appears by itself at depth O for all regional tubings. To encode this information on a diagram
we assign a colour to each label {0,1,2,3,...} and fill in each tube with the corresponding
colour. To illustrate this alternative notation, we consider the following regional tubing that

corresponds to a facet of the cosmohedron on Py

-] [ ] & |- [&—] 1

A co-dimension two boundary i.e. an edge of the same cosmohedron is

pe= 1| @D 0 | = [T | (3

while a vertex is given by

po=pu{ [0 ] o |- [0 . (3.9)

To better understand this alternative notation, one can compare this representation of p,

with the one in figure 5. In this case the only tube appearing as a border at level 1 is the tube
{1,2}. At level two, there are two tubes which appear as borders, namely the tubes {1} and
{4}. For more complicated graphs these diagrams no longer serve the purpose of simplifying

“Here rq = {Vg} refers to the region corresponding to the root which is the maximal element of the poset
defined by the sub-region relation.
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Figure 5. The sub-region relation on the set of regions contained in the regional tubing p, defined

in (3.5). This corresponds to a non-simple vertex of the corresponding cosmohedron for the graph Pj.

notation, in which case we revert back to the definition of regional tubings in terms of either
sets of regions or tubings endowed with the additional integer labels, as previously described.

It is worth emphasising that generally the partial ordering of regional tubings described
above will lead to boundary posets for non-simple polytopes, as already noted in [3]. For
example, the regional tubing p, from (3.9) corresponds to a non-simple vertex of the cos-
mohedron on P, which sits in the boundary of four facets. We will return to this point
in detail in section 3.5.

3.1.1 Boundaries and factorisation

Similar as for graph associahedra, also graph cosmohedra have simple factorisation properties
of their facets. To describe them, we introduce the notion of the spine of a tubing. Given
a tubing 7 of a graph G we define a graph spine_(G) whose vertices are given by the tubes
t € 7 such that two vertices t; and to are connected by an edge if ¢; and ¢y share the same
parent or one is the parent of the other in the graded poset Pz(G). As an example we
have the following spine graphs

spine( @—o—@ )— E‘, spine( @—o—o—@)— '_I (3.10)

With this definition the factorisation property on the co-dimension one boundaries of the

graph cosmohedra, labelled by the tubing 7, are given by

aT(CG) = AspineT(G) X H CG[t;”]* ) (311)
reR(7) o

where the latter factor contains the graph cosmohedra for the graphs obtained by restricting G
to one of the regions of 7. An example of the factorisation of a co-dimension one boundary of
the cosmohedron for the graph Py is displayed in figure 6. In this case we have 7 = {{1}, {3}}
and spine_(P;) = P5. Moreover, there are three regions generated by the tubing 7: two
of them result in the trivial reconnected components P; for which the cosmohedron is a
point, and the third one results in the reconnected component Ps, for which the cosmohedron
is a segment. Therefore, the facet of the cosmohedron Cp, specified by 7 is the Cartesian
product of two segments.

,13,



Figure 6. An illustration of the factorisation property of a facet of the cosmohedron for the graph
P, with labels ordered as {0, 1,2, 3}.

3.2 Cosmological amplitubes

Having defined the combinatorics of the graph cosmohedra we can now go ahead and define
their corresponding cosmological amplitubes as

Ug= Y H%’ (3.12)

peq)néax TEp T

where we assigned the variable R, to the region 7. We also set Ry, = 1 for the region
containing the root as the parent, and no children. This formula correctly reproduces the
one found in [3] since the set of regional tubing agrees with the set of non-overlapping
subpolygons of an n-gon for path graphs, and the regions are in one-to-one correspondence
with subpolygons.

As an example we consider again the path graph Ps on three vertices. In this case the
graph cosmohedron Cp, has 10 vertices with the corresponding regional tubings

S _ | @eB| ) _ =] . PP = | ©—=®| (3.13)

where the remaining regional tubings can be read off from figure 7. Then, the cosmological

amplitube associated to the path graph Pj is®

1 1 1 1
- + + +
er RT5 7?’7”77z7"12 RTS RT7RT10Rr12 RTE) RT8 RTIORT13 RTQ RTS 7?’7"8 7?"'ﬂ13

1 1 1 1
+ + + +
RTZ RTG R"’S RT14 RTG RTS erer14 RTG RTQ RTll RTlS RTB RTG R"'Q RTlS

1 1
3.14
i RTSRMRWRT‘Q - Rn RT4RT‘7RT‘9 ’ ( )

Up,

whose terms are in one-to-one correspondence to that of the wavefunction of tr(¢3) theory [3].
Note, the expression for the cosmological amplitube can be re-organised into a sum over

5By convention we have chosen to drop an overall factor coming from the region Ry, associated to the
entire graph.
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Figure 7. The graph cosmohedron for the path graph on three vertices which reproduces the two
dimensional cosmohedron.

vertices of the corresponding graph associahedron as

B 1 ( 1, )+ 1 ( L1 )
RT5RT7R7,12 er RTIO RTSRTSRTIZi RTIO RTZ

Up,

n 1 ( 1 n 1 >+ 1 < 1 + 1 >
RrgResRriy \Ryy — Royy RrsRrgRris \Ryyy R

1 1 1
. 3.15
TR R Ry (R * R) (3:15)

In the physics literature this decomposition is refered to as a sum over ‘channels’. Generally,

each vertex of the graph associahedron is labelled by a maximal tubing 7 and contributes
|FspineT(G)] many terms to the cosmological amplitube.

3.3 Cosmohedron embedding

We now move on to provide an embedding for the graph cosmohedron for any graph G. We
will start with the coordinate system that we introduced for the tube embedding of the graph
associahedron Ag described in section 2.3, and provide additional inequalities for each tubing
which will carve off facets of this polytope in order to arrive at the corresponding graph
cosmohedron Cg. This construction will reproduce the cosmohedra defined in [3] for path
graphs, but will provide previously unknown polytopes for a general graph.

First, for each tubing 7 on G we introduce a new variable Y; and a cut parameter e, and set

Vr=) Xi—e¢. (3.16)

ter
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As in the case of path graphs in [3], the € parameters must satisfy certain conditions to
correctly cut out the graph cosmohedron. In particular, we demand that

€r + € = €rurt + €0, (317)
for every pair of compatible tubings 7 and 7’ such that

o the regions in R(7) \ R(7 N7’) are all nested inside a single region r; of R(T N7’),
o the regions in R(7') \ R(7 N'7’) are all nested inside a single region ro of R(7 N7’),

e and ry # ro.

An example of a configuration satisfying (3.17) for the graph Py is given by

> T e = (e + cEoew (3.18)
since
@—0—0 L @—o—o—o:@—o—o #* @—0—0 = @—0—@ Ll e—eo—eo—.
(3.19)

Additionally, for all other pairs of compatible tubings 7 and 7" we require
€r + €7 < €U + Erapt (3.20)

An example of a configuration where the inequality is not saturated, again for the graph
Py, is given by

T + e <o + T (3.21)

since we have the following

@*u@—o—o—o:@—c:@—ouo—o—@—o. (3.22)

The set of equalities in (3.17) are trivially satisfied if the cut parameters e, are written as
a sum over regions of the tubing 7 as
&= >, 0o, (3.23)
reR(T)
where we introduced new parameters 0, for each region of G. Finally, the inequalities (3.20)
are satisfied whenever ¢, is a convex function of |V,| that vanishes on the region specified
by the root: r = {Viz}. A particular example of such a function is
5 =6 pr, (3.24)
ICV,
where V. is the complement of the set of vertices of 7 in Vg, pr > 0 for all I C Vg with
[I] > 1, and 0 < 0 < 1 is a small positive parameter. We also set py,; = 0 for all v € V.

With this notation, we define the graph cosmohedron Cq as the intersection of the collection
of half spaces defined by Y; > 0 for all tubings on G:

Co ={(Xqy--» Xqapy) € R (Vrer, Y7 > 0) A (Xy, = 0)}, (3.25)

restricted to the Xy, = 0 hyperplane. Explicit examples of the embedding of the graph
cosmohedra for the path, cycle and complete graphs on four vertices are displayed in figure 8.
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Figure 8. Embeddings of three-dimensional graph cosmohedra for the path graph, cycle graph, and
complete graph on four vertices. In the case of the path graph and complete graph we recover the
cosmohedron and the permutoassociahedron respectively.

3.4 Examples of graph cosmohedra

Let us demonstrate the graph cosmohedron inequalities in some simple examples. We begin
with the empty graph on three vertices N3. In this case the inequalities of the graph
cosmohedron are given by a modification of those of (2.17)

X12>0ppas, Xe>0pngzy, Xs2>0paa), (3.26)
together with the additional inequalities

X1+ Xo > 0(pg12y + P13y +Pg2,3))s
X1+ X3 > 0(pg1,2) + P13y + P23}
Xo+ X3 > d(p12) + (1,30 +Pg2.3))- (3.27)

Then the cosmohedron Cp, coincides with the two-dimensional permutohedron displayed in
figure 9. More generally, the graph cosmohedron for the empty graph on (d + 1) vertices
reproduces the d-dimensional permutohedron. An explicit embedding of the three-dimensional
example is displayed in figure 8.

Next consider the path graph P3 on three vertices. The inequalities carving out the
cosmohedron in this case are given by the modified version of (2.18), namely

X1>0pa3y, Xo2>0ppgzy, Xs2>0pao),
X1+ Xo>cpoy +0ppy, Xo+ X3 2>cpa3y + 00123 (3.28)

In addition, we have five new inequalities

X1+ X3 > 0(pgi2y + i3y +P2,3))s

2X1 + Xo > cp19) +6(pp12y +Pp1,3) + P23y
X1 42X > c19y +0(pg12y + P13y + Pr2,3y)
2Xo + X3 > cpa3) +6(pp12y +Pp1,3) + Pi2,3));
Xo +2X3 > cpa3) +0(pg1,2y + P13y + Pi2,3))- (3.29)

)
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Figure 9. The graph cosmohedron for the empty graph on three vertices which reproduces the two
dimensional permutohedron.

As the result, the graph cosmohedron Cp, is the decagon displayed in figure 7. For arbitrary
path graphs, one recovers the family of cosmohedra defined in [3]. A three dimensional
example is shown in figure 8.

Finally, we consider the complete graph on (d + 1) vertices. In this case the graph
cosmohedron produces the family of polytopes known as permutoassociahedra introduced
n [15]. The two-dimensional permutoassociahedron with boundaries labelled by regional
tubings is displayed in figure 10. An explicit embedding of the three-dimensional example is
displayed in figure 8. We provide a list of combinatorial data associated to graph cosmohedra
for various graphs with two, three and four vertices in table 2.

3.5 Canonical forms for graph cosmohedra

Since a generic graph cosmohedron is not a simple polytope, its canonical form cannot be
obtained from the formula (2.15) that we used for the graph associahedra. However, one can
use its modification, inspired by the recent results in [19], where the canonical form of any
convex polytope can be written as a linear combination of terms coming from all vertices.
For a d-dimensional graph cosmohedron, the formula is

QCe)= > > apr )\ dlog(Yp), (3.30)

PERE™ re(I77)) pel

where the first sum is over all vertices of the cosmohedron, the second sum is over all d-element
subsets of faces meeting at the vertex specified by p. The coefficients «, ; can be fixed on the
case-by-case basis by demanding that the form Q¢ is projectively invariant.

After pulling back to the appropriate subspace and stripping off the measure, the last step
needed in order to recover the cosmological amplitube is to make the following substitution
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Figure 10. The graph cosmohedron for the complete graph on three vertices which reproduces the
two dimensional permutoassociahedron.

Graph G | dimension | codim-1 | codim-2 | codim-3
o o 1 2
—e 1 2
o o o 2 6 6
—o o 2 8 8
A 2 12 12
Y 3 50 132 84
3 62 164 104
3 74 192 120

Table 2. The number of boundaries of various codimension of the cosmohedron on graph G.
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for the Y wvariables

1
150 RipREy

where Rg
a border. Having made the replacements (3.31) and keeping only terms with simple poles

, 1 =1,2, correspond to the unique pair of regions in p which share the tube ¢ as

we arrive at the expression for the corresponding cosmological amplitube Wg.

We demonstrate the above procedure with an example. The first interesting case where
the graph cosmohedron is not simple is for the path graph P on four vertices. In this case
the graph cosmohedron Cp, has 12 non-simple vertices, an example of which is given by

= (o] (3.32)

This vertex is defined by the intersection of the following four facets

= el W= el Vs ] = [ ] 339)

and the contribution of this vertex to the canonical form Q(Cp,) is

CaeaO)

QCp,) = dlogyi ANdlogY
===

NdlogY +.... (3.34)

After pulling back to the appropriate subspace and stripping off the measure, we make
the following substitutions

1 1 1 1
= + +
Y R R R R R R ’
1 1 1
Y R R TR R ’
== S -
1 1
Y R R ’
=—1 S
1 1 1
- == = + = : (3.35)
o = >

and keep only terms with simple poles. The contribution to the canonical form (3.34) from
this vertex provides the correct contribution to the cosmological amplitube given by

1
Up = .
PR TR R R R R + (3:36)
© © (o= 2] [e—]
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4 Outlook and conclusions

In this paper we introduced a new class of polytopes, that we call the graph cosmohedra,
that are of interest to mathematicians and physicists alike. From the physics point of
view, they generalise the recently introduced cosmohedra that capture the combinatorics
of singularities of the wavefunctions for tr(¢3) theory. For mathematicians, we provide a
combinatorial and geometric realisation of a new class of polytope that generalise associahedra
and permutohedra. The combinatorial stratification of the graph cosmohedra is given by
regional tubings that generalise polyangulations of n-gons. We also provide an explicit
embedding of these polytopes (3.25) that generalises the ABHY-like embedding (2.12) initially
studied for associahedra. To each graph associahedron, we associate a function — amplitube —
that possesses interesting factorisation properties reminiscent of the factorisations of scattering
amplitudes in high energy physics. Whilst, for each graph cosmohedron, we associate a
function — cosmological amplitube — that possesses factorisation properties reminiscent
of the cosmological wavefunctions of tr(¢?®) theory.

There are a number of future research direction which our work suggests. The graph
associahedra studied here are a special case of generalised permutohedra introduced and studied
in [18, 20, 21]. As such it would be interesting to extend the construction presented here
to generalised permutohedra in order to define their corresponding ‘cosmological’ polytopes.
We expect the resulting construction to be closely related to the work of [22]. In a similar
direction the CEGM amplitudes introduced in [11] provide a vast generalisation of the familiar
tr(qﬁS) amplitudes, and it would be interesting to see whether a cosmological version of these
generalised amplitudes exists as well.

The authors of [3] introduced yet another new family of polytopes referred to as correla-
hedra, which encode the geometry of cosmological correlation functions. The correlahedra
have two special facets, one which takes the form of the associahedron, and one which takes
the form of the cosmohedron. As such the correlahedra live in one higher dimension than
these polytopes. It is natural to extend the notion of correlahedra to graph correlahedra
which have two special facets corresponding to the graph associahedron and graph cosmo-
hedron. Since the embedding of the graph associahedra/cosmohedra presented here are
already described in a one higher dimensional space we expect a simple extension of our
inequalities to recover the graph correlahedron.

Finally, in the case of the graph P, 1, the regional tubings introduced here provide a
way to encode all sub-polygons of the n-gon on a single graph. Since the recently discovered
kinematic flow, which governs the structure of differential equations satisfied by FRW cor-
relators [4, 5], is naturally phrased in terms of sub-polygons, it would be interesting to see
whether the regional tubings can be generalised to also describe the kinematic flow.
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