
Exploring Developers Discussion Forums forQuantum Software
Engineering: A Fine-Grained Classification Approach Using Large

Language Model (ChatGPT)
Mobashir Husain

Muhammad Sohail Khan
mobashir70ustb@gmail.com

sohail.khan@uetmardan.edu.pk
Department of Computer Software

Engineering, University of
Engineering and Technology

Marden, Pakistan

Javed Ali Khan
j.a.khan@herts.ac.uk

Department of Computer Science,
University of Hertfordshire
Hatfield, United Kingdom

Nek Dil Khan
nekdilkhan@emails.bjut.edu.cn

Faculty of Information Technology,
Beijing University of Technology

Beijing, China

Arif Ali Khan
Arif.khan@oulu.fi

M3S Empirical Software Engineering
Research Unit, University of Oulu

Oulu, Finland

Muhammad Azeem Akbar
Azeem.akbar@lut.fi

Department of Software Engineering,
LUT University, Finland
Lappeenranta, Finland

Abstract
Quantum Software Engineering (QSE) has recently emerged as a
potential research and development direction frequently practiced
by many tech joints. However, quantum developers face challenges
in optimizing quantum computing and QSE concepts. Quantum
developers use the Stack Overflow (SO) platform to report and
discuss quantum-related challenges. Also, quantum practitioners
use specialized quantum tags to label quantum-related posts in
developers’ forums. However, these quantum tags referred to more
technical quantum aspects than the developer posts. Therefore,
categorizing quantum practitioners’ questions based on quantum
concepts can help quantum developers better identify frequently
occurring challenges to QSE. For this purpose, we conducted qual-
itative and quantitative studies to classify quantum developers’
questions into various frequently occurring quantum-related chal-
lenges. We extracted 2829 developers’ questions from various Q&A
platforms using queries and filters based on quantum-related tags.
Next, the developers’ posts on the Q&A forums were critically ana-
lyzed to identify frequently discussed quantum-related challenges
and develop a novel grounded theory. The frequent quantum devel-
oper challenges identified by analyzing practitioners’ discussions
in the Q&A forums include Tooling, Theoretical, Learning, Concep-
tual, Errors, and API Usage. Moreover, using content analysis and
grounded theory, the developers’ discussions were annotated with
commonly reported quantum challenges to develop a ground truth
and a novel dataset. A Large Language model (ChatGPT) was used
to validate the human annotation and overcome disagreements.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FSE Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/25/06
https://doi.org/10.1145/3696630.3731625

Finally, various fine-tuned Deep and Machine learning (D&ML)
classifiers automatically classify developer discussions into com-
monly reported quantum challenges. Additionally, to improve the
classification results, we utilized textual data augmentation ap-
proaches, such as random deletion, swapping, and insertion with
the D&ML classifiers. We obtained average accuracies of 89%, 86%,
84%, 84%, and 80%with FNN, CNN, LSTM, GRU, and RNN classifiers,
respectively. This helps quantum researchers and vendors propose
solutions and tools to frequently occurring issues for quantum
developers.

CCS Concepts
• Software and its engineering→ Software libraries and repos-
itories.

Keywords
Quantum Software Engineering, Repository mining, developer fo-
rums, Stack overflow, machine and deep learning, Natural language
processing.

ACM Reference Format:
Mobashir Husain, Muhammad Sohail Khan, Javed Ali Khan, Nek Dil Khan,
Arif Ali Khan, and Muhammad Azeem Akbar. 2025. Exploring Developers
Discussion Forums for Quantum Software Engineering: A Fine-Grained
Classification Approach Using Large Language Model (ChatGPT). In Com-
panion Proceedings of the 33rd ACM Symposium on the Foundations of Soft-
ware Engineering (FSE ’25), June 23–27, 2025, Trondheim, Norway. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3696630.3731625

1 Introduction
Quantum computing leverages quantum mechanics principles to
describe the behavior of particles at the atomic and subatomic levels.
Unlike classical computers, which use bits (0s and 1s), quantum
computers use quantum bits or "qubits" to process information
[35]. Superposition allows qubits to exist in a combination of 0

1742

https://doi.org/10.1145/3696630.3731625
https://doi.org/10.1145/3696630.3731625
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696630.3731625&domain=pdf&date_stamp=2025-07-28

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Trovato et al.

and 1 states simultaneously, increasing the computational power
of quantum systems [37]. Google [7], IBM [18], and Rigetti [38]
have demonstrated the ability to create qubits in controlled envi-
ronments, enabling practical quantum computing. This provides
opportunities to solve complex computational problems requiring
parallel computation, which is challenging for classical computers.
It can resolve complex issues in big data analytics, financial systems,
national security, chemistry, cryptography, health analytics and
medicine [36].

Quantum software engineering processes must be aligned with
hardware advancements to leverage quantum computing. Devel-
oping methodologies, processes, tools, and algorithms is crucial
for quantum computing domains [49]. Quantum programming lan-
guages like Q# [41], Scaffold [21], and Qiskit [19] exist for applica-
tions. Microsoft, Google, and IBM have developed cloud platforms
that support quantum software development. IBM’s platform en-
ables the execution of applications on quantum systems. Developers
create quantum software for domains such as chemistry and ma-
chine learning [33]. Given the importance of applications, software
engineering processes are required for large projects. The QSE was
coined to meet the demands for large applications [49]. Initial ap-
proaches for quantum requirements engineering [48], quantum
software architecture [2], Quantum Development [3], and Quan-
tum Testing [4] are emerging. Developers use social media and
Q&A forums to extract information and address challenges [24].
Researchers have analyzed Q&A platform discussions to tackle
challenges [33] [22]. These forums provide resources, communities,
and problem-solving. QSE are valuable for sharing experiences in
less-resourced areas. They enable collaboration, updates on trends,
and collective problem-solving. This motivated the exploration of
Q&A platform discussions to identify quantum categories such as
Tooling and Conceptual, helping developers find information on
frequent challenges.

In this study, we evaluate developer discussions on QSE across
Q&A platforms like Stack Overflow (SO), Quantum Computing
Stack Exchange (QCSE), Computer Science Stack Exchange (CSSE),
and Artificial Intelligence Stack Exchange (AISE), categorizing them
into challenges faced by software practitioners. This aids quan-
tum developers in finding solutions to specific challenges on these
platforms, organized by tags such as qiskit, qcl, qutip, qubit, and
tensorflow-quantum. We extracted 2829 developers’ questions us-
ing quantum-related tags, following El-Aoun et al.’s method [33].
The posts were analyzed to identify frequently discussed quantum
challenges and develop a novel grounded theory, cross-validated
with those by El-Aoun et al. [33] using topic modeling. Frequent
challenges include Tooling, Theoretical, Learning, Conceptual, Er-
rors, and API Usage. Through content analysis and grounded theory,
developers’ discussions were annotated with common quantum
challenges to create a ground truth dataset. ChatGPT validated hu-
man annotations and resolved disagreements. Various fine-tuned
Deep and Machine learning (D&ML) classifiers were used to au-
tomatically classify developer discussions into common quantum
challenges. The key contributions of this study are as follows.

• Developed a novel dataset to classify developers’ discussions
into various frequently reported challenges related to QSE.

• A novel ground truth for quantum-related classification ap-
proaches, which, according to our knowledge, is the first
annotated dataset to date.

• ChatGPT is utilized to overcome the coders’ disagreements
to ensure the annotation’s validity.

• D&ML algorithms are fine-tuned by identifying hyperpa-
rameters to improve accuracy.

• A data augmentation approach is used to improve the per-
formance of the D&ML classifiers by approximately 20%.

• D&ML classifiers are tested and validated on a dataset cu-
rated from multiple discussion Q&A forums to ensure the
generalizability of the proposed approach.

The paper is organized as follows: Section 2 provides a related
work. Section 3 outlines the research methodology. Section 4 details
the classification and analysis of challenges faced in QSE. Section 5
explores automated methods for classifying developer discussions.
Section 6 discusses the insights derived from developer exchanges
on platforms like Stack Exchange. Section 7 concludes the paper
and discusses possible future directions.

2 RELATEDWORK
This section reviews the pertinent literature on quantum computing,
QSE, and mining software repositories.

2.1 Software Quantum-Based Approaches
This subsection reviews the literature on software quantum comput-
ing approaches and techniques for quantum software development.
Gill et al.[15] provided a systematic review of Quantum Comput-
ing (QC), which offers computational advantages over classical
computing by leveraging quantum mechanical principles. They
highlighted QC’s potential to address complex problems in drug
design, data science, clean energy, finance, industrial chemical de-
velopment, secure communications, and quantum chemistry. Akbar
et al. [3] proposed a perspective on Quantum Software Engineering
(QSE), outlining its lifecycle stages and providing a framework for
quantum necessity engineering, software implementation, design,
testing, and maintenance. El-Aoun et al.[33] explored challenging
aspects of QSE, examining quantum code theory and the gap be-
tween quantum and classical computing. Vietz et al. [47] analyzed
tools supporting quantum application development, providing cate-
gorization and analysis to aid developers in selecting suitable tools.
Haghparast et al.[16] explored quantum software engineering chal-
lenges, mapped research challenges to the quantum computing
workflow model, and identified directions for software engineering
research.

2.2 Mining Q&A repositors
We elaborate on the approaches that mine Q&A repositories to
enhance developers’ understanding. Beyer et al. [9] proposed a
method to classify developer questions in SO forums into seven
categories. They gathered data from SO forums on Android de-
velopers’ questions and classified them using ML classifiers and
expressions. Treude et al. [44] studied how programmers ask and an-
swer questions on SO, analyzing discussions to categorize question
types and assess answers. Their findings show the utility of Q&A
sites for code reviews and conceptual questions. Iftikhar et al.[20]

1743

Exploring Developers Discussion Forums for Quantum Software Engineering: A Fine-Grained Classification Approach Using Large Language Model (ChatGPT)FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

proposed a deep learning approach for predicting correct answers
in SO discussions. They extracted metadata and question/answer
combinations, applied NLP techniques, and used keyword ranking
for feature vectors. Their ensemble deep learning model surpassed
state-of-the-art methods, improving the accuracy, precision, recall,
and f-measure by 1.72%, 24.96%, 6.57%, and 16.62%, respectively.
Zhu et al. [50] studied SO discussions, noting active participation
in Q&A. They found a strong link between question comments and
the response time. Similarly, [25] analyzed Q&A forum discussions
to gain insights into software development methods. El-Aoun et
al.[33] analyzed Q&A platforms to uncover challenges faced by
quantum developers. Khan et al. [5] proposed an automated ap-
proach for extracting requirement-related information from forums,
using ML and NLP to categorize discussions. Beyer et al. manually
categorized 450 SO posts on Android app development [11]. They
found ’How to?’ and ’What is the problem?’ were common, with
issues related to the User Interface and core elements. Their study
revealed correlations between the problem and question types.

2.3 Comparison with Existing Literature
The study complements mining software repositories and analyz-
ing developer discussions to improve practitioner understanding.
Inspired by El-Aoun et al. and Beyer et al. [9], our approach differs
from previous studies. El-Aoun et al.[33] used topic modelling on
Q&A forums to identify challenges, while Bayer et al. [9] classi-
fied developers’ comments related to Android development into
fine-grained categories. We critically analyzed QSE discussions
from multiple forums to develop a taxonomy, validating it against
El-Aoun et al.[33]’s findings. We fine-tuned ML and DL classifiers
to classify QSE discussions into challenges like tooling, theory,
and API usage. Unlike Beyer et al. [9], we aimed for a generaliz-
able approach using multiple QSE forums. We employed ChatGPT
to validate coder disagreements and automate annotation. With
limited QSE datasets compared to Android discussions, we used
augmentation to improve classifier performance. Table 1 compares
existing approaches.

3 PROPOSED RESEARCH METHODOLOGY
In this section, we first elaborate on the research questions to an-
swer the proposed research methodology. Next, we describe the
proposed research approach, which includes the research dataset,
novel grounded theory, content analysis, and various classifiers
used to classify developer discussions into frequently reported chal-
lenge types.

3.1 Research Questions
This study aims to develop an automated methodology for system-
atically classifying developer discussions into identified challenges
using fine-tuning D&ML algorithms. The proposed approach will
empower quantum developers with structured resources, enabling
them to find meaningful information about the quantum challenges
confronting them. We developed the following research questions
to validate the proposed methodology:

RQ1: What do quantum developers discuss about various
challenges in different developers’ discussion forums?

RQ2:What frequent QSE challenges can be identified from
the developer’s discussion?

RQ3: Can ChatGPT work as an annotator and negotiator
in developing a ground truth for D&ML classifiers?

RQ4: How do various fine-tuned D&ML algorithms per-
form in classifying developers’ discussions into various QSE
challenges?

In pursuit of RQ-1, we aim to analyze developer questions in
various forums, including SO, QCSE, CSSE, and AISE, to identify
common patterns in how quantum developers express concerns
or challenges regarding QSE. This will result in a novel grounded
theory to identify frequently occurring challenges related to QSE.
RQ2 utilizes the grounded theory and content analysis approach to
develop a ground truth for RQ4 by manually annotating developers’
discussions into various frequently occurring challenges. For RQ3,
we seek to determine whether ChatGPT can annotate developers’
discussions about QSE compared to human annotators and explore
its use as a negotiator to resolve conflicts between annotators. This
aims to overcome the manual complexity of annotating developer
datasets for classification tasks. For RQ4, we aim to evaluate and
compare various D&ML algorithms by exploring different feature
engineering and natural language approaches to fine-tune these
algorithms to better classify developers’ comments into SQE chal-
lenges identified through RQ1.

3.2 Research method
The proposed research methodology for classifying developers’ dis-
cussions from various social media platforms into QSE challenges
comprises four main phases, shown in Figure 1; each methodologi-
cal step is elaborated below.

3.2.1 Research Data Gathering and Curation. For the proposed ap-
proach, a research dataset on QSE is developed by systematically
collecting developers’ discussions from SO, QCSE, CSSE, and AISE
forums due to their importance in software engineering literature
[1], [9]. Recently, El Aoun et al. have explored these platforms for
identifying quantum-related challenges using topic modeling [33].
These Q&A platforms prove an important source for improving vari-
ous software engineering activities [1]. As of June 2024, SO had over
23 million, AISE had 73,124, QCSE had 23,740, and CSSE had 140,047
registered users. The SO repository, with over 24 million questions
and 35 million answers, is the largest question-and-answer plat-
form for software developers. We focused on collecting developers’
discussions about quantum computing, programming languages,
algorithms, and tools from these platforms.

We navigated the SO, AISE, QCSE, and CSSE forums using tai-
lored queries to extract developer discussions relevant to QSE. For
SO, queries targeted questions tagged with identifiers like post-
quantum-cryptography, q#, quantum-computing, qiskit, qcl, qutip,
qubit, and TensorFlow quantum, based on El-Aoun et al.[33]. These
queries retrieved accepted and non-accepted answers, ensuring a
comprehensive view of QSE discussions. Using SEDE, data from
August 2008 to August 2024 was extracted. SO had 627 questions
with 282 accepted answers. For QCSE, CSSE, and AISE, queries
focused on tags like programming, classical computing, and q#.
QCSE had 1806 questions with 500 accepted answers, CSSE had 379

1744

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Trovato et al.

Table 1: Summary of Methodologies for Automated Developer Question Classification

Ref. Algorithms Used Proposed Methodology Dataset Used and
Size

Key Contributions QC/QSE?

Beyer et al. [9] RF, SVM Automated classification via taxonomy harmoniza-
tion (7 categories), regex/ML.

1,000 Android SO
posts

Improved question search/browsing
for developers.

No

Vietz et al. [47] - Quantum dev tools taxonomy + comparison frame-
work.

- Structured quantum tech selection
for developers.

Yes

Khan et al. [22] LDA Mixed-methods analysis (13,903 posts) with topic
modeling.

13,903
SO/SESE/PMSE
posts

Identified common dev ap-
proaches/challenges.

No

El Aoun et al. [33] Topic Modeling QSE challenge identification via Stack Ex-
change/GitHub.

Stack Exchange +
GitHub

Highlighted QSE-specific chal-
lenges.

Yes

Proposed Work FNN, CNN, LSTM,
GRU, RNN

Classification of 2,829 quantum dev questions
+ ChatGPT validation + data augmentation.

2,829 Q&A posts QSE challenge taxonomy + LLM val-
idation + enhanced classification.

Yes

Figure 1: Overview of the proposed research methodology process.

questions with 124 accepted answers, and AISE had 17 questions
with 4 accepted answers, as shown in Table 2.

3.2.2 Grounded theory approach . In the previous step, develop-
ers’ QSE discussions were collected from various Q&A forums as
raw data. To make this data parusable, we manually selected a
sample of 300 developers’ discussions to critically analyze it and

identify frequently occurring challenges related to QSE and devel-
oped a grounded theory for QSE. For this purpose, we employed the
corbins-grounded theory framework [40] to develop a coding guide-
line, which works as an input for preparing an annotated dataset
for D&ML algorithms. Grounded theory constructs a theoretical
framework based on recurring evidence from the QSE dataset. The

1745

Exploring Developers Discussion Forums for Quantum Software Engineering: A Fine-Grained Classification Approach Using Large Language Model (ChatGPT)FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Table 2: Dataset for Machine Learning Experiments
Topic Total Ques-

tions
Tag Set Data Source

Stack Overflow 627 post-quantum cryptography,
q#, quantum-computing,
qiskit, qcl, qutip, qubit,
TensorFlow-quantum

Stack Exchange

Quantum Com-
puting

1806 programming, classical com-
puting, q#, qiskit, cirq, ibm-q-
experience, machine-learning,
qutip

Stack Exchange

Computer Sci-
ence

379 quantum-computing Stack Exchange

Artificial Intel-
ligence

17 quantum-computing Stack Exchange

Total 2829 - -

novel ground Theory for QSE involves frequently mentioned chal-
lenges quantum practitioners face in Q&A forums. The frequently
reported challenges identified are Tooling, Theoretical, Learning,
Conceptual, Errors, and API Usage. The identified quantum con-
cepts were verified with challenges identified by El-Aoun et al.[33]
using a topic modeling approach. Compared to El-Aoun et al.[33],
we discarded three challenges: discrepancy, review, and API change,
due to insufficient evidence in developers’ discussions. Some con-
cepts occur repetitively; they are merged into frequently occurring
challenges. For example, discussions about unexpected results over-
lap with error troubleshooting and are represented with the error
quantum concept. Discussions related to "API change" are grouped
in the conceptual category. The "Review" challenge type can be
intertwined with the SQE "Conceptual" or "API usage" categories.
The quantum grounded theory process was developed iteratively
with discussions by the first and fourth authors of the paper. The
document helps annotators label the raw developer discussion for
D&ML classifiers and minimize discrepancies among coders when
annotating the dataset for D&ML learning experiments.

3.2.3 Analyzing content manually. After developing grounded the-
ory, raw developer discussions from Q&A platforms must be an-
notated to make a purusable dataset for D&ML classifiers. Using
the content analysis approach [34] and grounded theory document,
developers’ discussions are manually annotated. For this purpose,
2829 developers’ discussions on QSE collected from Q&A platforms
were added in a Microsoft Excel document to be annotated by the
first and fourth authors of the paper using grounded theory docu-
ment and content analysis approach. Moreover, content analysis is
challenging and time-consuming due to human annotator involve-
ment [27, 28]. Therefore, to possibly automate and improve the
manual annotation process, the same comments were annotated
using ChatGPT to compare its performance with human annota-
tors. Annotation forms from human coders were merged to identify
interceding agreements and cohesion kappa to assess ChatGPT’s
applicability in annotating QSE-related comments. To resolve con-
flicts, another round was conducted between human coders and
ChatGPT to agree on comment annotations. The detailed process
is described in section 4.2.

3.2.4 Classifying Developer Discussions using D&ML classifiers).
After annotating QSE-related developer discussions, we assessed
existing fine-tuned D&ML classifiers in categorizing these discus-
sions into QSE-related challenge types identified via a grounded

theory approach. We performed the following: A preprocessing
pipeline removed special characters, URLs, and symbols using reg-
ular expressions. NLP techniques, like stemming and removing
stop words, enhanced readability for D&ML algorithms. Feature
engineering approaches, such as CountVectorizer and TFIDF, were
employed to evaluate their effectiveness in classifying discussions.
For deep learning classifiers, various feature values were experi-
mented with and fine-tuned for improved results. Data-balancing
methods, like under-sampling and over-sampling, addressed data
imbalance across challenges. Data augmentation enhanced clas-
sifier performance, including random word deletion with a 20%
retention probability, random word swapping up to two times, and
random insertion of synonyms. A cross-validation approach trained
and validated D&ML classifiers. Also, D&ML model performance
was evaluated using the metrics of precision, recall, F1-score, ROC,
and learning curves.

4 PROCESSING DEVELOPERS DISCUSSION
This section outlines the process of identifying the various chal-
lenges that quantum developers face while developing quantum-
related applications. In addition, we shed light on how to annotate
developer discussions collected from various Q&A platforms into
the challenges identified previously using the grounded theory
approach. Below, we elaborated on the process.

4.1 Statements of Developers
Organizing information on these Q&A platforms can help develop-
ers identify relevant information promptly. QSE is a new area where
quantum developers frequently face challenges [33]. Therefore, we
analyze developers’ discussions to classify them into frequent chal-
lenges that quantum developers face, including tooling, theory,
learning, concepts, errors, and API usage. The related quantum
codes identified during the annotation emerged as concepts, result-
ing in a novel quantum theory for software developers. Concepts
in the quantum coding guideline were identified by their consistent
presence in discussions and relevance to the research approach. If a
quantum concept appears less frequently in discussions, it merges
into a related quantum concept. For example, the "API change"
concept can merge into the "Conceptual category," aligning with
the definition where developers ask about the API working. Below,
we discuss the identified quantum concepts.

4.1.1 Conceptual. The code "Conceptual" is assigned to developers’
discussions on Q&A platforms focusing on understanding the back-
ground, limitations, and concepts of quantum programming APIs.
Analysis shows that quantum developers discuss quantum comput-
ing history or debate the feasibility of certain concepts. Researchers
categorize discussions into conceptual categories if questions con-
tain terms like why, is possible [11], what [39], how/why [6], and
understanding concepts [9]. The definition for categorizing dis-
cussions aligns with approaches by Beyer and Pinzger [11], Rosen
and Shihab [39], Allamanis and Sutton [6], and Beyer et al. [9]. An
example is in Row 2 of Table 3.

4.1.2 Theoretical. The code “Theoretical” is assigned to Q&A plat-
form discussions on quantum programs, algorithms, and principles.
Developers may inquire about the mathematical foundations of

1746

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Trovato et al.

Table 3: Quantum Concepts with Examples from Q&A Forums

Concept Developers’ Discussion Examples
Conceptual Quantum Computing and Encryption Breaking: "I read that Quantum Computers can break most encryption... How? I get lost at quantum bits being 1, 0, or

both. Can someone explain in plain English without the math?"
Theoretical NP-hard Cryptography: "Are there public key algorithms based on NP-complete problems rather than factorization/discrete logs, in case quantum computing

becomes practical?"
Tooling QASM Simulation Issues: "Using IBM Quantum Experience: Dragging gates is slow, no Toffoli gate. Need QASM editor/documentation. Found these links but

unclear which QASM version IBM uses..."
Learning Book Request: "Looking for a book covering Shor’s algorithm, McEliece cryptosystem, Lattice-based crypto, and Discrete logarithms. Any recommendations?"
Error Q# Build Problem: "Getting error QS1001: Microsoft.Quantum.Canon.dll not found. Missing .nuspec file. Nuget restore didn’t help. Solutions?"
API Usage Break Equivalent in Q#: "How to exit a loop when condition met? In C#: if(i==3) break. What’s the Q# equivalent?"

quantum mechanics or seek explanations for quantum algorithms.
For instance, a developer might ask how superposition or entan-
glement affects quantum algorithm design, as shown in Table 3,
row 3. It discusses the theoretical implications of practical quantum
computing on public-key cryptographic algorithms and complexity
theory. El-Aoun et al.[33] identified that developers often discuss
theoretical problems related to quantum computing in Q&A discus-
sions using a topic modelling approach.

4.1.3 Tooling. This category pertains to developer discussions
on tools and software usage in quantum development. The code
"tooling" is assigned to developers’ discussions on Q&A platforms
that discuss possible quantum tools, seek expertise, or help with
quantum-related tools. Quantum computing is an emerging disci-
pline where vendors develop new tools to solve quantum-related
problems. During annotation, quantum developers often seek guid-
ance on using specific software tools or frameworks for quantum
development. An example is shown in Table 3, Row 4. This cate-
gory aligns with the El-Aoun et al. [33] approach, which identified
"Tooling" as a frequently occurring quantum challenge developers
discuss in Q&A forums.

4.1.4 Learning. In the developer discussions dataset where quan-
tum practitioners seek resources about quantum computing from
the Q&A community, we assigned the code “learning.” This category
includes requests for learning resources, tutorials, and references
for quantum computing. Developers often seek recommendations
for books, online courses, or other resources to enhance their under-
standing of quantum programming languages and algorithms. For
instance, a quantum developer inquires about the best resources
for learning Q# or mastering Grover’s search algorithm, as shown
in Row 5 of Table 3. The “Learning” category for the quantum clas-
sification taxonomy aligns with Beyer et al. [9] and El-Aoun et al.
[33] “Learning” category identified for android-related topics and
quantum challenges using topic modelling, respectively. Also, Al-
lamanis and Sutton [6] identified learning a language/Technology
category with different purposes and intentions.

4.1.5 Errors. Quantum computing is a new research and develop-
ment area with limited expertise in quantum programming com-
pared to traditional paradigms. We identified that quantum devel-
opers often seek help resolving errors while developing quantum
applications. We assigned the code "errors" to developers’ posts on
Q&A platforms where quantum practitioners ask for solutions to
errors. During manual annotation, we found that quantum devel-
opers often encounter challenges related to quantum gates, qubit
decoherence, and compatibility issues with quantum hardware. For

example, a practitioner asked for help debugging quantum circuits
or understanding error messages from a quantum simulator, as
shown in row 6 of Table 3. This category aligns with Beyer et al.[9],
El-Aoun et al. [33] "Errors", and Beyer and Pinzger [11] "Error and
Exception Handling" category.

4.1.6 API Usage. As quantum computing evolves, numerous APIs
have been developed for various functionalities that quantum de-
velopers can utilize. The code “API usage” is assigned to developers’
discussions in the Q&A seeking help in efficiently implementing
a particular Quantum-related API. During manual annotation, it
was noted that discussions focused on using APIs for quantum
programming tasks. Developers seek guidance on integrating quan-
tum computing platforms and services into their projects using
APIs. For example, a developer may inquire about best practices
for interfacing with the IBM Quantum Experience API or accessing
the Rigetti Forest API for quantum program execution, as shown in
Table 3, row 7. This category aligns with those of El-Aoun et al.[33]
and Beyer et al.[9] API usage category, Allamanis and Sutton’s [6]
“Do not work” category, and Beyer and Pinzger’s [11] “How to”
category.

4.2 Developers Statement Labeling
To annotate developer discussions from Q&A platforms, we used
content analysis [34] and quantum grounded theory, examining
each developer’s question to identify their quantum challenge cat-
egory. The goal is to develop a truth set for training and testing
the fine-tuned D&ML algorithms to categorize developer questions
into quantum categories automatically. The annotation process is
described below:

4.2.1 Annotation of Developer Discussions. Annotation was con-
ducted in two steps. First, the first and fourth authors individually
annotated 2829 developers’ discussions from Q&A forums. Second,
ChatGPT annotated the same dataset to compare its performance
with human coders. Human annotators were given a coding guide-
line and form with developer comments. Coders assessed the title
and content to determine the quantum category: tooling, theo-
retical, learning, conceptual, errors, or API Usage. Table 4 shows
an overview of the coding process. Developers’ questions were
grouped by platform, including answers for clarity. The annotation
process was iterative, as shown in Figure 1. The average annotation
time was 44 working hours. The coders start and resume annotation
at any time. After individual annotation, the results were combined
to analyze intercoder disagreements. The intercoding agreement
was 90.81%, with Cohen’s kappa at 44.97%, indicating substantial

1747

Exploring Developers Discussion Forums for Quantum Software Engineering: A Fine-Grained Classification Approach Using Large Language Model (ChatGPT)FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

agreement. Conflicts were resolved through discussion, with a se-
nior software engineering expert (third author) intervening for
persistent disagreements. To validate the annotation process, we
used ChatGPT to annotate developers’ discussions into quantum
categories and compared its performance with human annotators.
We trained ChatGPT with definitions of quantum challenge types
from novel quantum-grounded theory using the existing prompt.
Figure 2 shows the detailed annotation process. We supplied each
developer’s discussion to ChatGPT and identified its possible quan-
tum challenge type with a rationale. We recorded the number of
discussions where manual annotators and ChatGPT agreed and
disagreed. Table 5 shows detailed annotation by human coders
and ChatGPT, agreeing on 2547 discussions for the same quantum
challenge category and disagreeing on 282, resulting in potential
conflicts. The Cohen’s kappa was 0.46, indicating substantial agree-
ment between human coders and ChatGPT on the Cohen’s kappa
scale.

Figure 2: Annotation and negotiation process with ChatGPT.

A negotiation process resolved conflicts between human coders
and ChatGPT. For conflicting developer discussions on the Q&A
forum, a second round with ChatGPT was initiated. A generic
query asked for elaboration on selected quantum categories. This
discussion continued until a consensus was reached. Among 282

conflicting discussions, ChatGPT agreed with human annotators
on 173 questions after reasoning. Conversely, human coders agreed
with ChatGPT on 109 developer feedback after receiving justifi-
cation. This process curated a conflict-free dataset for quantum
software engineering, as shown in Table 6. This step enhances
the labelled dataset’s quality by validating human annotation with
ChatGPT, improving the effectiveness of subsequent D&ML classi-
fiers in identifying quantum developer challenge types.

5 Automated classifications of developer
discussions

In the literature, mining developers’ feedback on Q&A platforms
significantly contributes to software evolution[1]. Researchers have
mined Q&A platforms, particularly SO, for various purposes, such
as developers’ opinions about APIs [45], mining quantum program-
ing [23], identifying challenges for software methodologies and
popular topics [22], popular programming language developers
[8], and bug severity prediction [42]. Manually identifying useful
information for software developers and vendors is cumbersome
and resource-intensive [1]. Complementary to these approaches,
we mined developer discussions from Q&A platforms to identify
frequently mentioned quantum challenges, aiming to provide op-
portunities for quantum vendors to focus on key areas developers
struggle with or discuss most frequently. Below, we elaborate on
D&ML experiments and their subsequent steps.

5.1 Experimental setup
For the D&ML experiments, we used text preprocessing and fea-
ture engineering to evaluate classifiers and their effectiveness in
identifying developer discussions in Stack Exchange forums. We
selected D&ML algorithms proven effective with textual data [25]
[27], specifically RNN, GRU, LSTM, CNN, FNN, and MLP. These
algorithms were used to classify developer questions from Q&A
forums and compare their results on classifying discussions into
various quantum types. Experiments were conducted in Python,
utilizing libraries and tools suited for D&ML tasks to ensure robust
results.

5.2 Preprocessing
For the D&ML experiments, cleaning the input data is considered
pivotal for improved classification results [17]. We implemented a
series of preprocessing steps, starting with removing HTML tags
from the discussions to ensure text was free of unwanted formatting.
We then filtered out URLs from the Q&A questions to eliminate un-
necessary information. To standardize the format, we transformed
the entire question text into lowercase to ensure consistency. Sub-
sequently, we removed brackets, punctuation, alphanumeric char-
acters, and other special symbols that could introduce noise into
the data. To further enhance D&ML algorithm performance, we
employed lemmatization to reduce words to their root forms. This
step is crucial for maintaining semantic consistency and improving
the model’s accuracy. Additionally, we removed stop words from
the developers’ discussions as they did not add helpful meaning to
the classification task.

1748

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Trovato et al.

Table 4: Summary of Annotated Developer Discussions on Quantum Computing

Q_Title Q_description Q_Type
Quantum computing &
encryption break

I read that Quantum Computers can break most encryption in minutes. How? I get lost at quantum bits
being 1, 0, or both. Can someone explain in plain English without the math?

Conceptual

Qubit density to Bloch
vector

Given a 2x2 density matrix, how to compute the Bloch sphere point? State |0〉-|1〉 has matrix [[0.5,-0.5],[-
0.5,0.5]] and should be on X axis. Matrix [[0.5,0],[0,0.5]] should be at origin.

Theoretical

What is Quantum Com-
puting?

In physics, particles in multiple states simultaneously. In computing, bits as 1, 0, both, or NULL?
Applications to processors, programming, security? Any practical implementations?

Learning

floor/ceil in QCL What do QCL’s floor() and ceil() operators do exactly? They seem related to math operations but need
clarification.

Tooling

QuTiP integration failure Getting errors solving Lindblad equation. Increasing nsteps doesn’t help. Changing time values
(np.linspace) has no effect. Need solution.

Errors

Can Forest crack crypto? Can Rigetti Forest break public-key crypto (e.g., Bitcoin) in reasonable time? If yes, show solution using
pyQuil.

API Usage

Table 5: Details of Human and ChatGPT Annotations

Quantum Category Human Freq ChatGPT Freq
Tooling 600 611
Theoretical 414 446
Learning 159 158
Conceptual 606 597
Errors 803 809
API Usage 247 208
Total Number of Questions: 2829 (Human), 2829 (ChatGPT)
Disagreement Analysis: There are 282 disagreements between human coders
and ChatGPT. The number of learning experiences aligns with this count. In each
category, there are disagreements where the human coders, for example, incorpo-
rate the learning category where ChatGPT utilizes tools. Overall, disagreements
exist across various categories.

Table 6: Finalized Conflict-Free Annotated Quantum Dataset

Quantum Category Number of Developers’ Discussions
Tooling 596
Theoretical 415
Learning 166
Conceptual 610
Errors 815
API Usage 227
Total 2829

5.3 Feature Engineering
For the proposed approach, we used feature engineering to enhance
D&ML models’ performance in analyzing developers’ discussions
from stack-exchange forums. We identified effective textual fea-
tures for short-text analysis in similar technical domains [31] [5]
[14]. Techniques like term frequency-inverse document frequency
(TF-IDF) and N-grams were utilized. TF-IDF measures a word’s im-
portance in a document relative to a corpus, highlighting significant
terms in developer discussions. This method identified frequently
appearing keywords in Stack Exchange posts, offering insights into
relevant topics. N-grams capture important phrases and linguistic
patterns in discussions, enabling the analysis of meaningful expres-
sions. The TfidfVectorizer() and CountVectorizer() from scikit-learn
were used for efficient text preprocessing and feature extraction.
We also experimented with character N-grams to capture subtle
variations, enriching the feature space. The Label Encoder from
Scikit-Learn prepared textual data by converting categorical labels
into numerical representations, facilitating model learning from

Table 7: Hyperparameters Values Used to Fine-Tune Classi-
fiers

Hyperparameter Value
Input_dim Max_features
Output_dim 512
Units 128
Return_sequences True
Dropout rate 0.5
Activation (Dense) ‘relu’ (intermediate layer), ‘softmax’ (output layer)
Loss ‘categorical_crossentropy’
Optimizer Adam
Learning rate 0.0005
Metrics [‘accuracy’]

diverse questions. We optimized deep learning algorithms by ad-
justing hyperparameters to evaluate classifiers’ effectiveness in
categorizing discussions into QSE challenges, as shown in Table 7.
We tested multiple hyperparameters, including various ’output dim’
values in the embedding layer, achieving the highest precision at
100. Adam and RMSProp optimizers were used to assess their effect
on accuracy, with Adam performing better in recognizing issue
types. Adam’s superior performance may be due to its effectiveness
with smaller training examples, achieving faster convergence [29].
The dataset is scarce in categories like Learning, with only 166 dis-
cussions, making Adam suitable for smaller instances. To address
overfitting, we used regularization with a dropout layer. Adam also
handles noisy data better than RMSProp [29], making it ideal for
dealing with noisy data from social networking platforms.

5.4 Data augmentation
QSE is an emerging research domain that is gaining interest from
quantum vendors and researchers. Few resources exist for quan-
tum developers to discuss SQE-related issues in quantum applica-
tions. On Q&A platforms, unlike Android development or software
methodologies, we face challenges with limited experimental data.
We used various D&ML classifiers to classify developers’ discus-
sions into quantum-related challenges/concepts. Still, we faced
performance issues, with maximum accuracies of 51% and 54% us-
ing CNN classifiers on the original dataset (details in the results
section). Increasing data instances per quantum type can enhance
D&ML classifier performance, as deep learning classifiers perform

1749

Exploring Developers Discussion Forums for Quantum Software Engineering: A Fine-Grained Classification Approach Using Large Language Model (ChatGPT)FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

better with larger datasets. We adopted data augmentation, arti-
ficially increasing the dataset size through transformations while
preserving labels or semantics. We used noising-based augmen-
tation [32] to increase developer instances per quantum category.
A Python function was developed to randomly delete, swap, and
insert words in each developer discussion. It deletes 20% of words,
swaps two words twice, and inserts two synonyms randomly. Fig-
ure 3 illustrates augmentation applied to developer discussions
to increase the dataset size. Table 3, row 2, is used in Figure 3 to
demonstrate the augmentation process. Textual data augmentation
can overcome data limitations in training and validating D&ML
classifiers, aiding emerging domains like QSE and IoT with limited
developer and end-user data.

5.5 Data Imbalance
In supervised D&ML, imbalanced datasets are considered a critical
technical challenge [46] [28]. Data imbalance reflects the unequal
distribution of annotation classes within a dataset. The proposed
dataset is somewhat imbalanced, as shown in Table 6. When anno-
tating developer discussions, most (815, 28.80%) were categorized as
Tooling-related, while only 5.86% (166) were identified as learning-
related. Training D&ML classifiers on an imbalanced textual dataset
would lead to bias towards the majority class, potentially disregard-
ing minority classes. To address this, we employed two widely used
approaches in software [25]: oversampling and undersampling.
These techniques aim to balance the dataset, improving D&ML
model performance and enabling more accurate predictions of mi-
nority data. Oversampling achieves balanced class distribution by
randomly repeating minority class examples [12], while undersam-
pling eliminates majority class samples [30]. We found that ML
classifiers utilizing oversampling consistently outperformed those
utilizing undersampling, as shown in Figure 4. This may be due
to the potential loss of critical textual information when using the
under-sampling approach [43].

5.6 Assessment and Training
To train and validate the supervised D&ML algorithms, we used
a 10-fold cross-validation approach on the textual dataset. Nine
folds were used for training and one for validation. The process
was repeated 10 times by rotating the folds. Cross-validation checks
model performance with limited data and can be used as a resam-
pling method. Each fold had a similar proportion of labels per class.
We assessed classifier effectiveness by computing and summarizing
average results from the ten-fold cross-validation. We used preci-
sion (P), recall (R), and F1-score measures to evaluate and compare
the performance of supervised D&ML algorithms. The precision
(𝑃) and recall (𝑅) were computed using the following formulas:

𝑃𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘
(1)

𝑅𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘

(2)

P is determined by dividing the number of accurately classified
developers’ discussions into quantum types (true positives) by the
entire number of comments classified. This metric measures the
precision of the model in correctly identifying relevant instances. R

measures the model’s capacity to identify relevant instances from
the total number present. It entails computing the actual positive
rate of false negatives. The F1-score combines Precision and Recall,
providing a unified measure representing the equilibrium between
the classifier’s precision and recall.

6 Experimental Results
In this study, we employed three methods–Train-Test Split, feature
Engineering, and Data Augmentation–to optimize D&ML classifier
performance in classifying Stack Exchange developer discussions
into quantum categories. We aim to identify the best configuration
for D&ML classifiers to improve the classification of quantum types.
We experimented with different training and validation approaches.
Using the train-split method, Feedforward Neural Networks (FNN),
Convolutional Neural Networks (CNN), and Long Short-TermMem-
ory networks (LSTM) exhibited the highest accuracy rates among
the classifiers tested, achieving 45%, 51%, and 46%, respectively.
However, the precision, recall, and F1 values obtained for classify-
ing developers discussion into various quantum categories were
comparatively low, i.e., the highest F1 values obtained for concep-
tual, theoretical, learning, tolling, errors, API usage is 0.42, 0.42,
0.15, 0.47,0.77, and 0.22 with MLP, LSTM, CNN, LSTM, CNN, and
CNN classifiers, respectively. Similarly, with kfold cross-validation,
which is a stable and popular method in software engineering re-
search [17] [26], FNN, CNN, and LSTM classifiers showed accuracy
increases of 50%, 54%, and 49%, respectively, with a slightly improv-
ing the accuracy compared to the split-train approach. However,
the highest F1 values for classifying QSE-related discussion into
various quantum types are still low, i.e., 0.46, 0.36, 0.39, 0.47, 0.77,
and 0.23 with CNN, FNN, FNN, FNN, CNN, and LSTM classifiers,
respectively, for conceptual, theoretical, learning, tolling, errors,
and API usage quantum discussion types. One possible reason for
getting comparatively low accuracy and F1 values with train-split
and kfold is less annotation data. One way is to increase data in-
stances in the annotated developer discussion dataset. However,
as SQE is emerging with limited developer discussions on Q&A
platforms, data augmentation approaches are necessary to expand
the dataset and assess D&ML classifiers’ performance artificially.
Moreover, we didn’t report these values in Table 8, as the values
were comparatively low.

By employing a data augmentation approach, the FNN, with its
remarkable ability to detect and categorize incorrect discussions
with high reliability, continues to excel, particularly in the Errors
category. It achieves a precision of 96%, recall of 97%, and an F1-
score of 97%, underscoring its exceptional performance and the
impact of enriched training datasets on accuracy and resilience.
CNN performs better in the Tooling category with an F1 Score
of 89%, highlighting gains in model accuracy through augmented
learning scenarios, where CNNs leverage spatial scales and addi-
tional data dimensions. The LSTM and GRU networks have shown
significant improvements in the Tooling category, benefiting from
data augmentation. Both models demonstrated enhanced accuracy,
with F1 scores reaching 87% and 89%, reflecting their capability
to adapt and learn from augmented data. It underscores robust
adaptability in handling complex datasets. These outcomes con-
firm the efficacy of Data Augmentation in improving performance

1750

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Trovato et al.

Figure 3: Example of data augmentation with the developer’s discussion to artificially increase the dataset size.

Figure 4: ROC curves showing performances of oversampling
and undersampling for FNN model

metrics across classifiers. By expanding the training data, these
strategies enhance accuracy, adaptability, and robustness against di-
verse datasets. Such improvements are crucial for developing more
reliable and efficient machine learning models. The experimental
setup evaluated classifier effectiveness, focusing on improving ac-
curacy, precision, recall, and F1 scores, as summarized in Table 8
for the data augmentation approach.

Furthermore, we examined the baseline configurations of the
best classifiers, FNN and CNN. However, we depicted the FNN
configurations. As a central part of this analysis, we examined the
learning curves of the training datasets to determine how size affects
the classification accuracy. Figure 5 shows the average accuracy of
training the FNN classifier. The FNN classifier was considered the
best-performing classifier for classifying developer discussions into
various categories based on its training efficiency and accuracy.

Figure 6 shows the receiver operating characteristic (ROC) curves
of the FNN classifier. ROC curves compare the actual positive rate
with the false positive rate to determine whether the classifier is
sensitive or specific. By examining the accuracy metrics and the

Figure 5: Training and validation Accuracy for FNN

ROC curve analysis of the FNN classifier, we can understand how
well it classifies text within developers’ discussions, which is crucial
for analysing inputs from digital platforms. This evaluation is vital
for analyzing developers generated content on digital platforms,
ensuring accurate and reliable classification of input data.

Additionally, the Area Under the Curve (AUC) for the ROC
curves of the FNN classifier highlights its superior classification
performance in organizing developers’ discussions from online fo-
rums into distinct thematic categories. With AUC values near the
ideal mark, as depicted in Figure 6, each category demonstrated
nearly perfect separation. This is evidenced by a high True Positive
Rate (TPR) and a low False Positive Rate (FPR), with the curves
approaching the upper-left corner of the plot. The model achieved
a macro-average AUC of approximately 1.00, indicating their con-
sistent and precise capability to classify all categories accurately.

These metrics underscore the proficiency of the FNN models in
effectively recognizing each discussion category while minimizing
misclassifications, thereby confirming their robust performance in

1751

Exploring Developers Discussion Forums for Quantum Software Engineering: A Fine-Grained Classification Approach Using Large Language Model (ChatGPT)FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Table 8: Performance of ML and DL Classifiers with Data
Augmentation Approaches

QSE Concept Classifier Precision Recall F1-score
Conceptual FNN 0.83 0.75 0.78

CNN 0.91 0.45 0.61
RNN 0.74 0.70 0.70
GRU 0.78 0.75 0.74
LSTM 0.83 0.67 0.74
MLP 0.62 0.56 0.57

Theoretical FNN 0.77 0.82 0.77
CNN 0.76 0.78 0.74
RNN 0.70 0.66 0.63
GRU 0.75 0.73 0.70
LSTM 0.66 0.87 0.75
MLP 0.56 0.57 0.54

Learning FNN 0.93 0.90 0.92
CNN 0.90 0.87 0.88
RNN 0.92 0.79 0.84
GRU 0.85 0.83 0.83
LSTM 0.90 0.83 0.86
MLP 0.75 0.54 0.62

Tooling FNN 0.94 0.94 0.94
CNN 0.88 0.91 0.89
RNN 0.83 0.86 0.84
GRU 0.90 0.88 0.89
LSTM 0.89 0.87 0.87
MLP 0.64 0.68 0.65

Errors FNN 0.96 0.97 0.97
CNN 0.93 0.95 0.94
RNN 0.92 0.94 0.93
GRU 0.93 0.94 0.94
LSTM 0.93 0.95 0.94
MLP 0.81 0.87 0.84

API Usage FNN 0.93 0.89 0.91
CNN 0.93 0.80 0.86
RNN 0.82 0.73 0.77
GRU 0.83 0.80 0.81
LSTM 0.86 0.78 0.81
MLP 0.59 0.44 0.49

Best Average Accuracy
FNN 89
CNN 86
RNN 80
GRU 84
LSTM 84
MLP 67

multiclass classification within the context of the developer forums.
Figure 7 elaborates on the confusion matrix for the FNN classi-
fier. Where the column class label shows the classifiers’ predicted
class values, and the row labels show the actual classification class
values. A confusion matrix evaluates the performance of various
D&ML classifiers’ abilities to classify developers’ discussions on
Q&A forums to various QSE challenges.

6.1 Comparative Study with the State of the Art
This section compares the proposed approach with the existing
methods regarding scope, performance and generalization. An
overview of the comparison is shown in Table 9. Beyer et al.[9]

Figure 6: ROC curves for FNN

Figure 7: Confusion Matrix for FNN(a) and CNN(b).

use ML algorithms, including RF and SVM, to categorize Android-
related discussions on SO. Their approach achieved an average 90%
accuracy, and their approach is limited to classifying developers’
posts into Android-related challenges. El-Aoun et al.[33] used topic
modeling to analyze Stack Exchange and GitHub conversations to
identify QSE-related challenges. The proposed approach is comple-
mentary to the El-Aoun et al.[33] approach by focusing on QSE.
However, we are classifying developers’ discussions into frequently
occurring challenges, unlike their approach, which identifies fre-
quently occurring challenges using topic modelling. Wang Edmund
[13] uses token-based clone identification to mine Q&A sites for
automated comment production. In addition, Beyer et al. [10] con-
ducted a study improving SVM and RF application to analyze Stack
Overflow Q&A topics. This study demonstrates comparatively bet-
ter precision and recall by examining model tuning intricacies and

1752

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Trovato et al.

Table 9: Comparative Study with the State of the Art

Reference
Papers

Algorithms
Used

Highest Pre-
cision, Accu-
racy, Recall

Dataset De-
tails

Data Size

Beyer et
al.[9]

Random
Forest, SVM

Precision 90%,
Accuracy 90%,
Recall 90%

Android-
related SO
posts

1,000 posts

El-Aoun
et al.[33]

Automated
Topic Mod-
eling

N/A Stack Ex-
change forums,
GitHub issues

1,755 issues/posts

Wong
Edmund
[13]

Token-
based clone
detection

High accuracy Android and
Java Q&A
posts

132,767 mappings

Beyer et
al. [10]

SVM, Ran-
dom Forest

Precision 88%,
Recall 87%

Stack Overflow
Q&A site

500 posts

A. Ali
Khan et
al.[22]

LDA Topic
Modeling

N/A StackOverflow,
SESE, PMSE fo-
rums

13,903 posts

Our
Study

FNN, CNN,
LSTM,
GRU, RNN

Precision
90%+, Accu-
racy 84-89%,
Recall 90%+

Multiple
Q&A forums
(SO, QCSE,
CSSE, AISE)

2,429 discussions

addressing difficulties in managing intricate data structures in a
selected dataset of 500 posts. Khan et al. [5] investigate applying
NLP and LDA techniques to extract software development models’
knowledge and challenges from the stake exchange platform. Com-
pared to the state-of-the-art approaches, the proposed approach
analyzed developers’ comments from SO, QCSE, CSSE, and AISE
for quantum development, aiming to classify practitioners’ com-
ments to frequently occurring quantum development challenges.
Using preprocessing, feature engineering, data augmentation and
advanced D&ML algorithms, including FNN, CNN, LSTM, GRU, and
RNN, we achieved precision and accuracy levels from 84% to 89%.
The proposed approach can help quantum practitioners categorise
Q&A posts based on the frequently identified challenges, providing
easy access to related posts and solutions from other developers.

7 Discussions
The insights obtained from developer interactions on diverse social
media platforms are powerful tools for software and requirements
engineers. This section will delve into our research findings, as
elaborated below.

7.1 Rationale for Quantum Software
Engineering

Quantum computing presents a transformative approach to compu-
tational problem-solving beyond the capabilities of classical com-
puters, justifying the integration of quantum mechanics into soft-
ware engineering. Quantum software engineering uses character-
istics such as superposition and entanglement to change software
development. This rationale stems from its superior capacity to
address complex problems. Quantum software engineering effi-
ciently addresses optimization, cryptography, machine learning,
and simulations using quantum bits (qubits) and algorithms. This
section highlights the potential of quantum computing to revolu-
tionize software development and establish specialized quantum
algorithms. The approach improved knowledge using D&ML clas-
sifiers to automatically classify quantum developers’ discussions
into common challenges. It helps developers find solutions in the

Q&A community without memorizing quantum-specific tags while
helping vendors oversee frequent challenges to develop tools and
libraries.

7.2 Comparative Analysis of Developer
Discussions

Our exploration examines developers’ discussions on stake ex-
change platforms to uncover themes and trends. By analyzing these
interactions, we gain insights into the challenges in QSE, enhanc-
ing developers’ and vendors’ understanding of technical issues.
This reveals developers’ approaches to technology, programming
paradigms, and problem solving. We used D&ML algorithms and
NLP techniques to classify discussions into Tooling, Theoretical,
Learning, Conceptual, Errors, and API Usage. This classification
reveals the underlying sentiments and themes and discerns emo-
tional tones. By identifying these patterns, we describe the current
developer discourse, enhance our understanding of key issues, and
aid in the development of effective programming tools and method-
ologies.

7.3 Implications of Findings for Software
Development Practices

A study of online developer forums revealed software developers’
key challenges, with implications for QSE practices. By analyz-
ing discussions on Tooling, Theoretical Issues, Learning Resources,
Conceptual Understanding, Errors, and API Usage, we identified
areas affecting QSE development. Discussions on tooling inefficien-
cies highlight the gaps between resources and developer needs,
suggesting opportunities for more intuitive tools, especially for
quantum computing projects. The theoretical challenges emphasize
the need for continuous education and accessible resources to keep
pace with advancements. Issues with conceptual understanding
and API usage indicate that better documentation and standards
can enhance productivity in the field. Improved documentation
clarity would aid quicker API adoption. The nature of the errors
and their resolution highlights the potential of knowledge-sharing
platforms. Addressing these areas can enhance QSE development,
leading to faster cycles and more robust applications.

7.4 Insights from Quantitative Analysis of
Developer Discussion

The proposed study using D&ML algorithms to classify developer
discussions yielded significant findings. Analysis shows effective-
ness variability across models, with LSTM exhibiting better ac-
curacy in ’Errors’ category, suggesting patterns well-captured by
recurrent neural architectures. The ’API Usage’ category showed
lower performance across models, indicating complex discussions
with subtle language that complicated classification. These find-
ings reveal D&ML models’ capabilities and limitations for process-
ing natural language data. Model performance improved during
feature engineering and data augmentation stages, particularly
in ’Conceptual’ and ’Learning’ categories, suggesting promising
text classification potential. Enhancing features and expanding
datasets through augmentation can improve context understanding
in discussions. This analysis highlights the importance of model

1753

Exploring Developers Discussion Forums for Quantum Software Engineering: A Fine-Grained Classification Approach Using Large Language Model (ChatGPT)FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

selection in automated text-analysis systems. Choosing appropriate
techniques based on data features and classification needs allows
data scientists and developers to optimize system performance and
decision-making.

7.5 Threats to Validity
While processing and analyzing developer discussions, we encoun-
tered several potential threats to the validity of the proposedmethod-
ology and findings. Acknowledging these challenges is crucial to
ensuring the credibility and reliability of the research outcomes.

7.5.1 Researcher Bias. In the proposed study, the potential for
researcher bias is significant, as the first, third and fourth authors
and an AI model, such as ChatGPT, labelled and analyzed developer
discussions to maintain neutrality and objectivity; our inherent
attitudes and previous experiences subtly affected the analysis.
This bias could skew the data’s performance or emphasize specific
findings. Acknowledging the presence of such biases is crucial to
ensuring the integrity and reliability of our research findings.

7.5.2 Data Preprocessing Challenges . Data preprocessing is a criti-
cal step in the proposed approach, fraught with challenges, such as
addressing noisy data, removing biases, and fixing semantic opacity
in developer discussions. These issues can significantly impact the
quality and interpretability of data, potentially affecting subsequent
analyses. Therefore, we must implement rich data preprocessing
techniques to mitigate these issues, thereby enhancing the validity
of our findings by ensuring that the data fed into our analytical
models is as accurate and clean as possible.

7.5.3 Algorithm Selection and Fine Tuning. The selection and fine-
tuning of D&ML algorithms to examine developer discussions are
fraught with several challenges. The proposed research’s effective-
ness and applicability depend heavily on choosing appropriate al-
gorithms and optimally tuning them to handle the specific nuances
of our data. This process requires deep expertise and careful exper-
imentation, as imperfect algorithm selection or insufficient tuning
can lead to misleading outcomes or decreased model effectiveness.

7.5.4 Data Quality Concerns. Data quality is paramount for en-
suring the reliability of the machine-learning models used in the
study. High-quality data training and evaluation are imperative to
produce valid and generalizable results. Data noise, inherent biases,
and semantic ambiguities within developer discussions must be
addressed rigorously. These factors must be considered to main-
tain the trustworthiness of our research outputs, as the models
may learn from flawed data, leading to unreliable predictions and
insights.

7.5.5 Ever-Evolving Landscape of Online Forums. The vibrant and
ever-changing landscape of online forums and developer commu-
nities presents additional challenges for maintaining the scalability
and generalizability of the proposed approach. These platforms
have evolved rapidly with new models and continually emerging
topics. Thus, our methodology requires ongoing adjustments and
updates to remain relevant and effective in capturing the current
state of developer discussions across various forums.

8 Conclusions and future work
This paper presents a novel automatedmethod for gathering, catego-
rizing, and evaluating developer conversations on stack-exchange
platforms. These conversations cover subjects related to software
development, including inquiries, choices, and problems, with an
emphasis on QSE. The proposed solution utilizes fine-tuned D&ML
techniques to extract and categorize developer discussions from
QSE discussion threads. This model was created and tested us-
ing cross-validation and comparison with human-AI-labeled data,
demonstrating accuracy in recognizing and categorizing develop-
ers’ discussions related to QSE into various frequently occurring
challenges. This improves the accessibility of essential knowledge
for quantum developers. The approach can be a powerful tool for
quantum developers, enabling them to access relevant discussions
efficiently without manual data search and preprocessing to extract
useful information based on challenges related to QSE.

Future studies will focus on key areas to expand and enhance
the automated categorization model’s capabilities. We plan to ex-
plore other forums and discussion platforms popular in the QSE
community to collect more data. We aim to provide a more intuitive
interface and toolchain that classifies developers’ discussions into
frequently occurring challenges on the run. These efforts aim to
develop robust collaborative relationships with field professionals,
maintaining the model’s relevance and effectiveness in addressing
practical barriers in QSE. Moreover, we plan to extend the pro-
posed approach to other emerging technologies’ discussions on
Q&A forums, such as blockchain, Large language models, deep
and transfer learning. Additionally, we aim to develop a toolset
for the proposed approach by implementing the best-performing
D&ML classifiers and demonstrating their applicability for quantum
software developers.

Authorship contributions: M.H. and J.A.K. developed the
method, detailed investigation, and manuscript writing and curated
the research data set; M.S.K., N.D.K., A.A.K., and M.A.A. revised the
methodology and supervised and revised the manuscript writing
(revised draft). All authors have read and agreed to the published
version of the manuscript.

Funding: The authors have not disclosed any funding.

References
[1] Arshad Ahmad, Chong Feng, Shi Ge, and Abdallah Yousif. 2018. A survey

on mining stack overflow: question and answering (Q&A) community. Data
Technologies and Applications 52, 2 (2018), 190–247.

[2] Aakash Ahmad, Arif Ali Khan, Muhammad Waseem, Mahdi Fahmideh, and
Tommi Mikkonen. 2022. Towards process centered architecting for quantum
software systems. In 2022 IEEE international conference on quantum software
(QSW). IEEE, 26–31.

[3] Muhammad Azeem Akbar, Arif Ali Khan, and Saima Rafi. 2023. A systematic
decision-making framework for tackling quantum software engineering chal-
lenges. Automated Software Engineering 30, 2 (2023), 22.

[4] Shaukat Ali and Tao Yue. 2023. Quantum software testing: A brief introduction. In
2023 IEEE/ACM 45th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). IEEE, 332–333.

[5] Javed Ali Khan, Lin Liu, and LijieWen. 2020. Requirements knowledge acquisition
from online user forums. Iet Software 14, 3 (2020), 242–253.

[6] Miltiadis Allamanis and Charles Sutton. 2013. Why, when, and what: analyzing
stack overflow questions by topic, type, and code. In 2013 10th Working conference
on mining software repositories (MSR). IEEE, 53–56.

[7] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al.
2019. Quantum supremacy using a programmable superconducting processor.
Nature 574, 7779 (2019), 505–510.

1754

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Trovato et al.

[8] Juan F Baquero, Jorge E Camargo, Felipe Restrepo-Calle, Jairo H Aponte, and
Fabio A González. 2017. Predicting the programming language: Extracting
knowledge from stack overflow posts. In Advances in Computing: 12th Colom-
bian Conference, CCC 2017, Cali, Colombia, September 19-22, 2017, Proceedings 12.
Springer, 199–210.

[9] Stefanie Beyer, ChristianMacho, Massimiliano Di Penta, andMartin Pinzger. 2020.
What kind of questions do developers ask on Stack Overflow? A comparison
of automated approaches to classify posts into question categories. Empirical
Software Engineering 25 (2020), 2258–2301.

[10] Stefanie Beyer, Christian Macho, Martin Pinzger, and Massimiliano Di Penta.
2018. Automatically classifying posts into question categories on stack overflow.
In Proceedings of the 26th Conference on Program Comprehension. 211–221.

[11] Stefanie Beyer and Martin Pinzger. 2014. A manual categorization of android
app development issues on stack overflow. In 2014 IEEE International Conference
on Software Maintenance and Evolution. IEEE, 531–535.

[12] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[13] Wong Edmund. 2014. Mining question and answer sites for automatic comment
generation. Master’s thesis. University of Waterloo.

[14] Eman Fatima, Hira Kanwal, Javed Ali Khan, and Nek Dil Khan. 2024. An ex-
ploratory and automated study of sarcasm detection and classification in app
stores using fine-tuned deep learning classifiers. Automated Software Engineering
31, 2 (2024), 69.

[15] Sukhpal Singh Gill, Adarsh Kumar, Harvinder Singh, Manmeet Singh, Kamalpreet
Kaur, Muhammad Usman, and Rajkumar Buyya. 2022. Quantum computing:
A taxonomy, systematic review and future directions. Software: Practice and
Experience 52, 1 (2022), 66–114.

[16] Majid Haghparast, Tommi Mikkonen, Jukka K Nurminen, and Vlad Stirbu. 2023.
Quantum Software Engineering Challenges from Developers’ Perspective: Map-
ping Research Challenges to the Proposed Workflow Model. In 2023 IEEE Inter-
national Conference on Quantum Computing and Engineering (QCE), Vol. 2. IEEE,
173–176.

[17] Shoaib Hassan, Qianmu Li, Khursheed Aurangzeb, Affan Yasin, Javed Ali Khan,
and Muhammad Shahid Anwar. 2024. A systematic mapping to investigate the
application of machine learning techniques in requirement engineering activities.
CAAI Transactions on Intelligence Technology 9, 6 (2024), 1412–1434.

[18] IBM Quantum. 2023. IBM Quantum Computing Roadmap. https://www.ibm.
com/quantum/blog/ibm-quantum-roadmap Accessed: 2025-03-28.

[19] IBM Quantum. 2024. Qiskit | IBM Quantum Computing. https://www.ibm.com/
quantum/qiskit Accessed: 2025-03-28.

[20] Hafiz Umar Iftikhar, Aqeel Ur Rehman, Olga A Kalugina, Qasim Umer, and
Haris Ali Khan. 2021. Deep Learning-Based Correct Answer Prediction for
Developer Forums. IEEE Access 9 (2021), 128166–128177.

[21] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, JeffHeckey, Alexey Lvov, Frederic T
Chong, andMargaret Martonosi. 2015. ScaffCC: Scalable compilation and analysis
of quantum programs. Parallel Comput. 45 (2015), 2–17.

[22] Arif Ali Khan, Javed Ali Khan, Muhammad Azeem Akbar, Peng Zhou, and Mahdi
Fahmideh. 2024. Insights into software development approaches: mining Q &A
repositories. Empirical Software Engineering 29, 1 (2024), 8.

[23] Arif Ali Khan, Boshuai Ye, Muhammad Azeem Akbar, Javed Ali Khan, Davoud
Mougouei, and Xinyuan Ma. 2025. Mining Q&A Platforms for Empirical Evidence
on Quantum Software Programming. arXiv preprint arXiv:2503.05240 (2025).

[24] Javed Ali Khan, Yuchen Xie, Lin Liu, and Lijie Wen. 2019. Analysis of
requirements-related arguments in user forums. In 2019 IEEE 27th international
requirements engineering conference (RE). IEEE, 63–74.

[25] Javed Ali Khan, Affan Yasin, Rubia Fatima, Danish Vasan, Arif Ali Khan, and
Abdul Wahid Khan. 2022. Valuating requirements arguments in the online
user’s forum for requirements decision-making: the CrowdRE-VArg framework.
Software: Practice and Experience 52, 12 (2022), 2537–2573.

[26] Nek Dil Khan, Javed Ali Khan, Jianqiang Li, Tahir Ullah, Ayed Alwadain, Affan
Yasin, and Qing Zhao. 2024. How do crowd-users express their opinions against
software applications in social media? A fine-grained classification approach.
IEEE Access (2024).

[27] Nek Dil Khan, Javed Ali Khan, Jianqiang Li, Tahir Ullah, and Qing Zhao. 2024.
Mining software insights: uncovering the frequently occurring issues in low-
rating software applications. PeerJ Computer Science 10 (2024), e2115.

[28] Nek Dil Khan, Javed Ali Khan, Jianqiang Li, Tahir Ullah, and Qing Zhao. 2025.
Leveraging Large Language Model ChatGPT for enhanced understanding of
end-user emotions in social media feedbacks. Expert Systems with Applications
261 (2025), 125524.

[29] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[30] Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. 2006. Han-
dling imbalanced datasets: A review. GESTS international transactions on computer
science and engineering 30, 1 (2006), 25–36.

[31] Zijad Kurtanović and Walid Maalej. 2018. On user rationale in software engi-
neering. Requirements Engineering 23 (2018), 357–379.

[32] Bohan Li, Yutai Hou, and Wanxiang Che. 2022. Data augmentation approaches
in natural language processing: A survey. Ai Open 3 (2022), 71–90.

[33] Heng Li, Foutse Khomh, Moses Openja, et al. 2021. Understanding quantum
software engineering challenges an empirical study on stack exchange forums
and github issues. In 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 343–354.

[34] Kimberly A Neuendorf. 2017. The content analysis guidebook. sage.
[35] Michael A Nielsen and Isaac L Chuang. 2010. Quantum computation and quantum

information. Cambridge university press.
[36] Mario Piattini, Guido Peterssen, Ricardo Pérez-Castillo, Jose Luis Hevia, Manuel A

Serrano, Guillermo Hernández, Ignacio García Rodríguez De Guzmán, Clau-
dio Andrés Paradela, Macario Polo, Ezequiel Murina, et al. 2020. The Talavera
Manifesto for quantum software engineering and programming.. In QANSWER.
1–5.

[37] John Preskill. 1998. Reliable quantum computers. Proceedings of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences 454, 1969
(1998), 385–410. doi:10.1098/rspa.1998.0167

[38] Rigetti Computing. 2020. WhyQuantum. https://www.rigetti.com/why-quantum
Accessed: 2025-03-28.

[39] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? a large scale study using stack overflow. Empirical Software Engineering
21 (2016), 1192–1223.

[40] Anselm Strauss and Juliet Corbin. 1998. Basics of qualitative research techniques.
(1998).

[41] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. 2018. Q# enabling scalable quantum computing and development
with a high-level dsl. In Proceedings of the real world domain specific languages
workshop 2018. 1–10.

[42] Youshuai Tan, Sijie Xu, ZhaoweiWang, Tao Zhang, Zhou Xu, and Xiapu Luo. 2020.
Bug severity prediction using question-and-answer pairs from stack overflow.
Journal of Systems and Software 165 (2020), 110567.

[43] James Tizard, Hechen Wang, Lydia Yohannes, and Kelly Blincoe. 2019. Can a
conversation paint a picture? mining requirements in software forums. In 2019
IEEE 27th International Requirements Engineering Conference (RE). IEEE, 17–27.

[44] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do
programmers ask and answer questions on the web?(nier track). In Proceedings
of the 33rd international conference on software engineering. 804–807.

[45] Gias Uddin and Foutse Khomh. 2019. Automatic mining of opinions expressed
about apis in stack overflow. IEEE Transactions on Software Engineering 47, 3
(2019), 522–559.

[46] Tahir Ullah, Javed Ali Khan, Nek Dil Khan, Affan Yasin, and Hasna Arshad. 2023.
Exploring and mining rationale information for low-rating software applications.
Soft Computing n.a. (2023), 1–26.

[47] Daniel Vietz, Johanna Barzen, Frank Leymann, and Karoline Wild. 2021. On deci-
sion support for quantum application developers: categorization, comparison, and
analysis of existing technologies. In International Conference on Computational
Science. Springer, 127–141.

[48] Tao Yue, Shaukat Ali, and Paolo Arcaini. 2023. Towards quantum software
requirements engineering. In 2023 IEEE International Conference on Quantum
Computing and Engineering (QCE), Vol. 2. IEEE, 161–164.

[49] Jianjun Zhao. 2020. Quantum software engineering: Landscapes and horizons.
arXiv preprint arXiv:2007.07047 (2020).

[50] Wenhan Zhu, Haoxiang Zhang, Ahmed E Hassan, and Michael W Godfrey. 2022.
An empirical study of question discussions on Stack Overflow. Empirical Software
Engineering 27, 6 (2022), 148.

1755

https://www.ibm.com/quantum/blog/ibm-quantum-roadmap
https://www.ibm.com/quantum/blog/ibm-quantum-roadmap
https://www.ibm.com/quantum/qiskit
https://www.ibm.com/quantum/qiskit
https://doi.org/10.1098/rspa.1998.0167
https://www.rigetti.com/why-quantum

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Software Quantum-Based Approaches
	2.2 Mining Q&A repositors
	2.3 Comparison with Existing Literature

	3 PROPOSED RESEARCH METHODOLOGY
	3.1 Research Questions
	3.2 Research method

	4 PROCESSING DEVELOPERS DISCUSSION
	4.1 Statements of Developers
	4.2 Developers Statement Labeling

	5 Automated classifications of developer discussions
	5.1 Experimental setup
	5.2 Preprocessing
	5.3 Feature Engineering
	5.4 Data augmentation
	5.5 Data Imbalance
	5.6 Assessment and Training

	6 Experimental Results
	6.1 Comparative Study with the State of the Art

	7 Discussions
	7.1 Rationale for Quantum Software Engineering
	7.2 Comparative Analysis of Developer Discussions
	7.3 Implications of Findings for Software Development Practices
	7.4 Insights from Quantitative Analysis of Developer Discussion
	7.5 Threats to Validity

	8 Conclusions and future work
	References

