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Abstract
Background  During the COVID-19 pandemic, there was a surge in pre-hospital emergency calls due to the increased 
prevalence of flu-like symptoms and panic related to the pandemic. However, some patients declined transportation 
to hospital due to their fear of accessing healthcare facilities. This posed a significant risk to their health outcomes. 
This study aimed to utilise an extensive dataset, which included the period of the COVID-19 pandemic, in a modern 
Middle Eastern Emergency Medical Service to comprehend and predict the behaviour of non-transport decisions, a 
major multi-variable factor in pre-hospital emergency medicine.

Methods  Using Python® programming language, this study employed various supervised machine-learning 
algorithms, including parametric probabilistic models, such as logistic regression, and non-parametric models, 
including decision trees, random forest (RF), extra trees, AdaBoost, and k-nearest neighbours (KNN), using a dataset of 
non-transported patients (refused transport and did not receive treatment versus those who refused transport and 
received treatment) between 2018 and 2022. Model performance was comprehensively evaluated using Accuracy, 
F1 score, Matthews correlation coefficient (MCC), receiver operating characteristic area under the curve (ROC AUC), 
kappa, and R-squared metrics to ensure robust model selection.

Results  From June 2018 to July 2022, 334,392 non-transport cases were recorded. The random forest model 
demonstrated the best optimised predictive performance, with accuracy = 74.78%, F1 = 0.74, MCC = 0.35, ROC 
AUC = 0.81, kappa = 0.34, and R-squared = 0.81.

Conclusion  This study indicated that predictive modelling could accurately help identify patients who refuse 
transport to hospital and may not require treatment on the scene. This enables them to be redirected from the call-
taking phase to alternative primary healthcare facilities. This reduces the strain on emergency healthcare resources. 
The findings suggest that machine learning has the potential to revolutionise pre-hospital care, especially during 
pandemics, by improving resource allocation and patient outcomes, while highlighting the need for ongoing 
research to refine these models.
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Background
Over the past two decades, the World Health Organisa-
tion (WHO) has been working to improve emergency 
medicine worldwide by implementing various projects in 
emergency departments [1]. The goal has been to ensure 
early recognition and management of life-threatening 
emergencies, thereby contributing to individuals’ well-
being and health safety [1]. In line with this, global emer-
gency medical services (EMS) systems have focused on 
responding to health emergencies in their communities 
and initiating life-saving treatment in the pre-hospital 
setting to mitigate and prevent potentially fatal compli-
cations. Middle Eastern EMS systems have also evolved 
rapidly to address the unique challenges in their commu-
nities, such as socio-demographic, cultural, and ethnic 
diversity, which can impact healthcare outcomes [2–4].

Nevertheless, the coronavirus disease 2019 (COVID-
19) pandemic has had a significant impact on the global 
healthcare system, including EMS. The fear of being 
infected by the virus in hospital settings led to a change 
in patient behaviour, with many individuals opting not 
to seek medical attention even in emergencies [5]. This 
shift in behaviour has highlighted the importance of 
understanding and predicting patient non-transport 
decisions in the pre-hospital setting, particularly involv-
ing those who refuse transport after receiving treatment 
and those who refuse transport without any pre-hospital 
treatment. Non-transport in EMS refers to patients who 
are evaluated on scene following an emergency call but 
are not transported to a healthcare facility, regardless 
of whether they receive treatment on the scene or not 
[6–8]. In the same context, the Middle East and North 
Africa (MENA) region has faced various epidemics, 
including SARS-CoV-2 and MERS, which have further 
emphasised the need for effective resource allocation and 
patient management in the pre-hospital setting, consid-
ering the Middle Eastern multi-national communities’ 
particularities and socio-cultural variables. Recent stud-
ies in the Ambulance Service in Qatar have revealed that 
the percentage of patients opting against transportation 
to emergency departments increased to 40% during the 
COVID-19 pandemic compared to 23.95% observed dur-
ing the non-pandemic period [5, 9], which highlights the 
profound impact of the pandemic on patient behaviour 
and decision-making processes regarding emergency 
medical service utilisation.

In such scenarios, artificial intelligence (AI), includ-
ing machine learning (ML) methods, can predict patient 
behaviour and optimise resource allocation. By analys-
ing historical data and identifying patterns, AI and ML 
algorithms can help EMS providers anticipate patient 
non-transport decisions —those who received treat-
ment and those who did not —and make informed deci-
sions regarding alternative patient care destinations. 

This approach can help balance preventing hospital 
overcrowding and ensuring the utilisation of pre-hospi-
tal resources only when necessary. This will help ensure 
more efficient resource utilisation during future pandem-
ics or epidemics.

This study explored the non-transported patient popu-
lation (who refused transport and did not receive treat-
ment versus those who refused transportation and 
received treatment) using predictive modelling using ML 
techniques in a Middle Eastern ambulance service that 
promotes patient hospital transportation.

Methods
This was a retrospective quantitative analysis of non-
transport patients’ data (refused transport and did not 
receive treatment versus those who refused transporta-
tion and received treatment) provided by the Hamad 
Medical Corporation Ambulance Service (HMCAS), a 
modern national Middle Eastern ambulance service at 
the forefront of delivering pre-hospital emergency care 
in Qatar [10]. When a medical emergency occurs, indi-
viduals can initiate a call for service (CFS) by dialling 999, 
ensuring rapid emergency medical assistance through 
call-taking by the emergency medical dispatcher (EMD) 
and subsequent intervention by paramedics upon ambu-
lance arrival. However, even after receiving the emer-
gency assessment, patients have the right to decline 
transportation to the hospital, whether or not they 
received pre-hospital treatment [11, 12]. The prediction 
horizon for all models in this study was defined as the 
period from initiating the emergency call to the point of 
on-scene assessment by paramedics. All predictions were 
generated using information available up to the crew’s 
arrival on scene, with the outcome “non-transport deci-
sion” determined immediately following this assessment.

The data analysis was performed using Python® pro-
gramming language. Ethical approval was obtained from 
the HMC Medical Research Centre (MRC-01-22-264). 
This article followed the guidelines for Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis or Diagnosis (TRIPOD).

Source of data
This study involved the analysis of clinical data collected 
from the HMCAS Business Intelligence registry for the 
ambulance and hospital electronic patient clinical record 
(ePCR) system used to create the CFSs [11]. The data was 
related to all patients who called 999 between June 2018 
and July 2022 and were not transported to the hospital. 
The patients’ identifiers were concealed.

Population
The study population comprised all patients who con-
tacted HMCAS via 999 for emergency medical assistance 
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in a pre-hospital setting between June 2018 and July 
2022, and who, following assessment on scene, were not 
transported to hospital, irrespective of whether pre-hos-
pital treatment was administered or not. In Qatar, the 
decision not to transport following pre-hospital emer-
gency assessment is made solely following the patient’s 
request, to mitigate the risk of misdiagnosis, given that 
the pre-hospital environment lacks the advanced diag-
nostic tools and resources available in hospital settings. 
Non-transported patients were further categorised into 
three groups:

1.	 Refused transport and did not receive treatment: 
Patients who, after assessment by paramedics, 
declined transport to the hospital and did not receive 
any form of medical intervention or treatment on 
scene. This group includes individuals assessed who 
did not present any immediate clinical need for 
pre-hospital intervention, or those who explicitly 
declined treatment and transport. This group of 
patients may represent lower-acuity cases or those 
strongly prefer non-engagement with healthcare 
services.

2.	 Refused transport but received treatment on scene: 
Patients who refused transport to the hospital but 
received medical treatment from the HMCAS 
crew. The treatment could include administering 
medications, wound care, or other pre-hospital 
procedures. These cases might involve patients with 
serious but manageable conditions who, despite 
receiving necessary immediate care, chose not to 
proceed to the hospital for further evaluation. This 
group of patients often have acute needs addressed 
on scene, but may remain at risk due to the absence 
of further hospital-based evaluation.

3.	 Deceased on arrival (DOA): Emergency calls in 
which the patient was determined to be deceased 
upon ambulance arrival at the scene, as per the 
undeniable death categories defined by the HMCAS 
clinical practice guidelines where resuscitation 
efforts are futile, as evidenced by criteria such 
as rigor mortis, dependent lividity, or injuries 
incompatible with life [9]. This group reflects 
operational challenges of the pre-hospital triage 
system during high-demand periods, such as 
during the COVID-19 pandemic, when heightened 
demand and ambulance resources were diverted 
to non-actionable DOA incidents based on caller-
reported cardiac arrests. Such scenarios represented 
a burden on pre-hospital resources, necessitating 
their inclusion to assess inefficiencies in emergency 
response prioritisation during periods of strain. They 
were considered a public health indicator for health 
systems during the COVID-19 pandemic [10].

Data preparation
The dataset comprises 237,862 non-transport cases. Vari-
ous preprocessing steps were conducted [13, 14]. Data 
were randomly divided into training (80%, n = 190,289) 
and testing (20%, n = 47,573) sets [15]. Continuous 
response time variables, including CFS creation-to-pend-
ing dispatch, pending-to-active dispatch, and creation-
to-assigned available, were standardised to a mean of 0 
and a standard deviation of 1, using Z-score normalisa-
tion, to resolve scale disparities. Categorical variables, 
such as nationality and chief complaint protocols, were 
transformed into dummy binary formats [16]. Variables 
were grouped according to the information presented 
in Annexe 1. For the identification of outliers, both the 
Isolation Forest (with a contamination level of 0.01) and 
the Local Outlier Factor (with novelty set to True) were 
utilised combined due to their effectiveness in detect-
ing both global outliers (those significantly deviating 
from the entire dataset) and local outliers (those occur-
ring within the normal range of the dataset) to identify 
and remove outliers, reducing the training dimensions 
from 192,089 to 188,38614 [17]. Chi-squared tests were 
conducted for feature selection to identify and elimi-
nate non-predictive variables [18]. The results of feature 
selection are presented in Annexe 2. The following vari-
ables with the significant p-value (< 0.05) were retained: 
sex, emergency call zone, dispatched priority, age groups 
(≤ 14, 14–29, 29–44, 44–59, 59–74, 74–89, ≥ 90), year 
(2020, 2021) reflecting the pandemic period, month of 
the year (April, August, January, July, June, March, May, 
November, October, September), nationality groupings 
(Middle East and North Africa (MENA), Qatar, South 
Asia, Sub-Saharan Africa, Europe & Central Asia, North 
America), chief complaint/Dispatch protocol codes 
(Abdominal pain, Abnormal behaviour, Allergic reaction, 
Assault, Back pain, Bleeding, Breathing problem, Cardiac 
arrest, Chest pain, Choking, Diabetic problem, Drown-
ing/near drowning, Electrocution/lightning, Entrapment, 
Fall, Fire/burn, HazMat, Headache, Heart problems, 
Heat-related, Interfacility transport from health centre 
(Emergency calls originating from primary healthcare 
centres are considered as community cases due to the 
non-existence of advanced capabilities at these facilities), 
Minor illness, Near drowning, Neurological, (Obstet-
rics and Gynaecology) OBS GYN, Pain, Parental con-
cern, Respiratory, road traffic accidents (RTA), Seizure, 
Sick person, Toxicology, Traumatic injury, Unconscious, 
Walking patient), response unit types.

Outcome
The primary outcome was the non-transport categories, 
categorised as:
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 	– Refused transport, no treatment (71.24% training, 
71.44% testing).

 	– Refused transport, treated on scene (28.24% training, 
27.99% testing).

 	– DOA (0.51% training, 0.56% testing).

Predictors
Fifteen variables were retained post-feature selection:

 	– Demographic: Age, gender, and nationality 
groupings.

 	– Clinical: Chief complaints, provisional diagnoses, 
response unit type and response priority levels.

 	– Operational: Response time metrics.

Sample size
From an initial 334,392 cases, 14.0% (n = 103,098) with 
missing values were excluded, identifying 237,862 cases. 
Post-outlier removal, 188,386 training and 47,519 testing 
cases were retained.

Missing data
Missing values (14.0% of the initial dataset) were 
addressed through listwise deletion, due to the large 
sample size (n = 334,392), retaining 237,862 cases post-
deletion, sufficient for robust ML. Further, for example, 
the variable “Zone_T” (geographic zone name) exhibited 
100% missingness across all study years, while “Zone_
No” (numeric zone identifier) was fully populated. This 
pattern arose because HMCAS personnel were protocol-
bound to record only one of these mutually exclusive 
variables. Consequently, “Zone_T”’s missingness is classi-
fied as missing not at random, omitted when “Zone_No” 
was entered, and was excluded to avoid redundancy, 
ensuring geographic data completeness without intro-
ducing bias. Sensitivity analyses comparing retained and 
excluded cases revealed no significant demographic or 
clinical differences (age: p = 0.32; gender: p = 0.45), miti-
gating concerns about selection bias. Imputation was 
avoided to prevent introducing spurious associations 
in time-sensitive predictors. Appendix 3 presents the 
results of the missing data analysis.

Statistical analysis: predictive modelling
A supervised ML classification-based method was used 
for the data analysis to identify patterns and predict val-
ues in labelled data [19].

Parametric probabilistic ML algorithms, such as logis-
tic regression (LR), and non-parametric models, includ-
ing decision trees (DT), random forests (RF), extra trees 
(ET), AdaBoost, and k-nearest neighbours (KNN), were 
utilised to develop the predictive model [20]. DTs do not 
require normalised data and can handle both numeri-
cal and categorical variables. Their effectiveness was 

assessed using the Gini index [20]. ET trains various DTs 
and aggregates their results [20]. LR is considered an 
effective classifier for preventing overfitting to the train-
ing data, which is particularly useful when dealing with 
high-dimensional feature spaces [21]. It was assessed 
using Elastic Net penalty with SAGA solver [20]. KNN, 
using spatial trees, allows us to identify the variables with 
the closest distance to the primary variable. RF enables 
choosing optimised, robust predictions [20]. Adaboost 
enables a highly accurate, robust classifier by combining 
multiple poorly performing classifiers. RF and ET benefit 
from the data with large-scale meta-analyses [20].

Cross-validation, a crucial step to evaluate the model, 
test its performance, and assess the overfitting, was 
performed using stratified k-folds (k = 10) based on the 
weighted average F1 [22]. The number of folds split k = 10 
was decided as when the number of folds increased, the 
variance increased, and the performance indicators’ value 
was negatively affected. Consequently, the cross-valida-
tion decision was made to train the model in the four ini-
tial folds and test it in the remaining one.

The models’ performance was measured by calculat-
ing the following metrics: “Accuracy”, “Precision, “Recall”, 
“F1” (the weighted-averaged), “Matthews correlation 
coefficient (MCC)”, “Receiver Operating Curve-Area 
Under Curve (ROC AUC)”, “Kappa of Cohen”, and the 
“coefficient of determination” R2 [23, 24] (Table 1).

“Accuracy” is the percentage of correct predictions for 
the test data by comparing the predicted and corrected 
outputs, improved by modifying the model parameter if 
needed [25]. It ranges between 0 and 100%; the closer to 
100%, the better. The confusion matrix determines this. 
“Precision” is the proportion of relevant positives among 
all the examples foreseen to belong to a particular class by 
determining the amount of relevant data within a sample 
[25]. “Recall”, also known as “sensitivity”, enables deter-
mining the number of selected items within an appropri-
ate sample [25]. The F1 score assesses the accuracy of the 
testing process [25]. It was utilised to evaluate both pre-
cision and recall. It ranges between 1 (perfect precision 
and recall) and 0 (low precision and recall) [25]. Thence, 
data can sometimes be biased in the case of a mixture of 
“Actual Negative” with “Actual Positive” [25]. In this case, 
F1 and Kappa of Cohen value (K) would better indicate 
this [25]. Moreover, few studies have identified that the 
MCC is the best-performing indicator. It considers the 
true negatives, true positives, false negatives, and false 
positives and assesses the degree of agreement between 
actuals and predictions [26, 27]. It ranges between − 1 
and 1. The closer to 1, the better. ROC AUC was deter-
mined to assess the performance of the binary classifier. 
It is determined by calculating the True Positive Rate 
(Sensitivity) divided by the False Positive Rate (Specific-
ity). It ranges between 0 and 1: the closer to 1, the better 
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[28]. R2 was also calculated to determine the goodness of 
a regression model. It ranges between 0 and 1; the closer 
to 1, the better [29]. Finally, in the case of multi-class 
classification issues, like this study dataset, Cohen Kappa 
(k) was also considered to provide robust evidence of the 
classifier’s performance and reinforce the outcome of the 
remaining metrics [30]. Table  1 explains the epidemio-
logical benefits of determining these metrics.

Feature importance was determined for the different 
classifiers. It refers to assessing the input variables and 
determining which ones are more relevant to the out-
come variable [20].

Risk groups and class imbalance handling
The three predefined risk groups, refused transport with 
no treatment, refused transport with treatment on scene, 
and DOA, were retained without further stratification, 
reflecting Qatar’s pre-hospital non-transport pathways. 
Given the class imbalance (DOA: 0.5% versus refusal 
groups: 99.5%), mitigation strategies included stratified 
ten-fold cross-validation, the use of imbalance-robust 
performance metrics such as the F1 score and MCC, 
and the application of the Elastic Net penalty (λ = 0.5) 
in LR to reduce majority-class bias. RF and ET classifi-
ers were prioritised for their capacity to manage imbal-
anced data through bootstrap sampling and ensemble 
voting, with model performance evaluated primarily 

using the MCC to ensure all confusion matrix elements 
were considered. Key algorithmic parameters were opti-
mised to enhance clinical relevance: for RF and ET, the 
number of trees was set to 500, maximum tree depth to 
15, and the minimum number of cases required to split 
a node was adjusted to five; for LR, the strength and bal-
ance of regularisation penalties were fine-tuned; for knn, 
model sensitivity was calibrated by varying the number 
of neighbours; and for AdaBoost, both the learning rate 
and the number of estimators were optimised to bal-
ance accuracy and robustness. Overfitting was further 
mitigated by architectural constraints, such as limiting 
tree depth, and monitoring the training-test accuracy 
gap, further mitigated overfitting, which was maintained 
below five per cent. All random processes were seeded 
(random_state = 42) to guarantee reproducibility. Tem-
poral validation was incorporated by retaining pandemic-
era data (2020–2022) in the test set, ensuring that model 
evaluation reflected the operational challenges encoun-
tered during periods of heightened ambulance demand. 
Although external validation was not performed, the 
use of stratified data splits (80:20) and the prioritisation 
of the MCC, which reached 0.81 for the Random Forest 
model, contributed to the robustness and generalisability 
of the findings in the context of class imbalance and real-
world clinical applicability [31].

Table 1  Predictive modelling performance metrics
I) The Confusion Matrix

Actual positive Actual negative
  Predicted positive True Positive (TP) False Positive (FP)
  Predicted negative False Negative (FN) True Negative (TN)
II) Non-Transport Variable Confusion Matrix

Actual positive Actual negative
a) Refused Not Treated

  Predicted positive The prediction is positive, and X and Refused were not 
Treated

The prediction is positive, 
and X is different from 
Refused, not Treated

  Predicted negative The prediction is negative, and X refused and was not treated The prediction is nega-
tive, and X is different 
from Refused, not Treated

b) Refused and Treated
  Predicted positive The prediction is positive, and X Refused and Treated The prediction is positive, 

and X is different from 
Refused and Treated

  Predicted negative The prediction is negative, and X refused and treated The prediction is nega-
tive, and X is different 
from Refused, not Treated

III) Metrics Classifiers’ Formulas

Accuracy = T P +T N
T P +T N+F P +F N

P recision = T P
T P +F P

Recall = T P
T P +F N

F 1 = 2T P
2T P +T N+F P

Kappa (K) = Overall accuracy−Expected agreement
100−Expected agreement

ROC AUC = Sensivity
1−Specifity

MCC = T N× T P −F N× F P√
(T P +F P )(T P +F N)(T N+F P )(T N+F N)
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Results
From January 2018 to July 2022, HMCAS managed 
334,392 non-transport cases. 14.0% of missing values 
(n = 103,0981) were identified and deleted. 237,862 cases 
of non-transport to the hospital, whether or not they 
received pre-hospital treatment, were retained after pre-
processing, with a mean of 41.74% (n = 8,799). Figure  1; 
Table 2 summarise some of the descriptive information. 
Non-transport categories were predominantly refusals 
without treatment (71.24% training, 71.44% testing), fol-
lowed by refusals with on-scene treatment (28.24% train-
ing, 27.99% testing), whilst DOA cases represented 0.51% 
and 0.56% of the respective datasets. Temporal analy-
sis revealed substantial increases in call volume during 
2020–2021, coinciding with the COVID-19 pandemic, 
particularly affecting urban zones (peak: 47,000 calls in 
2020 vs. 35,000 in 2018). Sex distribution remained rela-
tively stable across years, with males comprising approxi-
mately 60% of cases. Age-specific patterns showed the 
highest call volumes amongst middle-aged groups (30–
59 years), whilst paediatric cases (≤ 14 years) represented 
the smallest cohort. Nationality analysis demonstrated 
that South Asian populations generated the highest call 
volumes, followed by MENA groups, with Qatari nation-
als representing a smaller proportion. Chief complaints 
were dominated by non-specific problems, pain-related 
presentations, and minor trauma, whilst provisional 
diagnoses reflected similar patterns, with neurological, 
obstetric/gynaecological, and minor illness categories 
featuring prominently.

Tables 2 and 3 explain the data pre-processing and fea-
ture selection processes. Firstly, the dataset was divided 
randomly into 80% (n = 190,289) for « Train » and 20% 
(n = 47,573) for « Test » datasets.KNN was determined 
to test the level of the prediction data and the accu-
racy based on similarity. It selected the subsets with the 
minor neighbour measures. Secondly, the continuous 
variable of the duration of the response times (T1: Call 
record creation to pending dispatch, T2: pending to 
active dispatch, and T3: creation to assigned available) 
were standardised. They were rescaled to ensure a bal-
anced contribution. Thirdly, categorical variables were 
converted into dummy (binary) variables, and the data 
frame dimensions changed. Fourthly, outlier detection 
was conducted using the IF and LOF, and the data frame 
was reshaped. Continuous variables, including call-to-
dispatch intervals, were standardised (mean = 0, SD = 1) 
following outlier removal using IF and LOF algorithms, 
eliminating 1–3% of observations while preserving data-
set integrity. Fifthly, the feature selection was performed 
using the Chi-squared test. The variables in Table 2 were 
eliminated (Table 3).

Table 4 presents the algorithms’ and the metrics’ per-
formances. RF was identified as the best-performing 

algorithm with 74.78% accuracy, F1 of 74.78%, and MCC 
and R-squared of 0.81.

The different classifiers were ranked according to fea-
ture importance (Fig. 2). The most predictive determining 
variables for the RF classifier were age groups between 14 
and 59, nationalities: Qatari, MENA, and South Asian, 
“Protocol 1” related to the chief complaint of abdominal 
pain, Bravo response unit (bike response staffed with bike 
paramedics with ALS scope of practice), and provisional 
neurological diagnosis.

Discussion
The role of ML in healthcare was significantly amplified 
during the COVID-19 pandemic, particularly in EMS. 
The COVID-19 pandemic has highlighted the critical 
need for efficient resource allocation and the impor-
tance of predicting healthcare needs to ensure appropri-
ate resource utilisation in healthcare settings [32]. ML’s 
predictive capabilities can be exploited to anticipate 
the needs of patients reluctant to seek hospital care due 
to fear of infection or those who prefer alternative care 
options [33].

Many patients hesitated to visit hospitals during the 
pandemic for fear of contracting the virus. This led to a 
significant shift in the utilisation of pre-hospital emer-
gency healthcare services, with an increase in non-trans-
port decisions by patients. This can be useful for future 
health emergencies similar to COVID-19. For instance, 
ML models can identify patients at low risk of severe 
illness who might opt to decline transport and do not 
require on-scene emergency treatment. According to 
insurance policies, they may benefit from being directed 
to private healthcare centres, which might be less 
crowded and perceived as safer during a pandemic [34]. 
These ML models can also predict which patients might 
be adequately managed through telehealth services, such 
as those who refused transport and did not receive treat-
ment, thereby reducing the burden on hospital resources 
and minimising the risk of virus transmission.

As a previous study determined, socio-demographic 
variables are crucial in determining health outcomes [35]. 
This study explored the non-transport decisions using a 
dataset representing more than 200 nationalities. Socio-
demographic diversity, such as ethnic and linguistic 
diversity, can reduce public goods provision, negatively 
affecting outcomes during public health emergencies 
[36]. Diverse populations may have different percep-
tions and attitudes towards seeking healthcare services. 
These barriers can be especially pronounced during pub-
lic health emergencies, such as the COVID-19 pandemic, 
when effective communication and trust in healthcare 
systems are crucial.

ML has emerged as a powerful tool in public 
health. Furthermore, in this study, the RF algorithm 
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Fig. 1  Descriptives information of some of the included variable
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demonstrated the best overall performance among the 
models tested, with a test accuracy of 74.80%, an F1 score 
of 0.74, and an MCC of 0.35. The MCC value provides 
an overview of the model’s ability to correctly classify all 
non-transport outcome categories, even in significant 
class imbalance. Further, an MCC of 0.35 indicates mod-
erate agreement between predicted and actual outcomes, 
higher than expected by chance, and highlights chal-
lenges in reliably predicting rare events such as DOA. 
The ROC AUC of 0.81 further indicates the model effec-
tively distinguishes the different non-transport groups 
overall, while a Cohen’s Kappa of 0.34 and R-squared of 
0.81 support a moderate level of agreement and explained 
variance, respectively. Compared to the other algorithms 
(LR, KNN, Adaboost, and DT), RF outperformed across 

all metrics, indicating its robustness and suitability for 
operational decision support in this imbalanced pre-hos-
pital dataset.

Through large and diverse datasets, such as in this 
study, ML can uncover complex patterns and relation-
ships between socio-demographic factors and non-trans-
port decisions to identify at-risk populations and enable 
informed targeted interventions. Its ability to handle 
large, complex datasets makes it particularly suitable 
for exploring the complex nature of socio-demographic 
diversity and its impact on public health. It can also pro-
vide crucial information about factors influencing non-
transport decisions and help develop targeted strategies 
to improve healthcare access and outcomes for diverse 
populations, ultimately leading to more effective and 

Table 2  Machine learning pre-processing results
1) «Train»: 80% (n = 190,289) and «Test»: 20% (n = 47,573) datasets
2) Standardisation of the continuous variables

Raw Std
CFS creation-Pending dispatch (min) Mean ± std 1.50 ± 4.72 -1.90 × 10− 16±1

[Min – Max] [0.183–405.23] [-2.794 × 10− 01 − 8.55 × 10+ 01]
25% 0.68 -1.74 × 10− 01

50% 0.88 -1.31 × 10− 01

75% 1.267 -4.99 × 10− 02

Pending dispatch-Active dispatch (min) Mean ± std 0.176 ± 0.3 1.93 × 10− 016±1
[Min – Max] [0–48.05] [-5.87 × 10+ 01 − 1.60 × 10+ 02]
25% 0.1 -2.53 × 10− 01

50% 0.13 -1.41 × 10− 01

75% 0.2 8.13 × 10− 02

CFS creation-Assigned available (min) Mean ± std 45.66 ± 106.02 9.44 × 10− 17±1
[Min – Max] [0.8–5,130.98] [-4.23 × 10− 01 − 4.80 × 10+ 01]
25% 20.6 -2.36 × 10− 01

50% 39.43 -5.88 × 10− 02

75% 55.87 9.62 × 10− 02

3) Shape of the Dataframe after the encoding/transformation
Train Test
Percentage Dimension Percentage Dimension

Before After Before After
80% (190,29) -192,09 20% (47,573) -47,573

Non-transport Decision Frequencies (%) Frequencies (%)
1 (Refused, not treated) 135,564 (71.24) 33,988 (71.44)
2 (Refused, treated) 53,746 (28.24) 13,316 (27.99)
0 (DOA) 979 (0.51) 269 (0.56)
4) Outliers detection and splitting
Set Raw Data Isolation Forest (IF) Local Outlier Factor

Before After* GridSearch** Basica GridSearchb

TrainSet X (192,089) (188,386) -190,246 (188,594) (190,09)
Y (192,089.1) (188,386.1) (190,246.1) (188,594.1) (190,097.1)

TestSet X -47,573.12 -47,566.12 -47,519.12
Y (47,573.1) (47,566.1) (47,519.1)

*Fixed contamination proportion: 0.01

**Contamination: 1 × 10−05

a: Applied on the output of the IF GridSearch with prefixed contamination proportion equal to 0.01

b: Contamination: 1 × 10−05, Novelty = True
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equitable healthcare systems. Furthermore, non-specific 
problems representing low acuity provisional diagno-
ses have been identified as the predominant category of 
non-transport patients’ provisional diagnoses during the 
COVID-19 pandemic. This is robust evidence of the need 
to revise policies to handle the predicted similar non-
transport decisions during public health emergencies by 
redirecting patients to alternative healthcare facilities 
instead of dispatching ambulances in critical times like 
the pandemic and avoiding inefficiencies in EMS unit 
dispatch. ML has the potential to revolutionise health-
care EMS performance during public health emergencies 
by identifying low-risk patients who may benefit from 
being directed to less crowded private healthcare cen-
tres or managed through telehealth services, reducing 
the burden on hospital resources and minimising virus 
transmission risks. EMS decision-makers can make data-
driven decisions to optimise resource allocation, improve 
healthcare performance and patient outcomes, and 
reduce the burden on healthcare systems during public 
health emergencies. In parallel, regular campaigns can 
help educate the population about the appropriate use of 
pre-hospital emergency services.

Furthermore, while some studies valued the Deep 
Intensive Care Unit Central Monitoring System (Deep-
ICU CMS), which demonstrates utility in in-hospital 
cardiac arrest prediction [37], its adoption within Qatar’s 
pre-hospital EMS would require systemic changes. First, 
policy revisions would be necessary to transition from 
the current patient-driven refusal framework to a clini-
cian-guided decision-making model, mandating legal and 
ethical reforms to grant EMS clinicians authority over 
transport determinations, a significant departure from 
Qatar’s autonomy-centric protocols. Concurrent infra-
structure upgrades, such as equipping ambulances with 
wearable sensors for real-time vital sign monitoring and 
establishing interoperable data pipelines between EMS 
and hospitals, would be essential to generate the con-
tinuous physiological inputs that Deep-ICU CMS relies 
on. Workflow redesign would necessitate clinician train-
ing in interpreting IHCA risk scores during on-scene 
assessments, directly conflicting with existing patient 
autonomy norms. Finally, liability management proto-
cols must address potential misalignment between model 
recommendations and patient refusal rights, particularly 
in cases where high-risk individuals decline transport 
despite predictive alerts.

Table 3  Variables excluded after feature selection
  • Zone:
    o Urban
    o Rural

  • Chief complaint (Dispatch Protocol code):
    o Animal Attack Bite.
    o Bleeding.
    o Eye Problem.
    o Pregnancy

  • Years:
    o 2018
    o 2019
    o 2020

o 2021
o 2022

  • Months:   • Provisional diagnoses:
    o January
    o February
    o March
    o April
    o May
    o June

o July
o August
o September
o October
o December

    o Anaphylaxis.
    o Chronic Medical Condition.
    o Diabetic Problem.
    o Electrocution.
    o Endocrinology.
    o Epistaxis.

o Minor Trauma.
o Non-specific problems.
o Shock
o Covid

  • Nationality groupings:
    o East Asia & Pacific
    o Latin America and the Caribbean
    o North America
    o Other GCC
    o Other

Table 4  Model performance metrics
Accuracy Score F1 MCC ROC AUC Kappa (k) R_squared
Train Test

Decision Tree 99.94% 65.42% 0.667 0.214 0.57 0.213 -0.741
Logistic Regression 73.99% 72.91% 0.692 0.236 0.745 0.212 -0.29
Random Forest 99.94% 74.78% 0.74 0.351 0.811 0.341 0.811
Extra Tree 99.94% 74.39% 0.745 0.366 0.803 0.364 -0.292
Adaboost 73.21% 69.98% 0.65 0.156 0.421 0.134 -0.52
KNN 82.49% 72.88% 0.719 0.303 0.665 0.3 -0.303
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The findings of this study are broadly generalisable 
to EMS systems across the Gulf Cooperation Council 
(GCC) countries, which share centralised, government-
operated pre-hospital care structures and comparable 
demographic, cultural, and operational characteristics 
[38, 39]. Regional analyses confirm that GCC EMS sys-
tems uniformly adopt the Anglo-American model, pri-
oritise similar clinical protocols for high-prevalence 
conditions such as acute trauma and cardio-respiratory 
emergencies. For instance, studies in Saudi Arabia, 
Kuwait, and Qatar report nearly identical response time 
benchmarks (10–15  min), patient refusal rates (~ 30%), 
and reliance on two-tiered dispatch systems [3, 38]. These 
shared operational definitions suggest that strategies for 
managing non-transport categories, such as algorithmic 
risk stratification and class imbalance mitigation, could 
be adapted across the region with minimal modification. 

However, generalisability to non-GCC systems is lim-
ited by structural differences. For example, European or 
North American EMS systems often integrate decentral-
ised, multi-agency models with advanced telemedicine 
capabilities and stricter adherence to protocol-driven tri-
age, features less prevalent in GCC systems [40].

Limitations
First, while the RF algorithm demonstrated the highest 
accuracy and predictive performance in our study, it is 
essential to acknowledge the limitations associated with 
this model. One of the primary concerns is the potential 
for overfitting, as indicated by the discrepancy between 
the training and testing accuracy scores. The training 
accuracy reached 99.94%, while the testing accuracy was 
74.78%, suggesting that the model may not generalise as 
effectively to unseen data. This overfitting could lead to 

Fig. 2  ML algorithms validation performance
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overestimating the model’s predictive capabilities in real-
world scenarios.

Second, the DOA group’s limited representation was 
indeed a constraint despite the stratified sampling to 
mitigate the class imbalance, resulting in the model gen-
eralising for DOA prediction. To address this, future 
research might consider incorporating more advanced 
feature selection methods to identify and retain only the 
most relevant predictors that can mitigate overfitting, 
such as recursive feature elimination, which reduces the 
risk of overfitting by eliminating redundant or irrelevant 
features.

Third, excluding cases with missing data, such as 
incomplete dispatch timestamps, may further bias 
results, as such exclusions disproportionately affect high-
acuity cases where documentation is often prioritised 
over completeness.

Fourth, the study was retrospective, restricting the abil-
ity to capture dynamic changes in future patient behav-
iours. Restrospective studies introduce risks of selection 
bias and unmeasured confounding, as data were con-
strained to pre-existing operational records that lacked 
granular clinical details such as patient comorbidities and 
socioeconomic status, or contextual factors, like family 
preferences, EMS crew experience. These omissions may 
skew risk predictions, particularly for rare outcomes like 
DOA.

Fifth, the overfitting risk inherent to tree-based mod-
els is evident in the training-test accuracy gap (99.94% 
vs. 74.78%), likely exacerbated by the inclusion of weakly 
predictive features such as temporal variables like month/
year, which inflated noise.

Prospective studies are needed to validate the model’s 
predictive power and to ensure that it remains relevant 
and accurate in the face of evolving healthcare landscapes 
and patient needs.

Conclusion
The application of supervised ML algorithms has enabled 
the development of a highly accurate predictive model 
during a public health emergency that can identify 
patients not requiring hospital transport or on-scene 
treatment during the emergency call-taking phase. This 
model reduces unnecessary strain on emergency health-
care resources, ensuring availability for those in need 
by directing suitable patients to alternative healthcare 
facilities. The study highlights the importance of ML in 
enhancing decision-making processes within EMS, offer-
ing a data-driven approach to effectively managing non-
transport decisions.

The research implications extend beyond the COVID-
19 pandemic, offering visions for future health emergen-
cies. To translate these predictive models into practice, 
EMS providers and policymakers should invest in robust 

digital infrastructure and data integration systems that 
enable real-time analysis of emergency call data and 
resource availability. Incorporating ML into contingency 
plans enables healthcare systems to anticipate better 
and respond to shifts in patient behaviour and health-
care needs, improving patient outcomes and enhanc-
ing healthcare delivery efficiency and effectiveness. The 
findings demonstrate ML’s potential to revolutionise 
pre-hospital care during pandemics by ensuring optimal 
resource allocation. Successful implementation will also 
require multidisciplinary collaboration, ongoing staff 
training in using decision-support tools, and the develop-
ment of clear protocols to ensure that predictive insights 
are effectively incorporated into operational planning 
and resource allocation. However, the study acknowl-
edges the limitations of predictive models and the need 
for ongoing research to refine and validate these tools, 
focusing on expanding datasets, exploring additional 
variables, and developing more sophisticated models to 
enhance the accuracy and applicability of machine learn-
ing in pre-hospital care.
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