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Abstract

The scattering of light from particles with roughened surfaces occupies a gap in our under-
standing because they have size dimensions spanning multiple length scales. Subtle changes
in the symmetries and features of a particles geometry can lead to significant changes in its
optical properties. Combined with the fact that many applications of light scattering are
concerned with the bulk properties of an ensemble of particles with varying shapes and sizes,
this makes it particularly challenging to study them through experiment and to model via
simulation. The goal of this work is to develop a model to solve a multi-scale problem in an
approximate yet fast and computationally feasible manner, to aid in characterising the op-
tical properties of particles with surface roughness. Accomplishing this will enhance current
modelling capabilities and offer the potential to compute single scattering parameters with
greater accuracy, leading to a deeper understanding across a wide range of applications.

For particles with size much larger than the wavelength, the existing work is generally
limited to ray-tracing approaches based on geometric optics, as well as some physical-optics
hybrid methods based on an equivalence between the orientation averaged scattering of
roughened and distorted smooth particle geometries. The use of geometric optics is a good
approximation if the particle size dimensions are much greater than the wavelength of light,
but the accuracy decreases with decreasing size dimension. To address this limitation, the
model developed in this study, the Parent Beam Tracer method, improves upon geomet-
ric optics by accounting for diffraction effects, which become important when the length
scale becomes comparable to the wavelength. The basic principles of pioneering ray-tracing
studies provide the inspiration for the model, which also includes a novel ray backtracing
technique for application to particles with a variety of surface textures. It utilises a surface
integral diffraction equation, allowing it to capture the interplay between wavelength, surface
roughness, and overall particle shape in the computation of 2D scattering patterns. It is the
first physical-geometric optics hybrid method of its kind to compute the full Mueller matrix
from particles with surface roughness, which can be achieved in a time reduced by several
orders of magnitude compared to other methods, such as the discrete dipole approximation.
By comparison of 2D scattering patterns measured by experiment with those predicted by
the model, the prospective user may be able to better characterise particles beyond the ca-
pabilities of current resolution-limited imaging techniques. In summary, this report details
the key findings based on the development of a physical-optics hybrid light scattering model
for particles with overall size! much larger than the wavelength of light, but with surface
roughness on a scale comparable to the wavelength. In addition, this work describes new
evidence showing that the length scale of surface roughness has a negligible effect on the
orientation averaged scattering, suggesting that surface roughness can be quantified solely
by an amplitude.

This report is structured into the following sections: First, a range of applications are
introduced in Section 1, and the motivation for developing the model is discussed. A brief
review of existing literature is given, with particular emphasis on the difficulties encountered

LOverall size is intended to be the largest characteristic length scale of the particle, which may be loosely
interpreted as the diameter of a sphere with the same volume.



in representing the size, shape, and surface texture of particles in theoretical light scattering
models. The analysis of 2D scattering patterns as a means of characterising particles beyond
the resolution of current imaging techniques is also discussed. Second, an introduction to
some basic scattering theory is given in Section 2, which may be a useful resource for the
reader for a better understanding of the proceeding sections. Third, Section 3 gives a brief
review of some existing theoretical methods, with a greater depth of focus on the principles
of geometric optics. These principles are then leveraged in Section 4, which describes and
explains the novel techniques in the Parent Beam Tracer method. Section 5 discusses appli-
cations of the model; 2 benchmark studies comparing its accuracy against the numerically
exact discrete dipole approximation are presented, as well as a study on the single scattering
properties of roughened, thin hexagonal plates across a range of sizes and refractive indices.
The work is summarised in Section 6, which concludes this report.
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Chapter 1

Introduction

1.1 Applications and Motivation

Light scattering is a fundamental process with extensive applications across various fields.
Calibration of laboratory instrumentation relies on theoretical calculations, and the discern-
ment of cell health or disease in biomedical testing is informed by the examination of single
scattering properties [1, 2]. This includes, for instance, detection of rupturing or destruction
of red blood cells (hemolysis) from smoking [3]; an affected cell is shown in Figure 1.1. Flow
cytometry is a powerful tool based on light scattering for measuring the size and internal
complexity or granularity of cells [4]. It is used in many applications, including immunology,
molecular biology, bacteriology, virology, cancer biology, and infectious disease monitoring.
In occupational health, light scattering is used to monitor dust sizes, to prevent dust ex-
plosions in industries, and to detect hazardous substances like asbestos [5-7]. An example
of a butuminous coal particle is shown in Figure 1.1b, of which the flammability generally
decreases with increasing size [5].

In the marine environment, which is composed of the oceans, floating sea ice, and the at-
mosphere above, light is scattered and absorbed by a variety of particles, including aerosols,
particles and bubbles in suspension, and grain boundaries in sea ice. The scattering effects
of which, are influenced by particle size, shape, refractive index, and the angle of scatter-
ing. Understanding the scattering process is important for understanding cloud formation,
radiative transfer, heating and cooling of the Earth, as well as visibility, which plays a role
in the life of humans and marine ecology. In the submarine environment, ambient light is
significantly polarised, and many creatures have evolved to use this to their advantage. Some
species of crustacean have evolved to have nearly transparent bodies, making them less vis-
ible to predators. Some crustaceans and cephaloids use dichroic channels in their retinas to
use polarised light to help them navigate underwater. The increasing use of diesel in marine
transport is thought to be a major source of carbonaceous soot in the marine environment.
These particles have high refractive index in both the real and imaginary components, which
mean they have an important effect on the scattering of light. An iron-oxide particle derived
from diesel combustion is shown in Figure 1.1c [8]. Strong evidence also exists, suggesting
that photosynthesis productivity is sensitive to the handedness of circularly polarised light
[10]. Right-handed polarisation is thought to increase productivity in Dunaliella euchlora
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algae (Figure 1.1d), which may be due to the circular dichroism in the pigments. Many scat-
terers have been found to show a degree of non-random group orientation, such as marine
organisms and inorganic materials like sediments and dust. Clearly, light scattering is an
important process in the marine environment.

Weather and climate models rely on single scattering parameters as inputs to radiative
transfer computations [11], which are important for understanding and predicting the Earth’s
climate system. Cirrus clouds play an important role in the Earth-atmosphere radiative
balance owing to their large global coverage [12]. They take on the appearance of fibrous,
threadlike, white-feather clouds resembling hair curls, and are composed primarily of ice
crystals ranging in sizes from microns to millimeters [13]. Fundamental understanding of the
light-scattering and polarisation effects of ice particles is a useful tool in the interpretation of
bidirectional reflectances, fluxes, and heating rates [14, 15]. Multiple scattering calculations
are important for determining irradiances in climate studies and radiances in remote sensing.
The accurate calculation of scattering matrices and integrated parameters, including single
scattering albedo, asymmetry parameter, and scattering and extinction cross sections and
efficiencies, remains central to these applications.

A quantitative analysis of light scattering can provide a useful tool for applications with
specific angular detection ranges and resolution. For example, the instruments of the Small
Ice Detector family [16] detect light scattered in the region between 6° and 25° from the
forwards direction, which is useful for studying halos and coronae phenomena caused by ice
crystals. Light detection and ranging (Lidar) instruments detect direct backscattering and
is a valuable tool for remote-sensing applications. The backscattered light is analysed, which
can give valuable insights about the particles present. An understanding of how the shape,
size, and refractive index of a particle affects the backscattering is therefore of importance
for interpreting results. Lidar is a useful technique because it is non-invasive, and the
instrumentation can be situated on ground, in high-flying aircraft, or even on satellites. In
the study of aerosols, Lidar can be used to analyse exotic clouds, and detect dust storms and
wildfires. For water and mixed-phase clouds, it can be used to distinguish between liquid
water and ice. With Lidar, the life cycle of raindrops can be traced as they fall, starting
initially as snowflakes which melt into irregular, mixed phase particles, before collapsing
into inhomogeneous, ice-containing raindrops [14]. An array of applications are focused on
the inversion problem, where theoretical models are employed alongside experimental data
to determine the size, shape, and particle complexity of a scatterer [17]. Two-wavelength
detection can provide information about particle size and aid in discrimination of clouds and
aerosols, as well as the identification of aerosol types [18].

The list of applications concerned with ice particles extends beyond the study of light
scattering on Earth. Images taken of Enceladus, the sixth largest moon of Saturn, reveal the
presence of ice and dust particles emitted from cryovolcanoes [19]. Analysis of the scatter-
ing from such particles is of interest, since life on Earth is thought to have originated from
hydrothermal vents [20]. Astronomical data suggests that the ice particles are likely to be
non-spherical in shape [21]. Ice crystal formation depends on temperature and supersatura-
tion in general, which influence the hydrogen bonding, leading to most commonly hexagonal,
sometimes cubical, and occasionally trigonal structures. It has been highlighted that more
accurate light scattering simulations of such particles would be of great value in this area of
research.



The physics of light scattering is governed by Maxwell’s equations of electromagnetism.
Light waves propagate according to the wave equation, a fundamental topic found in ele-
mentary textbooks [22]. For time harmonic fields, the physics is described by the vector
Helmholtz equation [14, 23],

V2Egea + 12 k*Egea = 0, (1.1)

where Eg., is the scattered electric field, n is refractive index, and k is the wavenumber.
The solutions to which, depend on the particle refractive index n, as well as the size, shape,
orientation, and surface roughness, which determine the boundary conditions. The material
composition of a particle determines its refractive index, which also depends on the wave-
length A of the incident light. Solving the vector Helmholtz equation for single particles to
obtain results of practical importance, however, is encumbered by the diverse array of par-
ticles found in nature. For instance, the bulk scattering properties of cirrus clouds, mineral
dust clouds, or volcanic ash plumes depend on the properties of their constituent individual
particles. In such cases, it is practically impossible to know the exact details of each particle.

The ensemble of particles is usually represented by a particle size distribution (PSD),
which is obtained by fitting observational data to a gamma distribution [24]. The gamma
distribution depends on the maximum particle dimension, as well as several parameters
derived from the fitting process. The PSD is used to estimate the particle mass, cross-
sectional area, and terminal velocity, from which the bulk cloud properties can be calculated
[25]. For radiative transfer applications, single-scattering parameters are computed using
light scattering models for a variety of particle habits. Here, the term ”habit” describes the
shape of the particle, which usually varies with particle size and atmospheric conditions.
For example, common ice crystal habits include plates, columns (solid, hollow, or capped),
needles, dendrites, bullet rosettes, and aggregates. Some captured cirrus particles are shown
in Figure 1.2 [26]. Since light scattering simulations are size-dependent, the scattering is
typically computed across a number of size bins spanning the range of the PSD. The effect
of this, alongside the grouping of particles into sets of simplified habits, must give rise to some
degree of error in the results. This affects the accuracy of weather and climate forecasting,
which are influenced by the accuracy of single scattering properties derived from theoretical
models.

1.2 Characterisation of Particle Geometry

The applicability of different theoretical light scattering models is heavily dependent on
the size and shape of the particle. In 1932, Wadell proposed a characterization approach
for nonspherical particles based on form, roundness, and surface texture [27]. The following
sections discuss how these factors influence the physics of light scattering and the implications
they have on the applicable theoretical methods and experimental techniques.

1.2.1 Size

With regards to size, the applicable methods generally depend on whether the particle size is
much smaller than, comparable to, or much greater than the wavelength A of incident light.



Figure 1.2: Cirrus particles captured in high definition with scanning electron
cryomicroscopy [26].



Particles much smaller than the wavelength of incident light fall under the regime of Rayleigh
scattering, with a scattered irradiance that scales proportional to 1/A* [28]. For particles
with size dimensions comparable to the wavelength, which is sometimes referred to as the
induction zone [29], a wide variety of methods exist. On the other end of the scale, particles
with size dimensions much greater than the wavelength can usually be approximated by the
laws of geometric optics, which models the propagation of light as moving along well defined
paths known as rays. Several computationally efficient approaches using classical geomet-
ric optics (GO) were initially developed [30-34]. The methods use ray-tracing techniques to
model the propagation of electromagnetic waves in the short wavelength limit as straight-line
paths. Muinonen devised the modified Kirchhoff approximation, accounting for Fraunhofer
diffraction in the forwards direction, as well as from reflected and transmitted beams, by
approximating the diffracting surfaces as circular apertures [32]. Macke used an alternative
method, accounting for external diffraction in the forwards direction by using the particle
projected cross section as the diffracting aperture [35]. These approaches provide an approx-
imate solution to the scattering problem with an accuracy that increases with the minimum
dimension of the particle [36]. In recent years, several so-called physical-optics hybrid meth-
ods have been developed, which improve upon GO by accounting for additional diffractive
effects [37-41] (further discussed in Sections 3.4.6 & 4.3). While these methods have been
used to model a variety of particle geometries with smooth surfaces, few can be directly
applied to compute light scattering from particles with surface roughness. Instead, several
approaches are focused on the effects of deviations from perfect particle geometries. For in-
stance, one of the first and now widely used techniques for this is the ’tilted-facets’ method,
which applies a stochastic distortion to the particle surface [35]. Another approach, which
uses distorted smooth particle shapes to mimic varying degrees of surface roughness [42], has
been implemented in several recent works [43-46]. A physical-optics method based on the
subdivision of an incident wave into triangle-shaped beams was also developed and used to
model strongly absorbing hexagonal prisms with surface roughness [47]. More discussion on
theoretical methods is given in Section 3.

1.2.2 Shape

With regards to particle shape, the problem becomes more complicated. For spherical parti-
cles, Lorenz-Mie theory (Section 3.1) provides an elegant and efficient solution for computing
the scattering [48]. Unfortunately, the general consensus among current research is that us-
ing Lorenz-Mie theory as an approximation for non-spherical particles can lead to significant
errors. For instance, a study on the sensitivity of cirrus cloud albedo showed that assum-
ing ice crystals to be spherical can easily lead to an overestimate of cloud optical thickness
by a factor of 3 [49]. A study on the simulation of single and 3-layer cirrus cloud models
found that the bidirectional reflection of cirrus is highly sensitive to whether the particles
are characterised as spherical or quasi-spherical [50]. Although the shapes of ice crystals
are highly varied, laboratory experiments and observations reveal that most geometries are
composed of basic hexagonal structures [13]. Instead of spheres, the droxtal geometry has
been proposed as a more realistic approximation for the shape of small ice particles [51].
For ice particles with 60 pm < d < 1000 pm, where d is the maximum particle dimension,
the aspect ratio depends on temperature, and the fraction of spherical particles in ice clouds



rapidly decreases with increasing particle size [52]. For non-spherical particles, several exact
methods for solving the light scattering problem exist, including T-matrix [53-55], finite-
difference time-domain [56-58], and the discrete dipole approximation [59-62]. However,
these approaches become computationally expensive as the particle refractive index n and
size parameter X = |wd/\| increase, where \ is the wavelength.

1.2.3 Surface Roughness

Generally speaking, surface roughness can be modelled by either using a smooth surface with
modifications to the physics to simulate the effects of roughness [35, 63-65], or by generating
a surface with physical roughness according to a roughness scheme, such as Koch fractals
[35], Voronoi particles [66], Gaussian roughness [67-69], or Chebychev polynomial series [70].

An example of the former approach, is the tilted-facets method [35], wherein the propaga-
tion direction of reflected and refracted rays is perturbed by applying a random "tilt” to the
surface in a Monte Carlo-style approach. The obvious advantage of such approaches is that
they are simple and relatively straightforward to implement. The disadvantages are that
the perturbed surface is not well-defined!, which restricts the accuracy and range of meth-
ods that can be applied, and that applying excessive amounts of tilt can lead to unphysical
results.

Alternatively, using a roughness scheme to generate a morphologies gives rise to particles
with well-defined surfaces, which might be an analytical function or a surface mesh made up
of many elements. One example is the use of Chebyshev functions, although more often these
are used to represent particle distortion, instead [12, 71]. Gaussian roughness schemes are a
widely adopted choice and can be defined by a standard deviation and a coherence length
of an autocorrelation function [72-74]. A recent study used a statistical model based on
fractional Brownian motion to produce a thin roughness element characterised by a horizontal
and a vertical scale [75]. Rougher elements were found to increase transmittance through
the surface and showed smoother angular scattering functions when compared with their
smooth counterparts.

An advantage of knowing the precise information about the surface topology, is the
applicability of more accurate theories, such as the discrete dipole approximation (DDA)
[59], T-matrix [76], psuedo-spectral time-domain [77], or the discontinuous Galerkin time-
domain methods [78]. Unfortunately, most roughnesses schemes are either restricted to
specific geometries or defined on a case-by-case basis, which limits the ease at which they
can be applied on a wider scale. One current challenge is that, since there are a multitude of
ways of parametrising surface roughness, it is not always clear how to compare one roughness
scheme with another. A proposed solution to this problem is a surface normal roughness
metric for ice based on an analysis of anisotropic morphology in the prismatic plane, which
can be applied to both modelled stochastic surfaces and observed samples [79].

The characterisation of the geometry of ice particles has proved fairly challenging owing
to the sensitivity of ice crystal habits to temperature and humidity, combined with limi-
tations of capturing images with sufficient resolution. Cirrus cloud temperatures generally

!The perturbation is applied independently for each ray, meaning that two rays incident at the same
location will generally ”see” different surfaces.
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range from —19° in the lower layer to —58° in the upper layer [13, 51, 80]. Crystal forma-
tion of quasi-spherical geometries is favoured in the upper layer, which have aspect ratios
close to 1. The middle layer is sometimes referred to as the growth layer, where pristine
columns, plates, and bullets may be found, with increasing aspect ratios. In the lower layer,
the air is warmer and can hold more moisture, which can lead to a state of subsaturation.
This promotes sublimation, which can lead to a wide variety of complex geometries. On
the macroscopic scale, pristine shapes found in the growth layer can join together to create
complex formations such as rosettes and aggregates. On the microscopic scale, the subli-
mation is characterised by smooth and rounded shapes, as well as grooving [81]. Because
of the extreme temperatures ice crystals are found in, it has been only recently possible to
retrieve and preserve samples from clouds in nature. Magee et al. used a balloon-borne
payload to capture, seal, and return ice particles from cirrus clouds to be analysed using
a cryo-scanning election microscope [26]. Across thousands of measured cirrus particles,
they observed highly varied particle shapes across different habits, including multiple scales
of sub-wavelength scale roughening, and even greater complexity than previously expected.
In order to circumvent the technical challenges of resolution-limited camera imaging of ice
particles, there have been many attempts to indirectly determine the particle shape through
the analysis of light scattered by the particles. When a surface with roughness scatters an
incident wave, the interference between outgoing waves from different parts of the surface
leads to a scattering pattern that contains various information about the geometrical and
physical properties of the particle. The analysis of certain texture features in the image can
be used retrieve information about the characteristics of the roughness of a surface [82]. The
texture features can be quantified by applying a grey-level co-occurence matrix (GLCM),
which relates the brightness levels between different pixels in a scattered intensity image
[83]. Some examples of the features include:

e Contrast: A measure of the local variations in the GLCM.
e Correlation: The joint probability occurrence of specified pixel pairs.

e Energy: A measure of uniformity, which is equal to the sum of the squared elements
in the GLCM.

e Homogeneity: A measure of the closeness of the distribution of elements in the GLCM
to the GLCM diagonal.

Ulanowski et al. found that the surface area of intensity peaks, or speckle, is inversely
proportional to the particle size [84]. The work was extended for inferring the roughness
properties of atmospheric ice particles measured with the Small Ice Detector 3 [85]. Based on
measurements of lab samples of ice and mineral dust, they formulated a combined roughness
value, which is based on a combination of the energy, kurtosis, root mean square, and
standard deviation of the greyscale scattered intensity pattern. It was found that most in-
situ samples from flight data showed random speckle in the patterns, corresponding to very
rough and/or complex ice crystal geometries.
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1.3 Summary

The interaction of light with matter is a fundamental process with broad applications in
fields such as biomedical testing, occupational health, marine environments, weather and
climate modelling, remote sensing, and astrophysics. Understanding of how particles scatter
light helps us to detect disease, calibrate instruments, monitor hazardous substances, and
predict and preserve the environment. The scattering depends on the size, shape, orienta-
tion, and surface texture of the particles. In many applications, there is increasing evidence
that particles are often non-spherical, which can lead to inaccurate predictions and misinter-
pretation of data, if spherical shapes are assumed. For particles with size much larger than
the wavelength, GO is a widely adopted tool for theoretical light scattering models. If the
particle size parameter is not large [86], or if the scale of surface roughness is comparable to
or greater than the wavelength, then the spreading of energy, or diffraction, when light scat-
ters, becomes more significant; an effect which is not accounted for in GO. This work aims
to devise a model for computing light scattering based on GO for particles with overall size
much larger than the wavelength, but with physical roughness of length scale comparable to
the wavelength. Can such a model be devised, and how does its accuracy and speed com-
pare with existing methods? Can the model also be capable of computing single-scattering
parameters and 2D scattering patterns, which have great value across many applications?
Before these questions can be answered, a brief overview of the theoretical framework for
light scattering is described in the following chapter.

12



Chapter 2

Fundamental Theory of
Electromagnetic Scattering

2.1 Basic Scattering Theory

In this section, the basic theory for the scattering of an electromagnetic plane wave is given.
The scattering geometry consists of a particle with centre of mass located at the origin and
an illuminating incident plane wave with an electromagnetic field that can be described by

Ei — Egeiko(ﬁo-r—wt)7 (21)
H — H:)eiko(f(g-r—wt)’ (2.2)
where E' and H' are the electric and magnetic incident fields, respectively, Ko = —2 is

the propagation vector defined along the —Z axis, A\ is the wavelength of incident light,
ko = 27/ is the wavenumber, w is the angular frequency, and ¢ is time. Ei and Hi are
complex amplitude vectors and form a mutually orthognoal triad with Ko according to
Hi = K, x Ei. In general, the interaction of the electromagnetic field with the particle
causes the energy of the wave to be redistributed into multiple directions. As a result, both
the intensity and polarisation of the scattered electromagnetic field may vary as a function of
position. A spherical coordinate system is introduced, with the forwards scattering direction

= (° is defined to be aligned with the —2 axis such that the position r at a distance R in
the far-field is given by

x Rsin 6 cos ¢
r=|y]| =| Rsinfsing |, (2.3)
z —Rcos 6

where 6 and ¢ are the polar and azimuthal angles, respectively. For each unique pair of
and ¢ values, there exists a scattering plane containing —z and #, as shown in Figure 2.1.
For 8 = 0° or # = 180°, any scattering plane containing the z-axis can be used. At a
large distance from the particle, it can be shown that the scattered field takes the form of
an outgoing spherical wave [29], which is transverse such that the scattered electric field
is perpendicular to t. This is called the far-field approximation (kor >> 1), wherein the
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Figure 2.1: Scattering geometry for incident light along the -z-axis. An arbitrary scattering

particle is shown in blue, centered on the origin. The scattering direction makes an angle
to the -z-axis. The incident and scattered directions define the scattering plane.

scattered field at a distance r from the scatterer is described by

eikor
ES = ES. (2.4)

—ikor

Since both the incident and scattered electric fields are perpendicular to their respective
propagation directions, it is convenient to split the amplitude vectors into components par-
allel and perpendicular to the scattering plane, such that

i i i8h i PR PN s s 0% as s 0% as
Eo = ajje”le) +a' e”1& =, Eg=aje’ll§] +a’e’le], (2.5)
where a and ¢ represent real-valued constants, and & and &, are orthogonal unit vectors
given by

é‘i‘:cosgzﬁfc—i-singby, & =sing X +cospy

éﬁ =cosflcos¢ X +cosfsing y —sinf 2, &5 =sin¢p X+cosoy.
A diagram summarising the scattering geometry is shown in Figure 2.1. On a macroscopic
scale, a discontinuity in the electric permitivity € and permeability p occurs at the boundary
between the particle and the surrounding medium (ie. on the particle surface). It is there-

fore common to impose the following boundary condition, which implies continuity of the
tangential component of the electric field:

(BE1 — Ey) x i = 0, (2.6)
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where E; and E, are the electric fields on either side of the boundary and 11 is the outward-
facing surface surface normal. Based on the linearity of Eq. 2.6, a relation can be formed
to relate the near and scattered fields. To this end, the amplitude scattering matrix S =
( gj gf) is introduced, which relates ES to E! by

o= (2) - (3 ) () &

For a wave unaffected by a scatterer, the amplitude matrix is defined as the identity matrix,

¢ =10°,
X
i ? e
W INARY -« Y. e
S— (19) origin far-field
ot particle

incoming wavefront

Figure 2.2: The scattering geometry. An unpolarised plane wave is incident along the Z
axis, with perpendicular and parallel electric field vectors defined along the X and ¥ axes,
respectively. The particle is positioned with centre of mass on the origin. The far-field is

located at a distance R from the origin, with contour lines of constant ¢ shown for
convenience.

I= (é (1]) In this work, the initial amplitude matrix is chosen to be defined with respect
to the yz plane with orthonormal field unit vectors &, and & along the X and y directions,
respectively. A diagram summarising the scattering geometry is shown in Figure 2.2.

2.2 Stokes Vectors & Amplitude Matrices

As shown in Eq. 2.5, the amplitude of a wave can be split into 2 perpendicular components.
The amplitudes a and a, and relative phase = §;;—d, describe the polarisation of the wave.
If £, and Ej are fully correlated over time then the wave is said to be polarised, whereas
if they are uncorrelated the wave is unpolarised [28]. The intensity, and horizontal /vertical,
diagonal, and circular polarisation can be conveniently described by the Stokes parameters,
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I, Q, U, and V, respectively:
I = aﬁ +a?,
Q= aﬁ - ai?
U = 2aja cos(9),
V' = 2aja, sin(6).
In general, ) and U depend on the choice of basis vectors, & and €,. The basis vectors

may be rotated about the direction of propagation by an angle v to yield new basis vectors
é" | and & . The corresponding transformation for the Stokes parameters is given by

(2.8)

I 1 0 0 0 1

Q' _ [0 cos 2¢p  sin2y 0 Q (2.9)
U’ 0 —sin2¢y cos2y 0 U ’
V! 0 0 0 1 1%

Eq. 2.9 is often used in light scattering models when summing the contributions of mul-
tiple scattered rays in a particular scattering plane. The equivalent transformation of the
amplitude matrix is discussed in more detail in Section 3.4.4.

2.3 Mueller Matrices

Eq. 2.9 is an example of a 4 x 4 Mueller matrix (also known as a phase matrix), which
describes a transformation of the Stokes parameters. A general phase matrix can be described
by

I S11 Sz Sis S I
Q' So1 Sz Sag S Q
r | — s 2.10
U | = S Sw 8w S| | U (2.10)
Vv’ Sa1 Ssz Sz Su V

where, in general, S;; are a function of § and ¢ [28]. The elements of the Mueller matrix
are not entirely independent and can be derived from the amplitude scattering matrix using
standard relations (Appendix A) [87]. Some Mueller matrix examples for standard labora-
tory equipment are given in Table 2.1 [88]. Tt is straightforward to describe the physical
representation of a few of the phase matrix elements S;;. For unpolarised incident light, S,
represents the angular distribution of scattered light intensity. When normalised, it is often
referred to as the phase function. Sj5/Si; is the degree of linear polarisation, Si3/S1; the
degree of diagonal polarisation, and Si4/S71 the degree of circular polarisation. The scat-
tered intensity is determined by the first row elements of the phase matrix. While Mueller
matrices can in this way describe the scattering effect of simple interactions, they can also
be used to describe more complex interactions of light scattering. For instance, when an
incident plane wave encounters a particle, the scattering of light depends on the wavelength,
particle morphology, and refractive index. Accurately computing the Mueller matrices of
different particles is of great importance for many atmospheric applications. In weather
and climate models, knowledge of the amount of forward and back-scattering intensity is
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of great importance for predicting the Earth-atmosphere radiation balance. In aircraft and
satellite-based radiation measurements, knowledge of the Mueller matrix can be useful for
instrument calibration and for discerning between different particles.

1100 1 -1 00
;11 100 11-1 1 00
210 0 0 0 210 0 00
0000 0 0 00
Horizontal linear polariser Vertical linear polariser
100 0 1 000
SEEARNENT IS
000 -1
001 0 0001
Quarter-wave plate 50% Attenuating filter

Table 2.1: Example Mueller matrices for some standard laboratory equipment. Horizontal

and vertical linear polarisers only transmit parallel and perpendicular components of the

E-field, respectively. A quarter-wave plate transforms an elliptical wave into a linear wave

by shifting the relative phase § by 90° [22]. A 50% attenuating filter has no effect on the
polarisation but only transmits half the intensity.

2.4 Scattering Parameters

As mentioned in the previous section, a Mueller matrix is a function of scattering direction.
The computation of which, results in a large amount of data that can be cumbersome to
use in practice. Therefore, it is common to parametrise the scattering in order to reduce the
amount of information needed for application. A summary of key scattering parameters are
given in the proceeding subsections. Several integrated scattering parameters are introduced,
which have no angular dependence. An example of their application includes global chemistry

transport models, wherein they are used to forward model solar and infrared irradiance or
flux [89].

2.4.1 Asymmetry Parameter

The asymmetry parameter g, is used to describe the amount of forward or back-scattered

light, and is defined by

g=/ p11(0) cos B db, (2.11)
0

where the phase function py; is S7; normalised over the solid angle, such that

Sll /27r /7‘(’ .
Pl = 5 , p11(0)sin @ dbde = 1. 2.12
U s @smo dods Jo o P 212
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The asymmetry parameter takes values in the range —1 < g < 1. For g = —1, all scattered
light is in the direction # = —180°, whereas for g = 41, the light is scattered entirely in the
direction # = 0° [28]. For g = 0, light is scattered symmetrically about # = 90°. It is an
integrated scattering parameter, since the integration removes any angular dependence [89].

2.4.2 Scattering, Absorption, & Extinction Cross Sections

The power radiated from the scattering particle in the direction ¥ per unit solid angle, given
by

do  r?le; - Egl?

d_Q - ’E;k K Ei|2 ’ (213)
is called the differential scattering cross section, where
Ej E

€6 = s €s = ) 2.14

BT m) 21

are called the polarisation vectors [29]. The total scattering cross section is then given by

do ’
Ogscat — /m dQ) = 47rI dQ, (215)

where df2 is the solid angle element sin(6) dfd¢, and I’ is the scattered intensity as defined
in Eq. 2.10. The scattering cross section may be physically interpreted as the total area
from which incident energy is scattered (into any direction) by the particle. Owing to the
combined effects of reflection, transmission, and external diffraction, the scattering cross
section is often greater than the geometric cross section of the scatterer. If the particle has
a geometrical cross section G, then the scattering efficiency factor is defined as

Qsca = Uscat/G~ (216)

The scattering efficiency represents the fraction of incident energy scattered by the particle.
As the scatterer becomes much larger than the wavelength, the value of Q.. — 2, which
is known as the extinction paradox. The amount of energy absorbed by the particle is
given by the absorption cross section o, and the corresponding absorption efficiency is
Qabs = 0aps/G. For non-absorbing media, these are equal to 0. The total energy removed
from the incident beam is called the extinction cross and is given by 0ezr = Tseq + Taps. The
extinction efficiency is defined analogously by Qe.t = 0ert/G. The scattering, absorption,
and extinction cross sections and their efficiencies are integrated scattering parameters.

2.4.3 Single-Scattering Albedo

The single-scattering albedo wy is an integrated scattering parameter defined by

Wo = Usca/<0abs + Jsca)~ (217)
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From the law of conservation of energy, the single-scattering albedo take values in the range
0 < wy < 1. For non-absorbing particles, wy = 1. In this case, all the extinction of light
is due to scattering and therefore such particles are often described as ”white”, ”shiny”,
"bright”, or "reflective” [90]. Particles with extinction dominated by absorption have values
of wy — 0, and equal contributions of scattering and absorption give wy = 0.5. As the real
part of the refractive index — 1, the scattering efficiency — 0, since the particle becomes
less distinguishable from the surrounding air. In this case, the extinction is dominated by
absorption, the denominator in Eq. 2.17 approaches o,, and wy — 0.

2.4.4 Back-Scattering Cross Section

Unlike the previous cross sections, the back-scattering cross section is not integrated over the
solid angle. Instead, it takes the value of the differential scattering cross section at 6 = 180°.
It is an essential parameter in Lidar applications, wherein the Lidar equation is used to relate
the power of the returned signal to the emitted power and the range to the target. Higher
values of backscattering cross section result in more light being scattered toward the sensor,
creating a stronger signal, which must be accounted for in the analysis and filtering of data.

2.4.5 Depolarisation Ratio

The Lidar depolarisation ratio (LDR) § is defined by
| 81,(180°) — S(180°)
~511(180°) + Soq(180°)

In the Lidar backscatter depolarisation technique, the backscattered light can be used as
a remote-sensing tool for the identification of aerosols, water and mixed-phase clouds, cir-
rus clouds, and for measuring precipitation and phase change [14]. Since most lasers emit
polarised light, the depolarisation ratio is easily measured, and different values correspond
to the presence of particles with different shapes. Basic theoretical studies for spherical,
homogeneous particles predicts no depolarisation for single backscattering. On the other
hand, geometric optics theory for hexagonal ice prisms predicts larger depolarisation ratios,
with values of § = 0.3 for thin plates up to 6 = 0.6 for long columns. Snowflakes composed
of randomly oriented dendritic ice crystals have been measured with ¢ ~ 0.5, and freezing
droplets with accumulating ice on facets can have § values as high as 0.65. In addition,
dust particles from fierce storms and fires have been observed to have ¢ in the range 0.1-0.2.
From this, it can be concluded that the particles are non-spherical, and the lower § values
make them unambiguously distinguishable from ice particles.

J

(2.18)

Summary

In this chapter, the basic framework for electromagnetic theory has been introduced, which
describes how an incident plane wave interacts with a scatterer, leading to a redistribution
of the wave’s energy into multiple directions. In the next chapter, just a few of the cur-
rent theoretical light scattering models are introduced, with a particular emphasis on the
techniques of GO.
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Chapter 3

Theoretical Methods for
Electromagnetic Scattering

3.1 Lorenz-Mie Theory

The scattering of a plane wave by a homogeneous sphere of arbitrary radius and refractive
index is one of the few cases where Maxwell’s equations can be solved in full [28]. The full
derivation, developed by Gustav Mie in 1908 [48] is rather involved, so only a brief overview
of the key results and where they come from will be given below. For this derivation, the
work of van de Hulst is followed [91]. The vector wave equation for a homogeneous medium,
given by

V2A + k*n*A =0, (3.1)

where k = 27 /) is the wavenumber, n is the refractive index, and A is a vector solution,
which must be satisfied by the fields inside and outside of the sphere. If ¢ is a solution to
the scalar wave equation, then it can be proven that the vectors M, and N, where

M, = V x (), (3.2)

nkNy =V x My, (3.3)
satisfy the vector wave equation. In addition, M, and N are related by
TLk’Mw =V X Nw. (34)

The scalar solutions u and v and their corresponding vector solutions M,,, N,,, M,,, and N,,
are then introduced. It may be shown that, an incident plane wave propagating along the
z-axis, with an E-field polarized along the x-axis, can be defined by choosing v and v such
that

w = € cos b Z(—i)m%P,;(cose) i), (3.5)
m=1
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sm(bz ym 2m+ 1)P1 (c08 0)jum (1), (3.6)

where P! (cosf) are associated Legendre functions of order 1 and j,,(kr) are modified Bessel
functions of the first kind. The outgoing scattered wave is sufficiently described by choosing
uw and v such that

:e“tcosqﬁi—am(—i)m%Pl(cos@)h (kr), (3.7)
sm¢2 by (i)™ 2(2111>P1(c080)h£)(kr), (3.8)

where a,, and b,, are coefficients to be fixed and h,(n,%)(k?“) are modified Bessel functions of
the second kind. Similarly, to define the field inside the sphere,

y 2m+1 ,
tcos ¢ Z N (— m—+1)Pm(cos 0)jm(nkr), (3.9)
= e“'sin ¢ i ndm(—z’)mﬂp1 (cos 0)jm(nkr) (3.10)
m(m—+1) ™ ’

where ¢,, and d,,, are coefficients to be fixed and the argument of the modified Bessel function
of the first kind has been adjusted to incorporate the refractive index of the sphere. The
coefficients a,,, b, ¢, and d,, are fixed by applying boundary conditions. In particular,
the tangential components of E and H must be conserved across the boundary, as defined
by Eq. 2.6. By defining the Riccati-Bessel functions,

n(2) = 23 = [ ey 2 G.11)
Vs

Xm(2) = —zn,(2) = — (3.12)

Gm(2) = ¥m(2) +ixm(2), (3.13)

where J,, and N,, are Bessel functions of the first and second kind, respectively, the solutions
for a,, and b, are

V() m (%) — nthn (Y)Y, (2)

(3.14)

Ay —
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b,, = . 3.15
M0 (0)C(2) — Vi (0)C) 19
Here, primes denote derivatives and the arguments x and y are
2
x = Tﬂ, y = nka. (3.16)
Finally, if the infinite sums are defined as
=~ 2m+1
S1(0) = mz_l m(?”t—j—l) (amﬂm cos 0 + by, Ty, COs 9), (3.17)
=\ 2m+1
S9(0) = mz:l m(Tn—j—l) (bmwm cos 0 + a,, Ty, COS 9), (3.18)
then the resultant field components are given by
Fo=Hy = —kle_"(k”‘”t) cos ¢Sy (6), (3.19)
r
By = —Hy = kie—“’“*wt) sin ¢S, (6). (3.20)
r

Eqgs. 3.19 and 3.20 are exact solutions, which define the resultant fields at all points both in-
side and outside of the sphere. For computational purposes, one only needs to use Eqgs. 3.11—
3.20 to arrive at the resultant fields. In practice, m is truncated at some maximum value
Mumaz, Which limits the numerical accuracy. For spheres with small deformations, it is pos-
sible to compute fields using first-order perturbation theory on an inscribed sphere [92].
Improved results have been found using equivolumic spheres, instead [93, 94].

3.2 T-Matrix

Similar to the approach taken in Section 3.1, the T-Matrix method, originally developed
by Peter C. Waterman [76], expresses the incident and scattered fields as a sum of vector
spherical wave functions. The T-matrix relates the coefficients of the incident to the scattered
fields and the matrix elements depend on the material, size, shape, and orientation of the
particle. Owing to its analytic nature, the T-matrix can be averaged over all orientations,
which speeds up computations for large numbers of randomly oriented particles by several
factors of 10 [54]. For this reason, computations involving the T-matrix are efficient and
can be used to model scattering from thousands of particles in random orientation [54]. One
benefit of the T-matrix method is that it can be applied to nonspherical particles with axial
symmetry, unlike Mie theory. One way to compute the T-matrix is the extended boundary
condition method. It is based on the vector Huygens principle, which states that the total
field outside a bounded surface S containing the scatterer is equal to the sum of the incident
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field and an integral over S. Furthermore, for a perfectly conducting particle, as is often
assumed, all fields within the particle fall to 0. Therefore, the following relationship can be
deduced:

0, inside S

El(r) + integral over S =
(r) S {E(r), outside S

In other words, the surface currents induced by the incident field generate a scattered field
which cancels the incident field inside the particle. One must first expand the surface current
and a free-space Green’s function into spherical elementary functions with both known and
unknown coefficients. By exploiting orthogonality and integrating numerically, the expansion
coefficients defining the surface field can be determined. These coefficients can then be used
to analytically compute the scattered field. In recent years, the T-matrix method has become
a powerful and widespread tool for computing scattered fields from non-spherical particles.

3.3 Discrete Dipole Approximation

The discrete dipole approximation (DDA) was first proposed by Purcell and Pennypacker
in 1973 [59]. The DDA provides a flexible approach to computing the scattered field from
a particle of arbitrary shape [60]. The DDA method is regarded as a "numerically exact”
method, which means that it converges to the true solution with refining discretisation [95].
The accuracy of the DDA method has been well studied, and the error in fulfillment of
reciprocity! in some tests has been shown to be less than 107°% [96]. The particle geometry
is divided into a grid of point dipoles which interact with each other and the incident field
to produce the scattered field. If a self-consistent solution to the dipole polarisations can
be found, then the external electric field and hence the scattering properties of the particle
can be deduced. In general, one must solve a set of linear, complex equations, which are
responsible for the majority of the computational burden of this method.

Purcell and Pennypacker’s method uses a simple cubic lattice to contain the particle
geometry and places N point dipoles with index 7 = 1,..., N attached to lattice vertices.
Each dipole has a polarisability «;, leading to a dipole moment

P; = a;BEext;, (3.21)

where Eext j is the external electric field vector at the position of the 4" dipole. In general,
«; is a tensor but for isotropic media it may be regarded as a scalar quantity. Eq. 3.21 can
be rewritten as a set of N complex vector equations such that

Pj = a;(Einc; — Z AcPy), (3.22)
K

where the complexity accounts for the phase of the incident field and the summation accounts
for interactions between the field of one dipole and another. Each Ajy is a 3 x 3 symmetric

!The fulfillment of reciprocity refers to the fact that Maxwell’s equations are symmetric with respect to
the interchange of the source and observation points [14, 96]. It is a useful check for validating numerical
results.
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matrix describing the effect of the 3-vector polarisation Py on the 3-vector polarisation Pj.
The summation term is given (for completeness) by

exp (ikr; 1 —ikr; .
AjkPk = % (k2rjk X (rjk X Pk> + Tjk X T?kPk - 3rjk(rjk : Pk):|> (] 7é k)),
J J

(3.23)

where rjy is the vector from the ™ to the k" dipole. Eq. 3.22 describes the polarisation of
each dipole. This set of equations may be concatenated into a single matrix equation

AP = E;p., (3.24)

where P and Einc have 3N elements and A is a 3N x 3N matrix which can be inverted to find
the dipole polarisations and hence the external field using Eq. 3.21. For matrix inversion,
a number of iterative solvers can be found in the Parallel Iterative Methods package [97],

which include CG, CGNR, CCNE, BiCG, CGS, BiCGSTAB, QMR, and TFQMR.

3.4 Classical Geometric Optics

3.4.1 Introduction

The previous subsections describe several well-established exact or numerically exact meth-
ods for light scattering computations. However, as the particle size, complexity, or refractive
index increases, the computational resources required for most methods increases rapidly.
For instance, the truncation order of Lorenz-Mie and T-Matrix style approaches can become
large, and the set of basis functions used for the spherical wave expansion can become un-
stable at high orders [14]. DDA computations in 3 dimensions require computational grid
sizes that scale with the cubed size of the particle, which can result in impractically large
memory requirements. This can lead to slow matrix inversion convergence, and, in the worst
case, there may be no convergence [62]. In practice, many problems cannot be solved with
exact methods and therefore approximate methods with improved computational efficiency
must be used. Geometric optics (GO) is a widespread probing tool in wave propagation
problems in the short wavelength limit across many areas of physics. The behaviour of a
wave propagating under geometric optics principles is often introduced from Fermat’s prin-
ciple, which states that the path taken by a "ray” between two points is the path that can
be travelled in the least time [86]. In many cases, this leads to wave behaviour that can
be simplified as travelling along straight line paths. Historically, the use of GO generally
has 2 main understandings. On the one hand, it is a method of ray analysis as a means
of forming images, which is an approach with applications in optics design, for example.
On the other hand, it is method with much wider application as means of wave field ap-
proximation. Although the history of empirical studies on geometric optics dates back to
over 1000 years ago [98], more recent work has been influenced by the Debye formulation
of the problem, which is derived from Maxwells equations [23]. This approach introduces
the eikonal as the solution to the wave equation in the limits of geometric optics, ie. under
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the assumptions that the amplitude, wavevector, and refractive index do not vary signifi-
cantly over the wavelength. Its simplicity makes for an appealing and intuitive approach to
many areas concerned with wave propagation in physics, including electromagnetism, elastic
and sound waves, plasma and liquid dynamics, and quantum mechanics. In this section, an
overview of the fundamental concepts of geometric optics in the context of light scattering
is given.

3.4.2 Ray Tracing

Ray tracing is a core component of the GO approach. If an initial field distribution is known
across a surface, then a ray is the coordinate-space projection of a point on that surface [23].
In practice, the scattering particle is usually represented as a closed surface consisting of
many facets, where each facet is a list of coplanar vertices. For a plane wave in homogeneous
media, the family of rays emerging from the surface will travel along straight-line paths,
which simplifies the wave propagation problem to one of determining the intersections of
lines with polygons. To determine the parts of the particle surface which are illuminated
by an incident plane wave, straight-line paths are traced along the propagation direction
towards the particle. If the ray is found to intersect with a polygon representing one of the
particle facets, then it is deduced that that part of the particle surface is illuminated by
the incident wave. In order to accurately sample the different paths that can be taken by
the wave, ray tracing codes need to trace a huge number of incident rays. To circumvent
this, modern codes represent collections of similar rays as beams, and use polygon clipping
algorithms to split beams up as they are traced [40, 41]. The method of ray tracing may
be split into 2 parts. First, the intersection point of a ray with the unbounded plane of a
polygon is found. Second, a check is performed to determine if the intersection point lies
within the bounded area of the polygon. A diagram illustrating the method is shown in
Figure 3.1.

Figure 3.1: Diagram illustrating the ray casting problem. A ray is initialised at point P
with a propagation direction Kg. The facet of a particle is represented by a polygon with
several vertices. The point () represents the intersection of the ray with the plane
containing the polygon. A check must be performed to determine if () lies within the
bounds of the polygon.
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Intersection Point with the Unbounded Plane

The intersection point rq of a ray with the plane containing the polygon is determined using
the equation of the plane and the ray equation. The former is given by

N.r=az+by+cz=d, (3.25)

where N = (ax,by, cz) is the unit normal vector to the plane, a, b, ¢, and d are the plane
coefficients, x, y, z are cartesian coordinates, and r is a the position vector of a point in
the plane. The surface normal can be determined by taking the cross product of two edge
vectors. For instance, if F; is the vector from vertex V; to vertex V;,;, then the surface
normal is given by

F; x Fijq

N= 2
[F[ [ i |

(3.26)
The sign of N is determined by whether a clockwise or anti-clockwise vertex ordering is chosen
as viewed externally. The remaining plane coefficient d is then easily found by substituting

the position of one of the facet vertices. The ray with propagation direction Ko can be
described by a parametric equation of a line:

r(r) = rp + 7Ko, (3.27)

where 7 is a parameter representing the distance travelled by the ray from its origin rp. The
distance 7g from the ray origin to the intersection with the plane is given by

(Vi —I‘p) N

2 3.28
S (3.28)

TQ:

Here, (V; — rp) is the vector from the ray origin to the position vector of any vertex in the
facet. A diagram for reference is shown in Figure 3.2. Care must be taken if the propagation
direction and plane are coplanar (ie. Ko N = 0), since in this case the ray will never
intersect with the plane and 7¢ is undefined. Once 7¢ is known, it can be substituted into
the ray equation (Eq. 3.27) to obtain the position of the intersection point with the plane.

Point-in-Polygon Check

Several methods exist for determining if the point of intersection with the plane lies within a
polygon. For example, for polygons with 3 vertices, the intersection point can be projected
onto a barycentric coordinate system centered on the triangle. If all components are positive
and their sum is less than 1, then the point lies within the triangle. For polygons with more
vertices, methods such as computing the winding number [99], or the ray-casting technique
exist. The ray-casting technique involves casting a ray lying in the plane from the point of
intersection ). If the ray intersects an odd number of times with the edges of the polygon,
then the point lies within the polygon, else, it lies outside the polygon. If the polygon is
convex, then a simple approach based on edge normals can be used, which is discussed below.
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Figure 3.2: Diagram illustrating the geometry for obtaining 74, which describes the
distance travelled by the ray from P to the intersection with the plane containing the facet.

The edge normal NF is a vector which lies in the plane and is also perpendicular to the edge
vector Fi. It is defined by

NF = x N, (3.29)

which ensures that it points outwards from the centre of the polygon. For each vertex, the
dot product of the edge normal and the vector to the point of intersection can be computed.
If the value is positive, then the point of intersection lies outside the edge, whereas if it is
negative, it lies inside the edge. If, for all edges, the values of the dot products are negative,
then the point lies within the polygon. A diagram for illustration is shown in Figure 3.3.
One advantage of this approach is that if one dot product is found to be positive, then
no further checks are required and the intersection can be declared outside. However, due
to its simplicity it cannot be used for concave polygon shapes. In summary, ray tracing
determines the portions of the particle that will be illuminated by an incident plane wave.
In the next step, Snell’s law is used to determine how the wave is reflected and transmitted
at the particle surface.

3.4.3 Snell’s Law

To the zeroth-order approximation, geometric optics obeys the principle of locality. This
states that the reflected wave at a point on a boundary behaves as if the surface at that
point was locally plane [23]. So long as the radius of curvature of the surface is larger than
the wavelength, and the phase shift across any surface irregularities is much larger than one,
this approximation is valid [91]. When a plane wave encounters a boundary between two
dielectric media with different refractive indices, a reflected and a transmitted plane wave
are produced. The angle of incidence 6; may be introduced as the angle made between the
incident propagation vector Ko and the surface normal N, where 0; < 90°. According to the
boundary conditions (Eq. 2.6), the tangential component of the electric field is preserved
across the boundary. Based on this, many optics texts (eg. [22, 28, 29]) show that the
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V4 V1. R V4 V1. "

rq — Vi rq —|Vi

V3 V2. V3 V2.

(a) @Q lies towards the centroid of the (b) @ lies away from the centroid of
polygon. the polygon.

Figure 3.3: Diagram illustrating how the edge normal method is used to determine if a
point-in-plane @) (marked by 'x’ symbol) lies within a polygon. Annotations are shown for
the edge from V; to V5. The unbounded edge is represented by the dashed line. In (a), the
dot product (rq — Vi) - Nf is negative. This indicates that () lies on the inner side of the
unbounded edge. In (b) on the other hand, the dot product is positive, indicating that @

lies on the outer side. This check is repeated for all edges of a polygon.

reflected wave is reflected at an angle 6, = 6;. The refracted wave is transmitted at an angle
0;, which is related to the incident angle 6; by

nq sin 6; = ny sin 6y, (3.30)

where ny; and ny are the real refractive indices of the incidence and transmittance regions,
respectively. The corresponding refracted and reflected propagation direction vectors are
given by K’ and K”, respectively. A diagram summarising the reflection and transmission
of a plane wave at an interface is shown in Figure 3.4. If ny > n;, then there exists an angle
of incidence threshold, beyond which no transmitted wave is produced. This angle is known
as the critical angle 6., and is given by

0. = sin~! <ﬂ) (3.31)

ng

The expressions for K’ and K” can be derived using a combination of vector triangles and
the sine rule as shown in Figure 3.5.

Refracted Propagation Direction

As shown in Figure 3.5b, a vector triangle can be formed such that

AK' = BKy — CN, (3.32)
where A, B, and C are unknown lengths. Using the sine rule, the unknown lengths can be
related to the angles of the triangle by

A B C

sinf, sinf; sing’

(3.33)
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Figure 3.4: Diagram summarising the reflection and transmission of a wave at a dielectric
boundary under the principles of GO. The incident wave with propagation vector K, is
incident at an angle 6; made with the surface normal. The scattered field is composed of a
refracted wave inside the boundary and a reflected wave outside the boundary.

Figure 3.5: a) The geometry of the reflection and refraction at an interface. b) The vector
triangle formed between the incident propagation direction, the refracted propagation
direction, and the surface normal. ¢) The vector triangle formed between the incident

propagation direction, the reflected propagation direction, and the surface normal.
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where 0} = 7 — 0;, and 5 = 6; — 0,. Substituting Eq. 3.33 into Eq. 3.32 gives

sin 0, ~ sin(6; — 6;)

AK = A Ko— A

N, (3.34)

/
i

sin sin 6

which may be rewritten as

o= S0 =) g sl (3.35)

sin 92 sin HZ

For generality, the angles of incidence and transmission may be rewritten in terms of Ko,
N, and the refractive indices, n; and ny. The trigonometric addition formula may then be
used to expand the bracketed term, which gives

N inf;\ « in6; ~
K’ = | cosf, — cosb; s?n PN — s?n "Ko. (3.36)
sin 6; sin 6;
Snell’s law gives that
sinf,  ny B n? )
R cosb; = \/1 n—%(l cos?6;), (3.37)
which allows Eq. 3.36 to be written as
2, TL% A~ s ~ N
K=,/1- —2(1 — cos? 6’1-)N — —(cos O;N + KO). (3.38)
ns 2
Finally, since cos8; = —Kg - N, this can be rewritten as
K =,/1-—[1-(Ko-N)?2|]N—-—[Ko— (Ko -N)NJ. (3.39)
ng U
Reflected Propagation Direction
As shown in Figure 3.5¢, a vector triangle can be formed such that
aK" = bKg + cN, (3.40)

where a, b, and ¢ are unknown lengths. Using the sine rule, the unknown lengths can be
related to the angles of the triangle by

a b c

= - 3.41
sinf; sinf;, sina’ (3-41)
where o = m — 26;. Substituting Eq. 3.41 into Eq. 3.40 gives
- - i —26;) «
aK" = aKp + aMN, (3.42)

sin (91
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which may be rewritten as

~ ~ 1 —26.)
R — Ko+ ST =26 (3.43)

sin 6;

Using the trigonometric addition formula to expand the bracketed term, this simplifies to

K" = Ko + 2 cos 0;N. (3.44)
Finally, since cos8; = —Kj - N, this may also be rewritten as
K" = Ko — 2(Ko - N)N. (3.45)

Absorbing Media

If the wave is transmitted into a conducting medium, then ny becomes complex. In this case,
Eq. 3.30 still holds, but 6; also becomes complex and therefore does not simply represent
the angle of transmission. An inhomogeneous wave is produced [86, 100|, with planes of
constant phase perpendicular to K’, but with planes of constant amplitude perpendicular to
N.

3.4.4 Rotation Matrices

As discussed in the previous subsection, when a plane wave encounters a boundary between
two media, a reflected and a transmitted wave are produced. The propagation vectors of
which, lie in the plane of incidence, which contains the incident propagation vector and
the local surface normal. In general, this plane differs from the reference plane with which
the components of the incident field are defined. In order to account for changes in the
amplitude and phase due to reflection and transmission, the electric field must first be
represented in terms of components parallel and perpendicular to the plane of incidence.
Figure 3.6 shows the propagation direction of the incoming plane wave in black, with electric
field components defined parallel and perpendicular to the old (i) plane (blue). The local
surface normal is shown in grey. The new (s) plane of reference is shown in red; it contains
the incident propagation and the local surface normal. By rotating about the incident
propagation direction, the electric field components in the new plane are related to those in

the old plane by
By & -8y 8- (Kox&)) (B (3.46)
B) “\et - (Koxel) & -6 B

where & and &% are unit vectors perpendicular to the old and new reference planes, respec-
tively [87, 101]. Using the relation for a plane wave, &, x Ko = éﬁ, this can be rewritten

as
B\ _ (& & & (g
A . 3.47
(EL) (—ef‘e‘i e &) \EL (3:47)

The diagonal elements in the matrix of Eq. 3.47 represent the cosines of the angle between
the two planes (shown as 6 in Figure 3.6), and off-diagonal elements represent the sine of
the angle between the two planes, with the appropriate sign.
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Figure 3.6: Diagram summarising the geometry of the rotation matrix, which is used to
rotate the electric field components from the old (blue) to the new (red) reference plane,
which contains both the incident propagation vector and the local surface normal.

3.4.5 Fresnel Coefficients of Reflection & Refraction

Once the electric field has been represented in terms of components parallel and perpendic-
ular to the new plane of incidence, the complex amplitude of the reflected and transmitted
waves can be obtained from the Fresnel coefficients of reflection and transmission. They are
derived using the boundary conditions (eg. Eq. 2.6) and their derivation can be found in
many optics textbooks, such as in [22]. They are given by

_ ngcost; —mny cos b _ nycos by — nycos b
= ny cos ; + ny cosb;’ = ny cos 0; + nycos b’ 3.48
y 2n; cos 6, 2n1 cos 0, (3.48)

H_nlcosﬁt—i—ngcosei’ L nicosf; + nycos,

where r = Ej/E} and t = E{/E} are the Fresnel amplitude coefficients of reflection and
transmission, respectively. They are complex, in general, which accommodates phase changes
at the boundary. For example, a wave undergoing reflection in a medium n; < ny undergoes
a phase change of 7. For a linearly polarised wave incident upon an inhomogeneous medium,
there may be a phase difference between ¢)| and ¢, such that the transmitted wave becomes
elliptically polarised [86].

3.4.6 External Diffraction

When a light wave encounters an obstacle with a geometric cross sectional area G, the
total amount of extinction generally asymptotes towards twice this value. This is known
as the extinction paradox [28]. Omne half of this contribution is accounted for by the rays
directly incident upon the particle. The other half may be attributed to the parts of the
wave which pass close to the edges of the particle. Here, the refractive index varies on a
length scale smaller than the wavelength and therefore the assumptions of geometric optics
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are abandoned?. To accommodate for the diffraction of light passing close to the edges of
a particle, most classical geometric optics methods utilise some combination of Fraunhofer
diffraction and Babinet’s principle. A brief summary of these techniques is given below.

Fraunhofer Diffraction

The origin for the theory of Fraunhofer diffraction comes from the work of Kirchhoff, who
was the first to attempt to derive the work of Huygens, Young, and Fresnel on diffraction
from first principles [29]. The general approach consists of separating the optical domain
into 2 regions. The first region contains all sources of radiation and the second is free of
sources and bounded by a surface at infinity. The possible diffraction geometries are shown
in Figure 3.7. In either case, the sources are present in region I and bounded by some surface
S1. The point of observation is located somewhere in region II, which is between S1 and
the surface S2 at infinity. The equivalence theorem then states that, the electric field at
any point in the second region can be computed by an integral over the first region. In this
section, the surface integral type is discussed, although the volume integral type is often used
in current methods; for instance, the discrete dipole approximation is based on the volume
integral method [95]. One type of surface integral that can be used is the vector Kirchhoff
integral, which is given by [29]

eikoR

E(x) = %V X /51(n x E(x)) B da’, (3.49)

where x is the point of observation, n is the outward-facing normal on S1, R = x — x/, and
E(x’) is the electric field on S1. If the distance to the point of observation r >> d, where d
is the "size” of the diffracting system, then it is useful to expand the phase exponent:

xk .
koR:ko'r—koXTX +—0[7”2—(X X)j . (3.50)

2r r

If quadratic terms and higher are neglected, the approximation is known as the Fraunhofer
limit:

Z'ezkor

E(x) = k x / n x E(x')e ¥ dq/, (3.51)
s1

2rr

where k = ko(x/r). Since E(x') is usually not known beforehand, most applications impose
the Kirchhoff approximation, which approximates its value as that of the incident field. For
example, consider a plane wave incident at an angle oo on a circular aperture of radius a in
an opaque screen. The aperture is located in the xy plane, and the plane wave incident from
the region z < 0 is located in the xz plane as shown in Figure 3.8a. If the wave is polarised
parallel to the incidence plane, then the incident field is given by

E' = Ey(cosa X — sina z)efo(zcosatesina), (3.52)

20f course, this argument could be made for rays close to the edge but which lie within the geometric
cross section. An extension to accommodate this effect is used in the ray tracing with diffraction on facets
method [38].
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Figure 3.7: Possible geometric setups for dividing the optical domain into 2 regions.

ikox’ sin o

In this case, n x E(x') = Eycosa e ¥ on the aperture at S1. Substituting into Eq.
3.51, the integral can then be integrated analytically in plane polar coordinates, which gives
etk . J1(kaC)

E(x) = . a2E0cosa(k><y)Tg, (3.53)

where J; is a Bessel function of the first kind and ¢ is an angular function defined by

(= \/sin2«9 + sin® a — 2sin 0 sin a cos ¢. (3.54)

The total far-field intensity is shown in Figure 3.8d. The diffracted pattern is almost cir-
cularly symmetric, corresponding to the Airy disk pattern and arises mathematically from
the Bessel function in Eq. 3.53. The lack of perfect symmetry arises from the fact that
the incident field is z-polarised. By comparing, Figures 3.8b and 3.8c, it can be seen that
the in-plane component has greater intensity than the out-of-plane component. In fact, the
field component along the y-axis is 0 everywhere, which means that polarisation of the in-
cident light is preserved. The S5 element of the Mueller matrix is therefore equal to 0 and

Sll = 522-

Babinet’s Principle

The previous subsection discussed the effects of a plane wave diffracted through an aperture.
It is common practice to combine this theory with Babinet’s principle of complementary
screens in order to account for the extinction of light which is not directly incident upon,
but passes close by to the geometric cross section of a scattering particle. This is known as
the external diffraction contribution to the scattered field. The idea of Babinet’s principle
can be formulated by proposing a screen S containing some apertures. The complementary
screen is then defined as the same screen but with opaque sections replaced by apertures and
apertures replaced by opaque sections. Babinet’s principle then states that the diffracted
field is the same for both the original and the complementary screen but with a phase shift of
180° [22]. A diagram illustrating this for a square aperture and its complement is shown in
Figure 3.9. In the context of GO, either the up-facing facets [47], or the projected geometric
cross section may be used as the opaque sections of the screen. The complementary screen
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270°

(b) Intensity due to in-plane (c) Intensity due to (d) Total intensity.
electric field component. out-of-plane electric field
component.

Figure 3.8: a) Diffraction of a parallel-polarised plane wave at a circular aperture. b-d)
Forward-scattered intensity of a parallel-polarised plane wave diffracted at a circular
aperture with a = 0°, A = 0.532, a = 4, Ey = 1. The centre of the plot corresponds to
0 = 0°, z, with increasing values of # moving radially outwards. The polar angle of the plot
represents the azimuthal scattering angle ¢, with X and ¥ corresponding to ¢ = 0° and
¢ = 90°, respectively.
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replaces these sections with apertures and the external diffraction is computed by diffraction
of the incident field through each aperture.

Complement

A) (4

Opaque square Opaque screen with square cut-out

Figure 3.9: An example illustrating Babinet’s principle, which states that the diffracted
field between an aperture and its complement are the same, except for a phase shift of 180°.

Summary

In this chapter, a brief overview of the many current theoretical methods for light scattering
has been given. This includes a detailed discussion on the principles of classical GO, which
are leveraged in the novel method of this work, the Parent Beam Tracer method, in the next
chapter.
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Chapter 4

Parent Beam Tracer Method

4.1 Overview

The Parent Beam Tracer (PBT) method [102] is a physical-optics hybrid method for directly
modelling light scattering by non-spherical, large particles with complex shapes, including
those with surface roughness. The scattered field is computed in 2 main steps. First, the
near-field on the particle surface is approximated using principles of GO. Improved accuracy
is achieved by computing the propagation direction of waves in the near-field zone based
on macroscopic features of the particle shape. A novel ray backtracing algorithm is used to
attain computational stability for highly complex particle shapes. Second, a surface integral
diffraction equation [103] combined with the equivalence theorem [101] is used to map from
the near-field on the particle surface to the far-field, where the Mueller matrix and integrated
scattering parameters are obtained.

4.2 Near-Field Computation

Macroscopic Particle Features

In a preliminary study, the internal fields of a smooth and a rough compact hexagonal
column with refractive index 1.31 + 0i at fixed orientation were compared. The particles
were assumed to be homogeneous, dielectric, and isotropic. The internal fields were computed
using the discrete dipole approximation (DDA) [62], of which the accuracy has been well
studied [104]. The columns were chosen to have hexagonal edge length 2.5 pm and prism
length 5 pm, with an incident wavelength of 0.5236 ym. Gaussian random roughness was
used for the rough column according to the method given by Collier et. al [74]. A correlation
length of 0.25 pm and standard deviation 0.05 pm were chosen to yield a mesoscale roughness
without excessive deformation of the overall particle shape. The particles were illuminated
with an z-polarised plane wave at normal incidence on one of the basal facets. The computed
internal field z-component is shown in Figure 4.1. A propagating mode resembling a plane
wave is observed, which justifies the use of GO in the near-field zone. Upon visual inspection,
it was found that the internal field behaviour was almost identical for both the smooth
and rough columns. This led to the idea that, accurate results in a physical-optics hybrid
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Figure 4.1: Internal field z-component for z-polarised normally incident light of wavelength
0.5236 pm for smooth (left) and rough (right) hexagonal columns with aspect ratio 1.
Computed with the discrete dipole approximation [62].

method could be achieved by modelling internally propagating beams as originating from the
macroscopic structures of the surface, rather than from individual facets of the mesh. To be
more specific, the reflected and refracted propagation direction of beams in the near-field can
be computed using macroscopic properties of the particle surface. In this way, the limitations
of classical GO when applied to surfaces with features smaller than the wavelength can be
mitigated. Based on this proposal, a parent structure is defined within the framework of the
PBT as a collection of facets which, when illuminated by a plane wave, produce one reflected
(and possibly one refracted) wave with a single propagation direction in the near-field. For
the case of smooth surfaces with dimension d >> A, this approach simplifies to methods
that have already been effectively implemented in many successful physical-optics hybrid
methods [101, 105, 106]. In order to define the parent structures of the surface, the following
method is proposed:

1. First, a smooth particle geometry is constructed as shown in Figure 4.2a. Each of the
facets represents a parent and should be of dimension much larger than the wavelength
to permit the use of GO.

2. Second, each parent facet may then be subdivided into a mesh, where each element of
the mesh is a facet assigned to the parent. This is shown in Figure 4.2b.

3. Third, the vertices of the mesh may be displaced according to the desired surface
texture, as shown in Figure 4.2c.
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(a) Original, smooth. (b) Meshed, smooth. (¢) Meshed, with surface
roughness.

Figure 4.2: Sequence of steps showing the proposed method for constructing the parent
structures, which are represented by different colours.

It may also be possible to define the parent structures in the opposite direction by starting
with a complex-shaped particle mesh and using a mesh simplification algorithm, such as
described in [107], to arrive at a simplified mesh representing the parents. However, this
approach has not yet been investigated. The surface normal of a parent N is computed as the
normalised average of all facet normals n that belong to it. The angle of incidence 6; between
N and the incident propagation direction Kq is combined with Snell’s law to calculate a
refracted propagation vector K’ at a transmitted angle 6, and a reflected propagation vector
K" , which is illustrated in Figure 4.3a. In essence, mesoscopic features of the particle
surface are designed to have little effect on the propagation direction of waves in the near-
field. However, they have a significant effect on the phase during the near-field beam tracing
(Section 4.2), and the far-field mapping (Section 4.3).

Beam Tracing

A novel beam tracing algorithm is employed in order to attain stability and computational
efficiency during the near-field computation for highly complex particle surfaces that can
exceed 10* facets. In the following method, the notation f* is used to represent the i'" facet
of the surface mesh, with i = {1,2,..., Ny}, where N represents the total number of facets.
The amplitude matrix of near-field beams as a function of position are represented by an
amplitude matrix at each of the illuminated facets on the particle surface. The amplitude
scattering matrix at f? is denoted by S'. When a part of the particle surface is illuminated
by an incident wave, the amplitude matrix at each facet of the surface is computed. For each
illuminated parent structure, a new reflected and refracted beam is produced. In general, this
leads to several beams which are propagated in a recursive process. Apart from the initial
illumination by an external plane wave, the propagation of a beam can be represented by a
list of source facets from which the beam originates, and a list of sink facets where the beam
terminates. The notation ml f7 is used to represent the ;% sink facet in the particle mesh
illuminated by a source facet f* in the I*" beam of the m'™® recursion. A visual representation
of this is shown in Figure 4.3b. For clarity, the prescript notation will be temporarily
omitted but reintroduced later for completeness. The general goal here is to determine a
mapping which connects the amplitude matrix at each of the source facets to each of the
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Figure 4.3: a) The average normal of a parent structure (blue) is used to compute a
reflected and refracted direction of propagation for rays incident the facets assigned to it.
Hence, all the reflected and refracted rays from this surface remain parallel. b) Beam
propagation from a source facet f* to a sink facet f7. Facet centroids are represented by
black dots. A ray is backtraced from the centroid of f7 and is found to intersect within the
bounded cross section of f*. Edges of the beam are represented by dotted lines. It can be
shown that n,a = nsb, and therefore §7 describes the path length between the centroid of
f* and f7. The corresponding phase difference relates S¥ to SJ.
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sink facets. To obtain the mapping, a novel ray backtracing algorithm is used in this work
for maintaining stability when working with geometries with large numbers of facets. For
each beam emitted from a parent structure, the coordinate system is rotated such that the
propagation direction lies along the —2 axis. Since there is only one propagation direction,
rays may be ”backtraced” as an auxiliary measure from the centroid of each facet f* along the
reversed direction, which in this case is the +Z axis. If the backtraced ray intersects within
the bounded cross section of a facet that was not part the source (ie. not in the set of values
f*), then f?is determined to be not illuminated. If the backtraced ray intersects within the
bounded cross section of a source facet, then f? is appended to the list of sink facets. The
process is shown in Figure 4.4, whereby rays are backtraced upwards to determine if they
intersect with the illuminating parent. A flow diagram summary of the algorithm is shown
in Figure 4.5. It should be noted that the particle mesh should be sufficiently discretised
in order to conserve energy. For particles with surface roughness, oblique incidence can be
difficult to model with GO. In this scenario, the effect of small bumps in the surface geometry
is magnified, which can cause small peaks in the surface geometry to produce large occluded
shadow regions. This is problematic because GO assumes a coherent plane wave, which is no
longer satisfied. Furthermore, GO predicts total internal reflection for very oblique incidence
and therefore careful modelling of these cases is important for maintaining conservation of
energy. To circumvent this, some rays are allowed to artificially pass through facets which
belong to the same parent. In this way, beams at oblique incidence are allowed to glide over
the bumps of a rough surface. An example of this is shown in the upper left of Figure 4.4.
As described in Section 3.4.3, for incidence Ko in a medium with refractive index ny, the
refracted beam propagation direction K’ in a medium with refractive index n, is given by
K sin(6; — 0;) « B SiH_QtKO’ (4.1)

sin 6; sin 6;
and the reflected beam propagation direction K’ is given by

K" = Ko + 2cos6;N, (4.2)

where N is assumed to point towards Ko. If the angle of incidence is greater than the critical
angle, no refracted beam is produced. At each recursion, a beam is propagated in the —Zz
direction from the source along the path of each backtraced ray. For each reflection and
refraction process, the amplitude matrix at f7 is computed in a 3-step process:

1. First, for each sink facet f/, the distance along the Z—axis from its centroid to the
centroid of the corresponding source facet f* is used as the path length &7 of the
backtraced ray. Omnly this distance and the amplitude matrix at the source facet is
needed to compute the amplitude matrix at the sink facet, which is a corollary of
Snell’s law (Appendix B). The amplitude matrices are simply related by a phase factor
exp (1kond?).

2. Second, for each beam, the angle of incidence 95 and refractive indices are used to
compute the Fresnel matrix. At f7, the Fresnel reflection matrix F§ and Fresnel
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Figure 4.4: Visual representation of the ray backtracing algorithm. A beam is emitted
along the —% direction from the source facets f* in the illuminating parent. Rays are then
backtraced along the Z direction from the centroids of all other facets f? that belong to
upward-facing parents. Unobstructed rays that successfully intersect with the illuminating
parent determine the paths along which the beam should propagate. Rays are deliberately
allowed to pass through facets of the same parent from which the ray was emitted, which
improves accuracy for oblique reflection. Different colours represent collections of rays
associated with a particular parent. The scale of surface roughness is exaggerated for
clarity.
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Figure 4.5: Diagram summarising the ray backtracing algorithm. The algorithm
determines if the centroid of f* is within the bounded cross section of a source beam facet
f* when projected along the beam propagation direction.
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transmission matrix F7, are given by

: r0 : 0
| A I B 4.3

where r‘j', ri, t‘jl, and ti are the Fresnel amplitude coefficients of reflection and trans-
mission as described in Section 3.4.5. In contrast to the propagation direction of each
beam, the Fresnel amplitude coefficients are calculated using the angle of incidence
between the incident propagation vector and the local surface normal #J. The angle of
incidence Qg , angle of transmission 0{ , and refractive indices n; and ns are related via
Snell’s law. The amplitude matrices of the reflected and transmitted beams are com-
puted by multiplying the incident amplitude matrices with the corresponding Fresnel
matrices.

3. Third, the amplitude matrices of each beam are rotated into the new plane of incidence.
The new plane contains the incident propagation vector Ko and the normal to the
surface at the point of intersection n. The amplitude matrix is rotated about the
incident propagation vector by the angle made between the old and new incidence
planes. For an incident propagation vector KO, and unit vectors perpendicular to the
old and new planes given by & and &%, respectively, the new amplitude matrix is
found by applying a rotation matrix R4, which was described in Section 3.4.4,

pi—( @8 el (Kox@))) (4.4)
o (Roxe) o -el

Therefore, the reflected and transmitted amplitude matrices at f7 are given by

Sl = RI - FI, - exp (ikgnd”) - S¥, (4.5)
and

Si. = RJ - Fi, - exp (ikgnd’) - S, (4.6)

respectively, where S¥ is the amplitude matrix at the source facet. A flow diagram sum-
marising the near-field computation is shown in Figure 4.6. In the next step, the surface
near-field is mapped to the far-field using a diffraction integral equation.

4.3 Far-Field Mapping

During the far-field mapping process, the near-field on the particle surface is integrated
to calculate the electric field at a position in the far-field. The diffracted field is assumed
to obey the Sommerfeld radiation condition [108]. There exist both volume and surface
integral equations for computing the diffracted far-fields. The surface integral method is
used here for its superior computationally efficiency and will be discussed in greater detail
below. This section is based on theories described by Macke [35] and Karczewski [103] for
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Figure 4.6: Schematic view of the beam loop.
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electromagnetic diffraction at an aperture for an incident monochromatic plane wave. In
this case, the incident electric field is described by

E® (r) = Aeiko(f(-r),

. 4.7
H(z) (I') _ Beikg(K-r), ( )

where E® and H® are the incident electric and magnetic fields at position r, A and B are
complex vector amplitudes, and K = (K, K, K,) is the propagation vector. For a plane
wave, A and B are related by B = K x A. Imposing the Kirchhoff boundary conditions on
the aperture, which approximates the diffracted field on the aperture as that of the incident
field, gives that

nx E=nxE®,

nx H=nx HY, (48)

In this case, the diffracted electric field due to an illuminated aperture S at a point P can
be given by

E(P) =V x IV — 1/kyV x V x TIY, (4.9)

zkor
1119 //an(l das,

zkor
1149 //an ds,

where 7 is the distance from a point on the aperture Q to the point P, 1Y is the electric
Hertz potential, and 1 is the magnetic Hertz potential. For the case of an incident plane
wave, Eq. 4.9 can be simplified in the far-field limit (r >> d, \) to [103]

with

(4.10)

E(P)=kx (Fx A)+ (F xB)—k- (F x Bk, (4.11)
where
ikoro
F = Cn// hoR-BR g o Rl (4.12)
41y

Here, k = (ky, ky, k) is the unit vector from the point of integration over the aperture to
the point of observation. It varies for each point of observation and as a function of position
over the aperture. R = (R,, R, R.) is the position vector of each area element and ry is the
distance from the centre of the aperture to the point of observation. A subtle point of interest
here is that the distance r from Q to P has been removed and substituted for the distance
ro. By separating the components of the bracketed term in the integrand exponent, the
physical representation of each term can be identified. Firstly, exp (ikoK - R) describes how
the phase of the incoming plane wave varies across the aperture. Secondly, if the exponential
term in C' is included, exp (ikorgfi -R) describes (to a first-order approximation) the phase
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change of the diffracted wavelet from point Q to point P. If the aperture is planar, the
coordinate system may be rotated about the centre of the aperture so that the aperture lies
in the zy plane. In this case, R, = 0. Furthermore, if the incident wave can be assumed as a
plane wave, it will be shown that the integral in Eq. 4.12 can be converted to a summation
around the contour of the aperture [35, 109]. This provides a computationally cheap method
for mapping from the near to the far-fields. Under these constraints, Eq. 4.12 simplifies to

Fe Cn// ol (Ka—ka)a!+(Ky—ky)y'] ] (4.13)

Defining new constants k/, = ko(K, — k,) and k;, = ko(K, — k), Eq. 4.13 becomes

F =Cn / / ek tky) gg, (4.14)
S

Now, with the introduction of two new variables, P and (), Green’s theorem will be applied
to convert Eq. 4.14 to a line integral around the contour of the aperture. Choosing
ei(k;x’—i—k;y/) ei(k;x’-‘rkz;y’)

P =

_ e 4.1
¢ 2ik; 2k, (4.15)

the integral F can be rewritten as

F =Cn // (a—Q +8—P>d8: fs <de'—de'), (4.16)

where dS = dx'dy’, since the aperture is planar and located in the xy plane. For polygonal
apertures with N vertices, Eq. 4.16 can be written as a summation over the contributions
from each edge:

N it
F=Cn)_ / (de’ - de'>, (4.17)
j=1"7

where the integration limits indicate that the integral should be evaluated for the edge
between vertices j and j+ 1. Next, expressions for 2’ and ¢’ along the edge between the two
vertices will be derived. The gradient and reciprocal gradient between the two vertices are

_ Y1 T Y , ny= j+1 j’ (4.18)
Lj+1 — Tj Yji+1 —Yj
respectively. Using these expressions, the ¢ dependence in () can be rewritten in terms of
2’ and vice versa for P. Eq. 4.17 then becomes

o ) | ) )
_ . 19
“Z / ( 2ik) v 2ik! y) (4.19)

After integration and some rearranging, the final expression is given by

F = an elOTw)] — plet® — (i0twa)] (4.20)
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with, o = g, B = sy 0 = ket + Ry, wi = (20 — 25)(kym; + k), and
wa = (Y41 —y;)(kyn; +k;). With this formulation, the integral in Eq. 4.12 representing the
scalar Fraunhofer pattern can be readily evaluated to yield F.

To determine E(P) from Eq. 4.11, further work must be done to account for the vector
nature of the scattered light. For this, the coordinate system is rotated about the z-axis
such that € lies in the xz plane. By using the unitary property and relation between the

incident propagation vector and the electric field component vectors:
2 A2 A2 o A .
K'=¢,=¢& =1, Kx¢g =é, (4.21)

the x, y, and z components of the electric field components can be expressed in terms of K

by

L [ K- | KK,
éH:— 0 y éJ_:_ 772 ; 77:\/1—[(5. (4.22)
T\-K, T\ -K,K,

For each point of observation in the far-field, two more unit vectors 1 and 1 are introduced
to define the reference plane for which the electric field components will be calculated. If k,
1, and 1 are chosen as a triad of mutually orthogonal unit vectors, and 1is again chosen
to lie in the xz plane, the components of 1 and  can be expressed in a similar manner in
terms of k by

~ 1 ks . 1 _kay
—k, —kyk.

A diagram illustrating the arrangement is shown in Figure 4.7. In this way, it may be shown
that [103], the far-field amplitude matrix defined with respect to the directions 1 and 1 is
given by

a b
Star = 2F (_b a) Sine, (4.24)

— SR KT ), b= (kA + KNG ). (425)

In the application considered here, the incident electric field is replaced by the amplitude
matrix of a transmitted beam. Finally, 2 more rotation matrices are applied to obtain the
electric field components with respect to static scattering planes in the original coordinate
system.

1. First, for an incidence direction along the —Zz-axis, and scattering direction k pointing
from the particle centre of mass to the observation point, the scattering plane contain-
ing both these vectors has a normal given by M = —% x k. To rotate the far-field
components defined by Eq. 4.24 into this plane, the rotation matrix R; is applied to
rotate the electric field components about the direction k from the plane perpendicular
to m to the plane perpendicular to M [101], with

R, — (Mr?k}:/[m) —M. g\; )). (4.26)
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Figure 4.7: The diffraction geometry. An incident beam is diffracted by a planar, polygonal
aperture. The coordinate system has been rotated such that the aperture lies in the

xy plane and the incident beam propagation vector K and parallel field component € are

aligned with the xz plane. The point of observation in the far-field is denoted by P, and is

located in the direction k from the centre of the aperture. A grid structure is shown as an
example of the different angular positions at which the far-field may be evaluated.

2. Second, the initial incident amplitude matrix is pre-rotated about the z-axis from the
yz plane into the scattering plane, which allows for a direct comparison between the
scattered and incident fields. For each azimuthal scattering direction, each transmitted
beam is premultiplied by the rotation matrix Ry:

R, — (— sin ¢ —Cosgz5> ’ (4.27)

cos¢p —sing

where ¢ is measured as shown in Figure 2.2. Close to the direct forwards and backwards
directions, ¢ and thus Rg are not well defined. Therefore, in these cases the PBT obtains Ry
from the values of ¢ at § = 1°. The final expression for the diffracted far field components
is given by

Star = Ry - 2F (_“b Z) St - Ro. (4.28)

To summarise, Eq. 4.24 relates the parallel and perpendicular diffracted far-field components
from a planar aperture for an incident plane wave, with the scalar Fraunhofer pattern F
obtainable from Eq. 4.20. By a summation over all diffracted beams, a complete description
for the electric field in the far-field is obtained as an amplitude matrix as a function of
observation position, which can be written mathematically as

ML)
Star = Y > D mSh (4.29)

m=0 I=1 j(l)

49



where M is the total number of recursions, L(m) is the total number of beams at the m'®

recursion, j(I) are the indices of facets illuminated by the I*" beam of the m™ recursion,
and 'S} are the far field amplitude matrices for each transmitted amplitude matrix 'S%..
Babinet’s principle is used to account for the scattering of light which is not directly inci-
dent upon the particle geometric cross section. The externally diffracted field is computed
from the amplitude matrix at facets illuminated by the initial incident wave as described in
Section 4.2 but without applying the Fresnel matrices. The total scattered field is obtained
by a summation of the diffraction of surface fields due to transmission and reflection with
external diffraction. Finally, the Mueller matrix can be determined from the total amplitude

matrix by well-known relations (Appendix A).

4.4 Code Overview and Architecture

In this section, the PBT code is described in more detail. The code is written in Modern
Fortran; a fast low-level coding language with many similarities to C. It contains imple-
mentations of parallel computing techniques, including multithreading via OpenMP [110]
and message-parsing-interface via OpenMPI [111]. The main program is available in both
sequential and MPI versions and can be found on Github [102]. The sequential version is
designed to run on a single shared memory processor, whereas the MPI version is designed to
be run across several distributed memory processors. The source code is divided into several
key modules:

1. Types module: Contains definitions of several derived types, constants, and format
specifiers. Derived types act in a similar way to structures in C, or classes in Python.
A single variable of derived type can have many components, each with a different type
or attributes.

2. Input module: Responsible for initialising the code. This includes parsing the com-
mand line, reading input files, initialising the job settings and the particle geometry.

3. Beam loop module: Receives the particle geometry and an incident beam as an input,
and computes the amplitude matrix on the particle surface as an output. This section
of the code traces the reflection and refraction of beams of light between the parent
structures of the geometry.

4. Diffraction module: Responsible for computing the far-field mapping. It takes the
amplitude matrix on the surface of the particle as an input, and computes the amplitude
matrix in the far-field as an output. For most jobs, this section is responsible for the
majority of computation time.

5. Outputs module: Converts the far-field amplitude matrix to a Mueller matrix, and
also computes several integrated scattering parameters.

6. Misc. module: Contains various subroutines that are used across the other modules.

7. CC hex module: Contains a single subroutine for generating Gaussian random hexag-
onal prisms.
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8. MPI module: Contains subroutines which are used by the MPI version of the PBT code.
These are mainly MPI send and receive commands, which are used to communicate
data between different distributed memory processes.

A diagram summarising the flow of operations is shown in Figure 4.8.

Input:
e Particle shape
o Refractive index
o Wavelength

e Other command line options

o

input module:
Initialises the code. Parses the command line, reads input
() files, computes the Euler angles for rotating, and creates a
polygon to represent the cross section of the incident field.

cc hex module

beam loop module: (
\ ) Computes the scattered field on the particle surface. The in-

cident field is traced using the novel ray backtracing tech-
nique, which is based on the principles of geometric optics.

misc module

diffraction module: P
The electric field on the particle surface is mapped to the far-
field by means of a surface integral diffraction equation. The
total field is a sum of the diffracted fields computed by in-
tegrating over the area of each facet of the particle surface.

types module

outputs module: P

e The far-field amplitude matrix is converted to a Mueller ma-
trix by use of standard relations. The 2-d Mueller matrix is in-
tegrated with respect to the azimuthal scattering angle, yield-

ing the 1-d Mueller matrix covering all scattering angles 6.
Integrated single scattering parameters are also computed.

~
Output:

e Mueller matrix

e Integrated scattering parameters:

— Asymmetry parameter

— Scattering, absorption, and exctinction cross sections,
single-scattering albedo

e Back-scattering cross section

Figure 4.8: Code layout.

Types Module

The types module contains definitions for derived type variables, constants, and format
specifiers that are used throughout the code. As such, this module is included in the preamble
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for almost all other modules and is therefore often compiled first. Below, a list of derived
type variables, an overview of their use, and their components are given:

1.

outbeam_type: Contains information about the external electric field at a facet of the
particle surface.

cc_hex params_type: Contains the parameters which define the geometrical shape of
Gaussian random hexagonal prisms [74].

. geometry_type: Contains information about the particle geometry. This includes

the vertices, facets, normals, and parent structures, which play a fundamental role in
determining how the light interacts with the particle.

facet_type: Contains information about a facet, which is defined by a list of vertices,
ordered anti-clockwise as viewed from outside.

. parent_type: Contains information about the macroscopic features of the particle

shape, known as parents. This includes the average normal, midpoint, total surface
area, and the number of facets assigned to it.

output_parameters_type: Contains a variety of output parameters with physical im-
portance: absorption, scattering, and extinction cross sections and efficiencies, asym-
metry parameter, illuminated geometric cross section, back-scattering cross section.

job_parameters_type: Contains a a large set of parameters which allow for a high
level of job customisation. The settings of the job are usually set through the use of
command line arguments (see Appendix C).

. beam_type: Contains all the information about a single propagating beam in the

near-field. Each beam propagates along a single direction from a collection of facets.
The amplitude matrix is stored at the centroid of each facet. The beam is formed
from a section of the particle surface where it originates, and a section of the particle
surface where it terminates. The information about the electric field stored in the
field_in type and field out_type variables, respectively:

(a) field in type: Contains information such as the perpendicular field vector and
amplitude matrix at a facet, from which part of a beam is propagating.

(b) field out_type: Contains information such as the perpendicular field vector,
whether or not total internal reflection occurred, and reflected and refracted prop-
agation directions at facet, at which part of a beam terminates.

Input Module

The input module is responsible for managing the code initialisation. The first subroutine,
parse_command_line, reads input arguments from the command line. A select case state-
ment filters command line arguments and sets specific variables in the job parameters data
structure. A detailed explanation of the command line arguments is given in Appendix C,
along with the default values. The subroutine PDAL2 is responsible for reading the particle
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geometry from a file. It is a modified version of the subroutine found in the ray tracing code
by Macke [35], which is extended to accommodate particles files written in wavefront format
(.obj file extension). It reads the parent structures from a file, computes the midpoints,
areas, normals of each facet, the vectors of all edges in each facet, and translates the centre
of mass of the particle to the origin. The subroutine init_loop is responsible for setting
the Euler angles used during the orientation averaging loop. Any symmetries in § and -~y
specified restricts the range of Euler angles. If the —intellirot command line argument is
specified, the angles are chosen from a grid of uniformly spaced values of $ and ~; otherwise,
they are chosen at random. The numbers for each Euler angle are initialised as a value in
the range [0, 1]. They are then remapped onto the appropriate ranges for each Euler angle
during the PROT_MPI subroutine. The PROT_MPI subroutine rotates the particle into the cor-
responding orientation. If using the Euler angle rotation method, the o and + angles are
distributed in the range [0, 360°], whereas the 3 angle is distributed according to the function
arccos (1 — 2x), where x is a value between 0 and 1. This gives rise to /5 values in the range
[0, 180°], with more angles concentrated towards the equator (90°) and less towards the poles
(0 and 180°). In spherical polar coordinates, the solid angle element d€2 = sin dfd¢  sin 6,
indicating that contours of constant # are more closely spaced towards the poles than at
the equator. The chosen mappings for S and 7 ensure that the particle orientations are
uniformly distributed over the solid angle 2. The make _incident beam subroutine sets up
a simple square polygon to represent the incident plane wavefront. The dimensions of the
square are set so that the particle is fully illuminated by the incident beam, although it is
straightforward to modify this to partially illuminate the particle. The z position is set to
1000, which is intended to be always above the particle. In this subroutine, the incident
propagation direction is set as along the —Zz-axis and the &, direction is defined along the
+X-axis.

Beam Loop Module

The beam loop module is responsible for taking the incident field as an input and com-
puting the near-field as a sum of amplitude matrices over the particle surface as an out-
put (Egs. 4.5 and 4.6). The beam loop either takes place in beam loop_for_speed or
beam loop_for memory (depending on whether the user specified the command line argu-
ments -speed or -memory). Both versions essentially perform the same computation, but in
the version for optimum speed, all beams are traced first and then all beams are diffracted
second. In the version for optimum memory use, beams are traced and then diffracted in
a recursion by recursion manner. In the version for optimum speed, the first step is to call
subroutine recursion_inc, which has the following sequence of operations:

1. Incident illumination: The initial illuminating beam defined in subroutine
make _incident beam is propagated. To propagate the beam, the following sequence is
undertaken:

(a) Find the illuminating facets: Subroutine find vis_inc is called to determine the
facets of the geometry illuminated by the incident beam.

(b) Allocate space in the beam data structure: One entry in the beam structure is
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allocated to store information about the electric field at each of the illuminated
facets.

(¢) Computing the electric field: Computing the electric field at the illuminated facets
requires several steps:

i. The reflected propagation vector is computed using the parent normal.

ii. The new perpendicular field vector is computed using the cross product of
the facet normal and the reflected propagation vector.

iii. The rotation matrix is computed, which is used to rotate about the incident
propagation direction from the old to the new reference plane.

iv. The distance ¢ to each facet is used to apply the phase factor exp (ikd) and
the incident amplitude matrix is multiplied by the rotation matrix to rotate
it into the new reference plane.

v. External diffraction (incident illumination only): A copy of the amplitude
matrix for each facet at this point is saved to the external diffraction outbeam
structure, which is used to compute the external diffraction.

vi. The Fresnel coefficients of reflection and transmission are calculated based on
the angles of incidence and transmission made at the parent. The coefficients
are then used to construct the Fresnel matrices. The amplitude matrix is
multiplied by the Fresnel matrices to obtain the external reflected amplitude
matrix, and the internal transmitted amplitude matrix.

vii. Finally, information about the reflected and transmitted fields are added to
the beam data structure, where they may be either used to propagate beams
in the next recursion or to compute the diffracted far-field.

2. Adding to the beam tree: The beam tree acts as a parent structure for holding informa-
tion about all the beams propagated in the near-field, excluding the initial illumination.
Any beams which are reflected or transmitted from the particle surface are added to
the beam tree for later use.

Any remaining beams in the beam tree are then traced if the energy and cross sectional area
are above their minimum values, and at least one of the following conditions are satisfied:

1. The maximum number of recursions has not been reached.

2. The beam is a total internal reflection event, and the maximum number of total internal
reflections has not been reached.

The code contains two variants of the recursion subroutine, namely recursion_int and
recursion_ext, which are called depending on whether the beam is propagating internally
or externally, respectively. They differ from recursion_inc only in the fact that instead of
propagating the beam from polygon defining the incident illumination, the beam is propa-
gated from a portion of the particle surface. In addition, small changes are made depending
on whether the beam is internally or externally propagating, to account for the fact that the
surface normals face outwards from the particle and therefore the direction of some cross
products are inverted. In addition, any externally propagated beams which do not reenter
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the particle are marked as outgoing beams, and are then added to the diffraction tree for
later use. Finally, the beam loop finalises with some checks based on the conservation of

energy and, if enabled, parts of the beam may be exported in .json format to an output
file.

Diffraction Module

The diffraction module is responsible for computing the near to far-field mapping. For
each facet through which a beam is transmitted and does not reenter the particle, Eq. 4.24
is computed for each of the far-field bins. The main procedure for this is contained in
subroutine diff main, which takes the outgoing beam tree as an input, and returns the
far-field amplitude matrix as an output. The procedure is described by the following steps:

1. First, the vector position of each far-field bin is computed based on the scattering
angles # and ¢. This is computed in subroutine make far field bins according to
Eq. 2.3, with a distance to the far-field set to R = 1 x 106.

2. Second, the diffraction integral is computed. This is usually the most computationally
intensive section of code. This is because the number of floating-point operations (also
known as flops) scales approximately with the product of the number of facets in the
mesh and the number of far-field bins. Therefore to reduce the time taken, this section
of code is multi-threaded and heavily vectorised. The multi-threading aspect allows the
code to take advantage of modern central processing unit (CPU) architectures, which
often have more logical threads of operation than CPU cores. In most cases, this gives
at least a 2x speedup for the diffraction computation. The vectorisation is achieved
by avoiding conditional statements in loops so that the same instructions can be sent
to the arithmetic logic unit in the CPU. Code written in this way is often referred to
as single instruction, multiple data (SIMD), and graphics processing units (GPUs) are
designed to perform such tasks efficiently. According to the OpenMP documentation,
only the innermost loops are vectorised [110] and therefore any nested loops should
be reordered so that the largest loops have the innermost position. Furthermore,
elements of multidimensional arrays in Fortran are stored in memory according to the
first index, which makes it faster to loop over the first dimension of array than the other
dimensions. Hence, arrays in this module are defined in such a way that innermost
nested loops always tend to loop over the first dimension of multidimensional arrays.
The diffraction is computed in the diffraction subroutine via the following key steps:

(a) First, a facet of the mesh and the amplitude matrix at its centroid is taken as
an input. Since each mesh element has an arbitrary location and orientation, it
is first rotated into the xy plane and translated to the origin. The vertices of
the facet have now been transformed into a new coordinate system. A check is
performed to ensure that the facet normal faces along the positive z-axis. The
positions of the far-field bins relative to the facet must be accounted for with care.
This is because even small errors in the distances can lead to significant errors
in computing the phase of the electric field as it is mapped from the facet to the
far-field. Therefore, the far-field bins are rotated and translated using the same
transformations as is used for the facet.
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(b) Second, for each far-field bin, the polarisation of the scattered field is computed
in subroutine karczewski according to the theory described by Eq. 4.25.

(¢) Third, the appropriate rotation matrices are applied to the amplitude matrix. The
first, defined by Eq. 4.26, rotates the far-field amplitude matrix from a plane de-
fined with respect the rotated coordinate system into the scattering plane defined
with respect to the unrotated coordinate system. The second, defined by Eq. 4.27,
is the pre-rotation matrix, which effectively rotates the incident amplitude matrix
into the scattering plane.

(d) Finally, the contour integral defined by Eq. 4.20 is computed in subroutine
contour_integral. This is usually the most time consuming part of the computa-
tion. Physically, the contour integral represents the Fraunhofer (scalar) diffraction
pattern. A scalar value is computed at each far-field bin, which is then used to
multiply the far-field amplitude matrix to arrive at the final value for the diffracted
field.

The diffraction subroutine is called for each facet of each outgoing beam and the
total far-field is computed as the sum.

3. Third, the diffraction subroutine is called for the computation of the external diffrac-
tion. For this, the facets illuminated by the incident field are used, with the Fresnel
coefficients of reflection and refraction omitted. The external diffraction is added to
the field computed in the previous step. The diffracted amplitude matrix computed at
each far-field bin is then passed to the outputs module for finalisation.

Outputs Module

The outputs module is a relatively simple section of the code. It is responsible for con-
verting the far-field amplitude matrix to a Mueller matrix. This is performed in subroutine
ampl_to_mueller according to the definitions given by Hovenier and Mee (Appendix A) [87].
Subroutine get_1d mueller uses a 3-point Lagrange polynomial interpolation method [112]
to integrate over ¢ and compute the 1D Mueller matrix. The module also contains a subrou-
tine called writeup, which outputs various information of use, including integrated scattering
parameters, to different files. Subroutines cache_job and cache remaining orientations
are used to save a temporary state of the code, in the event that the walltime limit is
exceeded.

Misc. Module

The miscellaneous module contains a large number of utility functions that are used through-
out the code. For sake of brevity, a few of the most important ones are described below.

1. resume_job: Initialises the resuming of a previously cached job. This is done by
reading from a cache directory containing the parameters of the cached job, as well as
the completed orientations and the far-field Mueller matrix.

2. Qsort_real: An implementation of the quicksort algorithm [113]. Tt is used for sorting
large arrays.
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3. triangulate: Takes a 3D surface as an input geometry, triangulates it using the
Triangle program [114], and then returns the triangulated 3D surface. The Triangle
program is designed to work in 2D, so each facet of the geometry is first prerotated
into the zy plane and written to a temporary file. The filename is passed as an input
to the Triangle program. The output is then read back in and rotated back into its
original orientation. This is repeated for all facets of the original geometry.

4. PDAS: Outputs the 3D crystal to files in Wavefront format (. obj) and Macke ray-tracing
format (.cry).

CC Hex Module

The CC Hex Module generates hexagonal prism geometries with gaussian random roughness
according to that described in [74].

MPI Module

The MPI module contains a few subroutines that are used by the MPI version of the code.
Since MPI is an implementation of distributed memory processing, information must be
explicitly communicated between different computing processes by use of calls to MPI_SEND,
MPI RECV, or MPI REDUCE commands. This is mostly limited to summations of the Mueller
matrix and integrated scattering parameters across different processes.

Summary

In this chapter, the PBT method has been described. It is the novel method of this work and
is a physical-optics hybrid light scattering method for large, non-spherical particles, including
those with surface roughness. In the next chapter, the accuracy of the PBT method is tested
against the DDA method in two benchmark studies. This is followed by an application: the
computation of single-scattering parameters of smooth hexagonal ice plates.
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Chapter 5

Application & Results

Introduction

5.1 Hexagonal Columns with Gaussian Random Sur-
face Benchmark

5.1.1 Method

In this section, the results from the PBT for smooth and rough hexagonal columns with
length [ = 10 pm, and hexagonal edge length » = 5 pm are presented. Rough particles are
generated using Gaussian random roughness with correlation length 0.5 pm and standard
deviation 0.1 pm as described by Collier et. al [74]. The accuracy of the results is measured
by comparison with the ADDA code [62], which is an implementation of the DDA method.
The accuracy of ADDA has been reported several times in the literature and here the results
are considered as a benchmark for comparison [62, 96, 115, 116]. While the formulation
of the DDA method is a direct implication of the Maxwell equations, an exact solution is
derived according to the set of dipoles rather than the original scatterer. Therefore, in this
study two main criteria are considered to accurately represent the particle by an array of
dipoles. Firstly, the number of dipoles per wavelength d is chosen in accordance with the
ADDA ’rule-of-thumb’ which requires that d < 10/(A|n|). Secondly, d is required to be
smaller than any characteristic sizes of the particle. For particles with Gaussian roughness,
d is chosen such that at least 10 dipoles per correlation length are present.

5.1.2 Results & Discussion

The logarithms of the 2D phase functions for non-absorbing smooth and rough hexagonal
columns in a fixed orientation with refractive index n =1.31+0i are shown in Figure 5.2.
The results for other elements of the Mueller matrix for the smooth and rough particles in
the same orientation with refractive index n =1.314-0i are shown in Figure 5.4. The particle
orientation is produced by first aligning the prism axis with the z-axis, then by rotating
with Euler angles a = 0°, § = 30°, v = 20° according to the "zyz-notation” as given in
[71]. The azimuthal and polar scattering angles may be inferred from the diagram shown
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Forward Backward

Figure 5.1: Diagram depicting the azimuthal (blue) and scattering (red) angles for 2D
polar plots in the forwards (left) and backwards (right) directions.

in Figure 5.1. The PBT method produces results in ~ 1/1000*" of the computation time
required for the DDA computations. The 1D phase function is computed by integration
over phi using a 3-point Lagrange polynomial interpolation method [112]. Table 5.1 sum-
marises the values for various integrated scattering parameters of interest. By computing the
mean values averaged over the smooth and rough particle configurations, the errors in the
asymmetry parameter, and scattering and extinction efficiencies are —1.0%, —1.4%, —1.2%,
respectively. For the smooth, non-absorbing (n =1.31+0i) particle, the PBT patterns in
Figure 5.2 closely resemble those computed with DDA. In the direct forwards scattering,
a strong peak is observed, corresponding to external diffraction combined a beam entering
and being transmitted through a pair of parallel surfaces. At approximately 60° scatter-
ing angles, several regions of high scattering intensity are observed, which correspond to

o gl gow ooy gl gy STy ol o SEECRG
S 131400 0807 0.820  +16 2580 2537 LT 2580 2537 L7
é 1.31 4+ 0.01i 0.941 0.937 -0.4 1.363 1.407 +3.2 2.251 2.154 -4.3
” 1.31 + 0.1i 0.967 0.966 -0.1 1.112 1.057 -4.9 2.111 2.090 -1.0
o 131401 0.769 0.762 -0.9 2.183 2.142 -1.9 2.183 2.142 -1.9
:gj 1314001 0.941 0906  -3.7 1278 1285 405 2236 2251 407
1.31 + 0.1i 0.969 0.945 -2.5 1.177 1.135 -3.6 2.244 2.266 +1.0

Table 5.1: Summary of the asymmetry parameter g, scattering efficiency Qs.,, and
extinction efficiency Q..+ computed with the DDA and PBT methods for the smooth and
rough particles in the orientation as shown in Figure 5.2.
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transmitted beams undergoing 1 or 2 internal reflections. In the backscattering hemisphere,
external reflection combined with a transmitted beam undergoing total internal reflection
is observed at approximately 120°. In general, PBT computations are able to reproduce

Figure 5.2: The logarithms of the 2D phase functions for smooth (left and middle-left) and
rough (middle-right and right) compact columns with refractive index 1.31 + 0i. The
upper and lower rows of polar plots correspond to the forwards and backwards scattering,
respectively, as depicted in the schematic of Figure 5.1. The particles and their orientations
as viewed along the direction of incidence are shown for reference.

many of the key features seen in the DDA results. However, the accuracy decreases towards
the backscattering, which indicates room for improvement in the near-field computation for
non-absorbing particles as seen here.

The 1D phase function results for 3 sets of refractive indices in the same orientation are
shown in Figure 5.3. The phase function for absorbing particles are shown in the 2°¢ and
3' rows of Figure 5.3. For the roughened particle geometries, a comparison with GO is
included. The residual o is computed using o = (Si(f o _ Si(;-l da) ), and the normalised residual
T is given by 7 = o/ Si(;i da), where S;; corresponds to an element of the Mueller matrix.
For the smooth, non-absorbing particle, the PBT results show exceptional agreement in the
forward scattering, with a mean normalised residual of 2% for § < 60°. For the rough,
non-absorbing particle (upper-right in Figure 5.3), the PBT method shows a particular
improvement over GO in the region 6 ~ 60°, which increases the accuracy of the asymmetry
parameter. For the weakly (n =1.3140.01i) and strongly absorbing (n =1.31+0.1i) particles,
the PBT overestimates the side-scattered intensity at 8 ~ 90°, which could be a limitation
of the surface integral diffraction method employed. Nonetheless, the effect of this on the
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asymmetry parameter should be small, and therefore the impact on application should be
limited. For the weakly absorbing particles, the PBT shows an overestimation in the back-
scattered intensity, which is likely due to an oversimplification of the propagation of light
as a coherent plane wave in lossy media. In fact, the light is known to propagate as an
incoherent plane wave in this case [40, 100], which is not fully accounted for in this model;
as discussed in Section 3.4.3, the incoherent plane wave propagates with planes of constant
phase perpendicular to the propagation direction (as is done in the PBT method), but with
planes of constant amplitude perpendicular to the surface normal, which is not accounted for
[86]. For the strongly absorbing particles, the scattering is dominated by external diffraction
combined with external reflection. The PBT overestimates the side-scattering for rough
absorbing particles. It is thought that a more accurate results could be achieved by improving
the near-field approximation, particularly at areas of the surface occluded by the roughness.
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Figure 5.3: The 1D phase function for smooth (left) and rough (right) compact columns.
Rows correspond to refractive indices 1.31 + 0i, 1.31 + 0.01i, and 1.31 + 0.1i, respectively.
The particle orientation is the same as shown in Figure 5.2.
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Figure 5.4: Other elements of the Mueller matrix for smooth (left) and rough (right)
compact columns with refractive index 1.31 4 0i in the same orientation as shown in
Figure 5.2.
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5.2 Hexagonal Ice Plates with Stochastic Surface Rough-
ness Benchmark

One of the difficulties encountered in quantifying the radiative effect of cirrus is due to the
diverse variety of geometries of ice crystals found in cirrus. Of these, the hexagonal ice
plate and its aggregates are known as a dominant species and therefore has a significant
effect on the cloud bulk scattering properties [12]. In recent years, extensive work has been
undertaken to compute the single scattering parameters of pristine and distorted ice plates
at a wide range of size parameters. However, the role of surface roughness and how it affects
the scattering as opposed to smooth surface particles remains relatively poorly understood.

The work described in this section aims to advance current understanding by investigating
the scattering properties of ice plates with surface roughness. A versatile implementation
of surface roughness designed for application to faceted particle geometries is introduced in
Section 5.2.1. The roughness is defined by a characteristic length scale and an amplitude,
which is used to produce a variety of hexagonal ice plates with aspect ratio 10. The quasi-
orientation averaged scattering parameters are obtained by rotating the particles into 96
carefully selected orientations and is described in Section 5.2.1. The ice plates are chosen
with a size larger than the wavelength, which permits the use of the DDA method, as well
as the PBT method. Finally, the results are discussed in Section 5.2.3.

5.2.1 A Simple Implementation of Surface Roughness

A simple yet versatile implementation of surface roughness is used, which allows both the
length scale and amplitude of the roughness to be varied. This method was briefly discussed
in Section 4.2. The particle is initially constructed as a hexagonal prism, comprised of
8 facets (2 basal and 6 prism facets). The plate has an aspect ratio of 10, with a plate
radius 10.186 pm and thickness 2.037 pm, which gives a volume-equivalent size parameter
27r /A = 60, where 7 is the radius of the volume-equivalent sphere. The ice material is defined
through the refractive index n = 1.31+0: for a wavelength of light A = 0.532 pm. Each facet
is then subdivided using a Delaunay triangulation technique [114]. After triangulation, the
vertices of the mesh are displaced by some random value along the axis of the facet normal.
The process is illustrated in Figure 5.5. The triangulation method allows the maximum edge
length L to be enforced, which provides a way of setting an approximate length scale of the
roughness. Larger values of maximum edge length generally give rise to coarser meshes, and
smaller values give rise finer meshes. Since this approach merely sets some maximum value
on the edge length, it cannot be ensured that this length scale remains constant across the
entire geometry. The approach is a compromise between improved versatility but reduced
uniformity. It can be applied to almost any surface mesh represented by planar faces with
reasonable stability. However, if the particle contains facets with length dimensions smaller
than the chosen maximum edge length, then the edges of the resulting mesh can be smaller
than intended. The displacement of each vertex is capped by some maximum value o, which
determines the effective amplitude of the roughness. A value of 0 applies no displacement,
which preserves the smooth surface, whereas larger maximum values increase the roughness

amplitude. In this study, L is varied in steps of A/2 from A, %, -+, 3A. Maximum edge
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Figure 5.5: Simplified schematic showing the sequence of steps taken to create the surface
roughness. 1) A surface before triangulation. 2) A surface after triangulation with
maximum edge length L. 3) A triangulated surface after displacement, capped by the
roughness amplitude o in either direction normal to the original surface.

lengths smaller than the wavelength are excluded, since the number of dipoles needed to
sufficiently resolve features at this length scale rapidly increases the computational demand
of the DDA method. The value of ¢ is varied in steps of A\/5 from 0, 2 £, , A Example
particle geometries for roughness amplitude A\/5 with different maximum edge lengths are
shown in Figure 5.6, and example particle geometries for maximum edge length A with
different roughness amplitudes are shown in Figure 5.7.

L =3\

_2_

Figure 5.6: Examples of different plate geometries with varying maximum edge lengths,
o= \/b.

Particle Orientations

Since DDA computations at this size parameter are time consuming, it is not possible to av-
erage over large numbers of particle orientations. Therefore, a compromise is made whereby
the scattering is averaged over a small number of uniformly distributed orientations. The
"zyz” rotation convention as described in [117] is used here, which means that the first Euler
angle a determines the initial rotation about an axis aligned with the incidence direction.
In this case, o has no effect on the #-dependence of the scattering and can be set to 0° if
only the 1D scattering is important. Typically, the Euler angles are computed in radians
using = arccos (1 —2X), and v = 27X, where X is a number in the range 0 < X < 1.
For hexagonal prism-shaped particles, the range of the $ and v Euler angles can be reduced
due to the symmetry of the particle geometry. This allows the orientation averaged scatter-
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b) o = \/5. c) o =2\/5.
d) o =3)/5. e) o =4\/5.

Figure 5.7: Examples of different plate geometries with varying roughness amplitudes,
L=\

ing to be more quickly approximated compared to a Monte Carlo-based approach. For this
rotation convention, with the hexagonal plate initially aligned with the prism axis along the
incidence direction, the geometry is symmetric about 8 = 90° and repeats every 60° in .
The angles are therefore determined by confining X to the range 0 < X < 0.5 for § and
0 < X <1/6 for 7. A diagram showing how the angles § and 7 determine the orientation
of the plate is shown in Figure 5.8. The chosen implementation of surface roughness means
that the particle is no longer perfectly symmetric in . This falls within ensemble variation,
which could be accounted for by additionally averaging over several random realisations of
the surface roughness. In this study, it is assumed that the maximum edge length is small
enough so that enough mesh elements are present to remove any significant asymmetry with-
out considering ensemble averaging. In summary, the following limits and values for Euler

B

(a) Particle before rotation. (b) Particle with rotation g = 25°, v = 25°.

Figure 5.8: Diagram showing how the hexagonal plate particle is oriented according to the
chosen Euler angles.
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angles are used to reduce the number of orientations:
1. a=0°.

2. 0° < B <90° 5 =10.1°, 22.8°, 30.8°, 37.2°, 42.8°, 47.8°, 52.5°, 56.9°, 61.0°, 65.1°,
68.9°, 72.7°, 76.5°, 80.1°, 83.7°, 87.3°.

3. 0° < v <60° v=0° 10° 20°, 30°, 40°, 50°.

5.2.2 Numerical Methods

Two different numerical methods are used to compute the scattered field from the hexagonal
ice plates. These are the DDA (Section 3.3) and PBT (Section 4) methods. The accuracy of
the DDA method has been well studied, and the error in fulfillment of reciprocity in some
tests has been shown to be less than 1075% [96]. In this work, the ADDA code is used
[62], which recommends as a rule-of-thumb that the spacing between dipoles d should satisfy
d < A\/10m, where \ is wavelength, and n is the particle refractive index. For this study,
A =0.532 pm and n = 1.31 + 0z, so it is chosen that d = 0.0406 pm. Furthermore, users of
the ADDA code are recommended to ensure at least 10 dipoles are present per characteristic
length of the particle geometry [118]. Therefore, the minimum value for maximum edge
length is set to L = X so that, in most cases, a sufficient number of dipoles are used to
accurately represent the surface roughness. A mesh conversion code which uses a quick sort
algorithm is used to construct the dipole arrays for these complex particle geometries [113].
The results from the DDA method here are generally considered as the numerical reference
data against which the accuracy of the PBT method is measured. The ADDA code is run
with numerical solver -iter bcgs2 as described in the ADDA user manual [118].

5.2.3 Results & Discussion

Discrete Dipole Approximation

First, the results from the DDA method for variation in roughness are discussed. The
phase functions normalised to 1 for L. = 1 and L = 3 are shown in Figures 5.9a and 5.9b,
respectively. The reader should refer to Figure 5.7 for the particle geometries. In general,
it can be seen that averaging over the 96 orientations removes most of the fixed-orientation
features that might be expected due to specific beam paths. The remaining features include
the forward scattering peak discussed in Section 5.1.2, a broad halo peak at ~ 22° and
a backscattering peak. Several sharp peaks across the scattering angle range can be seen,
which can be attributed to the finite number of chosen  angles and an interference effect
similar to that observed in thin films. The interference occurs when an externally reflected
beam interferes with an internally reflected one, as shown in Figure 5.11a. The angular
position of each peak is simply related to 8 by the law of reflection. For example, the first
value of § = 10.1° corresponds to the first interference peak at 180 — 2(10.1) = 159.8°. In
general, the relative heights of each peak depend on the phase difference between the two
beam paths, the Fresnel equations of reflection and transmission, and the projected cross
sectional area. The phase difference is a function of the dimensions of the plate, as well as
the wavelength of incident light.
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Figure 5.9: Normalised phase function for hexagonal ice plates with varying amplitudes of
surface roughness. Results are computed with the DDA method. Close to the direct
forwards scattering on a linear scale is shown in the upper left inset. The backscattering
region is shown in the upper right inset. Parametric sweeps at L = A and L = 3\ are
shown in 5.9a and 5.9b, respectively.
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varying amplitudes at different roughness amplitudes. Results are computed with the DDA
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inset. The backscattering region is shown in the upper right inset.
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1. Close to Direct Forward Scattering: The scattered intensity close to § = 0° is
shown in the upper left inset of the figure. A linear scale is used in the upper left
insets here, since small fractional differences have a significant effect on the asymmetry
parameter. It is found that, at this size parameter, the smooth plate ¢ = 0 has the
strongest forward scattered intensity, while increasing values of o result in smaller
amplitudes. Interestingly, the data shows that scattering by particles with o = 0 is
almost indistinguishable to those with ¢ = A/5. In summary, the data suggests that
surface roughness has almost no effect on the forward scattering if o << A.

2. Halo Region: The broad halo peak centered at ~ 22° can be attributed to the angle of
minimum deviation associated with light passing between 2 non-adjacent rectangular
facets of the plate [28]. The relative height of this peak, known as the halo ratio, can
be defined as p11(0 = 23°)/p11(6 = 20°). The value of the halo ratio has been proposed
as a quantitative measure for identifying the presence of cirrus [119]. Compared to
computations with geometric optics (eg. [35, 89]), the 22° halo observed here is broader
and relatively weak. The height of this peak can be explained by the large aspect ratio
of the plate. More columnar type ice particles have larger rectangular facets, which in
turn leads to a larger fraction of the incident energy being scattered into the halo region.
The broadness of the peak is due to the fact that the prism facets have dimensions
comparable to the wavelength. This leads to a significant broadening of scattering due
to diffractive effects, which cannot be accounted for with classical geometric optics.
Similar to the findings of the direct forwards scattering, the halo region is almost
unaffected by the presence of surface roughness with amplitude much smaller than
the wavelength. The halo peak diminishes as the roughness increases up until o ~ A,
wherein the peak is no longer distinguishable, which agrees with the findings of other
studies [65, 120, 121]. This finding has implications for practical applications which use
the halo region as a means of identifying the presence of ice particles. The results show
that the absence of a distinguishable halo peak does not necessarily mean that there
is an absence of hexagonal ice plates in the sample. Rather, it merely indicates the
absence of pristine hexagonal prisms. This agrees with other studies, which have found
that classical geometric optics overestimates the intensity of the 22° halo peak [38, 79].
Further incorporation of the halo ratio in measuring techniques could provide as a useful
method of estimating surface roughness and irregularity, especially when combined
with analysis of other experimental evidence such as scattering pattern symmetry and
particle imaging.

3. Backscattering: The backscattering in the region 6 = 175-180° is shown in the upper
right insets of Figure 5.9. Unlike for the forward scattering and 22° halo regions, even
small scale roughness appears to have an effect on the backscattering. As may be
expected, the smooth hexagonal plate (o = 0) shows the strongest backscattering
peak. Due to the normalisation of each phase function and the difference in scattering
cross sections between datasets, comparing the values at § = 180° does not provide a
very useful insight. Instead, the backscattering ratio is introduced, which is defined
here as p11(180°)/p11(175°). The backscattering ratios for increasing values of o at
L = X are found to be 3.74, 2.86, 1.76, 1.56, 1.41, 1.42. Increasing the amplitude of
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surface roughness decreases the backscattering ratio until a value of ~ 1.4, where it
appears to asymptote. Recent studies indicate that two main factors contribute to the
backscattering ratio: corner retro-reflection events [39] and coherent backscattering
[122]. A retro-reflection can occur when a particle with multiple right-angled facets
is illuminated at certain ranges of orientations. Under these conditions, there exist
bundles of parallel ray paths which can be shown using geometric optics to scatter
into the direct backscattering direction. One possible explanation for the decreasing
backscattering ratio is that, as the roughness amplitude increases, the effect of retro-
reflection events is reduced, and therefore the backscattering ratio becomes primarily
due to coherent backscattering. The effect of coherent backscattering is a well known
wave phenomenon that leads to constructive interference in and close to 8 = 180°.
The effect can be explained by studying a pair of reciprocal ray paths as shown in
Figure 5.11b. If an incident ray undergoes multiple scattering events and is scattered
back along the direction of incidence, then there exists a reciprocal ray which travels
along the exact same path but in the opposite direction. This follows as a result of the
time-reversal symmetry of Maxwell’s equations. Consequently, the 2 rays travel the
same distance and therefore always interfere constructively in the direct backscattering,
which leads to a peak in the backscattered intensity. Even without consideration
of the phase of the electric field, classical geometric optics often overestimates the
backscattering ratio for pristine hexagonal prisms due to the omission of diffraction of
outgoing bundles of rays.

(a) Plate interference effect, whereby the  (b) An example of a reciprocal ray pair, which
interference between external reflection and an traverse the same path in opposite directions.
internally reflected beam path gives rise to the This example shows a corner retro-reflection,

varying peaks across the phase function for which provide a large contribution to the
orientation averaged hexagonal ice plates. backscattering of particles with prism [123]
geometries.

Figure 5.11: Important ray paths in scattering by hexagonal ice plates.

As o increases to values comparable with A, the transition region between forward scattering
and the halo region is affected and a secondary maximum in the backscattering (at  ~ 178°)
becomes more prominent. The DDA results for variation of the maximum edge length
at roughness amplitude ¢ = A/5 are shown in Figure 5.12. The reader should refer to
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Figure 5.6 for the corresponding particles geometries. The DDA results show almost no
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Figure 5.12: Normalised phase function for hexagonal ice plates with varying maximum

edge length of surface roughness and roughness amplitude o = A/5. Close to the direct

forwards scattering on a linear scale is shown in the upper left inset. The backscattering
region is shown in the upper right inset.

effect on the orientation averaged scattering due to variation in maximum edge length.
The only discernible differences arise towards the backscattering, when 6 > 150°. There
are small differences in the shape of the peak at § = 160°, and the upper right inset of
Figure 5.12 highlights minor differences in the direct backscattering. The backscattering
ratios as defined previously for increasing maximum edge length are 2.86, 2.50, 2.74, 2.58,
and 2.88. Therefore, it is concluded that changing the maximum edge length has almost no
effect on the scattering when the amplitude of roughness is much smaller than the wavelength.
By combining the plots in Figures 5.9a and 5.9b, direct comparisons showing the effect of
increasing the maximum edge length at different roughness amplitudes can be made. The
comparisons are shown in Figure 5.10. The upper left and right subplots show that almost
identical orientation averaged scattering is predicted by the DDA method for o = \/5 and
o = 2\/5 at each of the maximum edge lengths. The phase function is practically invariant
with respect to L for ¢ < A/2, and even for larger values of o the effect of L can be considered
minor. Therefore, it can be said with some certainty that the characterisation of surface
roughness of ice plates can be based solely on the amplitude of the roughness, so long as
the amplitude is smaller than the wavelength. Another study found an effective equivalence
between surface roughness and irregular geometries by relating the surface tilt angle to a
distortion factor [42]. The findings of this work do not fully agree with this equivalence
because varying the maximum edge length while keeping the roughness amplitude constant
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is equivalent to decreasing the surface tilt angles. The results presented here suggest that this
should not significantly affect the orientation averaged scattering. Further work is needed to
incorporate the resolution of the mesh into the equivalence between tilt angle and particle
distortion. Furthermore, work is needed to determine if the length-scale invariance found in
this study can be extended all the way to distorted, smooth geometries.

PBT Results vs DDA

Second, the results for the PBT against the DDA method for each particle are shown in Figure
5.13. Overall, the accuracy of the PBT is best when the particle is smooth and decreases
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Figure 5.13: Comparisons of the normalised phase function for hexagonal ice plates with
varying amplitudes of surface roughness and maximum edge length L = 3A. Close to the
direct forwards scattering on a linear scale is shown in the upper left inset. The
backscattering region is shown in the upper center inset. For reference, each particle is
shown as an inset.
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with the amplitude of the roughness. This is to be expected, since geometric optics is less
accurate in regions where the characteristic length scale is comparable to, or smaller than the
wavelength. It has been pointed out that, the geometric optics field is overly sensitive with
respect to perturbations in the parameters of the medium [23], which in this case correspond
to the fluctuations in the surface topology. For the smooth particle (o = 0), the PBT method
shows generally good accuracy at all scattering angles. The error in the direct forwards
(0 = 0°) scattering is +1.23% and in the direct backscattering (# = 180°) is -18%. One
explanation for the underestimation in the backscattering is that this region is highly sensitive
to the effects of coherent backscattering. Since the hexagonal plates used here have only a
size parameter of 60, the contribution from the edge and corner effects may be significant.
The sharp right-angled edges used for the hexagonal plates effectively have an infinitely small
radius of curvature. Therefore, traditional GO cannot be expected to capture the physics
of field propagation in these regions and extensions to geometrical theory of diffraction are
needed [36, 124]. Of course, it is generally assumed that neglecting such contributions
becomes more acceptable with increasing size parameter. For light roughness (¢ = A/5), the
PBT maintains a reasonable accuracy compared with the DDA. The prediction of the forward
scattering peak has an error of -2.57%, the halo region closely resembles the DDA method,
and a peak in the direct backscattering is well predicted. Errors in the side scattering
(0 ~ 90°) start to become prevalent, which is believed to be a sensitivity of the surface
integral method for diffraction and has been recognised in the literature [125]. The PBT
accuracy decreases significantly for o > 2\/5. For example, as shown in the upper right
insets of Figure 5.13, the DDA predicts a small peak with backscattering ratio ~ 1.4, but
the PBT method shows almost no backscattering peak in this region. Nonetheless, the PBT
method shows a promising ability to reproduce the main features of the phase function, even
with increasing roughness. The time taken to compute the scattering in each orientation
is ~ 500 CPU hours for the DDA method, versus ~ 1 CPU hour for the PBT method. It
should be noted that the relative computational speedup is expected to increase rapidly with
size parameter (the plates were scaled to a volume-equivalent size parameter of 100, but in
this case the DDA method failed to reach convergence).

Next, PBT results compared with those of the DDA method for variation in maximum
edge length for 0 = \/5 are shown in Figure 5.14. Overall, the agreement between the PBT
and the DDA methods is good across all the length scales tested, although the accuracy
improves as the maximum edge length increases beyond the wavelength. For smaller values
of L, the PBT tends to overestimate side scattering, which can be seen in the upper left of the
Figure 5.14. The computed values for asymmetry parameter g are summarised in Figure 5.15.
DDA results indicate a weak decrease in asymmetry parameter with increasing roughness
amplitude. The effect of maximum edge length is small for small roughness amplitudes but
becomes more significant as the roughness amplitude becomes comparable to the wavelength.
In any case, surface roughness with scale comparable to the wavelength only appears to affect
the asymmetry parameter by at most, a few %. The figure shows that the PBT method
is most accurate for longer maximum edge lengths. Since the DDA method predicts that
the scattering is mostly insensitive to the maximum edge length, it can be concluded that
the PBT can accurately model surface roughness by setting the maximum edge length to
several times the wavelength. Based on these conclusions, it is proposed that the best
approach to modelling surface roughness with the PBT method may be to first, quantify the
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Figure 5.14: Comparisons of the normalised phase function for hexagonal ice plates with
varying maximum edge lengths of surface roughness with amplitude o = A\/5. Close to the
direct forwards scattering on a linear scale is shown in the upper left inset. The
backscattering region is shown in the upper center inset. For reference, each particle is
shown as an inset. For the case of L = A, the reader is referred to the upper right subplot
of Figure 5.14.
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amplitude of the roughness, and then second, choose a suitable maximum edge length that
is several times larger than the wavelength. Then, based on the finding that the scattering
is mostly invariant with respect to maximum edge length, the PBT method should be a
valuable tool capable of predicting various integrated scattering parameters in a relatively
small amount of required computation. The computed values for scattering cross section

Asymmetry Parameter

0.950
0.925 —
0.900 - \\
=0.875 1
pbt, L=1
0.8501| —e— dda, L =1
| pbt, L =3
0.825 dds I —3
0.800 L= . . | . .
0 0.2 0.4 0.6 0.8 1

g/

Figure 5.15: Comparison of the asymmetry parameter at each maximum edge length and
roughness amplitude for the PBT and DDA methods.

Oscar are summarised in Figure 5.16. As previously discussed, the DDA method predicts
that the variation of scattering cross section with increasing roughness amplitude is mostly
invariant with respect to the maximum edge length. The PBT method shows poor accuracy
for non-smooth surface at L = 1, but follows the trend of the DDA method at L = 3. At
L = 3, the PBT method is accurate to within ~ 3%.
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Figure 5.16: Comparison of the scattering cross section at each maximum edge length and
roughness amplitude for the PBT and DDA methods.
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5.3 Scattering Parameters of Hexagonal Ice Plates

In this section, the results of an investigation into the single scattering properties of hexag-
onal ice plates are discussed. The plate aspect ratio defined by the ratio of thickness to
diameter is 5/80 = 0.0625. The plate diameter is varied from 55 to 95 pm in steps of 10
pm. For each plate size, light scattering is computed for 30 wavelengths in the range 0.2 to
5 pnm. This wavelength range is required for ice optical parametrisations of cirrus clouds for
radiative transfer computations. The wavelength-dependent refractive index of ice has been
well studied [126] and is shown for this wavelength range in Figure 5.17. An ensemble of ex-
perimental procedures were used to measure the imaginary part, and the regions of minimum
absorption were then used alongside Kramers-Kronig relations to infer the real part. In the
visible region, absorption is low and the real part is ~ 1.31, whereas for the infrared region,
absorption is much higher and there is an inflection in the real part around 3.1 pm (see
Figure 5.17). The PBT method was used to compute the single-scattering for each particle
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Figure 5.17: Refractive index of ice [126]. Real part is on the left axis and imaginary part
is on the right axis.

size and wavelength combination. The results are shown in Figure 5.18. The upper portion
of Figure 5.18 shows that the single scattering albedo is largely dependent on the refractive
index, particularly for wavelengths smaller than 3 pm. By referring to Figure 5.17 (note the
logarithmic scale), it can be seen that when the imaginary component is low, absorption is
low and hence w values are close to 1. The peak in absorption is at A = 3.088 pm. As particle
size increases, the internal path length traversed by transmitted beams increases. This causes
an increase in absorption, leading to increased values of 045, and therefore decreasing values
of w. The dominating factor in w, however, is the refractive index. Extinction efficiency is
shown in the middle section of Figure 5.18. It follows an oscillatory pattern asymptotic to a
value of 2, which is in accordance with the well known extinction paradox. Diagonal bands
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Figure 5.18: Thin plate single scattering parameters.

can be seen from lower left to upper right, which conform to the scale invariance rule [127].
In other words, the simulations show that extinction efficiency oscillates with size parameter.
At the peak of absorption at A = 3.088 (n = 1.38005 + 0.6062457), Q.. takes values close
to 2, since absorption and external diffraction remove approximately equal amounts of the
incident light. It is interesting to observe a band of Q.. ~ 1 for A = 2.838 pm. At this
wavelength, the refractive index is n = 1.04 + 0.05¢. Further investigation into this finds
that ~ 60% of light incident on the geometric cross section is removed due to absorption.
The remaining scattered light is then scattered with an efficiency of ~ 50%. This can be
explained by the real part of the refractive index being ~ 1. In this case, the particle is
behaves indiscernibly from the surrounding medium, and hence scatters only very little light
away from the forwards direction. The results for asymmetry parameter are shown in the
lower section of Figure 5.18. Generally, values for g are consistently above 0.8, which is
mainly dependent on the geometry. This is because the ice plate consists of 2 large, plane
parallel basal facets, which allow a large fraction of the incident light to pass through the
particle and be transmitted into the direct forwards direction. In the absorbing band at
A = 3.1 pm, g approaches values close to 1, since the scattering is dominated by external
diffraction and external reflection. External diffraction is highly peaked in the forwards di-
rection, and external reflection usually has much lower intensity in comparison. Comparison
of g against ()..; shows a positive correlation between the two parameters. For refractive
indices with small imaginary components, the extinction is dominated by scattering. In this
case, the asymmetry parameter is influenced by whether the external diffraction and trans-
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mitted beams in or close to the forwards direction interfere constructively (increasing g) or
destructively (decreasing g). However, when integrated over a particle size distribution, this
effect is likely to have only a small effect.

Summary

In this section, the PBT method has been compared against the DDA method in 2 benchmark
comparisons. In the first, the scattering for smooth and roughened hexagonal columns in
fixed orientations at 3 different values for refractive index was computed. In the second,
the orientation averaged scattering from hexagonal ice plates with varying surface roughness
properties was compared. Interestingly, the DDA method showed that the scattering was
largely independent of the correlation length of the roughness. The PBT method showed
close agreement to the DDA when the roughness correlation length was several times the
wavelength. The PBT method was then used to compute the orientation averaged scattering
parameters for hexagonal ice plates across a range of particle sizes and wavelengths. In
summary, this section provided an insight into the accuracy of the PBT method, as well
as showing how it can be used as a valuable tool for bridging the gap between theoretical
studies, experiment, and observational data. In the next chapter, a summary is given, which
concludes this report.
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Chapter 6

Summary

The main goal of this work has been to determine if a light scattering model based on
GO could be devised, for the rapid accurate and rapid simulation of light scattering from
particles with overall size much larger than the wavelength, but with physical roughness of
length scale comparable to the wavelength.

In order to achieve this, Section 2 introduced the basic framework for electromagnetic
theory, which describes how an incident plane wave interacts with a scatterer, leading to a
redistribution of the wave’s energy into multiple directions. The scattered field is represented
by an outgoing spherical wave in the far-field, and its intensity and polarisation depend on
the direction of observation. The Stokes parameters and Mueller matrices can be used to
describe the state of the scattered field (at a given scattering angle) and the transformation
from the incident to scattered field, respectively. Key integrated scattering parameters, such
as asymmetry parameter, cross sections, and single scattering albedo, are defined, which are
important for a broad range of applications.

In Section 3, just a few of the many current theoretical methods for light scattering were
introduced. First, a brief theoretical derivation of the Lorenz-Mie theory for light scattering
by spherical particles was given, which solves the vector wave equation by expanding the
scattered field into a series of spherical harmonics. Second, a short overview of the T-
Matrix method was described, which merits mentioning here owing to its widespread use
in the literature. Third, the discrete dipole approximation was introduced. It is a versatile
method that can be used for scatterers much larger than the wavelength of light, albeit with
rapidly increasing computational demands. It is regarded as a numerically-exact method,
with an accuracy that increases with increasing discretisation of the scatterer. For these
reasons, it is a popular method, and it was used in this work as a numerical benchmark.
The principles of classical GO were introduced, which provide a computationally inexpensive
way of predicting how light scatters from particles with size much larger than the wavelength
of light. Light propagation is modelled by the use of rays, which take straight-line paths
undergoing reflection and refraction described by Snell’s law and the Fresnel coefficients. A
combination of Fraunhofer diffraction theory and Babinet’s principle can be used to account
for the effects of external diffraction, which is responsible for approximately one half of the
scattered intensity.

In Section 4, the PBT method was described. It is the novel method presented in this
work and is a physical-optics hybrid light scattering method for large, non-spherical particles,
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including those with surface roughness. It is an approximate method based on the principles
of GO, which leads to an accuracy that increases with the size of the particle. The particle
is represented by a surface mesh, where each of the facets is grouped according to the
macroscopic features of the particle. Each group forms a parent structure, and reflected and
refracted beams are produced when a parent structure is illuminated by an incident wave.
By use of Snell’s law and the Fresnel equations of reflection and transmission, the beams can
be traced in the near-field to arrive at an approximation for the electric field on the surface
of the particle. A surface integral diffraction equation is used to map from the near to the
far field and the scattered far field can then be used to compute scattering parameters of
interest.

In Section 5, the accuracy of the PBT method was tested against the DDA method in
two benchmarking studies. The PBT method was also used in a microphysics application to
compute single scattering parameters for thin hexagonal ice plates.

In the first benchmark, the results of the two methods were compared for smooth and
rough hexagonal columns of length 10 pm and radius 5 pm. Gaussian random roughness was
used to create the surface texture, and results of various Mueller matrix elements were pre-
sented. The refractive index was varied from non-absorbing to strongly absorbing particles,
and the PBT method demonstrated a significant computational efficiency, computing results
in approximately 1/1000th of the time required by the DDA. For non-absorbing particles
(n = 1.31 + 07), both methods showed close agreement, especially in the forward regions,
which (in the framework of GO) was dominated by external diffraction and transmission
through pairs of parallel facets. Discrepancies can be observed in the backscattering, where
the PBT method accuracy decreased, which was suspected to arise from the near-field calcu-
lation. The general agreement for weakly and strongly absorbing particles (n = 1.31 4+ 0.014
and n = 1.31 + 0.17) was good, although the PBT method overestimated the intensity in
the side scattering. The asymmetry parameter, scattering and extinction efficiency errors
between the methods were within 5%. The PBT method demonstrated a good overall per-
formance, including the ability to predict 2D scattering patterns, although the accuracy in
the backscattering decreased for the roughened particle investigated here.

In the second benchmark, scattering properties of hexagonal ice plates with surface rough-
ness at a wavelength A\ = 0.532 pm were investigated. The plates had an aspect ratio 10
and volume-equivalent size parameter 60. The scattering was averaged over 96 orientations
so as to obtain an approximate solution to the orientation-averaged scattering. The DDA
method was first used to investigate the effect of roughness on different scattering regions
and integrated parameters. Secondly, it was used as a reference to measure the accuracy of
the PBT computations. The surface roughness was varied with respect to both a character-
istic length scale and a roughness amplitude. The DDA results showed that the scattering
properties were mostly independent of the roughness length scale, and that roughness had
almost no effect on the scattering when the roughness amplitude was much smaller than
the wavelength. One exception to this rule was the direct backscattering, which showed a
higher degree of sensitivity and decreased with the presence of surface roughness. For the
particle geometries studied here, asymmetry parameters decreased by ~ 2% as the roughness
amplitude increased from o = 0 to ¢ = A. Furthermore, it was found that the scattering
from hexagonal ice plates with strong roughness amplitude (¢ ~ A) showed an absence of
a halo peak. This suggested that the use of measuring techniques, such as that of the halo
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ratio, may not necessarily be able to determine that there is an absence of ice particles with
hexagonal symmetry. However, further incorporation of the halo ratio in measuring tech-
niques could provide as a useful method of estimating surface roughness and irregularity,
especially when combined with analysis of other experimental evidence such as scattering
pattern symmetry and particle imaging. For the PBT method, the results showed best accu-
racy for roughness amplitudes in the range ¢ < 2A/5 and a maximum edge length L = 3.
In these cases, the asymmetry parameter and scattering cross sections can be computed to
within 1% and 3% accuracy, respectively.

Finally, the PBT method was applied to compute the single-scattering properties of
hexagonal ice plates over a wavelength range of 0.2 to 5 pm. The aspect ratio of the plates
was fixed, while the diameter was varied from 55 to 95 pm in 10 pm increments. The re-
fractive index, which varied with wavelength, was a key factor in the scattering behaviour,
particularly in the transition from low to high absorption at A ~ 3 pm. The single scattering
albedo was computed, showing a strong correlation with the refractive index. When absorp-
tion is low, w approaches 1, whereas at the peak value of absorption (A = 3.088 pm), w values
decreased significantly to values of ~ 0.4. The extinction efficiency was observed to follow
an oscillatory pattern, with an asymptote value of 2, which is consistent with the extinction
paradox. One interesting scattering feature was that Q.,; ~ 1 at A = 2.838 pm, because the
particle refractive index approaches that of the surrounding medium, reducing the scattering
efficiency. The asymmetry parameter was primarily influenced by the ice plate geometry,
with values consistently above 0.8. At the absorbing band A\ ~ 3.1 pm, g approaches 1 due
to the scattering being dominated by external diffraction and reflection.

In summary, this work details a successful endeavour to devise a physical-optics method
for the computation of light scattering from large particles, with a computation speed re-
duced by several orders of magnitude compared to the discrete dipole approximation. The
PBT method, based on a surface integral equation and a novel geometric optics ray back-
tracing technique, stands as a valuable tool for a wide range of applications. With further
application, it has the potential to improve our understanding of light scattering from large
particles, and to strengthen the relationship between theory, experiment, observational data,
and prediction.
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A Mueller Matrix Relations

The following section lists the relationships between elements of the Mueller matrix and
elements of the amplitude scattering matrix [87]:

1
S =S (191 +18: + |85 + [Si]?), (A1)
Stz = §(|52|2 — S1]* + [Sal* = [S5[%), (A.2)
813 = RG(SQSE; + SlSZ), (AB)
814 = Im(Sgng — 5181), (A4)
1
Sy = §(ySQ|2+|Sl\2+|S4]2+|53|2), (A.5)
1
Sop = 5(152|2 + 1517 = [S4f® — |S5]?), (A.6)
823 = RG(SQS* — 515*), (A?)
824 = Im(SQS -+ 515*), (AS)
831 = Re( S* + Sls*), (Ag)
832 = RG(S 515*), (A 10)
833 = RG(S S* + Sgs*), (All)
841 = Im(S*S4 -+ S*Sl), <A13)
842 = Im(S*S4 - Si Sl), <A14)
844 = Re( SgS*) <A16)
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B Snell’s Law Corollary

Theorem 1. The path difference & between the field of an sink facet and that of a source
facet depends only on the z distance &’ between the centroids of each facet.

Proof. The geometry of the problem is comprised of 2 facets of the particle surface mesh.
The first facet is assumed to have been illuminated by an external plane wave, and has led
to a refracted wave inside the particle. A ray has been backtraced from the second facet and
has intersected within the bounded surface of the first facet. This means that the second
facet will be illuminated by the first facet and therefore the beam is to be propagated in the
—7 direction along the path of the backtraced ray. Assuming knowledge of the amplitude
matrix at the centroid of the source facet Sy, the goal is to find the amplitude matrix at the
centroid of the sink facet Sj. The geometry of the problem is shown in Figure B.1 (which is a
copy of Figure 3.4). Initially, there are two incident rays of interest. The first ray intersects

source
facet, f, M ------

Y backtraced
. ray

5i Y

e

sink
facet, f;

—
N>

Figure B.1: Beam propagation from a source facet f* to a sink facet f7. Facet centroids
are represented by black dots. A ray is backtraced from the centroid of f7 and is found to
intersect within the bounded cross section of f*. Edges of the beam are represented by
dotted lines. It can be shown that n;a = nyb, and therefore §7 describes the path length
between the centroid of f* and f7. The corresponding phase difference relates Sk to S.

with the centroid of the sink facet. The second ray has an intersection with f; that coincides
with that of the backtraced ray from f;. If the transmitted field is also a plane wave, then
the path difference § between Sy and S; is given by

6=—a+nb+§), (B.1)
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where n is refractive index. Using the geometry of the problem gives that

a b

- B.2
sinf; sinf,’ (B-2)

where 6; and 6, are the angles of incidence and transmission, respectively. Applying Snell’s
law, sin#; = nsiné,, gives a = nb. Substituting this into Eq. B.1 gives that § = 67, which
completes the proof. A similar theorem can be derived for the case of internal reflection,
which allows this method to also be used for internal beam reflections. m
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C PBT Command Line Arguments

The PBT code reads input parameters from the command line. Each input parameter is
defined by a keyphrase, with arguments following a space delimiter. The ordering of most
arguments in the command line is not important and the PBT will search through lines from
left to right in an attempt to find each argument. A summary of command line arguments
is given below:

e -lambda <value> - Defines the wavelength of incident light. If omitted, the default
value is 0.532.

e -rbi <value> - Defines the real component of the particle refractive index. If omitted,
the default value is 1.31.

e -ibi <value> - Defines the imaginary component of the particle refractive index. If
omitted, the default value is 0.

e —cmethod <string> - Defines the method of particle input. If omitted, the PBT will
use the cc_hex method to make a hexagonal prism with radius 5 and prism length 10.
Current supported methods are:

— read - Attempts to read the particle from the current directory. If read is speci-
fied, the following arguments may also be specified:

*x —cft <string> - Defines the particle input filetype. The supported particle
file input types are:
- obj - Wavefront style geometry file
- mrt - Macke ray-tracing type
If —=cfn is omitted, the PBT will attempt to guess the particle filetype based
on the file extension. Macke ray-tracing style is assumed for file extensions
.cry and .crystal, and wavefront style is assumed for file extension .obj.
% —cfn <string> - Defines the particle filename. To ensure that the particle
file is sufficiently discretised (ie. at least 4 elements per wavelength), see
information on the -tri flag for triangulation. If the mesh consists only of
triangles, the PBT will assume it is sufficiently discretised and automatic
triangulation will be disabled. If the mesh contains a facet with more than 3
vertices, the PBT will enable triangulation by default because the code does
not currently directly support this.
* —afn <string> - Defines the apertures filename. The apertures file contains
a single column defining which aperture each face belongs to. The number of

lines in the apertures file must match the total number of faces in the particle
file.

— cc_hex - Attempts to make a Gaussian rough hexagonal column/plate. Uses
method developed by C. Collier [74], based on Muinonen & Saarinen 2000 [128].
If this flag is used, several other flags may also be specified:
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% —cc_hex 1 <value> - L from Muinonen & Saarinen 2000. Should be large
compared to the correlation length (see below). If omitted, the default value
is 20.

x —cc_hex hr - Hexagonal edge length. If omitted, the default value is 5.

% —cc_hex nfhr - Number of subdivisions along each hexagonal edge. If omit-
ted, the default value is 6.

% —cc_hex pfl - Prism edge length. If omitted, the default value is 10.

* —cc_hex nfpl - Number of subdivisions along each prism edge. If omitted,
the default value is 12.

% —cc_hex pher - Number of rotations to perform at prism facet-basal facet
edges (10% of no. of subfacets along prism edge). If omitted, the default
value is 1.

% —cc_hex pper - Number of rotations to perform at prism facet-prism facet
edges (10% of subfacets along hexagon edge). If omitted, the default value is
1.

% —cc_hex nscales - Number of roughness scales. If omitted, the default value
is 1.

x —cc_hex_cls - Correlation lengths for each roughness scale, separated by
spaces. If omitted, the default value is 1.

% —cc_hex sds - Standard deviations for each roughness scale, separated by
spaces. If omitted, the default value is 0.

— -rec <value> - Defines the total number of beam recursions per orientation. If
omitted, the default value is 8.

— -refl <value> - Defines the max number of beam total internal reflection events
per orientation. If omitted, the default value is 10.

— -rot <args> - Defines the orientation of the particle. It is optional. If omitted, the
PBT will not rotate the input particle. The <args> parameter is used to define the
method of rotation, or to define random orientation. Current supported methods
are:

% euler <alpha> <beta> <gamma> - Choose to rotate the particle according to
the 3 Euler angles, given in degrees. There are several ways to rotate via
Euler angles; the PBT follows the method of Mishchenko.

- Example: -rot euler 11 25 32

x off 30 0,10,20,30 - Choose to rotate the particle according to the ”off”
convention. Only 4 different values are currently supported for this method.
Input particle should be oriented lengthways, with prism axis lying in the xy
plane.

- Example: -rot off 30 20
*x none - Choose to not rotate the particle.

- Example: rot none
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x multi <value> - Choose to randomly orient the particle. <value> defines
the number of orientations. For reproducibility, the random_seed subroutine
can be used to set the random seed to a specified value, which will cause the
random orientations to be reproducible. Since the Euler o angle has no effect
on the 1-d scattering, it is set to 0 for orientation averaging.

- Example: -rot multi 1000

— -mt <value> - Defines whether the code should attempt to use multithreading,
where appropriate. The value may be 0 for no multithreading, or 1 for multi-
threading. If omitted, multithreading is enabled by default. If enabled, the user
should ensure that the relevant omp environment variables are set up for their
system, e.g., OMP_STACKSIZE, OMP_NUM_THREADS, etc. If the code throws a seg-
mentation fault at the diffraction subroutine, the user will likely need to increase
the OMP_STACKSIZE.

— —jobname <string> - Specifies the name of the directory within which the output
files should be placed. It is optional. If omitted, "my_job#" is used, where # is
an integer. If the directory already exists, an integer is appended to the directory
name so that no files are overwritten.

— —theta values - Specifies the polar angles at which the far-field should be eval-
uated. See below for example usage:

* —theta 0 1 180 - Evaluate the far-field from 0 in 1 degree steps to 180. If
omitted, this is the default behaviour.

* —theta 6 0.1 25 150 175 0.25 180 - Evaluate the far-field from 6 in 0.1
degree steps to 25, then step to 175, then in 0.25 degree steps to 180.

— -phi values - Specifies the azimuthal angles at which the far-field should be
evaluated. See below for example usage:

* -phi 0 1 360 - Evaluate the far-field from 0 in 1 degree steps to 360. If
omitted, this is the default behaviour.

— -no2d - Suppresses the output of the 2D Mueller matrix, which can be a large file
if many far-field evaluation angles are specified.

— -tri - Enables automatic Delaunay triangulation. Note that use of this flag
requires compiling the triangle code in ./src/tri/.

— -tri_edge <value> - Sets the maximum edge length for triangulation. If omitted,
the default value is 1.

— —tri_rough <value> - Sets the standard deviation for roughness derived from the
triangulation. If omitted, the default value is 0.

— —tri_div <value> - Sets the minimum divides per average parent length dimen-
sion from the triangulation. If omitted, the default value is 1.

— —time_limit <value> - Sets a time limit (in hours). The PBT will save at an
intermediate point if this time is surpassed. Use -resume <value> to resume the
job (see below).
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-resume <value> - Resumes a previous job that was saved at an intermediate
point. value must be the number of the cache ID. This option overrides most
input parameters with those read from the cached job.

-scaling - Forces the diffracted energy in the far-field to be conserved with
respect to the near-field energy.

-timing - Enables more detailed output of the timing of different parts of the
code.

-debug <value> - Controls the level of debugging output:
0 - Minimal output

*
% 1 - Some output (default)
x 2 - Large output

*

3 - Extreme output
—export_beam <args> - Exports information about the beams to a file

*x num <value> [<value>] - Exports by beam number. If 1 value is given, the
beam tree is exported from the first beam index to the index specified by the
value. If 2 values are given, the beam tree is exported from the beam index
specified by the first value to the beam index specified by the second value.

x rec <value> [<value>] - Exports by recursion number. If 1 value is given,
the beam tree is exported from the first recursion to the recursion specified by
the value. If 2 values are given, the beam tree is exported from the recursion
specified by the first value to the recursion specified by the second value.

-fast_diff - Enables an approximate but faster diffraction method. According
to Jackson, Classical Electrodynamics Sec 10.5 [29], most of the diffracted energy
is confined within the angle A\/d, where d is a linear dimension of the aperture. If
this flag is enabled, any far-field bins outside an angle of 8\/d are excluded from
the diffraction calculation, for a given outgoing beam. This flag also restricts the
external diffraction to the forward scattering.

intellirot - Sets the Fuler angles for orientation averaging to be uniformly
distributed, instead of randomly distributed.

beta_min <value> - Sets the minimum beta angle for orientation averaging, which
can be used to take advantage of particle symmetry. Must be in the range 0 to
180.

beta max <value> - Sets the maximum beta angle for orientation averaging, which
can be used to take advantage of particle symmetry. Must be in the range 0 to
180.

gamma min <value> - Sets the minimum gamma angle for orientation averaging,
which can be used to take advantage of particle symmetry. Must be in the range
0 to 360.

gamma max <value> - Sets the maximum gamma angle for orientation averaging,
which can be used to take advantage of particle symmetry. Must be in the range
0 to 360.
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— -output_eulers - Outputs the Euler angles used for orientation averaging to a

file.
— -speed - Prioritises speed over memory use. This flag is enabled by default.

— -memory - Prioritises memory use over speed.
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