sensors

Article

A Multi-Class Intrusion Detection System for DDoS Attacks in
IoT Networks Using Deep Learning and Transformers

Sheikh Abdul Wahab >, Saira Sultana !, Noshina Tariq >*{7, Maleeha Mujahid !, Javed Ali Khan *

and Alexios Mylonas %*

check for
updates

Academic Editor: Ilsun You

Received: 11 June 2025
Revised: 21 July 2025
Accepted: 4 August 2025
Published: 6 August 2025

Citation: Wahab, S.A.; Sultana, S.;
Tariq, N.; Mujahid, M.; Khan, J.A ;
Mylonas, A. A Multi-Class Intrusion
Detection System for DDoS Attacks in
IoT Networks Using Deep Learning
and Transformers. Sensors 2025, 25,
4845. https://doi.org/10.3390/
525154845

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

Department of Computing and Technology, H-9 Campus, Iqra University, Islamabad 44000, Pakistan;
232886@students.au.edu.pk (S.A.W.); saira.sultana@iqraisb.edu.pk (S.S.);
maleeha.mujahid@iqraisb.edu.pk (M.M.)

Department of Avionics Engineering, Main Campus PAF Complex E-9, Air University,

Islamabad 44000, Pakistan

Department of Artificial Intelligence and Data Science, National University of Computer and Emerging
Sciences, Islamabad 44000, Pakistan

Department of Computer Science, Cybersecurity and Computing Systems Research Group, University of
Hertfordshire, Hertfordshire AL10 9AB, UK; j.a.khan@herts.ac.uk

Correspondence: noshina.tariq@isb.nu.edu.pk (N.T.); a.mylonas@herts.ac.uk (A.M.)

Abstract

The rapid proliferation of Internet of Things (IoT) devices has significantly increased
vulnerability to Distributed Denial of Service (DDoS) attacks, which can severely disrupt
network operations. DDoS attacks in [oT networks disrupt communication and compromise
service availability, causing severe operational and economic losses. In this paper, we
present a Deep Learning (DL)-based Intrusion Detection System (IDS) tailored for IoT
environments. Our system employs three architectures—Convolutional Neural Networks
(CNNs), Deep Neural Networks (DNNs), and Transformer-based models—to perform
binary, three-class, and 12-class classification tasks on the CiC IoT 2023 dataset. Data
preprocessing includes log normalization to stabilize feature distributions and SMOTE-
based oversampling to mitigate class imbalance. Experiments on the CIC-IoT 2023 dataset
show that, in the binary classification task, the DNN achieved 99.2% accuracy, the CNN
99.0%, and the Transformer 98.8%. In three-class classification (benign, DDoS, and non-
DDoS), all models attained near-perfect performance (approximately 99.9-100%). In the
12-class scenario (benign plus 12 attack types), the DNN, CNN, and Transformer reached
93.0%, 92.7%, and 92.5% accuracy, respectively. The high precision, recall, and ROC-AUC
values corroborate the efficacy and generalizability of our approach for IoT DDoS detection.
Comparative analysis indicates that our proposed IDS outperforms state-of-the-art methods
in terms of detection accuracy and efficiency. These results underscore the potential of
integrating advanced DL models into IDS frameworks, thereby providing a scalable and
effective solution to secure IoT networks against evolving DDoS threats. Future work will
explore further enhancements, including the use of deeper Transformer architectures and
cross-dataset validation, to ensure robustness in real-world deployments.

Keywords: Internet of Things security; Distributed Denial of Service; Intrusion Detection
System; Deep Learning; Convolutional Neural Network; Transformer; Synthetic Minority
Over-sampling Technique; anomaly detection

Sensors 2025, 25, 4845

https://doi.org/10.3390/s25154845

https://doi.org/10.3390/s25154845
https://doi.org/10.3390/s25154845
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0004-0248-0439
https://orcid.org/0000-0002-9754-253X
https://orcid.org/0000-0003-3306-1195
https://orcid.org/0000-0001-8819-5831
https://doi.org/10.3390/s25154845
https://www.mdpi.com/article/10.3390/s25154845?type=check_update&version=2

Sensors 2025, 25, 4845

2 of 35

1. Introduction

The Internet of Things (IoT) has enabled various industries to provide real-time surveil-
lance, automation, and improved decision-making capabilities. For example, healthcare,
smart homes, smart cities, and even industrial systems have adopted IoT technologies, con-
siderably enhancing their efficiency and productivity [1,2]. However, the same technologies
enabling increased connectivity also heighten the cybersecurity risks, especially for IoT
systems. IoT systems are significantly at risk of Distributed Denial of Service (DDoS) at-
tacks, which can turn off devices and networks by flooding them with malicious traffic [3,4].
The inherently low computational power, restricted storage, and limited energy resources
make IoT devices easier targets for such DDoS attacks and challenge the implementation of
efficient, robust, and enduring security measures [5].

Different Intrusion Detection Systems (IDS) have relied on fundamental Machine
Learning (ML) as their primary technique in response to these challenges [6-8]. It has
proven to be effective to an extent. However, there are still glaring issues that these systems
fail to solve. Classical ML approaches are known to not perform well with data with many
variables, limiting generalization and, therefore, achievement of target detection [9-11].
When looking at the context of the problem, the classical model performs poorly since it
struggles to mediate the divide between sophisticated DDoS traffic and benign entities.
Another aspect to take into consideration is the lack of automation and feature manipulation,
which leads to the need for manual intervention. Because of this, the model demonstrates
gaps and limitations against new threats [12,13]. The model also struggles in dealing with
unknown attack variants. It is also important to highlight that classical models bound these
problems with imbalanced data sets, a common characteristic of intrusion detection leading
to biased outcomes in terms of detection results.

In recent years, Deep Learning (DL) models have surfaced as this growing al-
ternative for solving these issues and have the potential to improve IDS capabilities
significantly [6,14-16]. Algorithms like Convolutional Neural Networks (CNNs), Deep
Neural Networks (DNNs), and, more recently, Transformers do particularly well at provid-
ing accuracy and generalization with high-dimensional data because they automatically
extract intricate patterns from large datasets [17,18]. However, the existing solutions for
DL-based IDS will still have significant gaps, such as poor computational resource effi-
ciency, over-reliance on optical training, and poor data balance management [19]. Also,
the limited computing resources such as processing, memory, and energy available in IoT
environments usually make the application of standard DL models impractical [20].

This work addresses the above gaps and develops an efficient DL framework for
DDoS attack detection in IoT networks with limited resources. The proposed approach
incorporates robust class imbalance mitigation through normalization, scaling, and SMOTE-
enhanced data preprocessing. This work presents specialized architectures based on CNNSs,
DNNSs, and Transformers customized to the low-resource constraints posed by IoT devices.
The models use low-power hardware, lower requirements for computation, and improved
control of overfitting /underfitting to increase generalization and decrease overfitting. The
innovative integration of all these factors will increase the performance of the models when
used in severely resource-constrained IoT environments.

The key contributions of this paper are summarized as follows:

1. Development of optimized CNN, DNN, and Transformer architectures uniquely
adapted for the effective detection of DDoS attacks in resource-constrained IoT envi-
ronments, emphasizing lightweight computation and rapid response capability.

2. Implementation of advanced preprocessing techniques, including Min—-Max normal-
ization and SMOTE, to effectively mitigate class imbalance, thereby significantly
improving the accuracy and reliability of intrusion detection.

Sensors 2025, 25, 4845

3 0f 35

3. Demonstration of a realistic deployment scenario in an IoT-based smart environment
to validate the practical applicability of the proposed detection models in operational
network settings.

4. Utilizing the latest CIC-10T-2023 dataset, which is specifically designed for IoT envi-
ronments for binary, 3-, and 12-class classification tasks.

The rest of this paper follows with a review of related work in Section 2. Sections 3 and 4
detail a use case related to DDoS attacks in IoT enviornments and the proposed method-
ology, respectively. After that, the experimental setup and training process are described
in Section 5. The results and performance metrics are discussed in Section 6. It concludes
with a discussion and final remarks in Section 7.

2. Related Work

The IoT has grown rapidly in recent years. It has introduced new areas of concern,
such as security, particularly about DDoS attacks. Recent studies have aimed towards
developing effective DL mitigation strategies using the CIC-IoT 2023 dataset. This dataset
has recently grown in popularity among scholars analyzing network traffic due to its rich
sequential information and the attention mechanisms of Transformer architectures. Notably,
applying DL techniques has provided ideal results, but challenges still exist regarding
real-time detection, explainability, and resource utilization.

Tseng et al. [21] employed Transformers on the CIC-IoT 2023 dataset, achieving high
accuracy, though their work lacks robustness testing against adversarial attack strategies.
Similarly, Wasswa et al. [22] explored Vision Transformers (ViTs) for botnet classification,
but their narrow focus excluded broader DDoS attack vectors, limiting generalizability.
Hybrid DL models have also gained traction. Mahdi et al. [23] combined CNNs with LSTMs
to improve detection accuracy; however, the computational demands of their model hinder
its viability in real-time, resource-constrained IoT systems. Lamba et al. [24] compared Al-
driven IDS models and confirmed Transformer superiority, yet overlooked class imbalance
issues, which can distort multiclass performance evaluations.

Efforts to integrate explainability and generalization have also emerged. Ullah et al. [25]
proposed a multimodal CNN-BERT architecture but relied heavily on manual feature
engineering, affecting adaptability. Baral et al. [26] applied XAI principles in an end-
to-end framework, enhancing transparency, though throughput limitations remain. In
parallel, Li et al. [27] introduced LLM-driven IDS agents, offering interpretability but
lacking empirical validation for scalability. To mitigate data scarcity, Almaraz-Rivera
et al. [28] investigated self-supervised learning, which improved generalization but re-
mained dependent on labeled fine-tuning data. Hizal et al. [29] implemented a two-stage
binary-multiclass DL IDS with efficient feature pruning; however, their reliance on static
features risks overlooking emerging attack vectors.

Alternative strategies like GANs and federated learning have also contributed to this
domain. Sharma et al. [30] enhanced attack detection using GAN-augmented ML models,
while Bertoli et al. [31] facilitated decentralized detection with privacy-preserving federated
setups. Yao et al. [32] utilized BiGANSs to uncover novel threats, though their approach
was computationally heavy. Thiyam and Dey [33] addressed class imbalance via SMOTE
and TOMEK-Link, stabilizing minority class detection. Other notable methods include
Soft-Ordering CNNs [34], which combined hierarchical modeling with outlier detection for
anomaly identification, and hybrid CNN-BiLSTM approaches [35], which captured spatial
and temporal traffic features more effectively. Zhao et al. [36] applied attention-based
FlowTransformer models with high accuracy, though scalability remained a concern.

In contrast, Karimy et al. [37] deployed a lightweight 1D-CNN for real-time anomaly
detection on edge devices, showcasing the feasibility of deep models in constrained IoT

Sensors 2025, 25, 4845

4 of 35

environments. Recent work by Bolat et al. [38] proposed a software-defined intrusion
detection framework for IoT edge networks, leveraging SDN and edge computing to detect
DDoS attacks. While effective in architectural design, the approach does not integrate
deep learning or address multiclass classification challenges. Similarly, Liu et al. [39]
introduced MalDetect for encrypted malware traffic detection using early packet features
and online learning via Random Forest. Though efficient in detecting TLS-encrypted flows,
their method lacks adaptation to IoT-specific threats and does not incorporate deep neural
architectures. These studies emphasize performance and early detection but leave open
challenges in scalability, deep learning integration, and real-time adaptability, which our

work addresses, see Table 1.

Table 1. Comparison of related work on DDoS detection using CIC-IoT 2023 dataset.

Ref. Approach Key Contribution Limitation
[29] DL DL and feature selection Feature selection might not generalize well
[30] ML & GAN Improved IoT attack detection GAN: s require extensive training data

: Decentralized learning approach for network High computational cost of federated
[31] Federated Learning security learning
[32] BiGAN Handling unknown attacks High resource requirements for BiGANs
[33] Hybrid Balancing Addressing class imbalance in IDS models i%;srllli)éigzerﬁttmg due to balancing
[34] CNN Multi-stage anomaly detection Soonr?gﬂ?;ﬁs(t)iged approach requires high
[35] CNN-BiLSTM Capturing spatial and sequential patterns BiLSTM increases model complexity
[40] Transformer-based Network flow analysis Transformers require large-scale computing
[37] 1D CNN Lightweight and edge-based anomaly detection Limited to edge devices .wi.th CNNs
[41] PSO + DL Adaptive IDS using PSO aC}ic}))llli((i::ziaosgsd approach limits decentralized
[42] Ensemble Learning Enhance accuracy Ie_ﬁgglnfgf: IP;? ;32105 nal demand due to
[43] ML-based Efficient detection Efficiency gains depend on dataset quality
[21] Transformer-based Multi-class IDS g)r(?)réifsoil‘”gers are computationally
[44] LSTM-based Cyberattack detection LSTM models require significant memory
[45] Feature Selection Less data leakage zﬁiggaies:lectlon may remove useful
[46] I(-:I?:z?; r(‘):;tile FS Feature selection Featu're selection 'adds processing'overhead
[23] Hybrid DL Detecting cyberattacks iﬁ;ﬁ)?t;thOds fnerease processing
[47] ML-based Threat detection in SDN networks Limited to SDN-controlled IoT networks
[48] IDS using ML Reconnaissance attack detection Sp ec1f1c' to cIC_IOT 2023 dataset, limiting

eneralization
% donb ; limited to broader IoT
[22] Vision Transforr.ner Botnet detection in IoT networks D(ngeattgrclksétnets, imited to broader lo
[24] Si—tl;i;eoi Intrusion Comparison of Al-based IDS models 1[1)1?1321232 ecor151der real-world class
[25] Multimodal DL Multimodal IDS E;rv‘da‘ggiff features limit adaptability to
Explainable Al-based . Requires further optimization for
[26] IDE Explainable Al high-throughput networks
[27] LLM-assisted IDS Integration of LLMs in IDS with interpretability Scalabl'hty concerns due to large-scale
modgl integration

[28] %(Zzlaf;ililf;rwsed Self-supervised learning Eﬁg}igﬁ? negxtenslve labeled data for

The reviewed literature highlights the continuous evolution of DL techniques for
intrusion detection in IoT environments. While Transformer-based models have shown
promising results in handling large-scale network traffic data, their high computational
requirements remain a challenge for real-time applications. Future research should focus
on lightweight and efficient IDS frameworks that can operate seamlessly in resource-
constrained IoT environments while maintaining high detection accuracy.

Despite the advancements in DL and Transformers for DDoS detection, several lim-
itations persist. First, many studies do not account for real-time deployment challenges,

Sensors 2025, 25, 4845

5 of 35

including latency and energy constraints in IoT networks. Second, adversarial robust-
ness remains a critical concern, as attackers continuously evolve their strategies to evade
detection systems. Finally, while explainability is an emerging focus, existing methods
often sacrifice detection accuracy for interpretability, necessitating a trade-off between
performance and transparency.

Future research should address these gaps by integrating lightweight Transformer
models optimized for edge computing environments. Additionally, the development of
adversarially robust detection mechanisms can enhance the resilience of DL-based security
systems. Lastly, hybrid approaches that combine rule-based heuristics with data-driven
learning can improve both interpretability and detection accuracy, leading to more effective
IoT security solutions.

3. Use Case: DDoS Attacks in IoT Environments

In recent years, the rapid proliferation of IoT devices across critical sectors such as
healthcare, smart homes, and industrial automation has led to an unprecedented level of
network connectivity and interdependency. These interconnected IoT devices facilitate
significant operational efficiency, real-time monitoring, and enhanced decision-making
capabilities. However, this widespread connectivity introduces substantial cybersecurity
vulnerabilities, particularly susceptibility to DDoS attacks.

In a typical DDoS scenario in an IoT environment, malicious actors compromise multi-
ple IoT devices—often due to inherent security flaws or weak authentication protocols—to
create botnets. These compromised devices collectively launch coordinated attacks by flood-
ing targeted nodes or servers with overwhelming volumes of network traffic, effectively
exhausting available resources and rendering the services unavailable. The consequences
of such attacks may be catastrophic, such as prolonged service outages, patient safety risks
in healthcare systems, disrupted smart city operations, and moderate-to-severe financial
damage in the industrial domain.

An example is a smart healthcare IoT system consisting of medical sensors that monitor
a patient’s health and send critical data for real-time monitoring. A DDoS attack may
interfere, resulting in delays in emergency action systems and death. The same applies to
industrial IoT systems, where DDoS attacks can be targeted to stop automated processes,
resulting in increased downtime, lower productivity, and significant economic losses.

Because of these consequences, there is an emerging need for efficient techniques
to deal with DDoS attacks designed for IoT networks with specific limitations such as
low power, limited processing capability, memory, and any other resource that may be
constrained. Therefore, developing a lightweight, efficient, and reliable IDS capable of
rapidly identifying and mitigating DDoS attacks is essential for maintaining the integrity;,
availability, and resilience of IoT-enabled critical infrastructures.

4. Proposed Methodology

This section describes the systematic methodology employed in the study, detailing
each step comprehensively. The methodology is structured into two main phases: (1) Data
Preprocessing and (2) Model Development and Training. Each phase includes explicit
subsections that clarify the mathematical formulations, algorithmic processes, and rationale
behind the methods used. Table 2 represents the list of symbols and notations used in this
section. In addition, Figure 1 illustrates the proposed methodology at a glance.

Sensors 2025, 25, 4845

6 of 35

Table 2. List of symbols and notations.

Symbol Description
D ={X,y} Dataset consisting of features X and labels y
x Normalized feature values

Xmin, Xmax

Xres, Yres

(Xtrains Yirain) ’ (Xtest, Ytest)
1o

Ul
A
B
E
h
W,b

Wo, Wk, Wy, Wo
QK V

(\\]ir«w> ST NN T T R

Minimum and maximum values of feature x
Resampled dataset after SMOTE balancing

Training and testing dataset splits

Initial learning rate

Learning rate at a given epoch

Learning rate decay factor

Batch size

Total number of training epochs

Number of attention heads in the Transformer model
Model weights and biases

Query, key, value, and output weight matrices for attention

mechanism

Query, key, and value matrices in self-attention
Attention score matrix

Self-attention output

Multi-head attention output

Normalized multi-head attention output
Linear transformation of hidden representation
Activated hidden representation after ReLU function
Final transformed feature representation
Normalized transformed feature representation
Predicted class probabilities

Loss function (cross-entropy loss)

Trained DL model

Model evaluation metrics

CIC-loT 2023 Dataset
Preprocessing Phase

) ¥ [i
| Feature Selection | l Class Balancing with SMOTE ‘ | Normalization (Min-Max, Log-Transform) I | Duplicate Removal
I ¥ i
K-Fold Cross-Validation | Binary Classification | 3-Class Classification | | 12-Class Classification
[I I
Repeat for Each Fold Train/Test/Validate
Split
Train Models CNN Model DNN Model Transformer Model
| Hyperparameter Tuning | | Update Parameters | Convolutional Neural Network | | Deep Neural Network | l Transformer Model |
I Optimize Learning Rate & Epochs | [Feature Extraction with CNN Layers ‘ I Deep Feature Leaming I [Self-Attention with Transformer |

v v V

‘ Global Average Pooling ‘ l Dropout Regularization | | Multi-Head Attention |

Fully Connected Layer

| Softmax Activation for Classification |
|

Figure 1. Proposed methodology.

Evaluate Performance

Performance Metrics (Accuracy, Precision, Recall, F1-Score, ROC-AUC)

Compare Models
Select Best Model

Final Model Deployment | | Model Comparison

Sensors 2025, 25, 4845

7 of 35

4.1. Dataset Description

The dataset utilized in this study is the CICI0T2023 dataset (Available online: https:
//www.unb.ca/cic/datasets/iotdataset-2023.html (accessed on 15 April 2025)), a publicly
available dataset specifically designed for IoT security research. This dataset consists of
network traffic data collected from 105 IoT devices, covering a diverse range of attacks, in-
cluding DDoS, Denial of Service (DoS), Reconnaissance, Web-Based, Brute Force, Spoofing,
and Mirai attacks. The dataset contains a total of 46,686,579 samples, distributed across
33 different attack types.

Table 3 provides an overview of the dataset, including the number of samples per
category, attack diversity, and distribution.

Table 3. Overview of CICIoT2023 dataset.

Category Number of Attacks Total Samples IoT Devices
DDoS 12 33,932,344 105
DoS 4 3,318,595 105
Reconnaissance 5 490,283 105
Web-Based 6 365,109 105
Brute Force 1 13,064 105
Spoofing 2 307,593 105
Mirai 3 2,633,124 105
Benign - 1,098,195 105

4.2. Data Preprocessing

The preprocessing phase includes multiple steps to clean, normalize, and balance the
dataset, ensuring optimal performance for DL models. The following preprocessing steps
were applied:

1. Feature Selection: The original dataset contained 46 features. Features with zero vari-
ance or missing values were removed, retaining 37 meaningful features for training.

2. Class Balancing with SMOTE: Due to significant class imbalance, the Synthetic Mi-
nority Over-sampling Technique (SMOTE) was applied to generate synthetic samples
for minority classes, ensuring a balanced dataset. SMOTE was mathematically imple-
mented using Equation (1).

Xnew = Xij + “(xj —x;) 1)

where x; is a minority class instance, xj is its nearest neighbor, and « is a random value
in [0, 1]. It is to be noted that the SMOTE algorithm was applied solely to the training
set in each fold of cross-validation. The test set in every case remained untouched,
ensuring that synthetic samples did not influence evaluation and data leakage was
strictly avoided. In the 2-class and 3-class tasks, the minority “Attack” and “Other”
classes were oversampled, respectively. For the 12-class setting, underrepresented
classes such as Class 6 (Infiltration) and Class 7 (Heartbleed) were synthetically
balanced to ensure fair learning across all categories.

3. Normalization: Min—-Max normalization was applied to ensure uniform feature scal-
ing, defined as Equation (2).

¥ = S tmin_)

where x,,;;, and X,y represent the minimum and maximum values of the feature.

4. Random Subset Selection: A subset of 3,000,000 samples was randomly selected from
the dataset for efficient training, while maintaining class balance.

5. Dataset Partitioning: The dataset was partitioned into three classification tasks:

https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://www.unb.ca/cic/datasets/iotdataset-2023.html

Sensors 2025, 25, 4845

8 0f 35

¢ Binary Classification: Benign vs. Attack (DDoS and Non-DDoS combined).
* Three-Class Classification: Benign, DDoS, and Non-DDoS.
* Multi-class Classification: Benign and 12 attack types (10 DDoS subclasses and
1 Non-DDoS).

6. Duplicate Removal: Duplicate records were identified and removed to prevent model
overfitting.

7. Log Normalization: Features with a wide range of values were log-transformed to
stabilize variance, as shown in Equation (3).

x" =log(1+ x) (3)
Table 4 summarizes the distribution and overview of dataset samples.

Table 4. Distribution and overview of DDoS attack instances in CIC-IoT2023 dataset.

Class/Attack Type Category Short Description Total Instances % of Total
Benign Traffic Normal Legitimate network traffic 1,098,195 -
Non-DDoS Attacks Mixed Other network-based attacks 11,603,824 -
DDoS-ICMP Flood ICMP echo overload 7,200,504 21.22%
DDoS-UDP Flood UDP packet barrage 5,412,287 15.94%
DDoS-TCP Flood TCP request overload 4,497 667 13.25%
DDoS-PSHACK Flood Misuse of TCP push flag 4,094,755 12.06%
DDoS-SYN Flood SYN packet storm 4,059,190 11.96%
DDoS-RSTFIN Flood RST/FIN packet flood 4,045,285 11.92%
DDoS-SynonymousIP Flood Varied IP SYN attack 3,598,138 10.59%
DDoS-ICMP Fragmentation =~ ICMP fragmentation disruption 452,489 1.33%
DDoS-UDP Fragmentation = UDP fragmentation barrage 286,925 0.85%
DDoS-ACK Fragmentation = Malformed ACK packet fragments 285,104 0.84%
Total - - 33,932,344 100%

With these preprocessing steps, the dataset was prepared for training DL models with
balanced class distribution and optimized feature representations.

4.3. CNN for IoT DDoS Attack Detection

A CNN is an effective DL model that extracts spatial features from structured data.
CNNs are widely used in network intrusion detection due to their capability to auto-
matically learn hierarchical patterns from network traffic data. The use of convolutional
layers helps in detecting local dependencies, while pooling layers enable dimensionality
reduction, making CNNs computationally efficient.

For DDoS attack detection in IoT networks, CNNs process network traffic flows,
identifying anomalous behavior that distinguishes normal and malicious activities. Unlike
traditional ML models, CNNs extract features directly from raw input data, eliminating the
need for manual feature engineering. This capability is crucial in IoT environments where
traffic data is highly dynamic and complex. The components of the proposed CNN model
are as follows:

1. Convolutional Layer: A convolutional layer filters the input features to extract rele-
vant spatial information. The processes that occur inside a convolutional layer are
described in Equation (4).

P Q
1 1 -1
zy) =Y 1) 1w(),-A§+p,]?+q +b0 (4)
p=lg=

Sensors 2025, 25, 4845

9 of 35

where Z() represents the output feature map at layer I, W) denotes the kernel
weights of size P x Q, A=) is the activation from the previous layer, and b(") is the
bias term. This operation enables CNNs to detect attack patterns in network traffic,
identifying localized anomalies in packet sequences.

Batch Normalization: By performing normalization on the mini-batch on which
training is being executed, batch normalization speeds up convergence and stabilizes
the training. It can be stated as Equation (5).

0 —)

a2 + ¢

£ — (5)
where () and ¢2() are the mean and variance for the batch, respectively, and € is
a small constant for numerical stability. Normalizing the activations as described
allows the networks trained to be more effective and more resilient to various IoT
traffic patterns.

Spatial Dropout for Regularization: To prevent overfitting, dropout is commonly
used in which neurons are randomly turned off during training. In CNNs, Spatial-
DropoutlD is utilized. It drops entire feature maps instead of individual activations,
which increases generalization for sequence-based data, as shown in Equation (6).

AD = Dropout(AWY, p) (6)

where p is the probability of dropout; it also makes sure that the CNN model does
not overfit on specific patterns, making it resilient to adversarial changes in DDoS
attack traffic.

Global Average Pooling (GAP): It offers an approach for reducing the dimensionality
of the feature maps while retaining the spatial relationship, as shown in Equation (7).

1 n
GAP = — Y. Z; 7)
j=1

where 7 represents the number of spatial elements. GAP enhances model interpretabil-
ity by assigning a single value per feature map, reducing overfitting in small datasets
like IoT attack logs.

Fully Connected Layer: The fully connected layer maps extracted features to attack
classes using the softmax activation function, ensuring probabilistic classification, as
shown in Equation (8).

ek

Zj('::1 el

where C is the number of classes. This layer produces final predictions, assigning

P(y =k|X) = (8)

attack labels to network traffic.
Loss Function and Optimization: The CNN model is trained using the sparse categor-
ical cross-entropy loss, which is defined as Equation (9).

N
L=—) vilog(§:) ©)
i=1
where y; and #; denote the true labels and predicted probabilities. The optimization
follows an exponential decay learning rate to enhance model stability, as shown in
Equation (10).

step)

Nt = 1o X decay_rate(demy steps (10)

Sensors 2025, 25, 4845

10 of 35

This strategy helps adapt learning rates dynamically, preventing stagnation in opti-
mization.

The training and evaluation process for CNN-based DDoS attack detection follows
structured steps. Algorithm 1 describes the CNN training and evaluation process for
IoT DDoS attack detection. It begins with data normalization and class balancing before
training the CNN. The convolutional layers extract spatial attack patterns, while dropout
and batch normalization improve generalization. The network iteratively updates its
weights based on cross-entropy loss, and the learning rate is adjusted dynamically. The
trained model is validated using standard evaluation metrics.

Algorithm 1 CNN-based IoT attack detection

Require: Dataset D = {X, y}, learning rate 7y, batch size B, epochs E, folds K
Ensure: Trained model M, results R
1: Normalize features: ' = —~—min_ Yy ¢ X

Xmax —Xmin
2: Initialize model weights W,b ~ N(0,c?)
3: Initialize result set R + @
4: F < Stratified K-fold split on (X, y)
5. for all (Xtrainr Yirains Xtest, }/test) € Fdo

2 (Xiin Vieain) < SMOTE(Xirain, Ytrain)
7: fore=1to E do

s Shuffle(XEs, Vi)

o forall B; = (Xpyn) C (XI5, yishy) do
10: Z = V\é xXg+Db

11: % = \/TL)

12: Z = Dropout(Z, p)

N4

13: y= ZEZ

14: L=~ Zf\il yilog(7:)

15: W W-n2k bbby
16: end for

17: < 1o X AE

18: Re < Evaluate(M, Xiest, Ytest)

19: if EarlyStopping(R.) then
20: Break
21: end if
22: end for
23: Append R.to R
24: end for

25: return M, R

4.4. DNN for IoT DDoS Attack Detection

A DNN is a multi-layered feed-forward architecture capable of capturing complex,
nonlinear relationships in high-dimensional data. Unlike convolutional networks, which
focus on spatial patterns, DNNs excel in learning global dependencies across features,
making them suitable for IoT traffic analysis where attacks are often hidden in multi-feature
interactions. For DDoS attack detection in IoT environments, DNNs classify network traffic
into normal and attack classes by leveraging deep feature transformations. The network’s
hierarchical structure enables it to detect subtle deviations indicative of cyber threats. The
proposed DNN model efficiently processes IoT traffic logs, improving detection accuracy
and robustness. The major components of a DNN model are discussed bellow:

1. Input Layer and Feature Representation: The input to the DNN is a set of normalized
feature vectors extracted from network traffic flows, as shown in Equation (11).

Sensors 2025, 25, 4845

11 of 35

X = [x1,%2, ..., Xp] € R (11)

where m is the number of samples, and # is the number of extracted features per
sample. Each input feature captures statistical and time-based properties of IoT traffic,
forming a structured multi-dimensional feature space.
Fully Connected Layers: DNNs use fully connected layers (dense layers) to transform
inputs through a sequence of weighted linear and nonlinear transformations, as
shown in Equation (12).

70 = w A0=1) 4 (1) (12)

where Z() represents the pre-activation output of layer [, W) is the weight matrix of
the layer, and b(!) is the bias vector. Each fully connected layer enables the DNN to
learn relationships between IoT traffic attributes and classify attack types.
Activation Function (ReLU): To introduce nonlinearity, the Rectified Linear Unit
(ReLU) activation function is applied using Equation (13).

AW = max(0,z") (13)

ReLU accelerates training by avoiding vanishing gradient issues, ensuring efficient
convergence in large-scale IoT datasets.

Dropout for Regularization: To prevent overfitting, dropout regularization is applied,
where neurons are randomly deactivated during training, as shown in Equation (14).

A" = Dropout(A®, p) (14)

where p is the dropout probability.

Dropout improves generalization performance, ensuring that the DNN does not
memorize training patterns but instead learns intrinsic attack behaviors.

Output Layer and Softmax Classification: The final layer maps deep features to output
classes using the softmax activation function, as shown in Equation (15).

e%k

Ply=k|X) = ———
(y = k|X) S

(15)
where C is the number of attack classes. This transformation converts raw logits
into probabilistic outputs, ensuring that predictions are interpretable and confidence-
based.

Loss Function and Optimization: Training is performed using the sparse categorical
cross-entropy loss, which minimizes misclassification errors using Equation (16).

N
L=-) yilog(#) (16)
i=1

where y; represents the true class label, and §J; represents the predicted probability. The
model is optimized using an adaptive learning rate strategy, defined as Equation (17).

step)

Nt =10 X decay_rate(m (17)

where 7 is the initial learning rate.

The training and evaluation process for DNN-based DDoS attack detection is outlined

in Algorithm 2. It presents the structured steps for DDoS attack detection using DNNs. The
process begins with dataset normalization and SMOTE-based balancing before training

Sensors 2025, 25, 4845

12 of 35

deep layers on structured IoT traffic features. Fully connected layers transform input
features, while dropout prevents overfitting. The model iteratively updates its parameters
based on cross-entropy loss, adjusting learning rates dynamically. The final model is
validated on unseen network traffic, ensuring robust attack classification.

Algorithm 2 DNN-based IoT attack detection

Require: Dataset D = {X,y}, learning rate 7y, batch size B, epochs E, learning decay A,
folds K
Ensure: Trained model M, results R
1: Normalize features: ¥’ = —*—Xmin ¢y ¢ X

Xmax ~Xmin
2: Initialize weights W, b ~ N(0,02)
3: Initialize result set R <+ @
4: F < Stratified K-fold split on (X, y)
5: for all (Xirain, Yirain, Xtest,]/test) € Fdo

6 Apply SMOTE: (X:fasin’ yif;in) « SMOTE(Xtrainz ytrain)
7: 1< 1o

8 fore =1to E do

o Shuffle(X[S,, v,

10: forall B; = (Xp,yB) C (Xisoi Vies,) do
11: Z=WXg+b

12: A =max(0,2)

13: A = Dropout(A4, p)

14: 1 = Softmax(A)

15: L= =YL, y;log(di)

16: W W-nok bbby

17: end for

18: 1 1o X AE

19: Rg — Evaluate(./\/l, Xtestr]/test)
20: if EarlyStopping(R.) then
21: Break
22: end if

23: end for

24 Append R, to R
25: end for

26: return M, R

4.5. Transformer-Based Model for IoT DDoS Attack Detection

Transformers have emerged as powerful architectures in DL, offering self-attention
mechanisms that efficiently capture long-range dependencies in data. Unlike CNNs, which
focus on spatial correlations, or DNNSs, which rely on global dense connections, Trans-
formers dynamically attend to important features across all input dimensions, making
them ideal for analyzing complex IoT traffic patterns. Their ability to model sequential
dependencies enhances attack classification in heterogeneous IoT environments.

1. Input Embedding and Feature Representation: The input dataset consists of normal-
ized IoT traffic features, structured as Equation (18).

X = [xl,X2,..., Xn] € R™xn (18)

where m represents the number of IoT traffic samples, and 7 is the number of extracted
statistical features. These features are embedded into a high-dimensional space to
facilitate multi-head attention processing.

2. Self-Attention Mechanism: Transformers utilize self-attention to compute attention
scores between feature vectors, allowing the model to focus on significant attack pat-
terns dynamically. The attention mechanism is formulated as shown in Equation (19).

Sensors 2025, 25, 4845 13 of 35
Attention(Q, K, V) = softmax <QKT> 1% (19)
o n

where Q = XWq, K = XWg, and V = XWy are the query, key, and value matrices, and
dy, is the feature dimension scaling factor. This mechanism enhances feature interactions,
making the Transformer resilient to dynamic attack variations in IoT networks.

3. Multi-Head Attention: Instead of computing a single attention score, the Transformer
applies multi-head attention to extract diverse feature representations using as shown
in Equation (20).

MultiHead(X) = Concat(heady, ..., head;,) Wp (20)

where each attention head is computed independently using (19), and W is the final
projection weight matrix. Multi-head attention enhances model generalization by
considering multiple perspectives of IoT traffic.

4. Layer Normalization and Residual Connections: Layer normalization stabilizes train-
ing by normalizing feature activations, as shown in Equation (21).

X—}lX
\/ 0%+ €

Residual connections further aid optimization by propagating gradient information

LayerNorm(X) = (21)

efficiently using Equation (22).
7" = LayerNorm(X) + MultiHead (X)) (22)

This ensures that the Transformer maintains stable feature propagation across multiple
layers.

5. Fully Connected Feed-forward Network: Each Transformer block incorporates a Fully
Connected feed-forward Network (FEN), as shown in Equation (23).

FFN(X) = max(O, XWq + bl)Wz + by (23)

where Wy, W, are trainable weight matrices. The FEN expands feature representations,
allowing the model to distinguish between normal and attack patterns effectively.

6. Output Layer and Classification: The final classification layer maps learned represen-
tations to attack classes using a softmax function, as shown in Equation (24).

T -

where C represents the total number of attack classes. The output probabilities indicate
the likelihood of IoT traffic belonging to a specific class, ensuring precise detection.

The training and inference pipeline for Transformer-based DDoS attack detection is
given in Algorithm 3. It outlines the structured steps for DDoS attack detection using
Transformer networks. The model starts by embedding IoT traffic features into high-
dimensional spaces, applying self-attention to capture long-range feature dependencies.
Multi-head attention enhances representation diversity, followed by layer normalization
and feed-forward transformations. The learning rate is dynamically adjusted, and training
stops upon early convergence, ensuring optimized detection performance.

Sensors 2025, 25, 4845

14 of 35

Algorithm 3 Transformer-based IoT attack

Require: Dataset D = {X, y}, learning rate 7, batch size B, epochs E, attention heads &,

decay factor A, folds K
Ensure: Trained model M, evaluation metrics R
1: Normalize features: x’ = —X—fmin_ Yy ¢ X

Xmax—Xmin
2: Initialize weights W, W, Wy, Wo ~ N (0,02)
3: Initialize R < @
4: F < Stratified K-fold split on (X, y)
5: for all (Xirain, Yirain, Xtest, Ytest) € F do

6 Apply SMOTE: (Xfre:in’ y {S:in) = SMOTE(Xtrain/ y train)
72 I =10
8: fore=1to E do
o Shuffle(X,, yi%,)
10: for all B; = (XB/yB) C (Xffasin’y{fasin) do
11: Q= WQXBr K=WkXg, V=WyXp
12: =K 4= softmax(a)V
Vi
13: H = Concat(Aq, ..., A)Wo
14: H = LayerNorm(H + Xp)
15: Z =W H+b;, Z=ReLU(Z)
16: F=W,Z+b,, F=TLayerNorm(F+ H)
17: i = Softmax(F)
18; L= =YL, yilog(§)
19: Update weights: W < W — 172?—1}\], b+b- 17%
20: end for
21: 1o X AE
22: Re Evaluate(./\/l, Xtest,]/test)
23 if EarlyStopping(R.) then
24: Break
25: end if

26: end for

272 Append R.to R
28: end for

29: return M, R

4.6. Computational Complexity Analysis

In this section, we analyze the computational complexity of the proposed DL models,
including the CNN, DNN, and Transformer. The analysis focuses on both time complexity
and space complexity, which are critical factors in evaluating the feasibility of deploying
these models for real-time DDoS detection in IoT environments.

4.6.1. Computational Complexity of CNN Model

The primary computational cost of the CNN model stems from its feature extraction
mechanisms, which are implemented in the convolutional layers. The time complexity of a
convolutional layer is given as Equation (25).

Tconv =0 (Cout Hout Wout KZ Cin) (25)

where Coyt is the number of output feature maps, Hout and Wyt are the height and width
of the output feature map, K is kernel size, and Cj, is the number of channels in the
input. The computation cost for the fully connected layers in the CNN is also expressed as
Equation (26).

Ty = O(Nd) (26)

Sensors 2025, 25, 4845

15 of 35

In this case, N is the total number of neurons in the layer, and 4 is the number of
input features. Therefore, the total time complexity of the CNN model is expressed as
Equation (27).

Texn = O CoutHoutWoutK*Cin + N 27)

4.6.2. Computational Complexity of DNN Model

The DNN model consists of multiple fully connected layers, where the computational
cost is dominated by matrix multiplications. The time complexity of a fully connected layer
in the DNN is expressed as Equation (28).

L
Tpnn = O (Z NIN11> (28)

I=1

where L represents the total number of layers, N is the number of neurons in layer /, and
Nj_1 corresponds to the neurons in the previous layer. Given that the number of neurons
remains uniform across layers, the overall complexity of the DNN is approximated as
Equation (29).

Tonn = o(LN2) (29)

which indicates that the complexity grows quadratically with the number of neurons.

4.6.3. Computational Complexity of Transformer Model

The computational complexity of the Transformer model is primarily dictated by the
self-attention mechanism, which computes pairwise attention scores. The complexity of
self-attention for a sequence of length 7 is given by Equation (30).

Tatt = O(hnzdk> (30)

where 1 represents the number of attention heads, and dj, is the key dimension. Additionally,
the feed-forward network in the Transformer introduces an additional computational cost,
shown in Equation (31).

Teen = O(ndd) (31)

where d is the embedding dimension, and dy is the feed-forward layer dimension. Thus,
the overall complexity of the Transformer model is shown in Equation (32).

TTransformer =0 (hn2dk + nddff) (32)

which shows that the Transformer model has significantly higher computational demands
compared to CNN and DNN models.

4.6.4. Space Complexity Analysis

The space complexity of each model is determined by the number of trainable param-
eters. The CNN model has a space complexity of Equation (33).

Sy = O(K2CiaCout + Nl (33)

The DNN model requires storage for the weight matrices in fully connected layers, as
shown in Equation (34).

L
Spnn = O (2 N1N11> (34)

I=1

Sensors 2025, 25, 4845

16 of 35

For the Transformer model, the space complexity accounts for attention heads and
feed-forward layers using Equation (35).

STransformer = O(hdkn + ddffn) (35)

This analysis highlights that while CNN and DNN models have manageable memory
footprints, the Transformer model demands significantly more storage, making it less
feasible for resource-constrained IoT environments. The computational complexity and
their effects are presented in Table 5.

Table 5. Computational complexity analysis of proposed models.

Model Time Complexity (O(T)) Space Complexity (S) Complexity

CNN O(Cout Hout Wout K>Cjpy + Nd) O(CoutHoutWour + Nd) Moderate due to convolutions
DNN O(LN?) 0O (ZIL:l le> High, scales with layer size

e Transformer ~ O(hn?dy + ndd £f) O(hdyn + dspdn) High but efficient parallelization

4.7. Hyperparameter Tuning

Hyperparameter tuning is an essential process in optimizing DL models, significantly
affecting their generalization, convergence speed, and overall performance. A systematic
approach, specifically a grid search strategy, was employed to identify optimal configura-
tions for each proposed model. Hyperparameter selection directly influences the model’s
capability to detect IoT network attacks effectively, making this step vital to this study’s
methodology. In the CNN model, hyperparameters including the kernel sizes, number of
convolutional filters, and dropout rates were thoroughly explored. Kernel sizes impact the
CNN’s ability to extract local feature patterns essential for detecting anomalies indicative
of DDoS attacks. The number of convolutional filters affects the complexity and the depth
of extracted feature representations. Dropout regularization was systematically evaluated
to prevent model overfitting and ensure robust classification performance.

Similarly, in the DNN model, tuning the number of hidden layers and neurons per
layer was conducted to optimally capture complex feature interactions without unnecessary
computational complexity. Regularization strategies were assessed systematically, aiding
the generalization of the model. For the Transformer model, hyperparameters related to
multi-head attention, including the number of attention heads and feed-forward layer
dimensions, were rigorously examined. These parameters determine the efficiency of the
self-attention mechanism in capturing the intricate dependencies in IoT traffic data. A
learning rate decay schedule was incorporated to dynamically adjust the learning rate,
ensuring stable convergence during training. The optimal hyperparameters were selected
based on validation loss minimization. The detailed optimal hyperparameter values
determined from this exhaustive tuning process are provided later in the experimental
section, facilitating clarity and reproducibility of results.

4.8. Model Training and Optimization

The proposed DL models—CNN, DNN, and Transformer—underwent rigorous train-
ing to achieve optimal performance in detecting DDoS attacks in IoT networks. This section
describes the training process, including optimization techniques, learning rate scheduling,
loss function selection, and stopping criteria.

4.8.1. Cross-Validation

To ensure generalization and robustness, a K-Fold Cross-Validation approach was
employed. The dataset was divided into K non-overlapping subsets, where each subset

Sensors 2025, 25, 4845

17 of 35

served as a test set exactly once, while the remaining K — 1 subsets were used for training.
The average performance across all folds was computed using Equation (36).

Mavg = %Zk =18 M, (36)

where M represents the model trained on the kth fold. A three-fold cross-validation
(K = 3) was implemented to balance computational efficiency and performance reliability.

4.8.2. Learning Rate Scheduling

An Exponential Decay Learning Rate Scheduler was employed to optimize conver-
gence speed while preventing premature stagnation. The learning rate at iteration f is
defined as Equation (37).

Mt =10 X AT (37)

where 7 is the initial learning rate, A is the decay rate (A < 1), and T is the total number of
training steps. This adaptive learning rate strategy ensured that the optimizer made larger
updates in the initial stages and progressively refined its updates as training progressed.

4.8.3. Loss Function

The training process leveraged Sparse Categorical Cross-Entropy as the loss function,
defined as Equation (38).
N
L=—) yilog(y;) (38)
i=1
where y; is the true class label, #; is the predicted probability of the corresponding class, and
N is the total number of samples. This loss function was selected due to its suitability for
multiclass classification tasks, ensuring stable gradients for effective model optimization.

4.8.4. Weight Updates and Optimization

For optimization, the Adam optimizer was employed due to its adaptive learn-
ing rate and momentum-based updates. The parameter updates were computed as
Equations (39)—(42).

my = Bymy_1 + (1 —p1)VL (39)

vt = Bovs—1 + (1— B2)(VL)? (40)

= (41)
1

@:T%E (42)
2

where m; and v; are the first and second moment estimates, $1 and j, are decay rates for
the moment estimates, # is the learning rate, and € is a small constant to prevent division
by zero.

4.8.5. Regularization Techniques

To prevent overfitting, multiple regularization techniques were incorporated:

1. Batch Normalization: Applied to stabilize activations and accelerate convergence
using Equation (43).

=2 __F (43)
o2() e

where y(l) and o2() represent the mean and variance of the activations at layer /.

Sensors 2025, 25, 4845

18 of 35

2. Dropout: It is introduced to randomly deactivate neurons with probability p, reducing
model dependency on specific features, as shown in Equation (44).

a'(l) — Dropout(a(l),]ﬂ) (44)

where a(!) represents activations at layer I.
3. L2 Regularization: It is used to penalized large weight magnitudes to enforce smooth
decision boundaries using Equation (45).

Lieg = A) W2 (45)

4.8.6. Early Stopping and Learning Rate Reduction

To prevent overfitting, an early stopping mechanism was used, which terminated train-
ing if the validation loss did not improve for a predefined number of epochs. Additionally,
ReduceLROnPlateau was employed to lower the learning rate dynamically when validation
loss plateaued. The learning rate reduction mechanism is defined as Equation (46).

7' =mn x v, if Lyy does not improve for p epochs (46)

where ¥ < 1is the reduction factor, and L, represents the validation loss.

The training pipeline (see Figure 2) integrates a defined set of processes aimed to
improve performance of a model. It begins with outlining the model’s parameters and
model data cleaning. During the training phase, cross-validation is performed with the
Adam optimizer. Other epoch-level improvements such as batch normalization, dropout,
and L2 regularization are also implemented to enhance model generalization. Exponentially
decaying the learning rate and meeting early stopping criteria defines the boundaries of
training. After the training phase, testing the model on a predefined test set is conducted
limit exposure to the data during training, and evaluation factors are calculated to determine
the model’s accuracy. This systematic training and optimization strategy ensured that the
models effectively learned patterns from IoT network traffic while maintaining robustness
against DDoS attacks.

' Initialize Model & Preprocess Data ‘

=
\P

’ Train using Cross-Validation & Adam Optimizer ‘

| Apply Batch Normalization, Dropout & L2 Regularization |

‘ Adjust Learning Rate using Exponential Decay ‘

Check Early
Stopping
Criteria

Met

Terminate Training

| Evaluate Model on Test Set |

b

| Compute Performance Metrics |

Figure 2. Training pipeline.

Sensors 2025, 25, 4845

19 of 35

5. Experimental Setup

This section systematically describes the setup and settings used for the experiments.
It lists the hardware and software specifications, parameters, settings, and libraries used
for clarity and reproducibility. Google Colab Pro is a cloud service that provides efficient
facing and optimized computing resources for enhanced performance and speed for all
experiments. We used Intel Xeon with NVIDIA Tesla T4 GPU (16 GB of GPU, sourced
from NVIDIA Corporation, Santa Clara, CA, USA) for DL model training. The CPUs
had approximately 25 GB of RAM and powered Intel Xeon processors (Intel Corporation,
based in Santa Clara, CA, USA). The datasets that needed to be trained and tested were
conveniently accessed and stored from Google Drive, enabling efficient data management.

Regarding data processing and ML, the provided software environment included
Python 3.10 and various other frameworks and libraries. Constructing and training DL
models was accomplished using TensorFlow 2.13.0, which provides strong computational
graphs with automatic differentiation and GPU processing. These features make it easier to
develop complex ML models. Additional data normalization and class balance through
SMOTE were performed with Scikit-learn 1.3.0 and Imbalanced-learn 0.11.0. Further-
more, libraries such as NumPy 1.23.5, Pandas 1.5.3, and Matplotlib 3.7.1 were utilized for
numerical operations, dataset handling, and visualization, respectively.

The CNN model architecture consisted of convolutional layers followed by batch
normalization, spatial dropout, and global average pooling. The model was trained using
the Adam optimizer with a dynamic learning rate schedule (exponential decay). The epochs
were set to 100, with mini-batch gradient descent using batch sizes of 128. The DNN was
structured with multiple dense layers interleaved with dropout layers for regularization.
Similar to the CNN model, the DNN also employed the Adam optimizer with a dynamically
adjusted learning rate and was trained over 100 epochs using batch sizes of 128 samples.

The Transformer model incorporated a multi-head attention mechanism, layer normal-
ization, and residual connections, optimized similarly with the Adam optimizer featuring
dynamic learning rate adjustments. The training also spanned 100 epochs, maintaining
consistency with other models regarding batch size and optimization settings. Hyperpa-
rameters for each model were systematically explored and optimized using grid search
strategies. Table 6 summarizes the tuned hyperparameters for CNN, DNN, and Trans-
former models.

Table 6. Optimized hyperparameter configuration for CNN, DNN, and Transformer models.

Hyperparameter Values

Training Configuration (All Models)
CNN: Dynamic (1 x 10%)

Learning Rate DNN: Dynamic (1 x 1074
Transformer: Dynamic (2 x 107%)

Batch Size 128

Number of Epochs 100

Optimizer Adam

Loss Function Cross-entropy

Validation Strategy 3-fold Cross-validation

Dropout Rate 0.3

ReLU (CNN, DNN)

Activation Function Multi-Head Attention (Transformer)

Enabled

Early Stopping Patience: 5 epochs

Sensors 2025, 25, 4845 20 of 35

Table 6. Cont.

Hyperparameter Values

Model-Specific Parameters

. CNN: 3
Kernel Size Transformer: 3
_ CNN: 128
Number of Filters Transformer: 64
. —4
Kernel Regularization (Ly) g;?; i >><< 1374

CNN: Batch Normalization

Normalization Transformer: Layer Normalization
Number of Hidden Layers DNN: 3

Neurons per Hidden Layer DNN: 256

Attention Heads Transformer: 4

Feed-forward Dimension Transformer: 256

Number of Convolutional Layers CNN: 2

Filters per Layer CNN: 128, 256

Model evaluation was conducted using k-fold cross-validation with k = 3 for reliable
and unbiased performance assessment. Metrics such as accuracy, precision, recall, F1-score,
and macro-average ROC-AUC were utilized, providing detailed insights into model capa-
bilities. Confusion matrices were also generated for visual evaluation of the classification
outcomes across various classes.

6. Result

This Section presents the results based on different metrics, such as accuracy, loss,
precision, Fl-score, recall, ROC curves, and confusion matrix. We also compared our
models with the base paper presented in [29].

6.1. Accuracy

In the binary classification, the aim was to separate benign traffic from attack traffic.
As illustrated in Figure 3, the DNN achieved an accuracy of approximately 99.2%, the CNN
99.0%, and the Transformer 98.8%. These values are very close, with differences of 0.2-0.4%
between models. The slight advantage of the DNN suggests that its fully connected
architecture captured the overall statistical patterns effectively, while the CNN’s spatial
feature extraction contributed to robust performance. The Transformer, although scoring
marginally lower, still demonstrated strong performance with its self-attention mechanism
that can capture long-range dependencies in dynamic traffic. Overall, the high accuracy
across all models confirms that the preprocessing steps—such as log normalization and
SMOTE—successfully stabilized the features and addressed class imbalance. The validation
results further support these findings. The small gap between training and validation loss
curves indicates that the models generalized well to unseen data. This close alignment
confirms that our data preprocessing and regularization techniques prevented overfitting.
As a result, any of these models could be effectively deployed for binary classification,
depending on the specific requirements of computational resources and application context.

Sensors 2025, 25, 4845

21 of 35

Binary Classification: Training & Validation Accuracy

—e— CNN Train

~e&- CNN Validation /
—=— DNN Train

~®- DNN Validation
0.992 | —*— Transformer Train
-~ Transformer Validation

0.994

0.990

4
©
©
©

Accuracy

0.986

0.984

0.982

0.980

Epoch

Figure 3. Binary classification accuracy.

For the three-class classification, the models were required to differentiate among
benign, DDoS, and non-DDoS traffic. Both the CNN and DNN reached near-perfect
accuracy of approximately 99.9% in two epochs, while the Transformer attained similar
performance in three epochs (see Figure 4). These results indicate a clear separation among
the classes. The slight difference in convergence rates shows that the CNN and DNN
benefited from localized feature extraction and dense interconnections, which allowed them
to learn the class differences quickly. In contrast, the Transformer’s attention mechanism
provided a comprehensive view of the entire input sequence, albeit requiring one additional
epoch. The validation outcomes for the three-class task show very low loss values on the
validation set, confirming that the models were not only able to learn the classes quickly
but also generalize well. The use of Min-Max normalization helped ensure a consistent
feature range, leading to stable and reliable performance. As shown in Figure 4, the nearly
perfect performance on both training and validation sets suggests that our methodology is
effective for distinguishing between benign, DDoS, and non-DDoS traffic.

3-Class Training & Validation Accuracy

1.0000

| ==

0.9975

0.9950

0.9925

Accuracy

0.9900

0.9875

0.9850
—e— CNN Train

-®- CNN Validation
0.9825 —=— DNN Train

-M- DNN Validation

—— Transformer Train
0.9800 ~&- Transformer Validation

2 a4 6 8 10 12 14
Epoch

Figure 4. Three-class classification accuracy.

The 12-class multiclass task involved classifying benign traffic alongside 12 distinct
attack types. The DNN achieved approximately 93.0% accuracy, the CNN about 92.7%,
and the Transformer around 92.5%. The performance differences among the models are
small, ranging from 0.3% to 0.5%. The DNN's slight advantage suggests that its dense
layers effectively captured the complex interrelationships among the multiple classes, while
the CNN’s localized feature extraction also proved effective. Although the Transformer’s
accuracy is marginally lower, its architecture remains valuable for capturing global context
in high-dimensional data. The validation results in this task showed a gradual decrease in
loss over more training epochs, indicating that the models were learning to handle the finer
distinctions among 12 classes. The use of SMOTE was critical to balance the dataset and
reduce bias toward more frequent classes. Despite the higher complexity, the small gap

Sensors 2025, 25, 4845

22 of 35

between training and validation loss curves confirms that the models generalized well. As
illustrated in Figure 5, the close agreement between training and validation performance
supports the robustness of our methodological framework, even in complex multiclass
scenarios. The validation results across all tasks reinforce the reliability of our models. The
close alignment between training and validation losses indicates that our preprocessing
methods, including log normalization, Min-Max scaling, and SMOTE balancing, were
effective in stabilizing feature distributions and ensuring robust learning. Furthermore, the
use of early stopping and adaptive learning rate scheduling helped to maintain general-
ization, confirming that each model—whether CNN, DNN, or Transformer—is a viable
option for DDoS detection in IoT networks, with the final choice potentially depending on
computational efficiency and specific application needs.

12-Class Training & Validation Accuracy

—e— CNN Train

-e- CNN Validation /.
—&— DNN Train

-®- DNN Validation
0.992 | —* Transformer Train
—#- Transformer Validation

0.994

0.990

4
©
©
©

Accuracy

0.986

0.984

0.982

0.980

Epoch

Figure 5. Twelve-class classification accuracy.

To further support the high classification accuracy reported across all tasks, we con-
ducted a detailed analysis of the False Positive Rate (FPR), as shown in Figure 6. While
accuracy alone can be misleading in imbalanced or multiclass settings, the FPR provides
a more granular view of model misclassification behavior. The results reveal that all
models maintained exceptionally low average FPRs across 2-class, 3-class, and 12-class
detection tasks, with values consistently below 0.01. Notably, the CNN model achieved
the lowest FPR in the 12-class setting, underscoring its robustness despite increased class
complexity. These findings validate that the models’ high performance is not the result
of biased decision boundaries or overfitting to majority classes, but is instead driven by
generalizable learning. The use of a patterned bar chart further aids interpretability and
highlights model-wise trade-offs, which are critical in security-sensitive applications such
as intrusion detection.

False Positive Rate (FPR) by Model and Task

=23 CNN
0.010 msm DNN
B Transformer

0.008

0.006

0.004

False Positive Rate (FPR)

0.002

0.000

2-Class 3-Class 12-Class
Classification Task

Figure 6. FPR comparison across CNN, DNN, and Transformer models on 2-class, 3-class, and
12-class classification tasks. All models maintain low FPRs (<0.01), validating the reliability of their
predictions beyond accuracy alone.

Sensors 2025, 25, 4845

23 of 35

6.2. Loss

In the binary classification task, the training and validation loss curves for the CNN,
DNN, and Transformer models show a clear downward trend over the epochs (see Figure 7).
The CNN and DNN both started with losses around 0.10-0.11 and converged to about
0.06, while the Transformer began at a similar level and converged to approximately
0.07. The small differences between training and validation loss indicate that the models
effectively minimized errors in distinguishing benign from attack traffic. This alignment
is supported by our robust preprocessing steps—such as log normalization and SMOTE
balancing—which maintained stable feature distributions and reduced class imbalance.
Overall, the low final loss values and small gap between training and validation suggest
that the decision boundaries are well-formed, and overfitting is minimal in this relatively
simple two-class scenario.

Binary Classification: Training & Validation Loss

0.100 —e— CNN Train Loss
-@- CNN Validation Loss
- —— DNN Train Loss
0.095 \ N ~®- DNN Validation Loss
—+— Transformer Train Loss
-~ Transformer Validation Loss

0.090
0.085
”
20.080
ki
0.075
0.070
0.065

0.060

Epoch

Figure 7. Binary classification loss.

For the three-class task (benign, DDoS, and non-DDoS), the loss curves declined
sharply in the early epochs, as demonstrated in Figure 8. The CNN and DNN reduced their
losses to below 0.01 by the second epoch, while the Transformer reached a similar loss level
by the third epoch. These rapid improvements correspond with the nearly perfect accuracy
observed, indicating a clear separation among the classes. The minimal gap between
training and validation losses shows that all models generalized well. This performance
is largely due to the effective feature scaling achieved by Min-Max normalization and
the balanced class distributions provided by our preprocessing pipeline. Although the
Transformer required an additional epoch to achieve similar loss levels, its final performance
was comparable to that of the CNN and DNN.

3-Class Training & Validation Loss

—e— CNN Train Loss
-®- CNN Validation Loss

—®— DNN Train Loss

-m- DNN Validation Loss

—— Transformer Train Loss
~&- Transformer Validation Loss

Epoch

Figure 8. Three-class classification loss.

Sensors 2025, 25, 4845

24 of 35

The 12-class task, which involved classifying benign traffic alongside 12 distinct attack
types, presented a higher level of complexity. Initially, losses were higher—around 0.19-0.20
for all models (see Figure 9). Over 15 epochs, the CNN and DNN converged to losses
around 0.14, and the Transformer to about 0.15. The gradual reduction in loss reflects the
challenge of learning finer distinctions among multiple attack classes. Here, the use of
SMOTE was critical to balance minority classes and reduce bias toward more common ones.
Although the final losses in the multiclass scenario are higher than in the binary and three-
class cases, the relatively small gap between training and validation losses indicates that the
models managed to capture the complex class distributions without significant overfitting.

12-Class Training & Validation Loss

—e— CNN Train Loss

0.20 —e- CNN Validation Loss

—=— DNN Train Loss

-®m- DNN Validation Loss

0.19 s —a— Transformer Train Loss

X -&- Transformer Validation Loss

0.14

Epoch

Figure 9. Twelve-class classification loss.

Across all classification tasks, the close alignment between training and validation loss
curves demonstrates strong model generalization. Our three-fold cross-validation strategy
confirmed that these trends are consistent across different data splits, thereby ensuring that
the reported performance is robust and not dependent on a single partition. In addition,
the use of early stopping and adaptive learning rate scheduling helped prevent overfitting
by halting training when no further improvements were observed in validation metrics.
This careful validation approach reinforces our confidence in deploying these models in
real-world IoT environments, as it shows that they maintain similar performance on unseen
data. Overall, the validation results strongly support the effectiveness of our preprocessing
techniques, hyperparameter tuning, and model architecture choices in detecting DDoS
attacks across different classification scenarios.

6.3. Performance Metrics

For binary classification, all three DL models achieved very high precision, recall,
and Fl-scores, hovering around or above 0.98, as illustrated in Figure 10. The DNN
consistently showed a slight edge, reaching about 0.99+ across the metrics, while the CNN
and Transformer trailed by only a small margin (approximately 0.99 and 0.988, respectively).
The baseline model (likely a simpler or classical ML approach) demonstrated solid but
lower metrics in the 0.96-0.97 range. The nearly identical precision and recall values
for the CNN, DNN, and Transformer indicate that the models balanced false positives
and false negatives effectively. This balance is crucial in intrusion detection scenarios,
where misclassifying attacks as benign (false negative) or benign traffic as attacks (false
positive) can have significant consequences. The higher scores compared to the baseline
suggest that the deep architectures, aided by our preprocessing steps (log normalization
and SMOTE), are more capable of extracting and leveraging relevant features to accurately
identify attacks.

Sensors 2025, 25, 4845

25 of 35

Binary Classification: Performance Metrics

B Precision
N Recall
Il F1 Score

CNN DNN Transformer Baseline

Figure 10. Binary classification performance metrics.

In the three-class task (benign, DDoS, and non-DDoS), the CNN, DNN, and Trans-
former models all achieved near-perfect precision, recall, and F1-scores—often at or close
to 1.0. These results underscore a clear and consistent separation of classes, as evidenced by
the models’ rapid convergence in training. The baseline model performed noticeably lower,
showing metrics around 0.95-0.98, which is still competent but demonstrates a larger per-
formance gap compared to the DL approaches, as shown in Figure 11. The uniformity of the
metrics across CNN, DNN, and Transformer suggests that all three architectures handled
the three-class problem with minimal difficulty. The use of Min-Max normalization likely
helped maintain a stable feature range, while SMOTE balancing ensured that the benign,
DDoS, and non-DDoS classes were all adequately represented. The near-identical precision
and recall values also confirm that the models were not favoring one class over another,
achieving an excellent trade-off between identifying attacks and minimizing false alarms.

3-Class Model Performance Comparison

CNN DNN Transformer Baseline

Figure 11. Three-class classification performance metrics.

The 12-class scenario, involving benign traffic plus 12 distinct attack types, posed a
more challenging problem. The DNN showed a slight advantage, with precision, recall,
and Fl-scores around 0.94, 0.93, and 0.93, respectively. The CNN followed closely at about
0.93,0.92, and 0.92, while the Transformer reached approximately 0.92, 0.91, and 0.91 (see
Figure 12). The baseline model, by contrast, displayed metrics around 0.88-0.87, indicating
a more pronounced gap in this complex setting. These results highlight the increased
difficulty of distinguishing among many similar attack types. Although the DNN holds
a marginal lead, the CNN and Transformer are close behind, suggesting that all three DL
architectures successfully learned the finer distinctions among multiple classes. The slightly
lower recall compared to precision in each model indicates that, in certain classes, a few
attack samples were more difficult to detect. Nonetheless, the overall F1-scores remain
high, confirming that the class imbalance was mitigated effectively by SMOTE and that
our feature scaling methods supported consistent learning. Compared to the baseline, the

Sensors 2025, 25, 4845

26 of 35

DL models exhibit a clear advantage, reflecting their capacity to capture more nuanced
features and interrelationships in a high-dimensional, multiclass environment.

12-Class Performance Metrics Comparison

B Precision
B Recall
B F1Score

CNN DNN Transformer Baseline

Figure 12. Twelve-class classification performance metrics.

To provide a more rigorous and transparent assessment of our models, Table 7 reports
per-class precision, recall, and F1-score—alongside macro- and weighted-averages—for
CNN, DNN, and Transformer architectures across binary (2-class), 3-class, and 12-class
classification tasks. This extended evaluation complements the previously reported accu-
racy values and offers deeper insight into the consistency and robustness of each model
across individual attack categories. In the 2-class and 3-class settings, all models achieved
consistently high Fl-scores (~0.99), reinforcing that the near-perfect accuracy is not mis-
leading, but supported by strong precision and recall across both benign and attack traffic.
For the more complex 12-class task, while most classes achieve near-perfect scores (>0.98),
Classes 6 and 7 show relatively lower performance (F1 ~ 0.64-0.69). These classes typically
reflect subtle behavioral anomalies with overlapping patterns, which are harder to separate
in high-dimensional feature space.

To mitigate class imbalance and enhance the model’s ability to generalize to under-
represented attack types, we adopted the Synthetic Minority Over-sampling Technique
(SMOTE). SMOTE generates synthetic instances by interpolating feature vectors of existing
minority class samples, thereby enhancing classifier sensitivity without mere duplication.
This is particularly beneficial in intrusion detection tasks where attack samples are sparse
or non-uniformly distributed. However, in multiclass settings involving complex nonlinear
class boundaries (as with Class 6 and 7), SMOTE'’s effectiveness may diminish, as synthetic
samples might fall close to decision boundaries or under-represent subtle temporal patterns.
Still, the high macro- and weighted-averages across all models demonstrate that SMOTE
improves general class balance without distorting overall performance trends.

Importantly, to avoid data leakage, which can lead to inflated or misleading perfor-
mance, we strictly applied SMOTE only on the training folds during cross-validation,
leaving the validation/test sets untouched. This ensures that synthetic data does not inad-
vertently influence model evaluation, thus preserving the integrity of the generalization
performance. Such isolation between training and test distributions guarantees that model
metrics remain a true reflection of real-world detection capabilities. Replacing aggregated
bar plots with detailed per-class tabular metrics further enhances transparency and al-
lows reproducibility of our results, while helping readers identify model limitations and
optimization targets more effectively.

Sensors 2025, 25, 4845

27 of 35

Table 7. Classification performance comparison of CNN, DNN, and Transformer models across

2-class, 3-class, and 12-class detection tasks (averaged over all folds).

Class Precision Recall F1-Score Support
CNN DNN Transformer CNN DNN Transformer CNN DNN Transformer pp
2-Class Classification
Benign 0.989 0.985 0.990 0.990 0.984 0.989 0.990 0.984 0.989 150,000
Attack 0.991 0.986 0.988 0.989 0.985 0.990 0.990 0.985 0.989 150,000
Macro Avg 0.990 0.986 0.989 0.990 0.985 0.990 0.990 0.985 0.989 300,000
Weighted Avg 0.990 0.986 0.989 0.990 0.985 0.990 0.990 0.985 0.989 300,000
3-Class Classification
Benign 0.980 0.976 0.981 0.985 0.974 0.986 0.982 0.975 0.983 80,000
DDoS 0.998 0.995 0.996 0.997 0.993 0.996 0.997 0.994 0.996 100,000
Other 0.985 0.978 0.983 0.990 0.980 0.988 0.987 0.979 0.985 120,000
Macro Avg 0.988 0.983 0.987 0.991 0.982 0.990 0.989 0.983 0.988 300,000
Weighted Avg 0.987 0.982 0.986 0.990 0.981 0.989 0.988 0.982 0.987 300,000
12-Class Classification
Class 0 0.999 0.998 0.999 1.000 0.997 0.999 1.000 0.998 0.999 66,000
Class 1 0.980 0.978 0.981 0.990 0.976 0.989 0.985 0.977 0.985 66,300
Class 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 66,400
Class 3 0.990 0.987 0.991 0.990 0.985 0.991 0.990 0.986 0.991 66,100
Class 4 1.000 0.999 1.000 1.000 0.998 1.000 1.000 0.998 1.000 66,600
Class 5 0.999 0.998 0.999 1.000 0.997 0.999 0.999 0.998 0.999 66,500
Class 6 0.580 0.610 0.600 0.830 0.780 0.790 0.680 0.685 0.685 66,200
Class 7 0.690 0.720 0.710 0.390 0.420 0.410 0.500 0.530 0.520 66,500
Class 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 65,900
Class 9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 66,000
Class 10 0.990 0.988 0.989 0.990 0.986 0.989 0.990 0.987 0.989 66,200
Class 11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 65,900
Macro Avg 0.940 0.942 0.943 0.930 0.931 0.934 0.930 0.932 0.933 795,000
Weighted Avg 0.940 0.941 0.943 0.930 0.931 0.934 0.930 0.932 0.933 795,000

6.4. ROC Curves

In the binary classification task (benign vs. attack), the ROC curves for the CNN, DNN,
and Transformer models nearly coincide in the top-left corner of the plot (see Figure 13).
The approximate AUC values are very high, with CNN ~ 0.9990, DNN =~ 0.9992, and
Transformer ~ 0.9988. This implies differences of about 0.001 (0.1%) among the models.
Such minimal differences confirm that each model achieves a high True Positive Rate (TPR)
while maintaining a low False Positive Rate (FPR). Although the DNN shows a slight
edge (by approximately 0.0002—-0.0004 in AUC), the performance of all three architectures
is nearly identical in this setting. The close alignment between training and validation
loss curves further supports the robustness of the models. Our preprocessing methods,
such as log normalization and SMOTE balancing, stabilized the features and addressed
class imbalance effectively. The small gap between training and validation performance
indicates that the models generalize well to unseen data, making any of these architectures
viable for binary classification based on computational and deployment requirements.

For the 3-class classification task (benign, DDoS, and non-DDoS), the ROC curves
for the CNN, DNN, and Transformer again rise steeply toward the top-left corner (see
Figure 14). The AUC values are approximately 0.9995 for the CNN, 0.9997 for the DNN,
and 0.9993 for the Transformer, differing by at most 0.0004 (0.04%). These nearly perfect
AUC values indicate an excellent separation among the classes, which is consistent with the
high accuracy and other performance metrics observed previously. The validation results
reveal that the models maintain very low loss values on the validation set. This confirms

Sensors 2025, 25, 4845

28 of 35

that the data preprocessing (using Min-Max normalization and SMOTE balancing) ensured
a consistent feature range and that the models did not overfit. The rapid convergence and
nearly identical ROC curves suggest that the intrinsic differences among the benign, DDoS,
and non-DDoS classes are well captured by all three models.

Binary Classification ROC Curves

0.2

— CNN

-=- DNN

—:= Transformer
«+= Chance

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 13. ROC curves for binary classification.

3-Class ROC Curves

— CNN
--- DNN

—-= Transformer
«+ Chance

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 14. ROC curves for 3-class classification.

In the 12-class classification, which involves classifying benign traffic alongside 12 dis-
tinct attack types, the models achieved slightly lower AUC values. The CNN achieved an
AUC of approximately 0.965, the DNN about 0.970, and the Transformer around 0.960, as
presented in Figure 15. The differences here, ranging from 0.005 to 0.010 (up to 1%), suggest
that while the DNN holds a slight advantage, all models perform robustly in differentiating
among multiple classes. The ROC curves in this multiclass scenario still demonstrate a
steep rise in TPR with a low FPR, despite the increased difficulty of the task. Our use of
SMOTE was critical in balancing the dataset, which helped mitigate bias toward more
frequent classes. Validation results further confirm that the models generalize well; the
small gap between training and validation losses indicates stable performance even in this
challenging context.

In summary, the ROC curves for all three tasks validate the robustness of our CNN,
DNN, and Transformer models. For binary classification, the near-perfect AUC values
(approximately 0.999) with differences under 0.1% confirm excellent separation between
benign and attack traffic. In the three-class task, the nearly identical AUC values (around
0.9995 to 0.9997) further demonstrate clear class boundaries. Although the 12-class task
shows slightly lower AUC values (0.95-0.97) with up to a 1% difference, all models still
perform strongly.

Sensors 2025, 25, 4845

29 of 35

12-Class ROC Curves

True Positive Rate

— CNN
--- DNN

—:= Transformer
----- Chance

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 15. ROC curves for 12-class multiclass classification.

The close match between training and validation results across these tasks underscores
the effectiveness of our preprocessing methods, including log normalization, Min—-Max
scaling, and SMOTE balancing. Additionally, the use of early stopping and adaptive
learning rate scheduling has ensured that our models generalize well to unseen data.
These findings support the use of any of these DL architectures for DDoS detection in
IoT networks, with the final choice potentially guided by practical considerations such as
computational efficiency and deployment requirements.

6.5. Confusion Matrices

Figure 16 presents the confusion matrices for our binary classification task (benign vs.
attack) across three folds for each model: CNN, DNN, and Transformer. The diagonal cells
dominate in all matrices, indicating that the majority of samples are correctly classified.
Misclassifications are minimal, with very few off-diagonal entries. The CNN shows near-
perfect performance, as most entries lie on the main diagonal with zero or single-digit
errors in many folds. Similarly, the DNN’s confusion matrices confirm a high true positive
rate for both benign and attack classes, reflecting its strong generalization. The Transformer
exhibits a comparable distribution of predictions, albeit with slight variations in the number
of false positives or false negatives in some folds. These small discrepancies do not
significantly affect the overall accuracy. These findings confirm that all three models
can reliably distinguish between benign and malicious traffic in a binary setting. The
minimal off-diagonal values suggest that our data preprocessing pipeline (e.g., SMOTE
and normalization) successfully mitigated class imbalance, and the consistent results across
folds highlight the stability of each model’s performance.

Figure 17 shows the confusion matrices for the three-class classification task (benign,
DDoS, and non-DDoS). Each row corresponds to a particular model (CNN, DNN, or
Transformer) evaluated over three folds. The main diagonal again shows large values,
indicating correct classifications. Off-diagonal cells are generally very small, suggesting
that the models rarely confuse one class for another. In most folds, the CNN and DNN
yield near-zero misclassifications, indicating highly accurate predictions of benign, DDoS,
and non-DDoS traffic. The Transformer also demonstrates strong performance, though
a small number of off-diagonal entries appear in some folds (e.g., a handful of samples
from the DDoS class labeled as non-DDoS). However, these misclassifications are relatively
minor and do not significantly affect overall metrics. This level of performance underscores
the effectiveness of our training procedure and feature preprocessing. The consistent
patterns across folds further validate the robustness of the models. These results are in line
with the near-perfect accuracy and high Fl-scores reported earlier, highlighting that each
architecture can readily differentiate among the three traffic categories.

Sensors 2025, 25, 4845

30 of 35

Binary Classification Confusion Matrices across Three Folds (CNN, DNN, and Transformer)

200000
175000

Class 0

150000

125000
= 100000
= 75000

209,856 - 50000

Class 1

-25000

Class 0 Class 1

200000
175000

Class 0

150000

125000
= 100000
= 75000

=50000

Class 1

-25000

Class 0 Class 1

200000
175000

Class 0

150000
125000
= 100000

= 75000
209,779

Class 1

-50000

-25000

Class 0 Class 1

200000

175000
216,059
150000

Class 0

125000
=100000
= 75000

-50000

Class 1

-25000
Class 0 Class 1

200000

175000
215,789

Class 0

150000

125000
= 100000
= 75000

210,318 - 50000

Class 1

-25000

Class 0 Class 1

200000
175000
150000
125000
= 100000
= 75000
-50000

- 25000

Class 0 Class 1

200000

175000
215,751

Class 0

150000

125000
= 100000
= 75000

- 50000

Class 1

-25000
Class 0 Class 1

200000

175000
215,655

Class 0

150000

125000
= 100000
- 75000

209,855 - 50000

Class 1

-25000
Class 0 Class 1

200000

175000
215,737

Class 0

150000

125000
100000
= 75000

209,584 - 50000

Class 1

- 25000

Class 0 Class 1

Figure 16. Binary classification confusion matrices across three folds (CNN, DNN, and Transformer).

CNN Fold 1

ey 149,969

149,439

Actual
1

~- 150,175

1
Predicted
CNN Fold 2

Y 149,432

150,527

Actual
1

~- 149,627

1
Predicted
CNN Fold 3

150,186

149,608

Actual
1

149,785

1
Predicted

DNN Fold 1

149,426

Actual

150,174

1
Predicted
DNN Fold 2

150,505

Actual

149,627

1
Predicted
DNN Fold 3

149,601

Actual
1

149,784

1
Predicted

Transformer Fold 1

149,969 0

149,411

Actual

~ 0 150,174
0 1 2
Predicted
Transformer Fold 2
149,432 0

©
2 150,489
S
<
~- 0 149,621
0 1 2
Predicted
Transformer Fold 3
o 0
©
2 - 149,586
S
<
~- 0 149,777

1
Predicted

Figure 17. Three-class (benign, DDoS, and non-DDoS) confusion matrices across three folds (CNN,

DNN, and Transformer).

Sensors 2025, 25, 4845

310f35

Figure 18 presents the confusion matrices for the 12-class classification task, where
the models must distinguish between benign traffic and 11 additional attack types. This
scenario is notably more complex due to the increased number of classes, some of which
may exhibit overlapping features. Nevertheless, the diagonal cells remain dominant,
reflecting strong overall performance from all three architectures. Compared to the binary
and three-class tasks, a slightly higher number of off-diagonal cells is visible, as the models
occasionally misclassify one attack type as another. Still, these errors are relatively small,
indicating that the majority of samples are correctly identified. The DNN's matrices often
show marginally fewer off-diagonal entries, aligning with its slight lead in accuracy and
F1-score. The CNN and Transformer also perform robustly, though certain classes display
a minor increase in misclassifications.

Confusion Matrices Comparison

CNN Fold 1 DNN Fold 1 Transformer Fold 1

6026 0 0o 0o 0o 0 0 ©0o 0 0 0 0o

o se29 0 95 117 21 1 263 0o 31 190 0

0 55 5628 36 14 2 0 13 0 11 34 o

60,000

Fold 1
Actual

50,000

40,000

Fold 2
Actual
Count

- 30,000

20,000

F 10,000

Fold 3
Actual

~
©
©
.
5
o
-
~
w

5 6 4 5 6 7 8 9 10 11 01 2 3 4 5 6
Predicted Predicted Predicted

~
@
©

Figure 18. Twelve-class confusion matrices across three folds (CNN, DNN, and Transformer).

These confusion matrices confirm that our approach scales to a higher number of
classes, effectively balancing the dataset (via SMOTE) and providing clear feature represen-
tations for each class. While the classification challenge increases with more classes, the
overall results demonstrate that the CNN, DNN, and Transformer can handle nuanced dif-
ferences among multiple attack types with minimal confusion, reaffirming their suitability
for real-world IoT intrusion detection.

Sensors 2025, 25, 4845

32 0f35

6.6. Comparison with State-of-the-Art

Table 8 presents a comparative performance analysis of recent deep learning-based
intrusion detection methods evaluated on the CIC-10T2023 dataset. In the binary classifi-
cation setting, the proposed model (98.8-99.2%) performs competitively with the highest-
performing models, matching or marginally trailing behind the best results achieved by
Neto et al. [49] (99.43-99.68%) and Nkoro et al. [50] (up to 99.76%). However, these works
often rely on ensemble techniques (e.g., Random Forest; AdaBoost), which may not be
suitable for real-time edge deployment due to their heavier inference time. In contrast, our
model achieves comparable binary accuracy using a more streamlined architecture (CNN,
DNN, and Transformer), optimized for lightweight deployment.

Table 8. Performance comparison of recent studies on the CIC-IoT2023 dataset.

Author Year Methods Used Accuracy (%) Binary = Accuracy (%) Multiclass
Wang etal. [51] 2024 DNN, CNN, RNN - 84.73,94.30, 95.89
CNN, RNN, LSTM, BiLSTM,
Abbas et al. [52] 2023 DL-BiLSTM 87.88,93.40, 99.0 92.21-93.13
Neto et al. [49] 2023 LR, Perceptron, AdaBoost, DNN, RF 99.43, 99.11 98.17-99.68
CNN-LSTM, DNN, RNN,
Nkoro et al. [50] 2024 CNN-BILSTM 94.03,99.76 -
Hizal et al. [29] 2024 Two-stage: DNN, CNN, LSTM; RF 94.03-99.76 89.88-91.27
Proposed Model 2025 DNN, CNN, Transformer 98.8-99.2 92.5-93.0

In multiclass classification, our model achieves accuracies ranging from 92.5% to 93.0%,
which is higher than the results reported by Abbas et al. [52] (92.21-93.13%) and signifi-
cantly better than those by Wang et al. [51], whose best multiclass model (RNN) achieves
95.89%, while others remain below 85%. Compared to Hizal et al. [29], whose multiclass
performance ranges from 89.88% to 91.27%, our model shows an average improvement of
approximately 2-3%, indicating enhanced generalization and robustness across multiple
attack classes.

Unlike some studies (e.g., Abbas et al. or Hizal et al.), which rely on multi-stage
classifiers or hybrid feature engineering, our end-to-end deep learning approach delivers
comparable or better accuracy without added complexity. Furthermore, while Neto et al.
attain slightly higher binary results, their multiclass accuracy varies widely (from 98.17%
down to 35.13% in some models), suggesting instability across different class distribu-
tions. Our consistent performance across both binary and multiclass tasks illustrates the
model’s reliability in real-world IoT scenarios where class imbalance and unseen attacks
are common. In a nutshell, the proposed model offers a balanced trade-off between accu-
racy, computational efficiency, and stability, making it highly suitable for deployment in
edge-enabled IoT environments where real-time detection with limited resources is critical.

7. Conclusions

In this work, we developed and evaluated a DL-based IDS to detect DDoS attacks in
IoT environments. By comparing CNN, DNN, and Transformer architectures on binary,
three-class, and 12-class classification tasks, we demonstrated that each model achieves
high accuracy, precision, recall, and F1-scores. Our preprocessing pipeline—featuring log
normalization, Min-Max scaling, and SMOTE balancing—proved essential in stabilizing
feature distributions and mitigating class imbalance. Although the DNN achieved a slight
overall advantage in the 12-class classification task (93.0% accuracy), the CNN and Trans-
former models remained competitive, underscoring the robustness of our methodology.
The near-perfect performance in binary and three-class tasks, as well as the strong out-

Sensors 2025, 25, 4845 33 of 35

comes in the 12-class scenario, validate the adaptability of these deep architectures for IoT
intrusion detection. Confusion matrices further revealed minimal misclassification rates,
and ROC curves showed near-unity area under the curve. In future research, we plan to
explore more lightweight Transformer variants, incorporate adversarial training techniques
for heightened robustness, and investigate cross-dataset generalization to confirm the scal-
ability of our solution. By balancing high detection accuracy with efficient resource usage,
our framework stands as a viable approach for securing IoT networks against evolving
DDoS threats.

Author Contributions: Conceptualization, S.A.W. and].A K.; methodology, S.A.W.; software, S.A.W.,;
validation, S.A.W.,, S.S., and N.T.; formal analysis, M.M.; investigation, S.S.; resources,].A.K.; data
curation, S.S.; writing—original draft preparation, S.A.W.; writing-review and editing, N.T., J.A.K.,
and A.M.; visualization, M.M.; supervision, N.T.; project administration, N.T.; funding acquisition,
A M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is available online: https:/ /www.unb.ca/cic/datasets/
iotdataset-2023.html (accessed on 15 April 2025).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Choudhary, V;; Guha, P; Pau, G.; Mishra, S. An overview of smart agriculture using internet of things (IoT) and web services.
Environ. Sustain. Indic. 2025, 26, 100607. [CrossRef]

2. Farooq, U.; Asim, M.; Tariq, N.; Baker, T.; Awad, A.I. Multi-mobile agent trust framework for mitigating internal attacks and
augmenting RPL security. Sensors 2022, 22, 4539. [CrossRef] [PubMed]

3. Alfatemi, A.; Rahouti, M.; Hsu, D.F,; Schweikert, C.; Ghani, N.; Solyman, A.; Assaqty, M.LS. Identifying Distributed Denial
of Service Attacks through Multi-Model Deep Learning Fusion and Combinatorial Analysis. J. Netw. Syst. Manag. 2025, 33, 8.
[CrossRef]

4. Xiao,].; Sun, R.; Liu,]. MLDDoS: A distributed denial of service attack detection method using multi-level sketch.]. Supercomput.
2025, 81, 1-36. [CrossRef]

5. Maiwada, U.D.; Danyaro, K.U.; Liew, M.; Alashhab, A.A.; Sarlan, A.B. Security concerns with IoT: Detecting DDoS attacks in IoT
environments. In Convergence of Artificial Intelligence and Internet of Things for Industrial Automation; CRC Press: Boca Raton, FL,
USA, 2025; pp. 152-162.

6. Walling, S.; Lodh, S. An Extensive Review of Machine Learning and Deep Learning Techniques on Network Intrusion Detection
for IoT. Trans. Emerg. Telecommun. Technol. 2025, 36, €70064. [CrossRef]

7. Alsirhani, A.; Tarig, N.; Humayun, M.; Naif Alwakid, G.; Sanaullah, H. Intrusion detection in smart grids using artificial
intelligence-based ensemble modelling. Clust. Comput. 2025, 28, 238. [CrossRef]

8. Tarig, N.; Alsirhani, A.; Humayun, M.; Alserhani, F.; Shaheen, M. A fog-edge-enabled intrusion detection system for smart grids.
J. Cloud Comput. 2024, 13, 43. [CrossRef]

9. Sarantos, P; Violos, J.; Leivadeas, A. Enabling semi-supervised learning in intrusion detection systems. J. Parallel Distrib. Comput.
2025, 196, 105010. [CrossRef]

10. Kostas, K.; Just, M.; Lones, M.A. Individual Packet Features are a Risk to Model Generalisation in ML-Based Intrusion Detection.
IEEE Netw. Lett. 2025, 7, 66-70. [CrossRef]

11. Alwakid, G.; Ul Hagq, F; Tariq, N.; Humayun, M.; Shaheen, M.; Alsadun, M. Optimized machine learning framework for
cardiovascular disease diagnosis: A novel ethical perspective. BMC Cardiovasc. Disord. 2025, 25, 123. [CrossRef]

12. Xu,J.; Wang, Y.; Chen, H.; Shen, Z. Adversarial Machine Learning in Cybersecurity: Attacks and Defenses. Int. |. Manag. Sci. Res.
2025, 8, 26-33. [CrossRef]

13. Benka, D.; Horvéth, D.; épendla, L.; Gaspar, G.; Strémy, M. Machine Learning-Based Detection of Anomalies, Intrusions and

Threats in Industrial Control Systems. IEEE Access 2025, 13, 12502-12514. [CrossRef]

https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://www.unb.ca/cic/datasets/iotdataset-2023.html
http://doi.org/10.1016/j.indic.2025.100607
http://dx.doi.org/10.3390/s22124539
http://www.ncbi.nlm.nih.gov/pubmed/35746321
http://dx.doi.org/10.1007/s10922-024-09882-0
http://dx.doi.org/10.1007/s11227-025-06942-3
http://dx.doi.org/10.1002/ett.70064
http://dx.doi.org/10.1007/s10586-024-04964-9
http://dx.doi.org/10.1186/s13677-024-00609-9
http://dx.doi.org/10.1016/j.jpdc.2024.105010
http://dx.doi.org/10.1109/LNET.2025.3525901
http://dx.doi.org/10.1186/s12872-025-04550-w
http://dx.doi.org/10.53469/ijomsr.2025.08(02).04
http://dx.doi.org/10.1109/ACCESS.2025.3530902

Sensors 2025, 25, 4845 34 of 35

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Al-Shurbaji, T.; Anbar, M.; Manickam, S.; Hasbullah, I.H.; ALfriehate, N.; Alabsi, B.A.; Alzighaibi, A.R.; Hashim, H. Deep
Learning-Based Intrusion Detection System For Detecting IoT Botnet Attacks: A Review. IEEE Access 2025, 13, 11792-11822.
[CrossRef]

Susilo, B.; Muis, A.; Sari, R.E. Intelligent Intrusion Detection System Against Various Attacks Based on a Hybrid Deep Learning
Algorithm. Sensors 2025, 25, 580. [CrossRef] [PubMed]

Rehman, T.; Tariq, N.; Khan, FA.; Rehman, S.U. FFL-IDS: A FOG-Enabled Federated Learning-Based Intrusion Detection System
to counter jamming and spoofing attacks for the industrial internet of things. Sensors 2024, 25, 10. [CrossRef] [PubMed]
Akuthota, U.C.; Bhargava, L. Transformer Based Intrusion Detection for IoT Networks. IEEE Internet Things . 2025, 12, 6062-6067.
[CrossRef]

Zhu, Y.; Wang, Y.; Zhou, L.; Xia, Y. FC-Trans: Deep learning methods for network intrusion detection in big data environments.
Comput. Secur. 2025, 154, 104392. [CrossRef]

Kamal, H.; Mashaly, M. Enhanced Hybrid Deep Learning Models-Based Anomaly Detection Method for Two-Stage Binary and
Multi-Class Classification of Attacks in Intrusion Detection Systems. Algorithms 2025, 18, 69. [CrossRef]

Al-Haija, Q.A.; Droos, A. A comprehensive survey on deep learning-based intrusion detection systems in Internet of Things (IoT).
Expert Syst. 2025, 42, €13726. [CrossRef]

Ali, M.; Saleem, Y.; Hina, S.; Shah, G.A. DDoSViT: IoT DDoS attack detection for fortifying firmware Over-The-Air (OTA) updates
using vision transformer. Internet Things 2025, 30, 101527. [CrossRef]

Wasswa, H.; Lynar, T.; Nanyonga, A.; Abbass, H. IoT Botnet Detection: Application of Vision Transformer to Classification of
Network Flow Traffic. In Proceedings of the 2023 Global Conference on Information Technologies and Communications (GCITC),
Bangalore, India, 1-3 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1-6.

Tawfik, M. Optimized intrusion detection in IoT and fog computing using ensemble learning and advanced feature selection.
PLoS ONE 2024, 19, e0304082. [CrossRef]

Lamba, HK.; Gala, H.; Mathew, R.; Shinde, S. Al Based Intrusion Detection for DDoS and SQL Injection Attacks. In Proceedings
of the 2024 First International Conference for Women in Computing (InCoWoCo), Pune, India, 14-15 November 2024; IEEE:
Piscataway, NJ, USA, 2024; pp. 1-7.

Ullah, F; Turab, A.; Ullah, S.; Cacciagrano, D.; Zhao, Y. Enhanced network intrusion detection system for internet of things
security using multimodal big data representation with transfer learning and game theory. Sensors 2024, 24, 4152. [CrossRef]
[PubMed]

Baral, S.; Saha, S.; Haque, A. An Adaptive End-to-End IoT Security Framework Using Explainable Al and LLMs. In Proceedings
of the 2024 IEEE 10th World Forum on Internet of Things (WF-IoT), Ottawa, ON, Canada, 10-13 November 2024; IEEE: Piscataway,
NJ, USA, 2024; pp. 469-474.

Li, Y;; Xiang, Z.; Bastian, N.D.; Song, D.; Li, B. IDS-Agent: An LLM Agent for Explainable Intrusion Detection in IoT Networks. In
Proceedings of the NeurIPS 2024 Workshop on Open-World Agents, Vancouver, BC, Canada, 14 December 2024.
Almaraz-Rivera,].G.; Cantoral-Ceballos,].A.; Botero,].F. Enhancing iot network security: Unveiling the power of self-supervised
learning against ddos attacks. Sensors 2023, 23, 8701. [CrossRef] [PubMed]

Hizal, S.; Cavusoglu, U.; Akgun, D. A novel deep learning-based intrusion detection system for IoT DDoS security. Internet Things
2024, 28, 101336. [CrossRef]

Sharma, V.; Kumar, M. Comparative Analysis of Machine Learning Models for Intrusion Detection Systems. Panam. Math. J. 2023,
35, 2025.

Olanrewaju-George, B.; Pranggono, B. Federated learning-based intrusion detection system for the internet of things using
unsupervised and supervised deep learning models. Cyber Secur. Appl. 2025, 3, 100068. [CrossRef]

Yao, W.; Shi, H.; Zhao, H. Scalable anomaly-based intrusion detection for secure Internet of Things using generative adversarial
networks in fog environment. J. Netw. Comput. Appl. 2023, 214, 103622. [CrossRef]

Thiyam, B.; Dey, S. Efficient feature evaluation approach for a class-imbalanced dataset using machine learning. Procedia Comput.
Sci. 2023, 218, 2520-2532. [CrossRef]

Nguyen, T.B.; Nguyen, D.D.K.; Le Nguyen, B.N.; Le, T. A machine learning-based anomaly packets detection for smart home. In
Proceedings of the 12th International Symposium on Information and Communication Technology, Ho Chi Minh, Vietnam, 7-8
December 2023; pp. 816-823.

Hnamte, V.; Hussain,]. DCNNBiIiLSTM: An efficient hybrid deep learning-based intrusion detection system. Telemat. Inform. Rep.
2023, 10, 100053. [CrossRef]

Zhao, R.; Huang, Y.; Deng, X.; Shi, Y; Li, J.; Huang, Z.; Wang, Y.; Xue, Z. A novel traffic classifier with attention mechanism for
industrial internet of things. IEEE Trans. Ind. Inform. 2023, 19, 10799-10810. [CrossRef]

Karimy, A.U.; Reddy, P.C. Securing the Internet of Things: A Study on Machine Learning-Based Solutions for IoT Security and
Privacy Challenges. ZKG Int. 2023, VIII, 30-65.

http://dx.doi.org/10.1109/ACCESS.2025.3526711
http://dx.doi.org/10.3390/s25020580
http://www.ncbi.nlm.nih.gov/pubmed/39860948
http://dx.doi.org/10.3390/s25010010
http://www.ncbi.nlm.nih.gov/pubmed/39796800
http://dx.doi.org/10.1109/JIOT.2025.3525494
http://dx.doi.org/10.1016/j.cose.2025.104392
http://dx.doi.org/10.3390/a18020069
http://dx.doi.org/10.1111/exsy.13726
http://dx.doi.org/10.1016/j.iot.2025.101527
http://dx.doi.org/10.1371/journal.pone.0304082
http://dx.doi.org/10.3390/s24134152
http://www.ncbi.nlm.nih.gov/pubmed/39000931
http://dx.doi.org/10.3390/s23218701
http://www.ncbi.nlm.nih.gov/pubmed/37960401
http://dx.doi.org/10.1016/j.iot.2024.101336
http://dx.doi.org/10.1016/j.csa.2024.100068
http://dx.doi.org/10.1016/j.jnca.2023.103622
http://dx.doi.org/10.1016/j.procs.2023.01.226
http://dx.doi.org/10.1016/j.teler.2023.100053
http://dx.doi.org/10.1109/TII.2023.3241689

Sensors 2025, 25, 4845 35 of 35

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Bolat-Akga, B.; Bozkaya, E. Software-defined intrusion detection system for ddos attacks in iot edge networks. In Proceedings
of the 2023 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on
Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on
Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Abu Dhabi, United Arab Emirates, 14-17
November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 672-677.

Liu, J.; Zeng, Y.; Shi, J.; Yang, Y.; Wang, R.; He, L. Maldetect: A structure of encrypted malware traffic detection. Comput. Mater.
Contin. 2019, 60, 721-739. [CrossRef]

Zhao, X.; Miao, W.; Yuan, G.; Jiang, Y.; Zhang, S.; Li, Q. Abnormal Traffic Detection System Based on Feature Fusion and Sparse
Transformer. Mathematics 2024, 12, 1643. [CrossRef]

Alzughaibi, S.; El Khediri, S. A cloud intrusion detection systems based on dnn using backpropagation and pso on the cse-cic-
ids2018 dataset. Appl. Sci. 2023, 13, 2276. [CrossRef]

Thakkar, A.; Lohiya, R. Attack classification of imbalanced intrusion data for IoT network using ensemble-learning-based deep
neural network. IEEE Internet Things]. 2023, 10, 11888-11895. [CrossRef]

Ouhssini, M.; Afdel, K.; Akouhar, M.; Agherrabi, E.; Abarda, A. Advancements in detecting, preventing, and mitigating DDoS
attacks in cloud environments: A comprehensive systematic review of state-of-the-art approaches. EQypt. Inform.]. 2024,
27,100517. [CrossRef]

Kamal, H.; Mashaly, M. Advanced Hybrid Transformer-CNN Deep Learning Model for Effective Intrusion Detection Systems
with Class Imbalance Mitigation Using Resampling Techniques. Future Internet 2024, 16, 481. [CrossRef]

Saghir, A.; Beniwal, H.; Tran, K; Raza, A.; Koehl, L.; Zeng, X.; Tran, K. Explainable Transformer-Based Anomaly Detection for
Internet of Things Security. In Proceedings of the International Conference on Safety and Security in IoT, Bratislava, Slovakia,
24-26 October 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 83-109.

Lin, L.; Zhong, Q.; Qiu, J.; Liang, Z.; Yang, Y.; Hu, S.; Chen, L. Intrusion detection using a hybrid approach based on CatBoost and
an enhanced inception V1. Int. J. Mach. Learn. Cybern. 2025, 16, 4189-4211. [CrossRef]

Konatham, B.; Simra, T.; Amsaad, F.; Ibrahem, M.I.; Jhanjhi, N.Z. A secure hybrid deep learning technique for anomaly detection
in iiot edge computing. Authorea Prepr. 2024. [CrossRef]

Ali, G.; Robert, W.; Mijwil, M.M,; Sallam, M.; Ayad, J.; Adamopoulos, I. Securing the Internet of Wetland Things (IoWT) Using
Machine and Deep Learning Methods: A Survey. Mesopotam.]. Comput. Sci. 2025, 2025, 17-63. [CrossRef]

Neto, E.C.P; Dadkhah, S.; Ferreira, R.; Zohourian, A.; Lu, R.; Ghorbani, A.A. CICIoT2023: A real-time dataset and benchmark for
large-scale attacks in IoT environment. Sensors 2023, 23, 5941. [CrossRef] [PubMed]

Nkoro, E.C.; Njoku,].N.; Nwakanma, C.I; Lee,].M.; Kim, D.S. Zero-trust marine cyberdefense for iot-based communications: An
explainable approach. Electronics 2024, 13, 276. [CrossRef]

Wang, Z.; Chen, H.; Yang, S.; Luo, X; Li, D.; Wang,]. A lightweight intrusion detection method for IoT based on deep learning
and dynamic quantization. Peer] Comput. Sci. 2023, 9, €1569. [CrossRef]

Abbas, S.; Bouazzi, I.; Ojo, S.; Al Hejaili, A.; Sampedro, G.A.; Almadhor, A.; Gregus, M. Evaluating deep learning variants for
cyber-attacks detection and multi-class classification in IoT networks. Peer] Comput. Sci. 2024, 10, €1793. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.32604/cmc.2019.05610
http://dx.doi.org/10.3390/math12111643
http://dx.doi.org/10.3390/app13042276
http://dx.doi.org/10.1109/JIOT.2023.3244810
http://dx.doi.org/10.1016/j.eij.2024.100517
http://dx.doi.org/10.3390/fi16120481
http://dx.doi.org/10.1007/s13042-024-02505-9
http://dx.doi.org/10.36227/techrxiv.170630909.96680286/v1
http://dx.doi.org/10.58496/MJCSC/2025/002
http://dx.doi.org/10.3390/s23135941
http://www.ncbi.nlm.nih.gov/pubmed/37447792
http://dx.doi.org/10.3390/electronics13020276
http://dx.doi.org/10.7717/peerj-cs.1569
http://dx.doi.org/10.7717/peerj-cs.1793

	Introduction
	Related Work
	Use Case: DDoS Attacks in IoT Environments
	Proposed Methodology
	Dataset Description
	Data Preprocessing
	CNN for IoT DDoS Attack Detection
	DNN for IoT DDoS Attack Detection
	Transformer-Based Model for IoT DDoS Attack Detection
	Computational Complexity Analysis
	Computational Complexity of CNN Model
	Computational Complexity of DNN Model
	Computational Complexity of Transformer Model
	Space Complexity Analysis

	Hyperparameter Tuning
	Model Training and Optimization
	Cross-Validation
	Learning Rate Scheduling
	Loss Function
	Weight Updates and Optimization
	Regularization Techniques
	Early Stopping and Learning Rate Reduction

	Experimental Setup
	Result
	Accuracy
	Loss
	Performance Metrics
	ROC Curves
	Confusion Matrices
	Comparison with State-of-the-Art

	Conclusions
	References

