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Abstract 

 

Medical Image character recognition (MICR) has become a useful application of 

optical character recognition (OCR) models due to the advancement in computing 

resources, large databases of medical image records and the need for an efficient 

information retrieval system for various needs. However, with the unique nature of 

medical image modalities (MIM) such as X-rays, Ultrasounds and Magnetic 

Resonance Imaging (MRI), where patients’ demographics and clinical examination 

data exist as burned-in text on the pixel content in small font sizes with overall image 

low-resolution, application of traditional OCR on these low-quality image results to a 

poor accuracy. The traditional OCRs cannot recognise these burned-in texts under 

these conditions, as they are designed for mainly bi-level text with resolutions of 

150DPI and above and scanned documents with a minimum of 300DPI. In contrast, 

these MIM have a low resolution of 96 dpi. 

To solve these challenges, this thesis explores the application of deep learning 

techniques in the aspects of deterministic modelling, semantic similarity learning, and 

generative modelling to solve the problems in MICR, which are low resolution, small 

text, small sample size and background interference. This thesis developed an 

ensemble of Convolutional Neural Networks (CNN) inspired by the classical Lenet-5 

architecture to recognise burned-in text at the character level. Experimental results 

show promising results when compared with the state of the art. Furthermore, to 

increase the character recognition rate of the CNN models when dealing with visually 

similar characters (VSC), this thesis proposed and designed a channel attention-

based Siamese network to efficiently apply metric learning and few shot techniques 
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on recognising VSC while training on small sample size per class. The evaluation 

showed that the Siamese network could discriminate between VSC in MIM compared 

to regular multi-class classifiers.  

To deal with the small sample size problem caused by privacy concerns when 

acquiring MIM for deep learning tasks, this thesis proposed, deployed, and evaluated 

a conditional variational autoencoder (CVAE) to generate synthetic image data. The 

evaluation shows improvement in the accuracy of deterministic models when trained 

with augmented images generated by the proposed CVAE model. 

To ensure the generability of this thesis's findings, two datasets were used for 

the evaluation: an open-source medical image dataset and a privately collected 

medical image dataset whose collection was approved by the University of 

Hertfordshire’s ethics committee. An accurate MICR solution can improve health data 

analytics by allowing a more accessible and accurate extraction of data from MIM. 

This can assist in analysing image data to identify patterns, thereby improving patient 

care and diagnosis. 
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1.0 Introduction 

1.1 Overview 

Major advancements in computational power, hardware, artificial intelligence, image 

processing, and pattern recognition technologies have been applied to various medical 

image modalities (MIM), such as X-rays and ultrasounds. A closer understanding of 

the default features of these MIMs shows they incorporate patients’ demographics and 

information from medical examinations, and these exist as burned-in text data on 

these images; that is, the text is embedded in the pixel content of the image. The 

burned-in text is helpful for various information retrieval purposes, and therefore, it is 

essential to have efficient and accurate means to identify them for further processing 

needs. However, the MIM have a complicated nature due to its acquisition and 

acquisition device method, where the high quality of the imaging is given up, allowing 

for storage and transmission needs. Hence, these images have poor quality and low -

resolution, making the burned-in text appear very small. These complexities of the 

MIM and the burned-in text affect the accuracy of traditional optical character 

recognition (OCR) systems when used for medical image character recognition. 

The state-of-the-art OCR systems include open-source, for instance, Tesseract, 

OCRopus, and others for commercial use, such as ABBYY and Transym OCR, and 

they work in a similar mode of segmentation and recognition (Reul et al., 2018). A 

comprehensive analysis of Tesseract showed it is regarded as the best open source 

in critical comparison with other systems (Patel et al., 2018), particularly in line finding, 

extracting features and text classification methods (Smith, 2007). However, Tesseract 

has a very low accuracy level when applied in recognising burned-in textual data on 

low-resolution MIM due to the small font size of the textual data and the complex 
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background interference. To provide a more comprehensive analysis, some 

commercial OCR systems were applied to recognise burned-in textual data on low-

resolution MIM and results from popular systems, Google Document AI, Microsoft 

Azure Cognitive Services for Vision and Amazon AWS Textract, show an inability to 

recognise the burned-in text accurately or accurately. I subscribed to these paid 

services and attempted to extract the text from the low-resolution MIM, and the results 

were not accurate, which further reveals the challenges currently in this domain. The 

evidence of the result is provided in Appendix F. 

This PhD study focuses on only the issue of low resolution and small font size 

problems in MIM and aims to provide innovative solutions to these challenges. Further 

attention is given to the problems of small sample sizes in medical image datasets and 

visually similar character images. A visual representation of the low resolution and 

small font size problem in MIM is shown in Figure 1.1 below: 
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Figure 1. 1 : Xray Image (Wang (2002)) 

Extracting the burned-in text region for recognition from Figure 1.1 would more closely 

encounter the low-resolution problem resulting from the small font size and low 

resolution, as shown in the extracted burned-in text on the left and right panels.  

From the varying conventional MIM shown in the Figures above, it would be noticed 

that the burned-in text characters have a small font size, resulting in the low resolution 

of that region if extracted for post-processing needs. When the part with the text is 

further extracted and enlarged to recognise the text data, the low resolution of the 

image region is extensively revealed. This fuzzy and small font size of these burned 

texts occurs in most MIM, and it is a major challenge for traditional OCR methods to 

recognise the characters accurately. The problem of recognising small font sizes of 

burned-in text due to the overall low resolution of MIM remains an unsolved and 
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challenging problem, and past authors have pointed this out while proposing different 

solutions. Unlike printed text on paper, these burned-in texts are stored as data in the 

pixel structure of the acquired medical image (Reul et al., 2016). Recognition of these 

burned textual data using traditional methods has been difficult because their 

recognition is affected by the image’s low resolution, and the character recognition 

accuracy is usually poor when the traditional methods are applied. 

This PhD thesis proposes varied solutions based on advanced deep learning 

algorithms to tackle the problem in different aspects: (a) Leveraging the ensemble 

model advantage in recognition of these burned-in texts in MIM, (b) Tackling the issue 

of the visually similar characters using proposed semantic similarity learning methods, 

which classical classifiers find it difficult to achieve and (c) Proposing a data 

augmentation technique to improve the recognition accuracy, as MIM data samples 

are small in size due to privacy policies in the health domain, and acquisition cost. 

Chapters 4, 5, and 6 will extensively present these solutions with experimental 

validations.  

 

1.2 Problem Statement 

Medical imaging acquisition devices, during capturing, usually save modalities with 

very low resolution to reduce required storage infrastructure, usually at the cost of 

losing vital pixel information and clarity (Thambawita et al., 2021), which are relevant 

during information retrieval processes. The recognition of these burned-in texts in 

these modalities poses several challenges to modern OCR systems due to their small 

font size and low resolution. The burned-in text is rendered at a low resolution of an 

average value of less than 100 DPI and has a small font size. This creates a problem 
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during textual recognition as the characters end up being connected together with an 

overall low quality and, hence, becomes a challenge for traditional OCR solutions. 

 

Figure 1. 2 : Using Tesseract to check burned-in text  (source: Author) 

Figure 1.2 above shows the recognition results from the latest version of one of the 

most accurate and reliable OCR engines, Tessaract (Badla, 2014), and its poor result 

in recognising burned-in textual data. The results seem extremely poor, as seen in the 

figure. From a detailed literature study of various traditional OCR solutions with 

consideration on their application to the recognition of burned-in texts in MIM, most of 

these systems are based on the character-segmentation approach, in which words 

are segmented into characters and recognition is done at a character level (Due-Trier 

et al., 1996). However, in MIM, where burned-in text data exist in small font sizes and 

low resolution, incorrect character segmentation leads to poor recognition rates by 

these existing OCRs. Other recent OCR techniques follow a holistic word recognition 

method because they do not identify at the character level but use global features like 
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T-junctions, B-loop, ascenders, and descenders information for identifying the entire 

word in cases where font size may be too small with a low resolution in the input image, 

achieving up to a recognition accuracy of 65% (Lavrenko et al., 2014).  In the case of 

MIM, this holistic word recognition approach does not solve the problem of burned-in 

text recognition, as this method has the major drawback of being limited only to a small 

vocabulary and only useful with static small lexicon cases (Cote et al., 1998). MIM may 

contain private and diagnostic data unique to each patient involved; therefore, a 

unique solution is required to recognise these burned-in texts for post-processing 

actions.  More recent deep-learning approaches have been unable to recognise these 

small texts in low-resolution MIM accurately when considering the performance of 

OCRs in other related domains (Xu et al., 2021 & Monteiro et al., 2017) as the image’s 

complex background and noise have negatively affected their performance.  

Critically considering the recent study by Xu et al. (2021), though the authors 

suggested their method effectively solved the low-resolution and background 

interference problem, there is no specific indication about the exact DPI they worked 

on that could be regarded as “low-resolution”. There is also no comprehensive 

information on any background interference of the concerned image in their paper. 

Their precision was 80% for the synthetic character dataset and 70% for a medical 

image dataset used; however, considering a past work by Sangiacomo et al. (2022), 

who used OCR in a related domain, they suggested that an accuracy of at least 90% 

is sufficient for semantic analysis and data entry. This means that Xu et al. 's (2021) 

work still has room to be improved and be more effective. Additionally, as mentioned 

earlier, Xu et al. (2021) carried out an evaluation on a synthetic character dataset, 

Mjsynth, and a small medical image dataset, respectively. Their conclusion would be 

more convincing if their work were evaluated on a larger non-synthetic dataset.  



7 
 

This current research aims to clarify the magnitude of the low resolution in terms of 

DPI and propose, implement, and validate solutions accordingly. Furthermore, 

considering the current performance of OCR in other domains, further improvement 

can be made not only in character recognition but also in tackling the problem of 

visually similar characters and small sample size problems. 

This is a relevant gap to which this PhD thesis aims to contribute by proposing 

techniques to improve recognition rates in medical image character recognition. A 

solution to this problem would increase performance in information retrieval systems 

needed for diagnostics and health management requirements.  

 

1.3 Research Aim 

The research aims to propose and apply deep learning techniques in recognising 

burned-in textual data on low-resolution MIM with background interference. This PhD 

thesis proposes different advanced deep learning-based algorithms to tackle the 

associated problems of accurately recognising these textual data on a character-by-

character basis. The best approach, though difficult, is character-by-character. It 

removes the limitations and difficulty of using a vocabulary. It allows the practical 

application of the proposed solution in any location and device, as long as the burned-

in text is constituted of characters. Furthermore, to support this choice, past works on 

character recognition in printed text and historical documents show higher accuracy 

and more generalisation than word-based recognition, as word-based recognition 

usually requires various post-corrections (Islam & Iacob, 2023; Drobac & Lindén, 

2020).  
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To achieve this aim, this research will provide a critical analysis of the state-of-the-art 

techniques in OCR and medical imaging, as seen in the literature, for recognising 

burned-in textual data in MIM to reveal significant research gaps. Furthermore, this 

research will propose specialised deep learning techniques to solve these identified 

research gaps and validate these proposed techniques using both open-source and 

privately collected data. Ethical guidelines will be followed as set out by the 

University’s ethical committee.  

The objectives and research questions are discussed extensively in section 3.8 after 

a comprehensive literature review is provided. 

 

1.4 Contributions 

The contributions of this research are well presented in Chapters 3, 5, 6 and 7. The 

chapters follow a common theme of optical character recognition, burned-in textual 

data recognition in MM, improved recognition accuracy for visually similar characters 

(VSC) in real-world applications and generative modelling for data augmentation for 

MICR. These chapters are adaptations of academic publications from this PhD thesis 

except Chapters 7 and 8, a version of the literature review on existing machine learning 

practices in burned-in text recognition from MIM, which is an integral part of the 

contents in Chapter 3 (Osagie et al., 2024a) has been published in a journal; Parts of 

Chapter 5  (Osagie et al., 2023) has been presented in a conference, and Chapter 6 

(Osagie et al., 2024b) has also been accepted for a Springer Nature conference in 

Europe. This section summarises each chapter and focuses on the contributions 

outlined below. 
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1. Presented a critical review of the existing machine learning practices in burned-

in text recognition regarding their challenges and open issues. 

In Chapter 3, this research reviewed the significance of burned-in textual data 

recognition in MIM and recent works regarding the ML approach, challenges, 

and open issues for further investigation. The chapter describes the significant 

problems in this research area, such as low resolution, background interference 

of textual data, small dataset size and VSC recognition. Finally, the chapter 

suggests applying more advanced deep-learning algorithms as possible 

solutions (Osagie et al., 2024a). The chapter provides an understanding of the 

gaps in the literature that exist in MICR-based ML and DL-based solutions. 

 

2. Proposed, implemented and validated an enhanced CNN model and a majority 

voting algorithm for burned-in text data recognition in low-resolution medical 

imaging modalities having background interference. 

Chapter 5 presents two vital contributions to improving the performance of 

CNNs for MICR. With a focus on solving the issues identified in Chapter 3, an 

enhanced CNN model for MICR is proposed in Chapter 5. The Lenet-5 

architecture inspires this proposed Model, and justification is provided for the 

choice of this base model. This Chapter further designs a majority voting 

ensemble of enhanced CNN models to optimise this new technique to 

recognise VSC (Osagie et al., 2023). Bayesian optimisation is used to optimise 

the hyperparameters. Multiple evaluations are done using open-source and 

original datasets collected by this research from a data collection study 

conducted around December 2022 – February 2023, with the University Ethics 

Committee’s approval (Appendix A).  
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3. Proposed, implemented and validated a channel attention-based Siamese 

Neural Network to recognise visually similar characters with small sample sizes 

in burned-in text on medical imaging modalities. 

In Chapter 6, the issue of VSC recognition and small dataset size for training 

due to the data privacy issue of collecting medical image datasets is addressed 

explicitly by proposing an attention-based Siamese Network to accurately 

recognise VSC by efficiently learning the semantic similarities between the 

extracted embeddings from sample images. The semantic similarities and 

attention-focused feature extraction layer enable the proposed model to 

discriminate between different character classes efficiently, with only small 

sample sizes (Osagie et al., 2024b). Bayesian optimisation is used to determine 

optimal network hyperparameters, similar to what is done in Chapter 5.   

 

4. Proposed, implemented and validated a specially designed Conditional 

Variational Autoencoder (CVAE)  as a practical data augmentation technique 

to improve the performance of deterministic models in burned-in text data 

recognition in medical imaging modalities. 

In Chapter 7, the issue of small dataset size is further addressed by proposing 

a specially designed CVAE that can be used to synthesise new images of 

characters with the same constraints of low-resolution with background 

interference. The experiments in Chapter 6 show that training deterministic 

models with different subsets of augmented training data generated by the 

CVAE model achieve better performance compared to models trained with the 

original data alone. 
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1.5 Publications related to this thesis. 

The following publications are related to the chapters of this thesis: 

• Chapter 3: Osagie, E., Ji, W. and Helian, N. (2024a) Burnt-in Text Recognition 

from Medical Imaging Modalities: Existing Machine Learning Practices, Journal 

of Advanced Computational Intelligence, and Intelligent Informatics, 28 (1), pp. 

103–110. DOI:10.20965/jaciii.2024.p0103. 

• Chapter 5: Osagie, E., Ji, W. and Helian, N. (2023) Ensemble Learning for 

Medical Image Character Recognition based on Enhanced Lenet-5, in: 2023 

IEEE Conference on Computational Intelligence in Bioinformatics and 

Computational Biology (CIBCB). Eindhoven, Netherlands: IEEE, pp. 1–8. doi: 

10.1109/CIBCB56990.2023.10264911. 

• Chapter 6 (Accepted): Osagie, E., Ji, W. and Helian, N. (2024b) Medical Image 

Character Recognition using Attention-based Siamese Networks for Visually 

Similar Characters with Low Resolution. In Lecture Notes in Networks and 

Systems (pp. 3–12). Springer Nature Switzerland. This was  presented at the 

2024 Third International Conference on Innovations in Computing Research in 

Athens, Greece 

 

1.6 Ethical Consideration 

This research involved using privately collected medical images approved by the 

university’s ethics committee, protocol number SPECS/PGR/UH/05141. The rules and 

regulations set out were followed, as shown in appendix A—E, which show the data 

collection approval, request, and risk assessment. 
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1.7 Outline 

This PhD thesis is separated into the following sections:  

• Chapter 2 provides the comprehensive theoretical framework required to 

understand this thesis. It introduces computer and machine vision concepts:  

optical character recognition, image preprocessing, machine learning, and 

deep representation learning. 

• Chapter 3 provides a comprehensive literature survey of the related and past 

works in recognising these burned-in textual data, including machine learning 

practices. The research objectives and questions are presented based on the 

gaps identified from the literature, with the aim of providing practical solutions 

to the identified problems. 

• Chapter 4 provides the methodology utilised in this PhD research, including an 

overview of the experimental pipeline and data collection. It also discusses the 

technical challenges in this research and how they were addressed. 

• Chapter 5 focuses on the problem of burned-in text data recognition at the 

character level in low-resolution MIM with background interference. It proposes 

a new CNN model and an ensemble classifier model to tackle it, optimised 

based on a hybrid Bayesian hyperparameters optimisation technique.  

• Chapter 6 proposes a channel attention-based semantic similarity learning 

technique to solve the problem of recognising visually similar characters and a 

small sample size per class in low-resolution MIM. 

• Chapter 7 proposes an innovative generative model to increase the available 

character datasets by including synthetic character images for training. This 

model aims to increase the performance of deterministic models trained with 

this augmented data. 
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• Chapter 8 concludes this thesis by summarising the contributions and 

presenting future work as regards medical image character recognition and 

deep learning techniques. 
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2.0 Background 

Computer vision has rapidly developed into a vast area of application, from collecting 

raw visual data to more advanced techniques of pattern recognition, automated 

feature extraction, and representation learning of visual content (Wiley & Lucas, 2018). 

The modern concept of computer vision combines techniques, ideas and methods of 

digital image processing, pattern recognition, computer graphics and artificial 

intelligence to extract features and information from input images. The output is a 

comprehensive and usable understanding of the image in a particular domain. The 

human eye can see and interpret images easily due to its complex biological structure. 

It can adjust the amount of light it lets in, focus on objects near and far, and produce 

better interpretations of incomplete and/or visually similar objects. However, the 

practical efficiency of computer vision models is still far from that of the human eye, 

and this has led to research for a better understanding of 2D and 3D shapes and 

appearances of objects in imagery. As research in computer vision progresses, it has 

become widely applied in real-world applications. Some of these applications Include: 

• Optical Character Recognition (OCR): Handwritten and printed text 

recognition (Figure 2.1a), automatic plate number recognition, archiving, and 

automatic data entry. 

• Medical Imaging: Tumours, cancer detection in computed tomography (CT) 

images (Figure 2.1b), and smart operating facilities for surgical procedures to 

improve precision. 

• Retail and sales: Customer tracking in cashierless stores and automated 

warehouse inventory management (Figure 2.1c). 
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• Manufacturing and industrial systems: Industrial anomaly detection for 

defective and non-defective machine parts (Figure 2.1d).  

 

Figure 2. 1 : Some real-world applications of Computer Vision 

 (a) Visual character recognition for reading number plates (ANPR)1, (b)  Lung cancer 

classification model using CT images2 (c) Inventory counting3 (d) Real-time defect 

detection4.      

However, this study focuses specifically on applying OCR in medical imaging to 

provide accessibility and automate the recognition of burnt-in textual data embedded 

in the pixel content under the constraints of low-resolution and background 

interference.  

This chapter provides adequate background on the computer and machine vision 

concepts important to OCR and MICR to enable easy understanding of this thesis. It 

 
1 https://viso.ai/computer-vision/optical-character-recognition-ocr/ 
2 https://viso.ai/applications/computer-vision-in-healthcare/ 
3 https://xosight.com/2020/12/30/the-future-of-inventory-management/ 
4 https://viso.ai/applications/computer-vision-in-manufacturing/ 

https://viso.ai/computer-vision/optical-character-recognition-ocr/
https://viso.ai/applications/computer-vision-in-healthcare/
https://xosight.com/2020/12/30/the-future-of-inventory-management/
https://viso.ai/applications/computer-vision-in-manufacturing/
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comprises sub-sections: medical imaging application, preliminary definitions in image 

processing and medical imaging, OCR for text extraction, machine learning 

approaches, and deep representation learning. 

2.1 Medical Imaging Applications: Clinical challenges and issues 

With the vast growth in computing power, artificial intelligence has been rapidly applied 

to develop useful models for various medical imaging modalities. Some vital 

applications in medical imaging are: 

• Prescribing targeted treatments: Computer vision techniques in medical images 

remove the dependence on quantitative methods and allow medical personnel 

to decide on more effective personalised treatments that precisely target the 

specific illness. This is seen in instances such as accurately identifying and 

segmenting cancerous tissues (Bai et al., 2023). 

• Predictive medicine: Computer vision techniques are helpful in identifying 

existing conditions and can also provide useful insights into developing 

conditions, such as the risk of a cardiac attack and neurological decline. Past 

work has shown that combining MRI with clinical reports can help spot signs of 

lesions and shrinkage in Alzheimer's disease (Moscoso et al., 2019). 

• Diagnostics medicine:  Here, computer vision techniques in medical imaging 

can detect illnesses such as tumours faster and more accurately, as 

conventional mammogram scans have an error rate of 20% in detecting breast 

cancer. Compared to Google AI's AI-powered model, which has an error rate 

of 1%  (Liu et al., 2018),  

• Clinical data entry: This is useful for medical diagnostics and a robust electronic 

health management system. An efficient and highly accurate OCR system 

enables the scanning text on MIM to convert into readily accessible forms such 
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as synthetic speech and plain text, thereby improving diagnosis speed and 

mobility (Hom et al., 2022). OCR solutions provide an effective mechanism to 

convert medical imaging to allow the application of text analysis techniques, 

such as natural language processing, to yield highly actionable data insights 

(Hom et al., 2022). 

However, despite the rapid integration of computer vision techniques in medical 

images, significant challenges and problems remain.  In terms of clinics and medical 

centres, these are:   

• Visual impairment, a decreased ability to see to a degree, has caused many 

problems that are not fixable by usual means, such as glasses. According to a 

report from the global blindness and visual impairment data in 2015, there were 

an estimated 253 million people with visual impairment worldwide, out of which 

36 million were blind and a further 217 million had various cases of moderate 

to severe visual impairment (MSVI) include the problem with seeing in low 

contrast and brightness condition (Ackland et al., 2017). Vision is essential for 

seeing objects and dark adaptations, contrast sensitivity, balance, and colour 

perceptions. This visual impairment has led to many errors in clinical data entry, 

especially from medical images, due to human errors. An efficient and highly 

accurate OCR system can provide health workers who are visually impaired 

with the capacity to scan text on medical images and modalities and then 

convert it into easily accessible forms such as synthetic speech and plain text. 

It can help them recognise abnormality without the help of third-party 

verification, thereby enabling improvement of diagnosis speed and mobility. 

With the rapid entry into electronic health record (EHR) systems, which 

replaced the old paper-based storage and retrieval processes, which were 
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designed to make patients’ management more accurate, safer, and more 

accessible, the EHR system involves a large number of documentation, medical 

images, investigation reports and prescription, there is always the difficulty 

tracking files and keeping inventory (Dash et al., 2019). Clinical data entry for 

MIM is a significant and challenging task that health workers face daily, and the 

significance of an efficient medical image character recognition system would 

significantly improve the speed, accuracy, and management of medical data 

entry systems. 

• Medical image colourisation, including the large variability in image 

characteristics and the need for robust and accurate colourisation methods 

(Pinto-Coelho, 2023). This has limited the application of computer vision 

techniques in medical imaging, and some medical centres may need to adjust 

to manual methods in analysing these images. This has resulted in a need for 

enhanced modelling techniques to tackle the colour complexity and variability 

of these images to allow automatic extraction and representation learning of 

relevant features. 

• Health workers’ workload - In this digital age, the high volume of medical 

imaging examinations has increased health workers’ workload. This increased 

workload can lead to burn-out, excess fatigue, and an increased error rate 

(McDonald et al., 2015), especially in manually recognising burned-in text in 

MIM, which is usually in low resolutions and has background interference. 

Hence, it is vital to recognise this burned-in text for extraction and fusion with 

EHR to get these benefits. 

The above sub-section has discussed the background of this research and its 

significance from a clinical perspective. It shows that issues of visual impairment, 
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image colourisation and variability, and increased health workers’ workload remain 

motivations for research into automated solutions for clinical data entry and imaging 

analysis.  

 

2.2 Preliminary Definitions 

The common terminologies in computer vision, image analysis, and OCR are 

explained here to enable understanding of their use in the content of this thesis: 

• Pixel: A digital computer represents an image as a sequence of tiny dots called 

pixels (abbreviated px). Depending on the application and the digitiser used, a 

pixel's colour/grey shade is entered as an integer dimension between 0-256. In 

OCR, however, the pixel’s reference is either 0 or 1, white or black, accordingly. 

The spatial location of a pixel P is often denoted by its offset from the top left 

corner of a binary image. Pij, means the magnitude of the pixel on the ith row 

and the jth column (Wiley & Lucas, 2018). Pixel is the determinant of object 

sharpness and location in an image. Pixel optimisation is helpful for object 

detection, segmentation, and recognition (Wiley & Lucas, 2018). 

• Binary Image: Binary images have only two values, 0 and 1, but they often use 

the range of values 0 and 255 to represent the colour of black and white. They 

are referred to as bi-level images. 

• RGB (TrueColor) Image: An RGB image, sometimes referred to as a 

TrueColor image type, is basically an array of colour pixels, where each pixel 

is associated with three values of the image's colour components (red, blue, 

and green) at a specified spatial location. 
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• DPI: This signifies the resolution of a digital image, which is notably measured 

by the number of dots (pixels) per inch. 

• Medical imaging acquisition devices: These are photo-electronic image 

acquisition devices used in diagnostic medicine. During the image acquisition 

process, the imaging part is automatically combined with patient text data, and 

both are merged into the same pixel structure, resulting in the text data 

appearing as burned-in text data and not printed on the image. 

• Medical Imaging Modalities: This medical imaging technique utilises a 

specialised imaging acquisition device to visualise the human internal organs 

and reflect them as images. These Imaging modalities are often classified by 

the technique in which images are generated, such as ultrasound, radiation 

such as X-rays, and MRI. 

• Convolution: This is a widely used technique in the imaging process. It is a 

mathematical operation on two arrays of numbers that outputs a third array of 

numbers with the same dimension. The mathematical formulation of 2D 

convolution is shown below. 

𝑦 [𝑖, 𝑗] = ∑  

∞

𝑚=−∞

∑  

∞

𝑛=−∞

ℎ[𝑚, 𝑛]    ∙  𝑥[𝑖 − 𝑚, 𝑗 − 𝑛]                         (2.1) 

 

In Equation 2. 1 ,  𝒙 is the input image matrix to be convolved with the kernel ℎ 

to output a third and new matrix 𝑦, which denotes the final image. Matrices are 

referenced here as [column, row].  𝑚  and 𝑛 represents the shift with kernel ℎ. 

𝑖 and 𝑗 represents the coordinates of the output in the resulting matrix 𝑦 [𝑖, 𝑗] . 

Zero-padding is when border pixels with all values zeros are added to the edges 

of the input feature map. This ensures that the border pixels receive 
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convolutions and contribute to the feature extraction process. The convolution 

function is generally used in image analysis and processing to apply a certain 

function whose discrete pre-computation is stored in an array (usually called a 

mask) onto the discrete greyshades function of the input image. Convolution is 

used often since the discrete function is pre-determined, and its utilisation 

involves multiplication and summation operations. Convolution involving one-

dimensional data is called 1D convolution, and three-dimensional data is called 

3D convolution. 

• Image Resolution: Resolution indicates the number of pixels displayed per 

inch for an image. It describes the image's level of detail—higher resolution 

means more clarity, and lower resolution means less clarity.   The main 

difference and relation between DPI and image resolution is straightforward: 

the higher the DPI, the more detail can be shown in an image, which means a 

higher resolution. The DPI is used to measure the resolution of the image both 

on screen and in print, whereas the image’s resolution is used to describe the 

overall quality of the image (Mohamed & Yousif, 2010). Finally, DPI and 

resolution are both significant elements in describing an image. Rakhshan 

(2014) supports this relation in medical imaging, as the DPI describes the image 

resolution measurement, and the image resolution explains the overall clarity 

of the image, with instances of X-rays and other digital radiography images. 

 

2.3 Optical Character Recognition (OCR) 

OCR is a process that extracts textual data from an input image into a machine-

readable and accessible format. Much information is stored in printed media, including 

images such as newspapers, paper prints, legal documents, scanned documents, and 
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acquired images such as camera, medical, and industrial images. Due to 

advancements in modern technology, there is a need for an accessible machine 

format for the textual data contained in these images. Manually accessing this large 

volume of images to extract the textual data is challenging as it is highly time and 

resource-consuming (Adnan & Akbar, 2019).  The data entry errors will also be high 

through the manual extraction due to the possibility of human errors. These led to the 

advancement in computer vision techniques to solve this problem. OCR solves the 

problem by automating textual data extraction,  improving operational efficiency, and 

reducing human errors in data entry. The OCR workflow is shown in Figure 2.2, and 

the major steps for the OCR are explained briefly below. 

 

 

Figure 2. 2 : General OCR Workflow5 

• Pre-processing: The OCR performs noise removal and other cleaning 

processes to increase the overall quality of the input image. Some popular pre-

processing techniques in OCR include binarisation, noise removal, thinning, 

skew correction, and skeletonisation. Binarisation converts a coloured image 

with three channels into a bi-level image with only black and white pixels using 

the popular method of thresholding conditions, as shown in the algorithm below. 

 
5 https://www.v7labs.com/blog/ocr-guide     

https://www.v7labs.com/blog/ocr-guide
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Algorithm 1: Thresholding  

1       Input:  Input.png 

2       Output: Output.png 

3       def threshold (Input):  

4              thresholdValue = SomeValue     

5              If  (CurrentPixelValue > thresholdValue) 

6                    CurrentPixelValue = 255   

7              else 

8                   CurrentPixelValue = 0    

 

 

The major challenge is finding the optimal value of the threshold, and various 

techniques, such as the local maxima and minima, OTSU binarisation and 

region-based adaptive thresholding, have been proposed to determine the 

value. Skew correction is to correct the image projection, which may be skewed 

from scanning or acquisition.  Noise can be introduced into images if scanned 

from photographic materials, which may have fine grains or damage if acquired 

directly in a digital format and/or if the image is transmitted electronically. This 

noise will reduce the OCR's accuracy; hence, removing or reducing as much 

as possible is always a good pre-processing step. In this step, noise removal 

aims to smoothen the image to improve quality by removing non-uniform pixels 

using average, median, and adaptive filtering techniques. The most practical 

filtering is adaptive filtering, improving degraded images' quality. 

Skeletonisation helps to uniformise the stroke width of textual data due to the 

different writing styles and font sizes. It is closely related to thinning. Most 
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programming frameworks, such as MATLAB and OpenCV, provide utilities to 

carry out these image pre-processing steps automatically. 

 

• Segmentation, Feature extraction and Recognition:  

The segmentation, extracting features, and recognition stages are used to 

extract the most relevant information from the input and then to recognise the 

characters in the textual data (Singh & Budhiraja, 2011). The feature selection 

is highly contributory to the accuracy of character recognition. This is pattern 

recognition, where the modelling is more complex. Pattern matching isolates a 

character image patch via segmentation and compares it with a similar 

prototype image patch. This works well when the entire textual data has a font 

and scale similar to the prototype stored. It may also involve comparing 

extracted features, such as open and closed loops in characters, edges, line 

thickness, intersection, and edges, from the input image and the stored 

prototype using nearest neighbour algorithms. 

• Post-processing: Post-processing involves approaches such as error 

detection and error correction and conversion of the extracted text into another 

required format (an example is annotated pdf). The essence of this stage is to 

provide human assistance to correct errors quickly. This can be done using the 

lexical approach, candidate generation and candidate ranking to find the most 

appropriate candidate words to replace the erroneous words (Nguyen et al.,  

(2022). 

To further understand how the OCR workflow is approached, the next subsections will 

present a comprehensive summary of the OCR approaches, which modern-day OCR 

engines are based on: segmentation-based and segmentation-free OCR. 
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2.3.1 Segmentation-based OCR Approach 

The segmentation-based OCR approach identifies the individual characters that will 

be used for recognition and strongly relies on the accuracy of the individual character 

segmentation process. This has remained the state-of-the-art approach for most OCR 

engines, which led to vast research for handwritten and printed character 

segmentation methods. Segmentation-based OCR can either be template matching 

or an over-segmentation technique (Qaroush et al., 2022). Template matching 

involves extracting connected characters and matching them with possible templates 

based on the nearest neighbour.  These templates are representative samples of each 

character, and character-character matching is done based on pixel-by-pixel 

matching. The match is found when the number of matched pixels exceeds a 

predetermined value. The basic similarity measure used in practical applications for 

template matching in segmentation-based OCR is a cross-correlation function, 

presented in  (2.2). 

        𝑋(𝑥,𝑦) =  
Σ𝑥,𝑦 [ 𝐼(𝑥,𝑦)−I̅𝑢,𝑣] ∙ [ (T (x−u,y −v )−T̅¯]

√Σ𝑥,𝑦( 𝐼(𝑥,𝑦)−I̅𝑢,𝑣)2 ∙ Σ𝑥,𝑦(T (x−u,y −v )−T̅)2
                         (2.2) 

Where I is the input image, and T is the template, 𝑇̅ is the mean of the template. 𝐼𝑢̅,𝑣 

is the mean of 𝐼(𝑥,𝑦) and is the region under the template. Briechle & Hanebeck (2001) 

adequately explained the cross-correlation function equation, and Hashemi et al. 

(2016) further supported this equation for template matching using a cross-correlation 

equation with a robust decision-making algorithm. 

The over-segmentation approach applies to situations where correct character 

segmentation is not possible due to overlapping characters. Character candidates are 
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found using imperfect segmentation, and matching is based on standard pattern 

recognition techniques (Support Vector Machine, Bayes classifiers, or neural 

networks). This method attempts to solve the over-segmentation problem where the 

OCR engine may not differentiate two close characters using projection-based, 

feature-based, or skeleton analysis-based methods. 

 

2.3.2 Segmentation-free OCR  

The segmentation-free OCR uses a more holistic approach, integrating feature 

extraction and contextual information in the text recognition stage. It can recognise a 

single character by considering the state and its surrounding context. It depended on 

extracting the entire word, part-of-word, or sentence line; features are extracted at a 

word or sentence level, and recognition is done at the word or sentence level. A trained 

classifier is then designed to carry out the recognition, thus avoiding the need for 

character segmentation. A popular, well-known segmentation model is the Hidden 

Markov Model (HMM) (Agazzi & Kuo,1993), which is very similar to recurrent neural 

networks (Baucum et al., 2020). HMM is a very powerful statistical modelling tool for 

OCR due to its high usage in temporal pattern recognition.  More extensive information 

regarding the HMM segmentation-free approach and basic algorithms is covered in a 

background study by Rabiner(1989). This PhD thesis focuses on deep learning 

approaches and, hence, will not elaborate on the mathematical foundations of the 

HMM. 
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2.4 Machine Learning  

Machine Learning (ML) is an aspect of artificial intelligence that develops algorithms 

that can learn relevant representations from available data. It can be referred to as the 

automatic detection of patterns in existing data. ML enables machines to carry out 

complex functions without being explicitly programmed. Recently, it has become 

popular due to the large amount of data continuously generated around us. Such ML 

applications include search engines, loan approval applications, fraud detection 

systems, medical abnormality detection devices, and many others. ML algorithms can 

be classified into supervised and unsupervised learning. These are explained briefly 

in the following subsections. 

 

2.4.1 Supervised Learning  

Supervised learning is an ML approach that develops an algorithm to learn the input-

output relationship information of data based on a given set of paired input-output data 

samples. To learn this input-output relationship of input, 𝑿, to output 𝒀, that is 

∫: 𝑿 → 𝒀, the model is trained with a labelled dataset that has input-output pairs, D . 

             𝑫 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}                            (2.3) 

Where each 𝑥𝑖 is the feature vector of the input, and 𝑦𝑖 is the corresponding output 

(Cunningham et al., 2008). 

The overall goal is typically to develop a final deterministic model that takes input 𝒙  ∈ 

𝑿 and predicts its matching output 𝒚  ∈ 𝒀.  In computer vision and, most specifically, 

OCR, the inputs are the image’s pixels, and the outputs are the characters the image 

represents. The aim is to enable the model to generalise over samples outside the 
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training samples, assuming all the training samples are independent with identical 

distributions.  

A loss function must be defined to find the best approximate function that can define 

the input-output relationship. The loss function quantifies the difference between the 

predicted value 𝑦̂𝑖 = 𝑓(𝑥𝑖) and the actual target value  𝑦𝑖, where 𝑓(𝑥𝑖) is the model 

function (or hypothesis) that make predictions. For instance, in a regression task for 

stock prices based on historical data, the loss function evaluates the model’s 

prediction based on a sample from the training dataset by quantifying the error margin 

between the model’s price prediction and the actual price on the dataset. In practice, 

the cost function is often used interchangeably with the loss function, but they can 

have slightly different connotations depending on the context and the specific domain. 

However, these terms differ because the loss function concerns a single training 

iteration. In contrast, the cost function, an objective function, is the average loss 

function of all the training iterations done on the entire dataset. Loss function can be 

categorised based on the task being done, which are broadly regression and 

classification tasks. For the regression task, which involves the prediction of 

continuous output values, the Mean Square Error (MSE) denotes the loss function. It 

is given by the mathematical equation in (2.4). 

                        𝑀𝑆𝐸 =
1

𝑛
. ∑ ( 𝑦𝑖   −  𝑦̂𝑖)

2𝑛

𝑖=1
                     (2.4) 

Where n is the number of samples in the dataset, 𝑦̂𝑖 is the model’s prediction for the 

i-th sample and 𝑦𝑖 is the actual target value for the i-th sample. MSE is a standard loss 

function and optimises the minimising of the squared differences between the 

predicted and target values of the training samples. Another loss function for the 

regression task is the Mean Absolute Error (MAE), which calculates the average 
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absolute distance between the predicted and the target values. It does not square the 

difference and can be defined mathematically in (2.5). 

                 𝑀𝐴𝐸 =
1

𝑛
 . ∑ |𝑦𝑖   −  𝑦̂𝑖|𝑛

𝑖=1                                 (2.5) 

𝑛 is the total number of instances , 𝑦̂𝑖 is the model’s prediction for the i-th sample and 

𝑦𝑖 is the actual target value for the i-th sample. MSE is more sensitive to large errors 

and is useful when you want to heavily penalize large errors. On the other hand, MAE 

is less sensitive to outliers and provides a direct measure of the errors’ average 

magnitude. MAE has the same units as the target variable, making it easier to interpret. 

MSE are positive values. Since absolute values are always non-negative, MAE is also 

always non-negative. 

The binary cross-entropy (BCE) is used in binary classification tasks for performance 

measurement, where the prediction is an output with a probability value between 0 

and 1. A variant of this loss for multi-class classification is the categorical cross-

entropy. Binary cross entropy loss is calculated from the negative value of the 

summation of the logarithm value of the probabilities of the predictions made by the 

model against the total number of samples in the dataset. It is used to train artificial 

neural networks to predict the likelihood of a data sample belonging to a class and 

leverage the sigmoid activation function internally. The sigmoid function ensures the 

output of the input-output relationship to a value between 0 and 1. The BCE loss only 

takes one channel with a number ranging between 0 and 1 and is used only when 

there are two classes. BCE is mathematically given in (2.6). 

𝐵𝐶𝐸 = − 
1

𝑛
  ∑ (𝑦𝑖    ∙  log 𝑦̂𝑖  +   (1 − 𝑦𝑖)  ∙  log(1 −  𝑦̂𝑖)

𝑛

𝑖=1
)                (2.6) 
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Where 𝑦𝑖 represents the actual class label for the i-th sample and 𝑦̂𝑖 is the predicted 

probability value for the i-th sample of the positive class, which ranges from 0 to 1.   

Most ML models learn functions that are controlled by a set of parameters 𝜃 . 

Therefore, there is a need to determine the best values  for the parameters 𝜃∗ that 

minimises the loss over all the training samples in the dataset. This research involves 

multi-class and binary classification, which will be discussed more specifically in the 

coming chapters.  

 

2.4.2 Unsupervised Learning  

In unsupervised learning, there is no clear target output that the model is being trained 

to predict; that is, the dataset, D,  is unlabelled. See (2.7). 

                                𝑫 = {(𝑥1), … , (𝑥𝑛)}                                                     (2.7) 

The overall goal of unsupervised learning is to build representation of relevant features 

from the dataset, such as pixel structure, image patterns, or characteristics 

(Ghahramani, 2004). Such algorithms include clustering and data compression. The 

unsupervised learning algorithms relevant to this research are known as generative 

models. The generative models aim to learn the true data distribution itself to generate 

new data points with some variations. This can be useful for generating samples 

similar to those in the training set by sampling from the estimated distribution learned 

by the model. As a typical instance of an unsupervised learning algorithm, K-means 

clustering is a commonly used clustering algorithm. Kmeans clustering is an iterative 

unsupervised learning technique that aims to divide a dataset into K pre-determined 

defined, separable clusters without any overlap, where each data point can only 

belong to a single cluster. The distance between data points in a cluster is minimised, 
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and this keeps the clusters away from each other. Data points are assigned such that 

the sum of the square distance between them and the cluster’s centroid is maintained 

at a minimum. This ensures more consistency within the cluster and highly similar data 

points within a particular cluster.  A visual representation of the Kmeans clustering is 

shown in Figure 2.3. 

 

 

Figure 2. 3 : Plot of the data points with two Clusters 

K-means is usually applied for tasks such as compressing images, document 

clustering, and image segmentation. The K-means procedures can be summarised as 

outlined below. 

1. Determine the specific number of required clusters 

2. Randomly shuffle the dataset and select K points to represent the centroids 

without replacement. 

3. Initiate the selected centroids. 
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4. Carry out iterations until the values of the centroids do not change; that is, the 

convergence is completed. 

5. Compute the summation of the squared distance between the centroids and 

data points. Assign each data point to the nearest cluster. 

6. Compute the centroids by averaging each cluster's data points. 

Since Kmeans clustering uses distance-based measurements to determine the 

similarity between data points and the centroids, the Euclidean distance between 

two points, 𝑝 and 𝑞,  in a multi-dimensional space is given as (2.8). 

𝑑(𝑝, 𝑞) =  √∑ (𝑝𝑖 −  𝑞𝑖)2𝑛

𝑖=1
                     (2.8) 

The same subscript, 𝑖, enables for component-wise comparison; that is, each 

component of 𝑝 is matched with the corresponding component of q. For instance, 

𝑝1 matched with 𝑞1 . If each cluster’s centroid is denoted, then by 𝒄𝒊, then, each 

data point, 𝑥, is assigned to a cluster based on (2.9). 

                  arg min
𝑐𝑖∈𝐶

 𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑥)2                          (2.9) 

𝑑𝑖𝑠𝑡() is the Euclidean distance in (2.9). Due to Kmeans' iterative characteristics 

and the random initialisation of centroids, varying initialisations will lead to varied 

clusters. The algorithm may be stuck in a local optimum and not converge to the 

global optimum. It is suggested that iterations are always performed based on 

different values of centroids and that the values of the iterations with the lowest 

sum of squared distance be chosen. 
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2.4.3 Machine Learning Optimization and Hyperparameters  

Machine Learning Optimization is the process of iteratively improving the accuracy of 

a machine learning model, lowering the degree of error by approximating the 

underlying function or relationship between input and output data. A major goal of 

training a machine learning algorithm is to minimise the degree of error between the 

predicted output and the true output. Gradient descent is an iterative first-order 

optimisation algorithm used commonly in ML. Gradient descent numerically finds the 

minima of multivariate functions. It minimises a function 𝐽(𝑥) by altering 𝑥.  𝐽(𝑥) is 

referred to as the objective function to be minimised. There are two requirements 

before gradient descent can be applied to optimise an objective function: differentiable 

and convex. If the objective function is differentiable, it has a derivative for each point 

in the domain. For a function to be convex, its second derivative must be bigger than 

zero (2.10). 

                                        
𝑑2𝐽(𝑥)

𝑑𝑥2 > 0                                                 (2.10) 

The gradient descent is the first derivative at a selected point for a univariate function. 

In the case of a multivariate function, the gradient descent is a vector of derivatives in 

each main direction along variable axes.  A gradient for an n-dimensional function 𝐽(𝑥) 

at a given point p is defined mathematically as follows (2.11): 

                           ∇ ∫(𝑝) =
𝜕𝐽

𝜕𝑥1
(𝑝) …  

𝜕𝐽

𝜕𝑥𝑛
(𝑝)                              (2.11) 

Gradient descent iteratively calculates the next point using gradient values at the 

current position, scaling it by a learning rate and subtracting the value to minimise the 

function. This process is shown mathematically in (2.12). 

                                   𝜃 =  𝜃′ − α ∇J(𝜃′)                                   (2.12) 
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𝜃 is the vector of the parameter being optimised from its initial value 𝜃′, α is the learning 

rate, which controls the step size and influences the model’s performance. J(𝜃) is the 

cost function, measuring how well the model fits the data. ∇J(𝜃) is the gradient of the 

cost function with respect to 𝜃. In summary, gradient descent methods are as follows: 

1. Initialise a starting point. 

2. Calculate the gradient value at this point. 

3. Make a time-scaled move in the opposite direction to the gradient. 

4. Redo points 2 and 3 until the maximum number of iterations is reached or the 

step size is smaller than the tolerance. 

Many variations of the basic gradient descent algorithm update rule exist, such as 

Adam, Stochastic gradient and AdamGrad. Most ML algorithms are controlled by 

parameters the model cannot learn or set for itself, such as batch size. These 

parameters are known as hyperparameters. The usual way to choose values for 

hyperparameters is to randomly test these values and select the ones that provide a 

promising result during model evaluation. 

This PhD thesis study uses Bayesian optimisation (BO) to select the best 

hyperparameter configuration due to its ability to handle expensive-to-evaluate 

objective functions, flexibility in computing varied objective functions, and search 

spaces and find the global optimum with a small number of evaluations (Yang & 

Shami, 2020). Past works with empirical analysis results show that the BO algorithm 

outperforms other global optimisation algorithms (Wu et al., 2019) for hyperparameter 

configuration. Here, the objective function being optimised is the accuracy metric.  

BO builds a probability model of the objective function and uses it to select preferred 

hyperparameters to evaluate the true objective function (Wu et al., 2019). For BO to 
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optimise a function ∫(𝒙), the function has to have an unknown expression and the cost 

of finding ∫(𝒙) for a value of 𝒙 must be high (Rodemann, & Augustin, 2024). These 

are usually in the case of neural networks and Deep nets, where there are large 

possible configurations of hyperparameters (Feurer & Hutter, 2019). If ∫(𝒙) meets both 

conditions, BO can be applied to find 𝒙∗, the global value of 𝒙 while minimising the 

iterations on ∫(𝒙). The objective becomes (2.13). 

                                              Max
𝑥

∫(𝑥)                                                       (2.13)  

Bayesian optimisation works by integrating samples drawn from the objective function 

into the model's prediction for 𝒙, a prioir is defined for 𝒙∗and samples drawn from the 

objective function are updated to define a posterior to improve the accuracy of the 

probable 𝒙∗. This entire process is done with the aid of the surrogate and the 

acquisition functions (Diessner et al., 2022). The surrogate function 𝒈(. ) address the 

problem of no analytical expression condition for ∫(𝒙) and the acquisition function 𝒖(. )  

provides guidance on the next value from the objective function to be sampled by 

balancing exploration and exploitation. 

The iterative process to optimise the objective function using BO and these identified 

functions is as follows:  

1. Iterate for t = 1, 2, 3, …. T steps for sampled points, (x, y)Which are added to 

the set 𝐷1:𝑡−1. 

2. Select the next sampling point for 𝑥𝑡, by doing argmax of the acquisition 

function. 

                  𝑥𝑡 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑢(𝑥|𝐷1:𝑡−1)                                   (2.14) 

3. Sample the objective function at this point 𝒚𝒕 = ∫(𝒙𝒕) and add this sample to 

the test, 
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                          𝐷1:𝑡 = {𝐷1:𝑡−1(𝑥𝑡, 𝑦𝑡)}                                 (2.15) 

4. Update the surrogate function 𝒈(. ) with the newly sampled points (𝒙𝒕, 𝒚𝒕). 

It is also termed sequential model-based optimisation because the hyperparameters 

are added to update the surrogate model sequentially (one by one). It uses a less 

expensive model-based approximation technique with a surrogate model. This 

optimisation is used during this research to optimise the hyperparameters of the 

proposed models. Figure 2.4 shows the BO process. 

 

Figure 2. 4: Bayesian Optimisation with a Gaussian process fitted to the observed data 

from previous steps6 

As shown in Figure 2.4, the Gaussian Process (GP) is fitted to the observed data. The 

GP is a flexible class of non-parametric statistical models over function spaces with 

domains that can be continuous (Cheng et al., 2019). GP can be the maximum entropy 

probability distribution in the context of statistical inference, given mean 𝑚 and 

covariance 𝑣 constraints, the probability of a distribution with 𝑚 and 𝑣, the GP “most 

 
6 https://medium.com/aimonks/  

https://medium.com/aimonks/
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spread out probability”, has the greatest uncertainty due to higher variance. In other 

words, they are a good choice when modelling a high degree of uncertainty, such as 

deep learning models. GP is derived from the Gaussian probability distribution. 

Gaussian distribution estimates the probability of an input vector based on the 

hyperparameters, mean, and variance; GP generalises this concept, enabling a more 

flexible prediction and modelling (Hamoudi et al., 2023). Hyperparameters are 

significant in GP, and they determine high-level characteristics of the prior through the 

mean and covariance (Noack et al., 2023). Furthermore, this PhD thesis chooses to 

use GP success due to its flexibility in implementation and robustness and allows 

modelling of complex functions which may have large variables, the ability to adapt to 

noisy data, and its nonparametric nature, and there are no assumptions about the 

underlying distribution of the data. Additionally, GP can capture salient patterns in the 

input, through expressing complex covariance structures (Stoddard et al., 2019). 

Training a GP model via Bayesian inference involves computing the marginal 

likelihood of a given set of hyperparameters that can be used to predict new data 

points. Instead of defining a fixed set of parameters, the GP can be set by a mean and 

a kernel function. 

                                   𝑓(𝑥)~ 𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥, 𝑥′))      (2.16) 

Where 𝑓(𝑥) represents the function from the GP, 𝑚(𝑥) is the mean function which 

determines the expected value of the function at a given input 𝑥. 𝑘(𝑥, 𝑥′) is the kernel 

function, representing how the function values at varied inputs of 𝑥 and 𝑥′ correlate. 

The mean shows the average behaviour of the function, while the kernel shows how 

the function’s values vary with respect to each other across varying inputs. In this PhD 

thesis, the Matern Kernel is  used with GP due to advantage of a trade-off between 

smoothness and computational efficiency, and its flexibility. The Matern Kernel 
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equation is its simplest form, with hyperparameter 𝜈 and length scale 𝜎 , is denoted 

𝐾𝜈(𝑑), where 𝑑 is the Euclidean distance between two points. This could be further 

expressed as  𝐾𝜈(𝑑)    =   
21−𝜈

𝛤(𝜈)
 (√2𝜈

𝑑

𝜎
)𝜈  ∙   𝐾𝜈 (√2𝜈

𝑑

𝜎
)  . 𝜎 and 𝜈  are positive 

parameters, Γ represents the gamma function, 𝐾𝜈 is the modified Bessel function of 

the second kind. 𝜎 controls the rate of change between the points and normalises 𝑑. 

 

2.5 Deep Learning  

Deep learning (DL) is a sub-division of ML concerned with algorithms with 

interconnected nodes arranged in layers and inspired in structure and function by the 

brain. This network of interconnected nodes is known as the artificial neural network 

(ANN). In the ANN, each layer takes the outputs of the previous one as its input and 

performs some non-linear transformations on this input, and the result is forwarded to 

the next layer within the network. When numerous layers are stacked (exceeding 1 

hidden layer between the input and output layer), it is called a deep network. The core 

motivation for the rapid advancement in DL is the availability of modern computational 

power and the vast availability of data, which is available for training deep learning 

algorithms to learn more generalised representations. DL can be trained with more 

data, and their performance increases, unlike many traditional ML algorithms that may 

reach a level of no growth or decline. This sub-section briefly summarises the main 

DL techniques relevant to this research. For a more in-depth guide on deep learning, 

please see Goodfellow et al. (2016). 
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2.5.1 Multilayer Perceptron (MLP) 

The fundamental architecture in neural networks is the multilayer perceptron (MLP). It 

is also referred to as a feedforward neural network due to its weight updating and 

information flow, which is only forward. There are no backward connections in the 

basic MLP.  The MLP was developed to tackle the limitations of the linear computation 

of the basic perceptron, as the MLP can map a non-linear relationship between inputs 

and outputs. The MLP has an input, one or more hidden, and output layers stacked 

together. A visual representation is presented in Figure 2.5.  The arrows in the Figure 

denotes a connection between the layers, and the learnable parameter of the model 

is represented with a weight  𝒘𝟏…𝒏. 

 

Figure 2.5: Multilayer Perceptron with a  single hidden layer7  

However, since it is a feedforward algorithm, the computed weighted sum in each 

neuron is propagated to the next layer, and there is no further action afterwards. This 

leads to inadequacies in adjusting weights and minimising the cost function. The 

weighted sum WS is shown in (2.17).               

 
7 Towardsdatascience.com 
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                   𝑊𝑆 =   ∑(𝑊𝑖 ∗ 𝑋𝑖)

𝑛

𝑖=1

+ 𝑏                                                           (2.17) 

Where 𝑛 is the total number of inputs, 𝑊𝑖 is the weight for the i-th input, 𝑋𝑖 is the i-th 

input value and 𝑏 is the bias. Weights determine the strength of connections between 

neurons, while biases are added to the neuron’s output to introduce a threshold for 

activation. 

The learning technique, backpropagation, was developed to solve this problem by 

enabling the MLP to adjust the weights during iterations to minimise the cost function. 

The activation function (such as ReLU, Sigmoid, and Softmax introduced non-linearity 

into the MLP, enabling it to map complex input-output relationships. In summary, each 

MLP layer builds on the feature the proceeding layer learned to learn more complex 

representations. The lower layers learn local features, and the deeper layers learn 

more high-level (abstract) features. For instance, in images, the lower layers may learn 

lines and curves, whereas the deeper layers may learn the shapes of objects. 

 

2.5.2 Convolutional Neural Networks 

Convolutional neural networks (CNN) are a variant of the MLP that specialises in 

processing data such as images or videos with a grid-like topology. Images are 

representations of data consisting of varied pixel values, which determine each pixel's 

colour, contrast, and brightness. This is shown in Figure 2.6 for the characters “a” and 

“o”, where the pixel values are presented on the grid beside the images. 
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Figure 2. 6: Representation of Character images as a pixel grid – “a” and “o” 8 

A CNN architecture comprises three layers: the convolutional layer, a pooling layer, 

and a dense layer (also called a fully connected layer). In a fully connected layer, every 

input node is connected to a corresponding output node, whereas in the convolutional 

layer, no such connection exists between nodes.  

A basic CNN architecture with its components is displayed in Figure 2.7 below. 

 

Figure 2. 7: A basic CNN architecture (Phung & Rhee, 2019). 

 

The convolutional layer is the main operational block of the architecture, which 

performs the convolution and hence constitutes the main computational load of the 

network. The convolution operation is a dot matrix between two matrices, where one 

 
8 https://towardsdatascience.com/  

https://towardsdatascience.com/
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is the kernel, a learnable set of parameters, and the second matrix is a restricted 

portion of the receptive field in the image. The kernel is usually smaller than the input 

image to achieve sparse interaction and learn relevant information from the pixels in 

the image. During a forward pass, the kernel slides across the height and width of the 

input image and produces an output representing the receptive field. This output is 

known as the activation map, which is the kernel's response at each spatial position 

of the image. The sliding action that produces the activation maps is known as stride. 

To determine the output volume (feature map) of an input image size W X W X D and 

kernel size F, stride S and padding P, is given by (2.18).  

                                    𝑊𝑜𝑢𝑡 =
𝑊−𝐹+2𝑃

𝑆
+ 1                                     (2.18) 

There is a significant reduction in the number of parameters in a convolutional layer 

compared to a dense layer since the weights are shared across all spatial locations in 

the input. The pooling layer replaces the output of the preceding layer by sliding a 2D 

filter over certain locations to derive a summary statistic of the nearby outputs. This 

helps reduce the representation's spatial size, which decreases the required 

computation and weights. For a feature map with dimension nh x nw x nc, where nc 

represent the channel depth, the pooling layer is done by (2.19).  

                                   (𝑛ℎ−𝑓+1)

𝑠
 .  

(𝑛𝑤−𝑓+1)

𝑠
 . 𝑛𝑐                  (2.19) 

As seen in the MLP architecture, the dense layer contains the entire connection 

between the neurons in the preceding and subsequent layers. 
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2.5.3 Convolutional Recurrent Neural Network (CRNN) 

Convolutional Recurrent neural networks (CRNN) are a variant of the CNN combined 

with a recurrent neural network (RNN), with a hidden state and the ability to use 

feedback loops in processing sequential data, which decides the final output. Hence, 

CRNN can learn sequential features of input data and predict the next possible data 

point in the overall data sequence. CRNN can capture long-term dependencies, giving 

them the advantage of understanding and efficiently modelling contextual and 

temporal information. It is more suitable for sequential images, text and speech 

analysis due to its application in sequential data. CRNN can handle varied input and 

output lengths, and unlike feed-forward neural networks, it can access its internal 

memory to process inputs in sequences (Yasrab et al., 2020). In summary, the CRNN 

works as follows: 

• Input: A sequence of data 

• Convolutional layers: These layers extract features from image inputs, making 

them particularly effective. 

• Recurrent layers: They receive the output from the previous layers and 

effectively process the sequential data, with each layer maintaining a hidden 

state that captures the contextual information about previous sequence entries. 

• Connections between recurrent and convolutional layers: This reduces the 

overall network complexity and preserves salient input features along the 

network. 

• Output: This can be a sequence of words or any relevant output related to the 

input. It is produced by the last layer, which is a fully connected layer. 

Some drawbacks regarding using CRNN include difficulty in training, complex model 

architecture, difficulty in interpretability, lack of robustness and computationally 
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expensive and time-consuming (Liu et al., 2023; Xu et al., 2023). Some common cases 

for CRNN are mainly in social media for sentiment analysis and reinforcement 

learning. A basic visual representation of CRNN is shown in Figure 2.8 below: 

 

Figure 2. 8: A basic CRNN architecture (Yuan et al., 2019). 

As explained in the steps provided, given a sequence of data, CRNN learns to predict 

its scores. The 2D CNN layers first process each entry, and the output of features as 

a vector is fed into the RNN. The RNN concatenates the information of the current 

step with that of the previous step and outputs the current entry’s score (Yuan et al., 

2019). 

However, from a comprehensive medical imaging literature analysis, CNN is 

considered to be more potent than RNN (Banerjee et al., 2019). CRNN includes less 

feature compatibility when compared to CNN (Alzubaidi et al., 2021). CNN is ideal for 

images and video processing and has been widely applied in medical imaging analysis 

as a powerful modelling technique (Sarvamangala & Kulkarni, 2021), and this justifies 

the choice as the neural network of choice in this PhD thesis in addition to visual 

inspection of the burned-in text on the images. Additionally, the problem domain for 

this research does not involve a vocabulary, considering there is no fixed lexicon for 
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patients’ names and other burned-in textual data that may appear. Hence, the data 

are not sequential, and this PhD thesis aims to design modelling solutions applicable 

to varied medical images across different locations and without any dependency on a 

vocabulary. 

 

2.5.4 Attention Mechanism 

Attention mechanisms are a neural network layer inserted into DL models to 

selectively focus their attention to specific regions of input data based on different 

weights assigned to different regions. This priority-based mechanism improves 

prediction accuracy, as it emphasises discriminative parts of the data. The attention 

mechanism generally works by breaking the inputs into smaller regions and deciding 

which region has more relevance by comparing it to a pre-determined query. For 

instance, these could be words in sentences or different aspects of an image. It then 

assigns each part with a score and, based on this score, determines how much 

attention it gives to each part by assigning weights (Bahdanau et al., 2014).  The 

original attention mechanism was proposed by Bahdanau et al. (2014), but it 

was mainly for putting emphasis on words in neural machine translation. However, 

these have been applied across different medical image analysis aspects such as 

classification, segmentation, and detection, as they enable CNNs to focus more on 

semantically important regions (Rao et al., 2021; Li et al., 2023). In images, 

the attention mechanism computes the correlation of feature vectors from input 

images, and this correlation shows the relationship between the global pixels, and then 

weights are assigned according to this correlation.  Types of attention mechanisms 

include channel attention (calculates the importance of channel components through 

the exploitation of the inter-channel relationship of features) and spatial attention 
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(considers the spatial feature information and assigns higher weights to discriminative 

location information) (Shi et al., 2022). However, to take advantage of both types, 

hybrid attention can be composed of channel and spatial attention fused or in series 

or parallel. The hybrid attention fully takes into consideration both the channel and 

spatial information of feature maps, hence making weights more effective, thereby 

increasing overall representation capability  (Li et al., 2022). 

 

2.5.5 Few-Shot Learning Method  

With the issue of limited data samples, the few-shot learning method was developed 

to enable models to learn and make predictions based on only a few data samples. 

Few-shot learning leverage generalisation over memorisation (Seo et al., 2021).  In 

Few-shot learning, the goal is to train the model to know the similarities and differences 

between different classes of samples rather than simply training the model to know 

what class each sample belongs to (Zhang et al., 2023). A support set containing a 

few samples of each class is used to train a model using the few-shot learning method, 

which is ordinarily impossible to use in training a DL model. For instance, 5 samples 

per class. The basic way the few-shot learning works is as follows: 

• Assign a similarity function , simi(x, x’) 

• The function measures the similarity between two data samples, x, and x’ 

• If the samples are the same, the function returns 1 

• If the samples are not the same, the function returns 0 

• The model is trained to learn the similarity function, which can be used to make 

predictions for unseen data samples by calculating their predicted similarity 

scores. 
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With the issue of dataset accessibility in medical imaging, a few-shot learning method 

has been applied to solve the issues of data scarcity and enhance medical image 

analysis for classification (Cai et al., 2020; Singh et al., 2021) and segmentation (Sun 

et al., 2022; Feng et al., 2023).  

 

2.5.6 Generative Models 

Generative models can synthesise new data with the same distribution as their training 

data samples. These models can either explicitly learn an estimate of this distribution 

or be trained to sample from the estimate. Since its introduction, generative models 

have found diverse applications in engineering, medicine, and sciences, such as 

super-resolution of images, image-to-image translation, image reconstruction, and so 

much more. Based on the recent advancement of DL, some generative models have 

gained much research attention. This sub-section will briefly discuss the Variational 

Autoencoders (Kingma & Welling, 2013)  and generative adversarial networks 

(Goodfellow et al., 2014). 

Variational Autoencoders (VAE) (Kingma & Welling, 2013)  is a generative model 

whose training can be regularised to avoid overfitting and ensure that the latent space 

has good properties to enable the generative process. In contrast to the autoencoder 

training, where the input is encoded as a single point, the VAE is fed with the input as 

a distribution over the latent space. During training, a data point from the latent space 

is sampled, then the sampled data point is decoded, and the reconstruction error is 

calculated and backpropagated through the network. These encoded distributions are 

Gaussian distributions that enable training to return the mean and covariance matrix. 
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The Bayes theorem can be used as an approximator to compute this latent space and 

look for the best approximations. A summary of this is shown in Figure 2.8 below. 

 

Figure 2. 8: VAE generative modelling process 

VAE is faster than other generative models as it can generate samples in a single 

iteration. However, these generated samples are blurry due to the mean squared error 

typically used in the reconstruction term (Bredell et al., 2023). VAE consists of an 

encoder, a decoder, and a loss function. The encoder is a neural network, and the 

input is a data point 𝒙. The output is a hidden representation 𝒛 having weights and 

biases 𝜽. For instance, for an input of a character image with dimension 28 X 28, the 

encoder encodes the data points which is a 784-dimension, into a latent representation 

space 𝒛. The encoder can be denoted as 𝒒𝜽(𝒛 | 𝒙), and since the lower-dimensional 

space is stochastic, the encoder search for the optimal parameters for the encoding, 

which is a gaussian probability density. Sampling from this distribution can be done to 

get noisy values of the latent representation space 𝒛. The decoder takes the latent 

representation space 𝒛 as input and outputs the parameters of the distribution with 

weights and biases ∅. The decoder can be denoted as 𝑷∅(𝒛 | 𝒙). The decoder outputs 

784 parameters from 𝒛 , each pixel represented from the distribution. The entire 

information from the original 784-dimensional vector cannot be transmitted because 

only a summary of the data points is available to the decoder on the latent space. The 

reconstruction log-likelihood 𝑙𝑜𝑔𝑃∅(𝑧 | 𝑥) measure the information lost in between 
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encoding and decoding. The VAE’s loss function is the negative reconstruction log 

likelihood, and for a datapoint 𝒙𝒊 , the loss function 𝒍𝒊  can be denoted as (2.20) 

𝐿𝑖(𝜃, ∅; 𝑥𝑖) = −  𝐾𝐿(𝑞𝜃(𝑧 | 𝑥𝑖) | 𝑝(𝑧))     +   𝐸𝑧~𝑞𝜃(𝑧 | 𝑥𝑖)[𝑙𝑜𝑔𝑃∅(𝑥𝑖| 𝑧)]        (2.20)         

KL is a regulariser known as Kullback-Leibler divergence, which measures the 

information loss by checking the difference in the divergence between two 

distributions. The first term on the right 𝐸𝑧~𝑞𝜃(𝑧 | 𝑥𝑖)[𝑙𝑜𝑔𝑃∅(𝑥𝑖 | 𝑧)] represents the 

expected reconstruction log-likelihood and it measures the similarity between the 

original data and the generated data. The second term on the left, 

  𝐾𝐿((𝑞𝜃(𝑧| 𝑥𝑖)) | 𝑝(𝑧)) is the KL divergence between the approximate posterior, 

𝑞(𝑧|𝑥𝑖)  , and the prior 𝑝(𝑧). KL it acts as a regularization term that ensures that the 

latent representation 𝑧  is a sample from the prior distribution 𝑝(𝑧).  These terms are 

derived and explained much in depth in the original paper by Kingma & Welling, 

(2013).  

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a group of 

neural networks based on unsupervised learning that can generate new samples. A 

classic GAN comprises two parts: a Generator and a Discriminator. The generator 

competes with the discriminator, which aims to distinguish between real and generated 

data. This competition between these two parts is referred to as “adversarial”. GANs 

are widely applied in major aspects of generative modelling, such as image 

reconstruction and inpainting. Training GAN is difficult, as the goal is to optimise the 

Generator and Discriminator alternatively during iterations. GAN produces more high-

resolution images than the VAE. In GAN, the loss function for the simultaneous 

optimisation of these two parts is known as the MinMax loss, and it is given 

mathematically as (2.21). 
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𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 (𝐺, 𝐷) = [𝔼𝑥𝑝𝑑𝑎𝑡𝑎
[log 𝐷(𝑥)]  +   𝔼𝑧𝑝𝑧(𝑧)[log (1 − 𝐷(𝑔(𝑧)))]]            (2.21) 

G is the generator network, and D is the discriminator network.  𝒑𝒅𝒂𝒕𝒂(𝒙) is the true 

data distribution that samples actual data samples 𝒙 . 𝒑𝒛(𝒛) is a previous distribution 

that samples a random noise 𝒛 . 𝑫(𝒙) is the likelihood of the discriminator to identify 

original data as real correctly.  𝑫(𝑮(𝒛)) is the likelihood of the discriminator identifying 

generated data from G, as authentic. There has been much research in the design of 

various variants of GAN to solve this limitation: Conditional GAN (CGAN), Deep 

convolutional GAN (DCGAN), and Super Resolution GAN (SRGAN), amongst others. 

Each of the variants aims to make improvements over the simplest GAN known as the 

vanilla GAN. 

 

2.6 Chapter Summary  

A comprehensive overview and survey of the most important techniques used to 

develop computer vision applications have been provided, which are the basic 

foundation of OCR: feature selection, image preprocessing, and an overview of ML 

and DL techniques. ML techniques have been successful for many years for computer 

vision applications. However, in recent years, with more computing power and the 

complexity of certain grid-like data, such as images, deep learning techniques were 

developed to solve these challenges by improving feature selection and representation 

learning. This section will be relevant to better understanding the contributions made 

in this research. In particular, feature extraction and convolutional layers are used 

extensively in Chapters 5 and 6. Dense layers and deep generative models are used 

in Chapter 7. 
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3.0 Literature Review  

Application of traditional OCR systems in burned-in text data recognition in MIM still 

has spaces for improvement because of various limiting factors such as low resolution, 

small font size and background interference. A review of previous studies on the 

recognition of burned-in text data on MIM is provided in this chapter with reference to 

the state-of-the-art to show the existing gaps this research aims to fill. In the case of 

MIM, the burned-in textual information is small in font size and low resolution, making 

it difficult for traditional OCRs to accurately recognise these text data as these OCRs 

(For example, Tesseract) are trained to recognise text with a minimum resolution of 

300dpi and of 12 pt font size, this research focuses on recognising burned-in textual 

data at about 96 DPI. 

Florea et al. (2005) began one of the earliest works for the automatic indexing of 

medical images for image retrieval purposes inside a large online health database; 

they planned to achieve such a task by recognising and extracting textual annotation 

present in these medical images using image processing and OCR. The authors 

worked on these modalities: angiography, ultrasonography, magnetic resonance 

imaging, standard radiography, computer tomography (CT) and scintigraphy. After 

visual inspection and reviews, the authors concluded that the characteristics of 

medical images are alike irrespective of the type of modalities. Hence, a solution for 

textual annotation extraction from a particular modality image's pixel structure would 

also be usable in other modalities. The authors also noted that the visual content of 

medical imaging modalities is highly affected by its means of acquisition. Hence, the 

entire pixel structure containing this burned-in textual annotation is directly affected by 
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the overall image resolution after its acquisition. The authors proposed a technique to 

recognise burned-in textual information at the character level, using a prior knowledge 

of the colour and thickness of each character, as well as applying standard 

morphological means before applying a commercial OCR software known as Abbyy 

FineReader 7.0 to identify the characters. They employed a manual image 

thresholding approach known as the TopHat filter set on each character thickness. 

This method can isolate objects lighter than the neighbourhood and smaller than a 

structural element conveniently chosen; this method was decided after a critical 

evaluation showed text regions of all modalities have relatively resembling 

characteristics (Florea et al., 2015) in font, colour and thickness, but distortion and 

sizes of these texts were largely dependent on the resolution of the image, which are 

most times close to the image borders.  Though they achieved a recall rate of 60% in 

CT images, their method failed to recognise some burned-in text in various modalities, 

such as the angiography category, as this method failed to extract maximum features 

at the recognition stage and the image’s low resolution which resulted to the small font 

size of the burned-in text data, hence poor performance of the commercial OCR. The 

OCR used was designed to recognise printed characters and not burned-in textual 

information. 

Alter & Werner (2007) went further to extract the zoom factor of the small font size of 

characters in ultrasound having a low resolution in order to analyse the character 

thickness and hence identify the burned-in text. Similarly to the previous work by 

Florea et al., 2015, these authors also made use of an open-source OCR, which was 

not designed to deal with the low resolution of varied medical image modalities. The 

proposed method by Alter & Werner (2007) was not consistent when applied to varied 
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modalities and required multi0ple image pre-processing steps before exporting to the 

open-source OCR. 

Reul et al. (2016) applied region of interest detection, binarisation and segmentation 

to extract burned-in text-containing areas into lines and pass them into an OCR 

engine. Due to the large error from the recognition by the open-source OCR used, the 

authors proposed an OCR correction technique that involves an assisted user revision 

using Excel structured tables, where the errors can be checked and manually 

corrected. The authors used prior knowledge of the burned-in text data, resulting in a 

highly user-assisted approach, which is not feasible with the modern-day variety and 

quantity of medical image modalities. The authors concluded that the recognition 

errors of the samples used for evaluation were difficult to avoid due to the low quality 

of the burned-in text region in the image modalities caused by its low resolution (Ruel 

et al., 2016). Though they achieved a very low error rate of 0.6%, this approach only 

allows almost optimal recognition rates by making use of very specific constraints. 

Monteiro et al. (2017) proposed a model using CNN to recognise burned-in text using 

a simple 6-layered network design, and a good accuracy rate was obtained. However, 

the evaluation was done using only a single type of medical image modality 

(Ultrasound) from a single institution with existing knowledge of the detected text data. 

The authors did not evaluate the proposed model to other modalities outside their 

institution to properly address the problem of recognition of burned-in text data 

regarding the problem of background interference, small font sizes and low resolution. 

Hence, their proposed system was limited and cannot be generalised. 

Between 2005 and 2023, most studies focused on improving image pre-processing 

techniques and feeding them into an open-source or commercial OCR, which was not 
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explicitly designed to meet the challenge of small font sizes and low resolution. A 

further literature review by this study on the quality assessment of these MIMs showed 

the small font size of the burned-in text; its low-resolution results from the overall low 

quality during storage (Chow et al., 2016).   

The next sub-sections briefly explain the nature and acquisition of MIM, existing ML-

based practices, related works on the domain of MICR, challenges and open issues, 

suitable evaluation metrics, and lastly, the research objectives based on the identified 

literature gaps. 

 

3.1 Nature and Acquisition of Medical Image Modalities (MIM). 

Medical imaging includes different modalities and processes to visualise the interior of 

the human body parts for varied clinical purposes (Firoz et al., 2017). However, the 

most common problems with these types of images are poor contrast quality, low 

resolution, and background interference (noise). The several objects coupled with the 

degradation stated above, including proximity of adjacent pixel values, which may lead 

to overlapping one object on another object in the same image, make the application 

of several traditional OCRs in identifying burned-in text data a difficult task. 

During the image acquisition process, the imaging part is automatically combined with 

patient text data, and both are merged into the same pixel structure, resulting in the 

text data appearing as burned-in text data and not printed on the image. These 

burned-in text may contain sensitive information and vital information for diagnostic 

purposes, which may be useful for various post-processing needs. Hence, an efficient 

way of recognising these burned-in text data is required in such a constrained 

situation. 
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3.2 Character-level Recognition - A Review and Justification 

In burned-in textual data recognition, the recognition choice is always at the character 

or word levels. The character-level approach involves recognising and classifying the 

extracted image patch according to a predetermined target class of characters. In 

contrast, the word-level approach recognises the extracted image patch as a word unit 

rather than a single character.  

The word-level approach has the advantage of avoiding the problem of character 

segmentation and overcoming local errors in the character-level approach (Erlandson 

et al., 1996). The pipeline process for this approach begins with computing a vector of 

a query’s input image-morphological features and matching this vector against a 

predetermined database of vectors from a lexicon of computed wordlist. The vectors 

with the highest match score are returned as possible outcomes for the unknown input 

image containing a word. 

The character-level approach aims to detect, segment, and recognise an input image 

patch into individual characters. The detection can be done using the popular OpenCV 

python library, and to effectively segment the individual characters or words for 

recognition, the situation of a uniform gap being maintained between each character 

or word on the input image has to be considered significantly to establish a threshold.  

The main factor to be considered in the choice of approach in the level of recognition 

of an OCR model for a problem lies in the size of the lexicon of that problem domain. 

This research conducted a thorough physical inspection of varied medical image 

modalities to understand the lexicon in use. The burned-in textual data included 

sensitive data such as patient’s names, patient IDs, clinical parameters, and other 
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unique clinical examination details (Tsui & Chan, 2012), depending on the patient and 

the diagnostic process in place. Unlike word-level recognition that require a predefined 

vocabulary, character-level recognition relies only on a combination of characters 

(Chung et al., 2019).  

Therefore, it would be right to conclude that there is no fixed lexicon in the domain of 

the burned-in text data that could be built into medical image modalities. Using this as 

a guide, this research proposes recognising these burned-in text data at the character 

level. 

This research proposes deep learning techniques designed based on CNN that 

achieved a high accuracy of approximately 98-99% on handwritten digit recognition 

(Kayed et al., 2020; Tabik et al., 2017; Buda et al., 2018). The proposed DL techniques 

are geared towards the intended task in MIM, which is to design highly specialised DL 

models to tackle the challenges in MICR. 

 

3.3 Machine Learning-based Techniques for Burnt-in Textual Data 

Recognition 

Designing and implementing an ML model that accurately recognises burned-in textual 

data on MIM has been challenging over the years. Several works have proposed 

different combinations of image pre-processing techniques and ML models to 

recognise burned-in textual data on low-resolution MIM either at the word level with a 

pre-determined wordlist or the character level. These varied MIMs are usually 

unstandardised images, making conventional OCR methods unreliable because of 

MIM variety in low contrast, distortion, low resolution, and background interference. 

The main problems in recognising burned-in textual data are tackling the 
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unstandardised image problems with critical emphasis on low resolution and 

background interference. This is because the low contrast, distorted text lines, skew, 

and background noise result in poor OCR outcomes. In addition, the low resolution 

makes characters more zigged and merge with the image’s background, leading to 

erroneous character recognition. This area needs to be investigated when considering 

high recognition rates from open-source and commercial OCRs on the standard 

printed text and unconstrained text. Different past authors have applied ML algorithms 

that have been successful in other classification tasks in medical image processing, 

such as computerised tomography (CT) image classification to detect lesion 

classification, X-ray classification to diagnose pneumonia and classifying Magnetic 

resonance (MR) brain images of patients for mild cognitive impairment (MCI). Mostly 

widely used algorithms for these general classification tasks in MIM include random 

forest, gradient boosting classifiers (Rabiei, 2022), support vector machine (SVM), 

support vector regression (SVR), naive Bayes, k-nearest neighbour algorithm (K-NN), 

decision tree (DT) algorithms (Amethiya et al., 2022). These ML algorithms classify 

which parts of the human body, presented by the medical image, are infected by the 

disease using various feature extraction and selection techniques. The poor outcomes 

of these ML algorithms in burned-in text recognition are due to the problems outlined 

above, requiring further in-depth research in this area. 

A detailed analysis by Newhauser et al. (2014) showed that the most popular OCR 

(Tesseract) was specially designed for recognising text on office documents with 

character size scanned at a resolution of 300-400 dpi. These documents have a pixel 

dimension of 1700 X 2000 pixels. Therefore, a text with an 8pt font size under this 

resolution of 300-400dpi will be about 22 pixels and can be easily recognised using 

popular OCRs. A text of 22 pixels means that each character takes up 22 pixels on 
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the image from the top of the character to its bottom. In contrast, a regular 

computerised tomography (CT) image has a pixel dimension of 512 X 512 pixels, and 

a burned-in text of 8pt font will be approximately 9 pixels (Newhauser et al.,2014). The 

resolution in MIM is significantly less than what the popular OCR can recognise. The 

accuracy of these popular OCRs drops rapidly for a text with an 8pt font size, resolution 

less than 300dpi, and fewer pixels than 22 pixels per character (Newhauser et 

al.,2014). 

A study by Menasalvas & Gonzalo-Martin (2016) on the analysis of non-structured text 

on MIM also indicated that there would be a need to develop new algorithms and 

methodologies that can take full advantage of the burned-in textual data contained in 

these MIM. Menasalvas & Gonzalo-Martin (2016) stated that a significant problem in 

this area lies in the variety of these MIM in background content and low resolution, 

hindering the applicability of conventional OCR solutions. Hence, designing an ML-

based OCR with a high recognition accuracy for any input MIM from any organisation, 

country, and lexicon is a technically challenging task. In the general domain of OCR 

under difficult conditions (such as text in natural scenes and degraded hand-held 

camera-captured document images), several authors have proposed various 

solutions, such as structure extraction by graph spectral decomposition and 

component selection criterion (Kawano et al.,2010), multiple commercial OCRs with 

majority logic (Miyao et al., 2004), reinforcement learning, and multiple recognisers 

(Park et al., 2020). Good results were achieved by these works, such as an 82.3% 

recognition rate for decorated characters (Kawano et al.,2010), a 98.83% recognition 

rate for printed Japanese characters (Miyao et al., 2004), and a 90.1% recognition rate 

for Chinese characters with unique character shapes (Park et al.,2020). However, 
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these solutions are unsuitable for MIM because of their lower resolution and 

background interference. 

Regarding the ML approach to recognising burned-in textual data, different authors 

have proposed combining various image-filtering algorithms with traditional ML 

models (Vcelak et al., 2019). More recently, convolutional neural networks (CNN) have 

been employed to solve multiple difficulties experienced in using open-source OCR 

(Mohsenzadegan et al.,2020). The challenge in the ML approach is the need for a 

high-performance classifier that can distinguish similar characters with low resolution 

in MIM, even in the presence of background interference.  

 

3.4 Overview of previous works in the use of ML in recognising burned-in 

text in MIM. 

In this subsection, notable works that have proposed ML-based solutions to recognise 

burned-in textual data will be reviewed, and the gaps presented to motivate this 

research will be presented. Table 3.1 below provides an overview of previous works 

on the use of ML techniques for the modelling of different solutions to recognise these 

burned-textual data and presents some main reference papers in the recent literature 

along with the authors’ names, methods used, the dataset sources, the applied 

evaluation metric (see section 3.7), and the outcomes of the works. The ML approach 

usually requires a dataset collected from a public or private source (Segal & Hansen, 

2021). The collected dataset can be divided into training and validation datasets. The 

training dataset is used to train the  ML model. The validation dataset estimates the 

trained model's performance while tuning the model's hyperparameters. 
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Table 3. 1 :  Overview of previous works in the use of ML in recognising burned-in text 

in MIM (Papers arranged in ascending order by publication year).    

Works Image Pre-

Processing 

Technique 

 

Modelling 

Technique 

Dataset  Evaluation  

Metrics 

Outcomes 

Wang, 

(2002)  

 

Daubechies 

wavelet’s 

image 

transformation. 

Open-

source 

OCR. 

100 medical 

images were 

collected from a 

public source 

and Stanford 

medical centre. 

Character 

Recognition 

Rate (CRR) 

 

The results 

cannot be 

generalised due 

to the small 

validation 

dataset used 

and the problem 

of low 

resolution. 

Antunes et 

al. ,(2011) 

Template 

matching from 

pre-existing 

MIM metadata  

Open-

source OCR 

Several 

hundreds of 

ultrasound 

images. 

(Exact quantity 

not mentioned) 

CRR Poor 

performance in 

complex 

backgrounds 

with overlapping 

text data. 

 Tsui & 

Chan 

(2012)       

 

  

Regional 

thresholding 

and 

morphology for 

character 

segmentation. 

Tesseract 

OCR with 

weighted 

similarity. 

189 ultrasound 

images from 6 

volunteers. 

Simulated 

images were 

produced from 

660 previously 

Character 

Recognition 

Rate (CRR) 

 

CRR of 99.5% 

but relied on a 

pre-determined 

dictionary and a 

human-assisted 

revision for error 

correction.  
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anonymised 

medical images. 

Newhauser 

et al. 

(2014) 

  

Threshold-

redaction 

algorithm  

Tesseract 

OCR 

NIH-funded 

studies from 13 

patients for 

cancer 

treatment. 

Character 

Error Rate 

(CER) 

50% CER 

achieved, but 

poor results on 

Xray Images. 

Monteiro et 

al. (2015)     

  

Total-variation 

denoising, 

adaptive 

bilateral 

filtering, and 

binary 

thresholding. 

Restricted 

Boltzmann 

machine, 

and 

Random 

Forest 

Classifier 

Training data 

was from a 

public Character 

MEDPIXnd 

validated on a 

60 ultrasound 

image collected 

from a 

Portuguese 

medical centre. 

False positive 

rate, false 

negative rate, 

F1-score, 

precision, and 

recall 

Could not 

recognise 

certain small 

font sizes and 

types in low-

resolution MIM. 

Ma & 

Wang, 

(2015)      

  

Using local 

features such 

as edge 

density. 

Adaboost 

Classifier 

100 medical 

images with text- 

ultrasound, MR, 

CT, X-ray. The 

size was 

between 300 X 

600 pixels to 

800 X 1200 

pixels. 

Computational 

cost, 

precision, and 

recall. 

The precision 

was 74%, and 

the recall was 

77%—difficulty 

in recognising 

varied fonts in 

low-resolution 

images. 

Reul et al., 

(2016)        

An expectation-

driven method 

by using prior 

knowledge of 

Open-

source OCR 

22,500 

ultrasound 

images were 

collected from 

Character 

Error Rate 

(CER), 

A user-assisted 

revision method 

with a low error 

rate of 0.06%. 
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the position 

and 

appearance of 

the textual data 

in the image. 

an investigation 

of 26 peripheral 

nerves, 225 

measurements 

are performed 

on at least 100 

subjects. 

Word Error 

Rate (WER) 

poor 

generalisation 

with complex 

processes. 

Monteiro et 

al (2017)         

  

Total-variation 

de-noising, 

Adaptive 

bilateral 

filtering, and 

binary 

threshold 

 

CNN Training data 

was from a 

public character 

MEDPIXnd 

validated on 

privately 

collected 500 

ultrasound 

images. 

CNN model’s 

Precision, 

recall and F1-

score. 

It depended on 

complex 

processes and 

could not be 

applied to 

varied MIM with 

low resolution. 

Silva et al., 

(2018)          

  

Adaptive 

bilateral 

filtering and 

total-variation 

de-noising. 

CNN 400 high-

resolution varied 

medical images 

were collected 

from a private 

clinic facility. 

Character 

Error Rate 

(CER), 

Word Error 

Rate (WER) 

The model 

could not 

recognise 

certain font 

types and 

similar 

characters. 

. 

Vcelak et 

al. (2019)       

  

Binarisation for 

image 

transformation. 

Tesseract 

OCR 

15,334 images 

for training and 

70,191 for 

validation were 

collected from 

the University 

Weighted 

average recall 

and inverse 

recall, 

Cohen’s 

kappa 

FPR of 1.81%-

4.00% requires 

a pre-

determined 

dictionary. 
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hospital in the 

Czech Republic. 

coefficient, 

False positive 

rate (FPR) 

Xu et al., 

(2021)          

  

Image blending  CRNN 2500 images 

from the Medpix 

cardiac atlas 

(MRI) database. 

CRNN 

model’s 

Precision, 

recall and F1-

measure. 

Could not 

recognise 

similar 

characters in 

low-resolution 

MIM. 

 

Table 3.1 shows that these past studies encountered similar challenges in recognising 

burned-in textual data on MIM, which are (a) the problem of background interference 

and (b) the problem of low resolution. The problem of background interference in MIM 

occurs mainly due to a grey background, fuzzy font, overlapping text, and inconsistent 

image quality (too-bright or too-dark image). The problem of low resolution occurs at 

a resolution of 72-150 DPI for varied modalities such as ultrasound, CT, and others. 

Additionally, in terms of the dataset key aspects used in these past works ; the problem 

of accessibility to MIM is seen, as some of these papers such as Xu et al. (2021), 

Monteiro et al. (2015) included synthetic character images in their study, even though 

the MIM used were mostly small dataset except for Vcelak et al. (2019). These 

accessibility challenge remains a significant issue in the research in medical imaging 

domain. The MIM used by these papers shared similar characteristics which are 

mainly poor contrast, background noise, low resolution, and distortion. These 

characteristics did not appear in a single form, but in composites and the extent of 

these characteristics are determined by the acquisition machine used, lightening 

condition and selected variables during image acquisition. However, these papers did 
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not explicitly mention the magnitude of the image resolution in DPI which they worked 

on and this further limits the generability of their findings. 

The studies by (Wang, 2002; Newhauser et al.,2014; Tsui & Chan, 2012; Reul et al., 

2016; Vcelak et al., 2019) followed similar methodologies to recognise the burned-in 

textual data while focusing on the problem of background interference. The authors of 

these studies mainly proposed image transformation techniques to improve the 

background contrast and fed the enhanced image to an open-source or commercial 

OCR. Wang (2002) applied the Daubechies wavelet image processing, and Tsui & 

Chan (2012) performed morphological operations. Several studies (Newhauser et 

al.,2014; Reul et al., 2016; Vcelak et al., 2019) implemented multiple thresholding 

techniques to improve the background. These studies focused on increasing the 

image’s local contrast, that is, the contrast between burned-in textual data and 

background pixels, to make it easier to recognise the characters.  

Several studies (Monteiro et al., 2017; Xu et al., 2021; Badano et al., 2015) focused 

on the low-resolution problem in MIM and proposed various solutions to recognise 

burned-in textual data on these MIM. The work by Mário et al. (2011), after proposing 

a character template solution to recognise burned-in textual data focusing on the 

MIM’s low resolution of 352 dpi, concluded that the quality (resolution) of the generated 

character dataset (before recognition) is a principal factor that determines the 

character recognition accuracy. Monteiro et al. (2017) performed recognition on 

ultrasound images with a 6-layer CNN, achieving a recognition rate of 89.2% on 500 

processed images. The low-resolution problem was suggested as the reason why the 

CNN-based solution could not recognise certain font types and characters. Xu et al. 

(2021) went further to propose a solution for the low-resolution problem by using a 

Convolutional Recurrent Neural Network (CRNN)  combining scale variant features 
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during training. Though Xu et al. (2021) achieved a recall of 65%, a precision of 70% 

and an F1-measure of 67% in cardiac magnetic resonance imaging (MRI), the authors 

(Xu et al., 2021) concluded that the solution was not transferrable to other types of 

MIM. The system could not distinguish similar characters in low-resolution MIM. The 

study (Xu et al., 2021) did not evaluate the character recognition rate MIM but provided 

only the model’s performance metrics. 

This sub-section shows that there is a need to explore further research in ML and DL 

to improve state-of-the-art recognition accuracy of burned-in textual data. Such 

research focuses on designing a specialised ML or DL model to recognise these 

characters as accurately as possible under these problematic conditions of low 

resolution, background interference and noise corruption (Kociołek et al., 2020). The 

background interference occurs on varied MIM because of the lightning and image 

acquisition process (Maier-Hein et al., 2018). The low resolution is standard on varied 

MIM because of the limited storage of the acquisition machines, leading to reduced 

image quality (Aljabrin et al., 2022). Hence, this research suggests that a prompt 

understanding of MIM’s background interference and low resolution is required to 

design an optimal classifier effectively. This understanding will enable research into 

the design of creating a specific classifier for each modality with a critical focus on the 

problem of low resolution and background interference. 

 

3.5 Open issues and challenges in Burned-in Textual Data Recognition 

Various works have been done using traditional image pre-processing techniques and 

open-source OCR, and more recently, using ML algorithms to recognise this burned-

in text. Nevertheless, some challenges and issues still need to be solved. These 
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challenges and issues exist because of the constraints of acquiring MIM in different 

difficult conditions, resulting in low resolution and background interference problems 

due to hardware limits (Li et al., 2021). The open issues discussed in this section 

include (a) No consensus to measure image enhancement and (b) small medical 

imaging dataset. The significant challenge identified from the different existing ML 

approaches from an extensive literature review is (a) the discrimination of visually 

similar characters in low-resolution MIM with background interference. 

There is yet to be a consensus on measuring the image enhancement on these MIM 

to get a high recognition performance from the OCR due to the unique nature of the 

images. This is partly because there is yet to be a commonly accepted metric to 

measure the level of image enhancement, though some researchers have proposed 

the Peak-Signal-To-Noise-Ratio (PSNR). Michalak et al. (2019) used the PSNR to 

measure the success of a proposed image pre-processing methodology using local 

image entropy for an OCR in text recognition on illuminated document images. Their 

study suggested a more helpful approach would be the application of metrics 

calculated for recognised characters based on the Levenshtein distance, known as 

the Character Error Rate (CER), instead of individual pixels. Bieniecki et al. (2017) 

used the CER to evaluate the image’s pre-processing methods for text recognition in 

distorted document images using open-source ABBYY FineReader. Another study 

(Nomura et al., 2009) showed that the resulting models' CER is commonly used to 

measure the image pre-processing success rate. The study (Nomura et al., 2009) 

concluded on the average CER  metric from a quantitative evaluation on a test dataset 

of 1194 degraded word images to show the essentiality and effectiveness of their 

proposed image pre-processing method to increase the character recognition rate. 

Nomura et al. (2009) applied a modified Otsu global thresholding technique, which 
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reduced computational requirements and improved the CER in degraded digital word 

images on an open-source OCR system. Past researchers have applied these 

generalised metrics in evaluating their overall pipeline by mainly using the CER to 

measure the level of image enhancement without directly measuring the image 

enhancement stage. There is a need for a benchmark metric to determine the success 

of the image enhancement used as different image filtering algorithms from past works 

have been applied. This current research due to time constaints, will not focus on this 

issue, and that can be part of future works. 

The issue of small datasets is of serious concern in applying ML to medical imaging, 

including the OCR for burned-in textual data recognition, because ML requires a lot of 

training data to enable optimal tuning of parameters by the learning algorithm. DL 

algorithms for image classification require large datasets to produce good results, and 

they perform poorly with small datasets (Davila  et al., 2021). Privacy protection 

requirements and accessibility greatly hinder the availability of MIM. The resultant 

effect has led to small dataset of MIM available for the implementation and validation 

of pipelines, leading to slow progress in the field. Health centres housing MIM usually 

follow a regional regulatory framework such as the Health Insurance Portability and 

Accountability Act of 1996 in the United States (HIPAA), as a mandate on the privacy 

protection of patient’s medical records, which ensures that a guarantee is given on the 

confidentiality of data during storage and transmission via any secured or unsecured 

means(Li et al.,2005).  Due to the adapted regulatory framework, collecting a 

sufficiently large-scale, balanced MIM dataset is difficult (Qin et al., 2019). Several 

medical image classification competitions have been organised in recent years, 

motivated by the need to provide more datasets to the ML community to investigate 

novel ML algorithms on medical images. A notable competition was the Grand 
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Challenge for Biomedical Imaging, organised by the Medical Image Computing and 

Computer-Assisted Intervention (MICCAI) in 2007 (Maier-Hein et al., 2018). This 

medical imaging competition uses annotated datasets to ensure a uniform validation 

protocol is available for all participants (Aljabrin et al., 2022). Such annotated datasets 

cannot be used for textual data recognition in MIM research.  

With the existing problems of low resolution and background interference, 

discriminating visually similar characters (VSC)  is a significant challenge in various 

ML approaches to recognising burned-in textual data in MIM. A poorly defined 

character due to low image resolution, background interference, and small fuzzy font 

sizes can often distort the geometric shape of the character (Pal et al., 2021). Human 

vision sometimes misinterprets VSC, especially when these characters stand alone. 

This challenge has guided research in improving the recognition rate of similar 

characters such as “0” and “O”, “5” and “S”. A study by Inkeaw et al. (2019) similarly 

identified this challenge in OCRs and suggested a classifier-based approach may be 

the solution to improve the recognition rate of these VSC. There is a need to develop 

a complex classifier using ML and DL techniques to adequately learn discriminative 

features of VSC existing on MIM. Monteiro et al. (2017) and Vcelak et al. (2019) 

identified and attempted to solve this significant challenge using DL techniques by 

applying a 6-layer CNN but could not recognise certain VSC. 

 

3.6 Literature Review Conclusion  

In this section, I have concentrated on related works regarding recognising burned-in 

textual data, which is low resolution and background interference. All these conditions 

have made it challenging for conventional OCRs, image pre-processing and ML 
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approaches to recognise these textual data. As a result, an accurate medical image 

character recognition system will be considered a significant milestone in medical 

informatics. This will improve healthcare delivery by accessing and using these 

identified textual data in decision-making systems. This will also apply to scene text 

recognition for low-resolution images with noisy backgrounds.   

Furthermore, the recognised burned-in textual data will be relevant for post-OCR 

purposes such as anonymisation, sensitive data obfuscation, automatic integration 

into EHR systems, and developing a controlled search mechanism for MIM in a large 

medical database using text-based queries (Safaei, 1995). As regards a way forward 

in solving these challenges and open issues discussed in the previous section, I 

suggest efforts in the areas of (a) Collaboration between medical imaging centres and 

the ML research community and (b) an advanced DL approach. 

A possible approach to managing the issue of small datasets and the lack of image 

enhancement measurement consensus is, first of all, to encourage collaboration 

between medical imaging centres and the ML research community. This collaboration 

will enable seamless MIM dataset collection and sharing to allow the researchers to 

carry out a more massive pattern recognition.  There is a need to share MIM with 

privacy considerations to researchers and scientists using acceptable ethical 

standards (Pal et al., 2021). This would come with similar efforts in finding optimal 

image pre-processing standards for each MIM to provide guidelines on steps that can 

be applied to MIM before feeding onto an ML algorithm. For instance, most of the ML 

and DL algorithms for OCR cannot be applied directly to the original image to avoid 

poor performance because a strong and significant representation of the pixel content 

of these images is highly relevant for the overall success of the algorithm (Inkeaw et 
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al., 2019). With more datasets to conduct more research, ML communities can reach 

a consensus for acceptable standard metrics. 

In recent years, the advancement of ML has led to the outstanding development of DL 

models that possess multiple optimisation strategies and deep-layer architectures. 

These advancements can solve the limitations posed by using single classifiers in past 

works. Each DL layer can capture patterns and deeper representation and abstraction, 

especially in image classification tasks (Menasalvas & Gonzalo-Martin, 2016). Though 

these are not new ideas in the area of medical informatics, a more advanced approach 

to DL techniques, such as the multi-column deep neural networks, weighted majority 

voting ensemble, stack ensembles, and DL-Tree Classifier ensembles, have not been 

researched in literature, to see how accurate these advanced techniques can 

recognise these burned-in textual data. These methods have been applied in other 

areas, such as handwriting benchmark recognition with averaged predictions on the 

benchmark MNIST dataset (Cireşan et al., 2012) and CNN to classify into 1000 class 

images in the ImageNet dataset (Krizhevsky et al., 2017). However, these advanced 

techniques are yet to be exploited to recognise burned-in textual data primarily 

because of small training data. A detailed analysis of classifiers’ voting techniques in 

the domain of pattern recognition by Lam & Suen (1997) showed that using a 

combination of classifiers resulted in an outstanding improvement in overall 

recognition results in the OCR domain, and this was not depending on the nature of 

the classifiers (Shlens, 2014). A detailed study by Kovács-V (1995) on the voting 

combination strategy on the NIST Special Database for hand-printed characters gave 

an error rate of 2.59% using three classifiers operated in parallel with a final supervisor 

classifier. 
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In summary, this literature review has shown there is still much research to be 

done regarding the recognition of burned-in textual data in MIM and revealed that their 

low-resolution mode of acquisition, complex background and small fonts 

remain significant constraints in this domain. Therefore, there is a need for further 

research in this area to create an automatic and highly accurate burned-in textual data 

recognition model. For a more comprehensive and in-depth review, each technical 

chapter from 5 to 7 includes related works: burned-in recognition in Chapter 5, 

Siamese neural network and attention module in Chapter 6, and the CVAE in Chapter 

7.  

 

3.7 Evaluation Metrics 

The research would use the common error measurement in the OCR solution to 

evaluate the proposed pipeline, which is the Character Error Rate (CER). The CER is 

the percentage of erroneous characters identified in the model’s output, and it is 

considered the most common metric in OCR-related tasks (Drobac & Linden, 2020). 

To derive the CER is shown in (3.1) below: 

 

                        𝐶𝐸𝑅 =  
𝑆 +𝐷+ 𝐼

𝑁
                          (3.1) 

Where: 

• S =  No. of Substitutions 

• D =  No. of Deletions 

• I =  No. of Insertions 

• N =   No. of characters in the ground truth 
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The S, D and I are all calculated based on the Levenshtein distance, where the 

minimum number of character-level modifications needed to transform the OCR output 

into the ground truth text is used to calculate the CER. The result of the equation (3.1) 

gives the percentage of erroneous characters in the OCR output. The lower the CER 

percentage, the better the performance of the OCR model. Notable OCR comparison 

studies by multiple authors (Bazzi et al., 1999; Vijayarani & Sakila, 2015), on the 

analysis of state-of-the-art OCR tools and a comparison of their performance, the 

authors concluded the comparison could be made only using two factors, model’s 

accuracy, and CER. Natarajan et al. (2009) and Carrasco (2014) designed an 

opensource tool which computes the statistics of the difference between a provided 

ground truth and the output of an OCR model, and the result of this computation is 

used to analyse the performance of the model, this computation was referred to as the 

CER. 

According to the literature review findings of the common use of the CER metric to 

evaluate the overall system performance of proposed OCR solutions in different 

studies, the research explored possible evaluation techniques for this present 

research from the literature. The findings show that the proposed DL techniques can 

be evaluated in two aspects; this is shown in Figure 3.1  below: 
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Figure 3. 1: Study’s Evaluation Methods 

 

3.7.1 OCR Models Performance Evaluation 

The proposed models would be experimented, reported, and evaluated using the 

accuracy, precision, recall and F-1 score metrics. Hence, this research will consider 

different configurations of models and hyperparameter tunings, such as batch 

normalisation and data augmentation. The experimental results would be compared 

using the validation accuracy, precision, recall and F-1 score metrics; a similar 

direction was taken by Monteiro et al. (2017), Anand et al. (2020) and Shibly et al. 

(2021), where CNNs models were used for character-level identification. 

Precision quantifies the fraction of predicted labels that is correct and corresponds to 

the target class. This can be expressed below: 

                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                           (3.2) 

Recall indicates the fraction of the target class which is correctly identified among all 

of the samples, and this can be expressed below: 

                     𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                  (3.3) 



74 
 

The F-1 measure is a metric to determine the overall performance of the classifying 

model, and it can be expressed below: 

 

                     𝐹 − 1 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                    (3.4) 

Where TP= True Positive, FP = False Positive 

These formulas in 3.2, 3.3, and 3.4  are mainly for binary classification. However, to 

calculate for the mult-class problem, the microaverage technique following the one-

vs-approach will be used to calculate the evaluation metrics separately for each 

character class with class predicted true and class predicted false, without regard to 

the wrong character predicted. This means that micro-averaging gives equal weight to 

each instance. The individual metrics will then be pooled to get the value of the final 

metrics for the model. 

 

3.7.2 MIM Recognition Pipeline Evaluation 

This evaluation involves visually inspecting if the low-resolution burned-in text data in 

small font sizes have been correctly recognised at the character level. The CER can 

be calculated from the results obtained in the model performance evaluation stage of 

different model configurations. The overall performance will be measured based on 

the accuracy obtained by the proposed models in predicting the correct characters, 

and the number of errors will be taken as the average CER over these medical image 

datasets during testing and evaluation.  
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3.8 Research Objectives and Research Questions 

3.8.1 Research Objectives 

1. Provide a critical analysis of the state-of-the-art techniques for recognising 

burned-in data in medical imaging modalities. 

2. Carry out a data collection study in an on-site location to collect an original 

dataset vital for the proper evaluation of this study. This will follow an ethical 

approval process from the University ethics committee. 

3. Propose deep learning techniques to recognise burned-in textual data in low-

resolution medical imaging modalities with background interference.  

4. Further investigations on recognising visually similar characters and generative 

modelling to tackle the issue of small dataset size for model training. 

5. Evaluation of the proposed techniques and recommendations based on 

experimental results. 

3.8.2 Research Questions 

The research questions below are based on the gaps identified from the 

comprehensive literature review provided in this section, and this PhD thesis seeks to 

answer them. 

1. Can a deep learning-based solution be designed to recognise burned-in text 

data with small font sizes, low resolution, and background interference in varied 

medical image modalities? 

2. Can a deep learning-based solution based on few-shot metric learning be 

designed to recognise visually similar character images with a small dataset 

sample size in varied medical image modalities? 
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3. Can generative modelling be proposed to improve burned-in text data 

recognition by generating synthetic data samples for each character?



77 
 

4.0 Research Methodology 

The previous chapter reviewed existing methods for medical image character 

recognition. This chapter will address the chosen methodology within which this thesis 

will investigate the identified research gaps and propose, implement and validate 

solutions with a detailed description of the datasets used to evaluate the proposed 

techniques.  

4.1  Overview of the experimental pipeline 

 

Figure 4. 1: Experimental Pipeline 

The experimental pipeline will begin by collecting data from both public and private 

sources, carrying out data preprocessing, modelling, and evaluation, and improving 

performance by including techniques to deal with the limitations of small dataset 

sample sizes and visually similar characters. 
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4.2  Experimental Research Design 

This thesis employed a quantitative method involving rigorous experimentations and 

investigation using various deep learning techniques, as supported by previous works 

on MICR. Quantitative research is chosen because it is more objective, focused, 

reliable, measurable, and suited to identify cause-and-effect relationships and produce 

results that can be replicated. The thesis provides justified explanations of the 

evaluation metrics, reproducibility, and validity of the depth of the proposed models’ 

performance. This ensures that a third party can replicate the experiment to validate 

the findings. 

 

4.3  Dataset Description 

The medical image datasets used to test the proposed MICR models are open-source 

and originally collected (University Ethics Committee approved). These datasets were 

used for all the experiments in this thesis. 

MEDPIX: Medpix medical image dataset is open source and contains 60,613 image 

collections of ultrasounds, X-rays, MRI and CT. I manually curated 3050 character 

image patches from the collection to form a character dataset. This means I  carefully 

and manually selected character image patches using a simple image software 

(Microsoft Paint) instead of any specialised computer program, and this was to ensure 

the highest level of accuracy in data labelling, as automated character segmentation 

comes with many errors as supported by Sagar & Dixit (2019). 

In addition, the dataset contains burned-in textual data representing various medical 

interpretations of the images. The dataset comprises 62 classes (A-Z, a-z, 0-9), 

averaging 50 samples per class with a dimension of (28,28,3). Checking the resolution 
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of the datasets using the Python Image Pillow library gives a tuple of  (96, 96), which 

is 96 dpi. The two values indicate dpi values across each image’s dimension, meaning 

each character image patch has 96 dots in 1 inch across the height and width 

dimension. The average sample size for each class was 50. However, character “R” 

had a class size of 145, and the lowest class size of 5 was for characters "v", "j", "q", 

and "y". 

A tabular description of MEDPIX showing the frequency of each character is shown 

below in Table 4.3. 

Table 4. 1: Character frequency of MEDPIX 

CH. 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I 

FQ. 116 123 101 60 60 67 40 43 51 58 129 48 89 82 161 42 54 78 73 

 

CH. J K L M N O P Q R S T U V W X Y Z a b 

FQ. 17 16 120 85 82 80 92 4 145 111 140 37 44 38 9 29 16 47 9 

 

CH. c d e f g h i j k l m n o p q r s t u 

FQ. 12 28 64 5 20 9 33 5 7 19 35 29 25 18 5 28 35 31 11 

 

CH. v w x y z 

FQ. 5 6 12 5 7 

 

CH. = Character 

FQ. = Frequency 
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PRIVATEDT: A private and original image dataset was collected after getting 

University ethics approval (Protocol number: SPECS/PGR/UH/05141). The data was 

collected on-site in Nigeria during the third year of the PhD. The image contains 3,000 

image collections of ultrasound images from three medical laboratories with varied 

imaging acquisition techniques based on the approved guidelines. Appendix A-E 

provides information about the data collection requests and approval documents. 

Similarly, the dataset contains burned-in textual data representing various medical 

interpretations of the images of different internal human parts. This study manually 

curated 2076 character image patches from the collection to form a character dataset 

consisting of 62 classes (A-Z, a-z, 0-9), having an average of 34 samples per class 

with a dimension of (28,28,3). The resolution of the character images is 96 dpi.  

A tabular description of PRIVATEDT showing the frequency of each character is 

shown below in Table 4.3. 

Table 4. 2: Character frequency of PRIVATEDT 

CH. 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I 

FQ. 27 60 45 38 21 35 17 21 19 16 84 44 41 49 86 32 29 28 60 

 

CH. J K L M N O P Q R S T U V W X Y Z a b 

FQ. 10 19 61 33 43 32 27 5 70 71 72 26 14 9 9 22 7 59 29 

 

CH. c d e f g h i j k l m n o p q r s t u 

FQ. 21 31 90 10 25 18 48 9 12 42 27 44 40 24 12 54 56 48 24 

 

CH. v w x y z 

FQ. 13 12 8 30 8 
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CH. = Character, FQ. = Frequency 

For clarity, manual curation of the datasets involved manually segmenting words into 

characters using simple image software (Microsoft Paint). Data labelling was carried 

out by grouping each of the segmenting character images into 62 classes (A-Z, a-z, 

0-9). The manual curation was usually in four steps to ensure accuracy:  

• Segmentation of the burned-in on the MIMs text into lines 

• Segmentation of the lines from the previous step into words,  

• Segmentation of the words from the previous step in characters  

• Grouping each character in a folder representing classes. 

4.4  Resolution of Character Image Patches 

The target resolution for the character recognition for this report is 96 dpi. The reason 

for the focus on the 96 DPI resolution is that the research carried out an extensive 

assessment of varied samples of MIM from various medical images online databases, 

including anonymised samples from a physical location where this PhD research 

collected original medical image dataset, after approval from the University Ethics 

committee. The images’ resolution range was 96 DPI. Hence, this study was adapted 

to work with the 96 DPI. The resolution of the images collected was checked and 

confirmed using the PIL Python library. An image of the result using the PL Python 

library for random images from the dataset collected is shown in Figure 4.2 below: 

 

Figure 4. 2: Resolution of a sample character “M” using the PIL Python library. 

“mydataset” here represents the MEDPIX dataset. 
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The PIL Python library image processing utility for Python is designed for fast access 

to data stored in basic image pixel formats. From Figure 4.2, the tuple (96, 96) 

indicates dpi values across each dimension (height and width), meaning the character 

“M” image has 96 dots per inch in both dimensions of the image’s height and width. 

The left side of Figure 4.2 shows the character patch, and the opposite shows the 

resulting resolution using the PIL Python library. 

 

4.5  Challenges, Technical Factors and Ethical Considerations 

This research utilised various technical platforms, including UHHPC, Google 

Computer Engine, and ML / DL library packages, to propose, implement, and validate 

solutions for the challenges in MICR identified in Chapter 3. This report will provide 

configurations of these usages as appropriate. However, some challenges were 

encountered, such as computational resources, hardware limitations, data quantity, 

and time constraints. This research addresses these challenges to develop effective 

and reliable DL models by implementing these strategies: online data augmentation 

to artificially increase data quantity, leveraging the Google cloud computing platform 

(Colab) to increase computational resources available, optimising algorithms and 

using advanced specialised hardware such as GPUs, TPUs, to reduce training time, 

and ensuring efficient data labelling to improve final model’s accuracy and 

generalisation. 

This research will meticulously adhere to several ethical guidelines to safeguard the 

data collected according to the ethical approval by the university’s ethics committee, 

with protocol number SPECS/PGR/UH/05141. Data privacy and confidentiality will be 

strictly maintained. 
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4.6  Chapter Summary 

This chapter provides an overview of the research methodology and experimental 

overview for this PhD thesis. It allows an understanding of the methods, steps, and 

techniques used for this research to allow reproducibility. 
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5.0 Ensemble Learning for Medical Image 

Character Recognition based on Enhanced 

Lenet-5 

This chapter presents an enhanced CNN model for MICR and an ensemble classifier 

of CNN-based learners to enhance this new technique of recognising VSC. Intensive 

experiments are done using open-source and privately collected medical imaging 

datasets. Generally, MIM has a distinctive nature of low contrast, complex 

background, and low resolution, containing burned-in textual data of patients. The 

conventional OCRs hardly recognise these burned-in textual data under these 

conditions, as they are designed for mainly bi-level text with a minimum resolution of 

300 dpi. With a focus on solving these challenges, this chapter proposes these models 

to aid a more accurate character recognition of burned-in textual data. The classical 

Lenet-5 architecture inspires this chapter. The problem of low resolution at 96dpi and 

background interference is targeted by using small 3 X 3 CNN filters to extract local 

features and changing the pooling layer to a learning layer by replacing it with 5 X 5 

filters with a stride of 2 and training on a low-resolution character dataset. The final 

prediction is based on a majority voting algorithm. The consensus of the base learners 

improves the model’s stability in recognising visually similar characters.  

The work presented in this chapter was done during the second year of this PhD 

project (2021) and was published in an international conference proceedings in 2023 

(Osagie et al., 2023). The content of this chapter has been adapted from Osagie et 

al., 2023, with some modifications and additional experimental results to suit the style 

better and ensure a logical presentation of the study. 
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5.1 Introduction 

There has been a recent demand for the application and integration of artificial 

intelligence in medical imaging to understand their embedded patterns and use this 

extracted information to improve healthcare delivery and medical research. The 

imaging acquisition processes occurred under varying lighting conditions and 

distortions, resulting in low contrast with background interference. These MIM formats 

usually contain patients’ demographic and clinical examination data, but they exist as 

burned-in textual data. These specialised acquisition devices typically have low 

storage capacity. Hence, MIM has low resolution, resulting in burned-in textual data 

having a small font size. The need to recognise and extract this burned-in text for 

various post-identification purposes led to MICR research. However, these MIMs 

possess complicated features, such as commonly complex background interference 

and low resolution. These problematic conditions have resulted in poor performance 

accuracy when conventional optical character recognition (OCR) systems are applied. 

A common MIM showing these conditions included with the burned-in text magnified 

is shown in Figure 5.1 below. 

 

Figure 5. 1 : X-ray image (The Cancer Imaging Archive (TCIA) Public Access) 
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The low resolution makes the burned-in textual data appear in tiny font sizes, further 

increasing the complexity of using conventional OCR solutions to recognise them. 

Tesseract, Kraken, Calamari, Ocropy and Abby Reader are the most widely used 

OCRs (Drobac and Lindén, 2020) and can only recognise textual data on printed and 

scanned document images (Ramdhani et al., 2021). These conventional OCR 

solutions usually operate in two steps. (a) Divide the input image and determine the 

region of interest with the textual data and (b) Segment the character and do the 

recognition individually. However, these steps are inefficient in MIM, where the text is 

unstructured (Text may not appear in a straight horizontal line) (Istephan and Siadat, 

2016).  As a result, the background may overlap the text, with a resolution much lower 

than what these Conventional OCRs were designed for. Conventional OCR solutions 

require a minimum resolution of 300 dpi for good accuracy (Oni and Asahiah, 2020), 

while MIM are 150 dpi – 72 dpi. To solve this problem, earlier proposals used varying 

image pre-processing techniques to enhance these MIMs and feed them to these 

conventional OCRs. After that, ML algorithms (such as Random Forest, AdaBoost and 

Boltzmann Restricted Machine classifiers) were used to design specialised classifiers, 

but the performance was limited by the inability of these algorithms to learn optimally 

in the presence of noise. Recently, DL models, especially CNN-based models, have 

greatly succeeded in image classification tasks, as the convolutional layer can extract 

local features from input training samples using linear and nonlinear operations. A 

CNN variant explicitly designed for handwritten and machine-printed characters on 

document images, which achieved high success on the MNIST handwritten character 

dataset, is known as Lenet-5 (Lecun et al., 1998). The accuracy of CNN classification 

has been recorded as high compared to MLP and probabilistic networks (Wei et al., 

2019). The Lenet-5 architecture consists of 5 learnable layers, with three sets of 
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convolutional layers and average pooling layers, followed by two dense layers and a 

SoftMax classifier at the posterior (Lecun et al., 1998). The Lenet-5 uses an efficient 

combination of convolutional layers to extract essential features from input training 

samples while reducing training time through its simple yet efficient architecture. The 

Lenet-5 uses the gradient descent method for the global convergence of the algorithm 

(Zhang et al., 2019).  

Still, within the aspect of MICR, there is an associated challenge in recognising VSC 

(such as “0” and “O”) in low-resolution MIM due to the poor quality, resolution, and 

dimension adjustment of textual data in the complex backgrounds of MIM (Pal et al., 

2021). The low resolution often results in distortion in the shape of these characters, 

making it difficult for even a trained classifier to recognise the target class correctly. 

As a result, even a well-trained classifier may misclassify these VSC, reducing the 

model’s confidence. This chapter proposes a consensus of enhanced models trained 

on different subsets of the datasets, where each model represents learned significant 

discriminative features of characters from the training samples. Due to background 

interference, shade gradients, overlapping text and low resolution, developing a large 

all-inclusive dataset of characters in this domain is quite challenging. Recent OCR 

engines may have auto-correct functionalities based on language dictionaries. Still, in 

the MIM domain, it is difficult to have such a dictionary that contains all alphanumeric 

medical text and labels. Hence, there is a need to recognise these individual 

characters accurately and independently. It is relevant to employ ensemble techniques 

to improve the character recognition accuracy of classifiers by leveraging the 

advantages of a majority voting algorithm. 

CNN has recently been applied to recognise these burned-in textual data on MIM. Still, 

these solutions are limited in low-resolution MIM of 96dpi and need further 
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enhancement to distinguish visually similar characters. The primary focus of this 

chapter is to propose an enhanced CNN model inspired by the Lenet-5 architecture to 

recognise these burned-in textual data in MIM at a character level. A majority voting 

algorithm is employed to improve the recognition of visually similar characters. A 

comparison of the enhanced CNN models and the state-of-the-art will be made to 

show the improvement achieved.  

This chapter investigates the applicability of specially designed and enhanced deep 

learning models to the recognition of burned-in textual data in MIM under the 

constraints of low resolution, background interference and tiny text. 

The remainder of this chapter is organised in the following section. Section 5.2 reviews 

the related works in MICR. Section 5.3 provides the specific contributions of this 

Chapter. Section 5.4 discusses the proposed CNN-based ensemble model inspired 

by the Lenet-5 and includes justifications for the modifications done. Section 5.5 

describes the experimental setup. Section 5.6 presents the results and evaluation. 

Finally, section 5.7 presents the conclusion of this chapter. 

 

5.2 Related Works 

Past works have proposed different solutions to recognise burned-in textual data on 

MIM by leveraging the pattern recognition ability of both ML and DL techniques, with 

recent methods being CNN-based. These works attempted to solve the challenge 

under the problematic conditions explained in the introduction by combining different 

image pre-processing techniques and ML or DL models. One early approach proposed 

for MICR was presented by authors in (Florea et al., 2005) using prior knowledge of 

the intended character, applied morphological transformations (TopHat filter) to 
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thicken the edges, and finally fed to ABBYY FineReader opensource OCR. Still, the 

approach could not identify text in the angiography category and other textual 

annotations in varied MIM with a recognition rate of 58.8% and recall of 60.0%. Wang 

(2002) applied a wavelet-based medical image-filtering algorithm to recognise burned-

in text containing areas into lines and passed into an OCR engine. The solution 

depended on the images’ quality or sharpness and only recognised characters on the 

corners of grayscale medical images. A similar approach using open-source OCR and 

zoom factor extraction technique by (Alter and Werner, 2007) performed poorly in 

recognising burned-in textual data overlapping on the complex background due to high 

background interference. The zoom factor extraction largely depended on the quality 

of the images. Hence low-resolution images reduced the performance of this 

approach. Some authors saw the need for a pre-determined dictionary and a user-

assisted revision stage. The user-assisted revision reduces errors based on a 

specified lexicon but cannot be automated (Tsui, and Chan, 2012). Tsui, and Chan, 

(2012) included a weighted similarity in combination with the user-assisted revision. 

Vcelak et al. (2019) applied binarisation with Tesseract OCR on ultrasound images. 

These proposed methods all suffered similar unreliable results, especially in low-

resolution MIM containing overlapping textual data with background interference. 

Even though the various image pre-processing methods reduced the background 

noise, the OCRs were explicitly designed for printed and scanned document text. Due 

to the inadequacies of the conventional OCRs, more specialised solutions were 

designed.   

Yu and Yuanyuan (2015) applied local feature extraction and Adaboost to recognise 

burned-in textual data. However, unreliable results were seen in low-resolution MIM 

with poor contrast and lightning. The background noise affected the learning ability of 
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Adaboost (Yu and Yuanyuan, 2015). Monteiro et al. (2015) used a random forest 

classifier and restricted Boltzmann machine. However, they could not recognise varied 

font styles and small font sizes on low-resolution MIM. The limitation in the random 

forest classifier in (Monteiro et al , 2015) is due to the model’s poor performance in 

dealing with higher-order convolutional structures (images), as it is more accurate in 

learning features from tabular data. Recent authors proposed a CNN-based 

recognition model for burned-in textual data on MIM (Monteiro et al , 2017). The CNN 

model (Monteiro et al., 2017) proved better than previous ML algorithms, with an 

accuracy of 87.5%.  The design of (Monteiro et al., 2017) was a shallow network with 

two convolution layers, two max-pooling layers and two dense layers. It was limited by 

its representational capacity to learn complex features and poor ability to learn spatial 

representations, which are essential to understanding the spatial relationships 

between different parts of the image (Monteiro et al., 2017).  Monteiro et al. (2017) 

could not generalise the solution to varied MIM with different font styles and small 

sizes. They trained using a non-medical image character dataset and evaluated only 

on ultrasound imaging. They suggested that the background interference in the low-

resolution MIM reduce the model’s accuracy and reliability. Silva et al. (2018) used the 

same CNN model as Monteiro et al. (2017) and included complex user-assisted 

revision stages. The system had problems finding patterns for similar characters in 

dark backgrounds and relied on too many complex processes, such as multiple 

software integration (Silva et al., 2018). More recently,  Xu et al. (2021) proposed a 

modified Convolutional recurrent neural network (CRNN) with a multiscale architecture 

learning scale variant feature. The result was a recall of 65.0%, a precision of 67% 

and an F-measure of 70%. Their proposed model (Xu et al., 2021) was poorly learned 

due to the large network width, the small dataset of 1500 images used and the 
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background. The model could not recognise burned-in text reliably on varied MIM with 

low resolution and hence could not be generalised (Xu et al., 2021). These past works 

(Yu et al., 2015; Monteiro et al., 2015; Monteiro et al., 2017; Xu et al., 2021) concluded 

that their models were further limited by the challenge of recognising VSC such as “U” 

and “V”. Therefore, in recognising characters in MIM, consideration has also to be 

given to the VSC to improve the model’s confidence. 

In the general OCR domain, several studies (Caruana, 1997; Hou et al., 2017; Chen 

et al., 2017 ) used ensemble learning to improve the recognition of handwritten 

characters while considering visually similar characters. These authors (Caruana, 

1997; Hou et al., 2017; Chen et al., 2017 ) did not explicitly specify the resolution of 

their work but agreed on the problem of background interference. However, not much 

work has been done to recognise burned-in textual data in MIM using ensemble 

enhancement.  Ensemble learning is an intensive pattern recognition technique that 

combines base models to improve the final model's generalisation ability. The MICR 

task can be enhanced with a higher performing accuracy by combining a group of 

base classifiers as an ensemble. This consensus prediction is advantageous, 

especially in recognising visually similar characters. Creating multiple classifiers and 

manipulating the training data in an organised or random way, as well as changing the 

hyper-parameters, will give rise to different hypotheses by each classifier as they 

converge individually on a different space. Combining these classification rules 

learned from different convergence and applying a majority voting method, this study 

achieved diversity in each CNN member by training on different subsets of the data 

while carrying out online augmentation. The Lenet-5 is recognised as a pioneer model 

from which other advanced models were developed (Emmert-Streib et al., 2020). A 

notable improvement of the Lenet-5 is the AlexNet, which won the ImageNet Large 
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Scale Visual Recognition Challenge (ILSVRC) in 2012 with a top-5 error rate of 15.3% 

(Emmert-Streib et al., 2020). Most recent studies using CNN for MICR have designed 

only a single classifier (Monteiro et al., 2017; Silva et al., 2018; Xu et al., 2021). 

However, a single CNN classifier may show poor accuracy due to a limited set of 

possible approximations the model can create for a target function and its 

representational capacity or have been stuck on a local minimum due to a stalled 

weight update. Furthermore, the single outcome cannot be appropriately aligned with 

the desired outcome when considering the difficulty in recognising characters. These 

limitations motivated this chapter's work to propose an enhanced CNN model using 

Bayesian reasoning for the MICR task. A majority ensemble is employed to tackle the 

problem of distinguishing VSC using a consensus algorithm. Based on an extensive 

search of notable article databases for the last 10 years, no past works have employed 

the optimisation of the Lenet-5 architecture and implemented the advantage of 

ensemble learning to recognise burned-in textual data on MIM. This chapter aims to 

investigate and contribute to this aspect to tackle these challenges in burned-in text 

recognition in MIM. 

 

5.3 Contributions 

The main contributions of this chapter are : 

• This study proposes an enhanced CNN model motivated by the classical Lenet-

5 model. The enhanced model is optimised using Bayesian reasoning. The 

Lenet-5 uses a filter size of 5x5 in its first convolutional layer, followed by 

average pooling. In this study, these are replaced by a 3x3 filter size and a 5x5 

filter size with a stride of 2, respectively. This enhancement ensures that the 
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proposed CNN model can learn more local features, which are essential in 

designing a MICR solution for low-resolution MIM with background interference. 

• Performing MICR on burned-in textual data at a low resolution of 96 dpi with 

background interference. The proposed models are evaluated using open-

source and privately collected datasets. An outstanding accuracy score was 

achieved, and MICR at such low resolution has not been previously reported in 

the literature. 

• A majority voting ensemble algorithm is proposed to enhance the model’s 

performance. The research uses the bootstrapping method to create 3 subsets 

of character datasets. A classifier is fitted to each of these subsets and 

evaluated. An ensemble is designed using the trained classifiers of the training 

subsets, and a final classification outcome is based on a majority voting 

algorithm. This improves the model’s performance in distinguishing VSC. 

 

5.4 Proposed Model 

The proposed model is an enhancement of the classic Lenet-5 model suited for the 

task of MICR. The model will be used to form an ensemble model based on a majority 

voting algorithm. The enhancement is done by optimising the base model using a 

combination of optimisation techniques presented in the network hyperparameter 

optimisation sub-section. The following sub-sections discuss the network design and 

optimisation techniques. 
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5.4.1 Network Hyperparameter Optimisation 

This study used the Bayesian Optimisation (BO) algorithm to decide the optimal 

architecture of the hyper-parameters and efficiently modify the base model for the task. 

The BO is a sequential design strategy for the global optimisation of objective functions 

that may be expensive to evaluate (Zhang et al., 2021), such as the hyperparameters 

in neural networks. It can efficiently reduce the computational cost of fine-tuning 

hyperparameters compared to brute-force methods (Gridsearch and Randomsearch) 

by reducing the number of search iterations by choosing the input values based on the 

past outcome of a previous configuration. The BO uses the informed learning method 

based on the Gaussian process by using a surrogate function to model the black box 

function and then uses an acquisition function to find the next point of evaluation. The 

goal is to get very close to the optimum values with very few iterations of the black box 

functions. BO can fit the observed values of the black-box function and interpolate 

between observed data points, with increasing statistical uncertainty the farther you 

move away from the observed data. These properties are essential for this study, as I 

know the function values taken from the Lenet-5 as the base model, but I am not 

certain of the impact of increasing or decreasing these functional values. BO can 

achieve the global minima with the smallest loss function value (Gao et al., 2019). 

Compared with the popular Genetic Algorithm (GA), the GA must move from one 

generation to the next, so it trains the same configuration on multiple hyperparameters. 

In contrast, BO can train a single configuration and update the posterior information 

based on learned history, hence reducing computational costs. However, the BO has 

some instability limitations, particularly in dealing with a large hyperparameter search 

space because of the curse of dimensionality (Eriksson and Jankowiak, 2021). Several 

recent empirical studies (Moriconi et al., 2019; Frazier, 2018; Awal et al., 2021) have 
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shown that BO is practically limited to optimising less than 20 parameters. Although 

the parameters are less than 20 in this study, I desired a reduction of the iterations 

needed for BO. This study combined a search space pruning mechanism known as 

the Successive Halving Algorithm (SHA) to reduce the computational cost for BO 

iterations. SHA is an advanced early-stopping method that determines the most useful 

hyperparameter search values that may lead to good results by allocating minimum 

resources (such as the number of epochs) to each configuration and terminating 

unpromising trials by monitoring each trial learning curve. Basically, SHA determines 

the useful search space with very soon promising configurations and the BO uses its 

reasoning properties to find the optimal configuration. The SHA can be run in parallel 

and simultaneously with BO to reduce the search space, overcoming a major 

shortcoming of BO. In this study, I focus only on optimising the base model for the 

MICR by leveraging a combination of the techniques of SHA and BO to determine the 

optimal hyperparameters. Hence, no detailed derivation of the optimisation algorithms 

will be provided. SHA determines how many configurations to evaluate with which 

budget, but the BO replaces the default random search. Once the desired number of 

configurations is reached, the SHA reduces the number of configurations using a 

reduction factor. The SHA-BO combination is implemented using the Optuna Python 

library, which allows input of various parameters that can affect the optimisation and 

create trials known as a study (Akiba et al., 2019). In the Optuna library, I used the 

Gaussian process-based algorithm for the BO. The Gaussian process-based 

algorithm can build a model by applying Bayesian reasoning to balance the exploration 

versus exploitation trade-off. Several recent studies (Watanabe and Hutter, 2022; 

Bergstra et al., 2011; Rong et al., 2021; Ozaki et al., 2020) have agreed that it is a 

notable BO estimator to optimise hyperparameters to ensure the strong performance 



96 
 

of DL models. I can pass a function for the optimisation, specify the number of 

iterations, and visualise the importance of the hyperparameters. As a first study, I ran 

hyperparameter tuning for about 100 trials and then checked which hyperparameters 

were the most important. Next, I omitted the less important hyperparameters for the 

subsequent studies up to 1500 trials. The flow chart of the optimisation process is 

shown below in Figure 5.2. 

 

Figure 5. 2: Flow chart of the BO hyperparameter optimisation process 

The hyperparameters setting was carefully selected after careful observations of 

notable models, datasets and key values affecting the optimised objective function. 

This ensured that no computational cost was spent on running iterations on already 

known, likely not promising settings. Hyperparameters search space included 

activation, learning rate, optimisation, kernel size, strides, number of convolutional 

layers, number of filters, number of layers, number of dense units and drop-out rate. 
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For clarification, the configuration of the hyperparameter optimisation process is 

provided below: 

• The Optuna library9 with the GPSampler is used for the hyperparameter 

optimisation process. 

• Objective (a trial) was defined according to this search space; filters (32, 64, 

128), kernel size (3,5,7), strides (1,2), activation (ReLU, sigmoid, Leaky ReLU), 

dropout rate (0.2, 0.3, 0.4, 0.5), Con2D (1,2,4,5,6), learning_rate (1e-5, 1e-1) 

and Dense (64, 128, 256, 512). 

• Pruner was set to ‘successivehalvingpruner’, and the direction of the trial was 

set to ‘maximise’ accuracy.  

• The number of trials was initially set to 100, and the trials ran 30 times to 

establish the importance of hyperparameters. This helped to refine the search 

space, since the most important hyperparameters are known after this and are 

being focused on. 

• Next, the number of trials was set to 1500, which ran 30 times to determine the 

best hyperparameters for the proposed CNN architecture.The results from all 

the runs were similar; hence, only one result was taken. 

• On each trial, this sampler fits a Gaussian process (GP) to the objective function 

and optimises the acquisition function to suggest the next parameters. 

• The GP configuration used was Matern kernel with 𝑛𝑢=2.5, Automatic 

relevance determination (ARD) for the length scale of each parameter, Log 

Expected Improvement (logEI) as the acquisition function, and Quasi-Monte 

Carlo (QMC) sampling to optimise the acquisition function. These other 𝑛𝑢 

 
9 https://optuna.readthedocs.io/en/stable/ 
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values for the Matern kernel were all evaluated [0.5, 1.5, 2.5] and compared 

based on faster convergence for hyperparameter searches. Other values 

above 2.5 incurred more expensive computational costs during the optimisation 

process and reached up to 10 times more resources when running trials. 

Hence, they were not used. The 𝑛𝑢 value of 2.5 was kept constant through the 

optimisation process after prior evaluation of the other values. 

• After the first 100 trials, the optional has a module ‘importance’ that 

provides functionality to evaluate hyperparameter importance from completed 

trials. 

• After evaluating the importance of the hyperparameters from the initial 

completed trials of 100, the search space was adjusted. 

• The choice of the matern kernel was based on its performance, as seen in past 

works (Gao et al., 2017) regarding its robustness in predicting uncertainties in 

hyperparameter optimisation (Wood et al., 2022). 

 

5.4.2 Designed Model 

The detailed layerwise summary of the MICR model is shown in Table 5.1. The 

enhanced MICR model consists of multiple convolutional layers (Conv2D) and dense 

layers at the end. A 2D convolution is done in each convolutional layer, followed by 

Relu activation. I applied a 3x3 filter initially to learn most local features across all 

channels while keeping padding at zero. This is followed closely by the 5x5 filter across 

the Conv2D. The 5 X 5 Conv2D with a stride of 2 replaces the pooling layer on Lenet-

5 to allow more representation learning of local features while downsampling the 

image simultaneously. This was discovered after running over 300 iterations during 

the model optimisation step. Recent studies (Springenberg et al., 2014; Muresan & 
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Oltean, 2017) agreed that this replacement improves the model's expressiveness 

ability. I applied 128 neurons for the dense layers. In addition, the visual representation 

of the model is shown in Fig 5.3.  to show the network architecture. The enhanced 

CNN model is a relatively simple yet efficient model for the desired task of recognising 

burned-in textual data on MIM. Experimental results showed that accuracy reduced 

drastically as the network became deeper. This was due to the problem of information 

loss, vanishing gradient, and the small dataset. It is agreed that the deeper the 

architecture, the more information loss can occur during the downsampling process, 

as the dataset has a small amount of data (Tomasini et al., 2022; Alzubaidi et al., 

2021). Dropout was added to avoid over-fitting (Goodfellow et al., 2016), which is 

important when dealing with a small dataset. The dense layer converted the 2-

dimensional feature maps into 1-D vectors. All neurons are fully connected to the 

neurons in the adjacent and subsequent layers. The output layer uses a Softmax 

function to predict the final classification outcome.  

Compared with the past works (Monteiro et al., 2017; Silva et al., 2018; Xu et al., 

2021), the design solved the poor learning ability due to the large network width and 

information loss by using an optimal configuration of  3x3 filters which is able to reduce 

information loss.  The architecture design solved the limitations of Monteiro et al. 

(2017) to recognise certain font sizes and styles by replacing pooling layers with 

learnable downsampling layers, which is targeted at the problem of recognising 

characters in low-resolution MIM as key features are small and local. This approach 

is inspired by Springenberg et al. (2014), and it increases the model’s expressiveness 

ability. 
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Figure 5. 3: Proposed Enhanced MICR model 

Table 5. 1: Layerswise Summary of the proposed CNN model. 

Layer (Type) Output Shape Learnable 

Parameters 

Filter Stride 

conv2d_22 (Conv2D)   

conv2d_23 (Conv2D)  

conv2d_24 (Conv2D)  

dropout_5 (Dropout) (0.4) 

conv2d_25 (Conv2D)    

conv2d_26 (Conv2D) 

conv2d_27 (Conv2D)  

dropout_6 (Dropout)  (0.4) 

flatten_1 (Flatten)  

dense_2 (Dense)  

dense_3 (Dense) 

26, 26, 64  

11, 11, 64  

7, 7, 64 

7, 7, 64  

2, 2, 64 

2, 2, 32 

2, 2, 32 

2, 2, 32 

128  

128  

62 

1792  

102464  

102464 

0 

102464 

18464 

25632 

0 

0 

16512 

7998 

3x3 

5x5 

5x5 

 

5x5 

3x3 

5x5 

 

2 

 

 

2 

                                    Trainable parameters: 377,790        

 

The justification for the modification achieved on the proposed MICR model is further 

explained in Table 5.2 in the following sub-section. 
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5.4.3 Modifications on Lenet-5 

 

Table 5. 2: Modifications carried out on the Lenet-5 base model 

Lenet-5 EfeNet22 Justification  

Input layer size of 32 X 32 and 

grayscale 

Input layer size of 28 X 28 and 

RGB 

The input images in this research are 28 X 28 and  RGB, hence 

the modification of the input layer’s size. 

Two Conv2D layer with 5x5 filter Two stacked Conv2D layers with 

3X3 filters to replace each of the 

default 5 X 5 

The choice of filters, especially in replacing the 5X5 filter with 

two stacked 3X3 filters, is drawn from an understanding of the 

automatic feature extraction ability of CNN at each layer, 

determined by the kernel size. Most of the useful features in 

an image are local, and to effectively learn these features, it is 

better to apply small convolutions to take a few pixels at a time. 

Therefore, choosing a 3X3 to replace the original 5X5 filter 

reduces the computational requirements of learning features 
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and the weight sharing when dealing with these noisy medical 

images. Also, the 3X3 ensures simplicity in implementation 

and extracting features from localised pixels of interest and 

their neighbours from all sides; this can efficiently learn useful 

local features such as vertical edges, which is essential in this 

case. From the notable inception model done by Szegedy et al 

(2014), the authors agreed with the fact that replacing the 5X5 

filter in the Lenet-5 with the two stacked 3X3 filters results in a 

(9 + 9)/25x reduction in computation requirement because 

using two filters means 2(3*3 + 3*3) individual weights 

compared to (5*5) individual weights in a 5X5 single filter; 

hence fewer parameters reduce the computational resources 

needed.  

Sub-sampling layers   Conv2D layer with stride 2 This research replaced the subsampling layers in the Lenet-5 

with learnable convolutional layers with strides of 2 because 

pooling is a fixed operation while convolution can be learned, 
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even though it is a more expensive operation in terms of 

computational requirements, this is required as the dataset 

contain some amount of noise. Therefore it is appropriate to 

learn as much representations as possible. The learnable 

layers also increase the model's expressiveness ability, 

generalisation, and overall accuracy. A notable study by 

Springenberg et al. (2015) demonstrates that this action 

improves the model's overall accuracy with the same depth 

and width, leading to increased model stability. Also, other 

widely referenced studies on image classification tasks 

implemented learnable Conv2D layers instead of Maxpooling 

or other sub-sampling methods (Mureşan and Oltean, 2017). 

ResNet, a popular CNN, has also agreed and embraced this 

finding by using convolutions with strides rather than sub-

sampling to reduce spatial dimensions in between residual 

modules and result in higher accuracy. 
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No batch normalisation  Batch normalisation is added Batch normalisation improves performance, speed, and 

stability during the training of DL models (Ioffe et al., 2015). It 

helps reach convergence faster (Bjorck et al., 2018) and 

makes the optimisation landscape significantly smoother 

(Santurkar et al., 2018) 

The Sigmoid activation function  ReLU activation function ReLU is simple, fast and solves the problem of vanishing 

gradient due to slow convergence by having a derivative of 0 

or 1 during weight multiplication, compared to sigmoid having 

a derivative between 0-1; this was reported from multiple 

experiments by Nwankpa et al., 2015 and Szandała, 2021. 

No Drop-out regularisation  Drop-out regularisation is added Drop-out was added to avoid over-fitting (Srivastava et al., 

2014), which is important when dealing with a small dataset. 

7-Layers with three fully 

connected layers. 

8-Layers with two fully connected 

layers. 

Reduction of the fully connected layers from three to two, to 

reduce network complexity and training time (Ma et al, 2018). 
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5.4.4 Visual description of the models’ architecture 

 

 

Figure 5. 4: Visual description of model’s enhancement (a) Lenet-5 architecture: Input 

is grayscale handwritten digits, output is 10 possible outcomes, FC = Fully connected 

layers, AvgPool = Average Pooling layer. (b) Proposed CNN Member architecture. 
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The Lenet-5 is the basis of numerous models due to its high performance in OCR 

applications and foundations for notable architectures like AlexNet and VGG. The 

Lenet-5 is made up of 7 layers, which are 3 convolutional layers, 2 subsampling layers 

and 2 fully connected layers; the input layer is not included in the total number of 

layers, as no learning occurs at this layer but only takes in 32 X 32 images which are 

passed to the next layer. In the original paper by Lecun et al. (1998), the Lenet-5 

experimented on grayscale images with normalised pixel values of -0.1 to 1.175 to 

ensure the batch of images had a mean of 0 and a standard deviation of 1; this resulted 

in a reduction in the overall training time. As seen in Figure 5.4(a) above, the Lenet-5 

is built on two significant layers: the subsampling and the convolutional layer. 

The first Convolutional layer produces as output 6 feature maps with a kernel size of 

5 X 5, a sigmoid activation function, and the dimensions of the 6 feature maps are 28 

X 28. The second convolutional layer also uses a 5 X 5 kernel, a sigmoid activation 

function, and outputs 16 feature maps. Each 2 X 2 subsampling layer reduces the 

dimension by a factor of 4 via spatial downsampling and outputs the corresponding 

feature maps received by the previous layer. The inputs are flattened after the last 

subsampling layer, from a 4-dimensional input into the 2-dimensional input expected 

by the three fully connected layers with 120, 84 and 10 outputs accordingly, where the 

10 outputs correspond to the possible classes for the image classification task. On the 

other hand, as seen in Figure 5.4(b), this thesis proposes an enhancement of the 

Lenet-5 architecture by modification suited for the task at hand: the recognition of the 

burned-in text data on MIM with small font size and low resolution. Table 5.2 shows 

detailed enhancements and justification accordingly. 
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5.4.5 Majority Voting Algorithm 

The majority voting ensemble algorithm used to improve the recognition accuracy of 

visually similar characters consists of two steps: (a) train the enhanced model on three 

(3) subsets of the training sample based on the bootstrapping method and (b) combine 

each prediction of the ensemble members, to get a consensus classification outcome. 

The bootstrap method involves iteratively randomly resampling the dataset with 

replacement and determining the expected size of the subsets and the number of 

subsets required. The experimental results show that the ensemble is better in 

accuracy because different models will usually not make the same error across the 

testing set (Goodfellow et al., 2016). There are different ways to vary the members of 

the ensemble. They include (a) choice of data, (b) choice of models’ architecture, and 

(c) choice of outcome consensus technique. In this study, I use the varying data 

approach by splitting it into three subsets and estimating the generalisation error of 

the enhanced MICR model configuration. The resulting three models are represented 

by MICR7, MICR8 and MICR9, with the subscript stating the percentage of the training 

samples subset used for the model. This approach was supported by the statistical 

studies by Gareth et al. (2013), who said having access to multiple training sets is not 

always practical. Instead, bootstrapping can be done by taking repeated samples from 

the training sets. This reduces the variance of each member of the ensemble (Gareth 

et al., 2013). The bootstrapping method used is the replication method, and 

the number of repeats was 500. The number of repeats is determined iteratively to 

allow significant variability of the fitted models trained on each bootstrap subset 

(Walters & Campbell, 2004). Three bootstrap subsets were created from 70%, 80%, 

and 90% splits of the original dataset, while the remaining 30%, 20% and 10% were 

kept for testing each model's performance on the respective subset. Each bootstrap 
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subset was fitted to a given model, and results averaged for 30 runs. This means that 

due to the replication method of sampling, some data samples from the original 

dataset will not appear in the bootstrap subset, and some will be repeated. 

Figure 5.5 below shows the framework of the majority voting algorithm used in this 

study. 

 

Figure 5. 5: Majority voting ensemble approach used 

As mentioned earlier, the subscript on the MICR model in Figure 5.5 above represents 

the percentage of the training subset. The split of 70%, 80%, and 90% was chosen to 

use a significant amount of the dataset for training so that the model can learn 

effectively while keeping a sufficient amount for testing. This ensures that the base 

learners’ performance can be assessed reliably on test data. 

The bootstrapping used in the majority voting ensemble reduces the final prediction 

model's variance, reduces overfitting, and balances the bias-variance trade-off. After 

creating three subsets from the training dataset, each classifier is fitted to a classifier 

and trained using data augmentation techniques. The softmax prediction shown in the 

ensemble set up above provides a distinct probability distribution for each character 
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class, enabling a more confident measure of the model's prediction, and it is faster to 

compute when compared to exponential functions. Combining these softmax 

predictions in an odd-numbered format will improve the overall model performance by 

reducing the bias of a particular base model to a particular character class. This has 

been used in similar instances for classification problems in X-ray images (Chandra et 

al., 2021), breast cancer images (Naji et al., 2021), and handwritten text recognition 

(Hamida et al., 2023), amongst others. 

 

5.5 Experimental Set-Up 

5.5.1 Data Preparation and  Training Strategy 

The datasets were split into different subsets to create diversity in the models for the 

ensemble, as previously explained in the majority voting sub-section. Online data 

augmentation was used to improve the model’s generalisation by varying the data and 

minimising data overfitting (Shorten, and Khoshgoftaar, 2019).  The SHA and BO 

combination, as explained in Network Design Section 5.4.1, was used to optimise the 

hyperparameters of the proposed model. For the random translation, the image is 

randomly shifted horizontally and vertically up to 10% of its size. For the random 

rotation, each image was rotated up to 20 degrees, either clockwise or anticlockwise. 

The random translation and random rotation increase the diversity of the training set, 

thereby improving the generalisation of the final model, and they were implemented 

using the Keras library's ImageDataGenerator preprocessing layers module. All the 

original images were transformed (rotation and translation) during every epoch and 

then used to train the model. Therefore, the total number of data samples per class 

did not change and remains equal to the number of original images per class. Using 

the online data augmentation based on the Keras library does not mean increasing 
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the total number of totally distinct training data samples; it simply creates different 

variations of existing training data samples used for the model's training. This 

improves the robustness of the final model. For example, for 10 epochs, it simply 

means 10 variations of the image from each class have been used instead of just 

using the same single original image in the whole training. 

Checkpoints were initialised during the training to determine the best epoch for the 

training. The validation accuracy (testing accuracy) was monitored here, and only the 

best weights were saved. The Adam optimiser was used to ensure faster 

convergence. A batch size 28 was used during the training, determined after several 

training iterations. To control the training and test ratio of each class, no distinct 

undersampling or oversampling was done, but a careful sampling of the dataset and 

manually checking each folder were done to ensure each class was represented in 

significant proportion in the test and train subsets. The main disadvantage of 

undersampling is that potentially useful data samples' critical information will be 

removed (Gnip et al., 2021), while oversampling may lead to limited information gain 

and overfitting of the model since we are making replicated copies of the data samples 

(Hassanat et al., 2022). 

 

5.6 Results and Evaluation 

The experimental environment's configuration, including the optimisation, is as follows: 

Python 3 Google Compute Engine backend (GPU) of 83 GB RAM A100 GPU.  

The experimental results, including the time taken to train the proposed MICR model 

and the Lenet-5, are shown in Table 5.5 below. All results presented are from 

experiments carried out on MEDPIX and PIRVATEDT, and the improvement is shown. 
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The proposed model is simpler with fewer parameters, yet more efficient compared to 

the Lenet-5 model in recognising burned-in textual data on MIM. The proposed 

ensemble is represented as MICR (n). n  is an odd number, as each ensemble member 

is entitled to a single vote. The proposed MICR model is compared with Lenet-5 on 

the bootstrapped subsets of the training samples. I will represent the trained models 

for the ensemble as explained in the majority voting sub-section 5.4.5. The results are 

shown below, averaged on 30 runs at 100 epochs with checkpoints to save the best 

weights. The train-test split ratio is 8:2 for MICR (1) and Lenet-5. At the same time, 

random data reshuffling, bootstrapping subsets, and augmentation are performed on 

the ensemble members. After an extensive literature review on recognising burnt-in 

textual data on MIM, the experiments aim to support the hypothesis that the enhanced 

MICR model is more accurate than the base OCR model (Lenet-5) and other existing 

algorithms. Furthermore, it shows that a majority voting ensemble algorithm can have 

improved results than a single model. 

 

5.6.1 Models’ Results and Optimal Number (n) of Ensemble Members 

Table 5. 3: Results for different ensemble members' configuration 

Model  Accuracy (%) Time Taken in 

Seconds 

(TTS) 

Precision 

(%) 

Recall (%) F1-measure 

(%) 

MEDPIX 

Lenet-5  70.14 ±0.04  445.92 ±0.05  68.07 ±0.09   69.30 ±0.03  67.00 ±0.09 

MICR(1) 

  

 91.54 ±0.06  243.75 ±0.07  92.62 ±0.02   92.52 ±0.05  92.12 ±0.06 

MICR(3)  94.05 ±0.08  781.25 ±0.06  94.12 ±0.08   94.78 ±0.05  93.35 ±0.04 
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MICR7 +MICR8 

+ MICR9 

MICR(5) 

MICR7 +MICR8 

+ MICR9 + 

MICR7 +MICR8 

 93.78 ±0.10  1303.75 ±0.08  93.70 ±0.09   93.94 ±0.08  93.55 ±0.11 

MICR(7) 

MICR7 +MICR8 

+ MICR9 + 

MICR7 

+MICR8+ 

MICR9  + 

MICR7 

 93.71 ±0.14  1853.25 ±0.04  93.36 ±0.17   93.66 ±0.09  93.12 ±0.11 

MICR(9) 

MICR7 +MICR8 

+ MICR9 + 

MICR7 

+MICR8+ 

MICR9  + 

MICR7 +MICR8 

+ MICR9 

 93.45 ±0.16  2119.25 ±0.09  93.42 ±0.08  93.45 ±0.13  93.09 ±0.12 

 

PRIVATEDT 

Lenet-5 71.53 ±0.18 122.93 ±0.04 72.48 ±0.13 71.53 ±0.10 68.86 ±0.16 

MICR(1) 92.02 ±0.04 165.85 ±0.03 92.37 ±0.02 92.03 ±0.04 91.19 ±0.07 

MICR(3) 

MICR7 +MICR8 

+ MICR9 

94.31 ±0.06 517.55 ±0.01 94.79 ±0.08 94.30 ±0.03 94.05 ±0.09 

MICR(5) 93.84 ±0.08 889.25 ±0.08 94.52 ±0.07 93.84 ±0.11 93.51 ±0.09 
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MICR7 +MICR8 

+ MICR9 + 

MICR7 +MICR8 

MICR(7) 

MICR7 +MICR8 

+ MICR9 + 

MICR7 

+MICR8+ 

MICR9  + 

MICR7 

93.84 ±0.11 1230.95 ±0.03 94.52 ±0.14 93.84 ±0.10 93.51 ±0.13 

MICR(9) 

MICR7 +MICR8 

+ MICR9 + 

MICR7 

+MICR8+ 

MICR9  + 

MICR7 +MICR8 

+ MICR9 

92.48 ±0.13 1577.65 ±0.09 93.26 ±0.10 92.48 ±0.14 92.23 ±0.10 

 

For Table 5. 3, the bootstrap subset was used to train only the ensemble members 

(MICR(3), MICR(5), MICR(7), and MICR(9), whose CNN architectural 

hyperparameters were optimised using BO. A train-test split ratio of 8:2 is used for 

MICR (1) and Lenet-5 without bootstrapping.  

As earlier mentioned, the odd number of the ensemble member is used to allow a 

definitive final prediction of the queried input image. The results in Table 5.3, with 

different odd number configurations, allow a decision on the optimal number of 

members based on their accuracy on the testing set. The best model of the model as 

MICR(3) is justified given the imbalance class, based on multiple evaluation metrics, 
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most notably the F1 measure, which is the harmonic mean of the precision and recall, 

and the f1-measure only increases if the prediction quality improves. Table 5.3 shows 

that the F1 measure at the MICR(3) is higher than every other model evaluated at 

93.35% and 94.05% for MEDPIX and PRIVATEDT, respectively. 

A plot of Table 5.3 is shown below in Figure 5.6  

 

Figure 5. 6: Plot for the optimal number of ensemble members. 

The Chart in Figure 5.6 shows the accuracy of LeNet-5 and proposed models with the 

two datasets. The Chart shows that the number of ensemble members is between 1 

and 9, with the peak experienced at No. 3. 

Figure 5.6 confirms that increasing the number of ensemble members further after 

three does not significantly increase the model accuracy. After using the bootstrap 

sampling method to create the training subsets, the MICR7, MICR8, and MICR9 test 

datasets were 30%, 20%, and 10% of the overall dataset, respectively.  The charts in 

Figure  5.6 above show that the MICR model, either as a single classifier or ensemble 

model, has higher precision, recall and F1-score evaluation metrics than the Lenet-5 
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model. For MEDPIX, Figure 5.6 shows a 21.40% increase in accuracy,  24.55% 

increase in precision, a 23.22 % increase in recall, and a 25.12% increase in F1-score 

for the single MICR model, while a 23.91% increase in accuracy,  26.05 % increase in 

precision, a 25.48 % increase in recall and a 26.35 % increase in F1-score for the 

MICR(3) model when compared with the Lenet-5 model. Similarly, for PRIVATEDT, 

Figure 5.6 shows a 20.49% increase in accuracy,  19.89% increase in precision, a 

20.50% increase in recall, and a 22.33% increase in F1-score for the single MICR 

model, while a 22.78% increase in accuracy,  22.31% increase in precision, a 22.77% 

increase in recall and a 25.19% increase in F1-score for the MICR(3) model.  

It is noted that with the bootstrapping sampling technique, where multiple samples are 

taken from the dataset with replacement to form subsets, no improvement was seen 

after three ensemble members (MICR(3) - MICR7 +MICR8 + MICR9)). That is because 

the basis of the ensembling technique is to reduce variance in a model and improve 

the final prediction accuracy. However, the ensemble model's performance will decline 

when there is no further diversity in the ensemble members due to the small and 

insufficient training data. In order to get the optimal number of ensemble members, 

this study evaluated different number combinations and considered the training 

subsets before concluding that the three-member ensemble model had the highest 

accuracy. 

Figure 5.7 below shows the learning curves for the Lenet-5 model on MEDPIX, 

showing the accuracy and loss over time for 100 epochs. The plot's ‘validation’  legend 

represents the testing accuracy and loss. 
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Figure 5. 7: Lenet-5 learning curves on MEDPIX 

 

 

 

Figure 5. 8: Learning curves for the MICR model (a) MEDPIX (b) PRIVATEDT 
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The learning curves in Figure 5.8 show that the MICR(1) model converges faster than 

the Lenet-5. This is due to the architectural improvements in the MICR model and 

activation functions used. It can also be inferred that the model understands the 

training dataset. 

5.6.2 Analysis of hyperparameters 

The choice of hyperparameters is always based on the problem and the context. The 

search space was initially defined according to section 5.4.1, guided by literature 

works such as using a small kernel size for small input images (Hashemi, 2019; Tang 

et al., 2023). The hyperparameters' importance is checked after the 100 trials set using 

the Optuna importance module. The module compares the hyperparameters with their 

effect on the object function being minimised during each trial and returns values for 

their importance represented by non-negative floating numbers, where higher values 

mean the hyperparameter is more important than others with lower values. The 

correlation between the hyperparameters and the objective function defined mainly 

defines it. That is a high correlation means that when the hyperparameter has a higher 

value, the objective function also has a higher value. The module can evaluate all the 

defined hyperparameters and provide a report. The report is visualised below in Figure 

5.9. 

 

Figure 5.9: Hyperparemeters' importance 
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Figure 5.9 shows that the learning rate, the second stride, the filters in the second 

layer, activation in the first layer, and the activation and kernel size in the sixth layer 

had more effect on the objective value in terms of importance. On the other hand, the 

kernel size of the first and fourth layers and filters of the third and fourth layers showed 

less importance. This allows an optimal adjustment of the search space around these 

more impacting values to get the model’s architecture presented in Table 5.1 with 

training hyperparameters of 0.000443917297 as learning rate, ReLU for the activation, 

batch size of 28 and drop out of 0.4 each at the third and sixth convolutional layers. 

 

5.6.3 Classification report for all character classes  

It is essential to evaluate the classwise evaluation metrics to enable a better 

understanding of the strengths and weaknesses of the MICR model. Please see 

Subsection 4.3 for sample sizes. 

The classwise classification report for MEDPIX using the MICR(1) model is shown in 

Table 5.4 below. 

Table 5. 4: Classification report on all classes in MEDPIX 

Class  

 

Precision      Recall   

 

f1-

score   

 

 Class  

 

Precision      Recall 

  

F1-

measure 

 

0 0.77       0.83       0.80  a 0.82       0.90       0.86 

1 1.00       0.96       0.98    b 1.00       0.50       0.67 

2 0.83       0.95       0.89  c 0.75       1.00       0.86 

3 0.85       0.92       0.88  d 1.00       1.00       1.00       
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4 0.92       1.00       0.96  e 0.86       0.92       0.89 

5 1.00       1.00       1.00        f 1.00       1.00       1.00       

6 1.00       1.00       1.00        g 0.80       1.00       0.89 

7 1.00       1.00       1.00        h 0.00       0.00 0.00       

8 1.00       0.64       0.78  i 0.86       0.86 0.86 

9 1.00       0.83       0.91  j 0.00       0.00 0.00       

A 0.96       1.00       0.98  k 1.00       1.00       1.00       

B 1.00       0.90       0.95  l 0.40       0.50       0.44 

C 1.00       0.94       0.97  m 1.00       1.00       1.00       

D 0.85       1.00       0.92  n 0.67       0.67   0.67   

E 0.94       1.00       0.97  o 0.50       0.20       0.29 

F 0.90       1.00       0.95  p 1.00       0.75       0.86 

G 1.00       1.00       1.00        q 1.00       1.00       1.00       

H 0.94       1.00       0.97  r 1.00       1.00       1.00       

I 0.79       0.73       0.76  s 0.67       0.57       0.62 

J 0.80       1.00       0.89  t 1.00       0.86       0.92 

K 1.00       0.75       0.86  u 0.67       0.67       0.67 

L 1.00       1.00       1.00        v 0.00       0.00 0.00 

M 0.89       1.00       0.94  w 0.00       0.00 0.00 

N 1.00       1.00       1.00        x 0.50       0.33       0.40 

O 0.69       0.69       0.69  y 1.00       1.00       1.00       

P 1.00       1.00       1.00        z 0.00       0.00 0.00 

Q 1.00       1.00       1.00        

R 0.97       0.97       0.97  
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S 0.92       1.00       0.96  

T 1.00       1.00       1.00        

U 0.86       0.75       0.80  

V 0.89       0.89 0.89  

W 0.78       0.88       0.82  

X 0.50       1.00       0.67  

Y 1.00       0.83       0.91  

Z 1.00       1.00       1.00        

 

For PRIVATEDT using the MICR(1) model, the classification report for all classes is 

shown below in Table 5.5. 

Table 5. 5: Classification report on all classes in PRIVATEDT 

Class  

 

Precision      Recall   

 

f1-

score   

 

 Class  

 

Precision      Recall 

  

F1-

measure 

 

0 1.00       0.50       0.67  a 1.00       1.00 1.00 

1 1.00       1.00 1.00  b 1.00       1.00 1.00 

2 1.00 1.00 1.00  c 1.00       0.60       0.75 

3 1.00 1.00 1.00  d 1.00       1.00 1.00 

4 1.00 1.00 1.00  e 1.00       1.00 1.00 

5 1.00 1.00 1.00  f 1.00       0.50       0.67 

6 1.00 1.00 1.00  g 1.00       1.00 1.00 

7 1.00 1.00 1.00  h 1.00       1.00 1.00 
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8 1.00 1.00 1.00  i 0.90             0.90 0.90 

9 1.00 1.00 1.00  j 0.67       1.00       0.80 

A 1.00 0.94       0.97  k 1.00       1.00 1.00 

B 1.00 1.00 1.00  l 0.88       0.78       0.82 

C 0.82       1.00       0.90    m 1.00       1.00 1.00 

D 0.83       1.00       0.91  n 0.90       1.00       0.95 

E 1.00 1.00 1.00  o 0.60       0.75       0.67 

F 1.00 1.00 1.00  p 0.83       1.00       0.91 

G 1.00 1.00 1.00  q 1.00       1.00 1.00 

H 1.00 1.00 1.00  r 0.92       1.00       0.96 

I 0.83             0.83 0.83  s 1.00       0.42       0.59 

J 1.00 1.00 1.00  t 1.00       0.90       0.95 

K 1.00 1.00 1.00  u 1.00       0.60       0.75 

L 1.00 1.00 1.00  v 0.50       1.00       0.67 

M 1.00 1.00 1.00  w 1.00       0.67       0.80 

N 1.00 1.00 1.00  x 0.00       0.00 0.00 

O 0.83    0.71       0.77  y 1.00 1.00 1.00 

P 1.00       0.83       0.91  z 0.50       1.00       0.67 

Q 1.00 1.00 1.00  

R 1.00 1.00 1.00  

S 0.68       1.00       0.81  

T  0.94       1.00       0.97  

U 0.75       1.00       0.86  

V 0.00       0.00       0.00        



122 
 

W 0.67       1.00       0.80  

X 0.50       1.00       0.67    

Y 1.00 1.00 1.00  

Z 0.00       0.00       0.00        

 

As seen in the classification results for each character, the models’ poor results were 

only seen in visually similar characters such as “2” and “Z”, where “Z” had a small 

sample size compared to “2”. This affected the models' ability to learn effective and 

discriminative representations between these characters. The models performed 

better in other classes, with larger sample sizes, as seen in the evaluation metrics 

presented in Tables 5.4 and 5.5 above. Classwise comparison in PRIVATEDT reveals 

that small class sizes such as “c” had 1.00, 0.60, and 0.75 for precision, recall, and 

F1-measure, respectively, for the MICR model compared to 0.67, 0.67, and 0.67 for 

Lenet-5 on similar evaluation metrics. Larger class sizes such as “S” had 0.55, 0.75, 

and 0.63   for precision, recall, and F1-measure, respectively, for Lenet-5, while MICR 

had 0.68, 1.00 and 0.81 on similar evaluation metrics. Similar results were shown in 

MEDPIX; Hence, the proposed models improve the recognition accuracy of large and 

small class-size character classes compared to Lenet-5. 

 

5.6.4 Result Comparison with past works 

This study's results outperformed most existing works in the domain of burned-in 

textual recognition at the character level. After an extensive literature review, Table 

5.6 compares this study with other works that designed classifiers.  This study 

compared the proposed models with existing algorithms in the MIM domain of burned-
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in textual recognition, as shown in Table 5.6 below. Online data augmentation was 

used to train all the models using random translation and rotation. For the random 

translation, the image is randomly shifted horizontally and vertically up to 10% of its 

size. For the random rotation, each image was rotated up to 20 degrees, either 

clockwise or anticlockwise. Bootstrapping was used only for the MICR(3), as it is the 

only ensemble model on the table, while the train-test split ratio for the other models 

is 70:30. These related works evaluated their models on MEDPIX; hence, this was 

used only to compare performance. 

Table 5. 6:  Comparison with Related Works on MEDPIX 

Method Recall (%) Precision (%) F1-measure 

(%) 

Modified CRNN 

(Xu et al., 2021) 

65.00 67.00 70.00 

CNN  

(Monteiro et al., 2017) 

78.95 83.05 79.73 

MICR 89.89 88.61 90.56 

MICR(3) 94.46 94.49 94.49 

 

The result proved that the work has outstanding results in better performance in 

classifying characters in low-resolution MIM with background interference. Moreover, 

this study performed better than a more complex model designed by authors in Xu et 

al. (2021), which was a multiscale CRNN. Xu et al. (2021) is the most recent work and 

used the same MEDPIXs as ours (Medpix dataset). Xu et al. (2021) reported an F-1 

score of 70.00%, while the proposed MICR model outperformed with 90.56%. The 
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majority voting ensemble also performed better than the CRNN model from the work 

of Xu et al. (2021). The proposed MICR model also outperformed notable works by 

authors (Monteiro et al., 2017; Silva et al., 2018)  whose CNN model obtained an F1-

measure of 79.73% on MEDPIX. The proposed MICR model was evaluated on 62 

classes of characters, which were manually annotated by this study. Based on the 

bootstrapping data varying method, the majority voting ensemble had more accuracy 

than most existing works in the literature on the MICR domain. The practical 

application results of the proposed ensemble model in recognising burned-in textual 

data in MIM are shown in Figure 5.10 below. 

 

 

Figure 5. 10: Recognition of low-resolution MIM sample with background interference 

As seen in Figure 5.10, the proposed MICR model has a good accuracy rate in dealing 

with low-resolution MIM with background interference. The word “THYROID” was 

recognised according to individual characters. The proposed MICR model can also 

recognise fuzzy words in MIM irrespective of font type and style. 
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5.7 Chapter Summary 

This chapter introduces an enhanced CNN model inspired by the Lenet-5 classical 

OCR model for the task of medical image character recognition. The enhanced CNN 

model is optimised using Bayesian reasoning to determine the optimal combination of 

hyperparameters. Experimental results demonstrated that replacing the initial 5x5 

filters and average pooling layers in Lenet-5 with  3x3 filters and 5x5 with a stride of 2, 

respectively, increased the accuracy of the enhanced CNN model. Several iterations 

were performed during optimisation to decide the optimal depth of the model to 

achieve a good performance. An ensemble model was introduced based on a majority 

voting algorithm to enhance the recognition of visually similar characters. Training 

subsets were created based on a bootstrapping method. Each classifier was trained 

on each subset and evaluated on the remaining test data in each training iteration. 

The enhanced CNN and ensemble models achieved an outstanding accuracy score 

in MICR at a previously unreported low resolution of 96 dpi compared to the state-of-

the-art. The empirical observations generally indicated that a simple CNN architecture 

with initial small filter sizes and learnable downsampling layers could achieve better 

performance in MICR in low-resolution MIM with background interference. In future 

work, a more specialised CNN architecture and a more advanced ensemble will be 

considered to boost the performance relating to visually similar characters with a small 

sample size and low accuracy. In addition, I may include an attention mechanism to 

selectively give more relevance to some areas of the input image than others. The 

attention mechanism will increase the representation power of interests, as supported 

by past works (Li et al., 2022; Guo et al., 2022). 
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6.0 Medical Image Character Recognition using 

Attention-based Siamese Networks for Visually 

Similar Characters with Low Resolution. 

This chapter proposes a channel attention-based Siamese Network to accurately 

recognise VSC in burned-in textual data in MIM  by efficiently learning the semantic 

similarities between the extracted embeddings from the input character images. 

Intensive experiments are done using open-source and privately collected medical 

imaging datasets. The learned similarities and attention-focused feature extraction 

layer enable the proposed model to discriminate between different character classes 

efficiently, with only small samples available. Bayesian optimisation is used to 

determine optimal network parameters. I aim to set a benchmark for the performance 

of the Siamese network in OCR in MICR in terms of parameter size and accuracy at 

a determined sample size per class. 

The work presented in this chapter was done during the third year of this PhD project 

(2022), was presented in international conference proceedings in 2024 (Osagie et al., 

2024b) and was published by the Springer book series Lecture Notes in Networks and 

Systems (Osagie et al., 2024b). The content of this chapter has been adapted from 

Osagie et al. (2024b), with some modifications and additional experimental results to 

suit the style better and ensure a logical presentation of the study. 
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6.1 Introduction 

OCR is an important computer vision application that converts text into images in 

easily accessible forms. It is widely used in numerous applications, such as industrial, 

medical, and educational institutions, mainly in automating data entry and other 

database-driven processes. However, numerous documents and images, such as 

MIM, may have certain constraints, such as low resolution, character distortion, text 

overlapping and background interference. These can be caused either by the mode of 

acquisition or storage. The textual data are usually burned in on the MIM. Due to 

distortion, poor image quality, background noise and low resolution, certain characters 

may appear visually similar in their structure and appearance (Röhrbein et al., 2015). 

These can be termed visually similar characters (VSC). Recognising these characters 

may become more challenging due to the nature of the images by conventional OCRs. 

Even with the rapid growth in the application of deep learning techniques in the field 

of OCR, the problem of recognising VSC remains unsolved, resulting in various 

research to find a solution (Inkeaw et al., 2019). This is because conventional DL  

techniques rely on a large and equally distributed dataset to achieve good 

performance. However, collecting a large dataset in certain domains, such as MIM, 

requires a lot of resources, such as privacy permissions (Padmapriya and 

Parthasarathy, 2024). Hence, developing a MICR solution that can learn highly 

discriminative features from low-resolution images with background interference 

becomes important to classify VSC with only a small sample size available. This will 

enable further adoption of OCR in low-resource domains where data accessibility is 

highly limited. This chapter proposes a few-shot learning method based on the 

Siamese neural network (SNN) and channel attention mechanism to deal with these 
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issues. The SNN is a major component of few-shot learning methods (He et al., 2023; 

Müller et al., 2022; Dey et al.,2017; Cao et al., 2013).  

The SNN can learn semantic similarities between classes of images by minimising the 

metric distance between the same class and maximising the metric distance between 

different classes. However, using the concept to define a fine-tuned classification 

decision boundary for VSCs on these complex images is a major challenge when the 

issue of tiny text, low resolution, and background interference must be considered. 

This is because the complex nature of the character images may affect the extracted 

feature embeddings to be compared. Hence, combining a channel-wise attention 

mechanism will enable the SNN to focus on the image's critical discriminative region 

by exploiting the features' inter-channel relationship. Since each channel of a feature 

map can be considered a feature detector, an SNN with a channel-wise attention 

mechanism focuses on the meaningful aspect of an input image that sets it apart for 

effective representation learning. An accurate MICR solution can improve health data 

analytics by allowing a more accessible and more accurate extraction of data from 

medical images, which can assist in analysing image data to identify patterns that are 

not easily visible to the naked eye. Hence improving patient care and diagnosis. 

This chapter investigates SNN and channel attention modules' recognition of VSCs in 

low-resolution images under the limited sample size constraint. Section 6.2 presents 

related work. Section 6.3 provides the contributions. Section 6.4 presents the 

proposed methods. Section 6.5 shows the experimental setup. Section 6.6 shows the 

results and analysis. Section 6.7 provides the conclusion regarding this chapter. 
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6.2 Related Works 

In this section, the study will review related works on applying SNN in the general field 

of OCR because extensive reviews have shown that SNN has not been applied in the 

MICR. 

SNN and K-Nearest Neighbour classification algorithms were used to classify similar 

text by Hosseini-Asl and Guha (2015). An evaluation was done on machine-printed 

and handwritten text, and they reported an accuracy of 99.5%. Hosseini-Asl and Guha 

(2015) used a large dataset containing over 188,526-character images. A combined 

loss function was used, which caused difficulty during training, and the dataset was of 

high quality. Good accuracy of 97%, 79% and 89% were reported on three datasets, 

but this method will not be efficient in situations where the dataset is much more limited 

in sample size. With more focus on leveraging the advantages of the feature extraction 

capabilities on the radical-level composition of characters, Wang et al. (2019) 

proposed a radical aggregation network for few-shot recognition of handwritten 

character recognition. Their network used a convolutional block, ResNet, and an 

attention module. It performed an efficient radical feature selection using a radical 

mapping encoder to map the input into a radical representation sequence, where each 

representation is a high-dimensional feature vector. A distance metric is calculated 

between these radical representations and radical prototypes, and a character 

analysis decoder does transcription to a character. A 96.97% accuracy on the CASIA-

HWDB character dataset was obtained using only 6,391 training samples. Although 

the accuracy was good, the representation mapping of distorted characters and VSCs 

was poor based on comparison with human performance, meaning that the radical 

representation learned by the network is still ineffective. It was complex and highly 

resource-demanding, more than twice the baseline CNN-based classifier model used 
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in the study. Another study that leverages the use of a prototype was done by Snell et 

al. (2017) to compute an N-dimensional representation of each class through an 

embedding function with learnable parameters. Each prototype is the mean vector of 

the embedded support points belonging to its class. Their proposed method obtained 

an accuracy of 49.42% on only 1623 samples of handwritten characters with 50 

classes and 68.20% on training with 5 samples per class. However, the study did not 

propose any defined architecture; there was no consideration for low resolution and 

background interference in these characters. According to Snell et al. (2017), episodic 

training was done to simplify the training. However, this depends is based on the idea 

that there exists an embedding in which data points cluster around a single prototype 

representation for each class and that a model can learn a non-linear mapping of the 

input into an embedding and take a class's prototype to be the mean of its support set 

in the embedding space. Classification is then done for an embedded query point by 

finding the nearest class prototype. This technique becomes inefficient when 

characters are blurred, distorted, or degraded.  

 

6.3 Contributions 

The main contributions of this chapter are. 

• Proposes a Siamese neural network to learn semantic similarities between 

extracted embeddings of image pairs in metric space in the presence of a 

limited dataset, low image resolution, and background interference. The 

resulting model can discriminate between visually similar characters by learning 

a fine-tuned decision boundary. 
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• Propose a channel attention mechanism combined with a Siamese neural 

network to learn meaningful parts of an input image that discriminate when 

compared to a visually similar image.  

• Provide a benchmark for using similarity learning in medical image character 

recognition (MICR). After an extensive literature review in the past 10 years, no 

previous work has been done regarding MICR and SNN with and without 

channel attention mechanisms.  

This study's extensive reviews, which searched notable databases such as 

Elsevier, IEEE, Nature, and Science, did not reveal any existing work for MICR 

that used the Siamese network. There are no reviews that discuss or propose 

Siamese-based methods for MICR. The popular methods included enhanced 

Tesseract or other open-source OCR, RNN, and CNN-based methods. I aim to 

support this by comparing the architecture’s performance with related past 

works on OCR with the Siamese network based on a medical image character 

dataset, sharing the constraint of background interference. 

 

6.4 Proposed Method 

6.4.1 Model architecture 

This chapter proposes a SNN to learn semantic similarity between small samples of 

VSC, with the constraints of low resolution with background interference. The SNN is 

two CNNs that are joined at the end.  Before being joined, each CNN has 5 layers (3 

convolutional and 2 dense layers). Then, a Euclidean distance layer merges both 

CNNs with a single output. The weights are shared between the two CNNs, and the 

goal is to compute similarity functions between input images to identify whether an 
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image pair is similar or not. For clarity, each single CNN (with the same configuration) 

outputs an embedding of the input image, and the Euclidean distance layer calculates 

the Euclidean distance between the two feature embeddings from each of the CNN 

outputs and scores the similarity between the two feature embeddings (Koch et al., 

2015). Weight sharing between each single CNN is achieved when both networks are 

backpropagated with the same loss function since they are joined at the end. If each 

CNN is represented by CNN1 and CNN2, when you compute forward the gradient for 

CNN1 and then also for CNN2, then a concatenation of both gradients is done at the 

lamba layer where both CNNs are joined. According to (Koch et al., 2015), during 

updating with the averaged gradients, both CNNs are updated simultaneously. This 

architecture of using a twin CNN network is the standard for SNN, as supported by 

similar studies in medical imaging with SNN (Chung& Weng, 2017; Deepak & Ameer, 

2021).  

This study used Bayesian optimisation (BO) based on a tree-structured Parzen 

estimator to find the CNNs’ optimal hyperparameters. The BO is a sequential design 

strategy for the global optimisation of objective functions that may be expensive to 

evaluate, such as the hyperparameters in neural networks (Osagie et al., 2023). The 

BO uses the informed learning method based on the Gaussian process by using a 

surrogate function to model the black box function and then uses an acquisition 

function to find the next point of evaluation (Osagie et al., 2023). The goal is to get 

very close to the optimum values with very few iterations of the black box functions. 

BO can fit the observed values of the black-box function and interpolate between 

observed data points, with increasing statistical uncertainty the farther you move away 

from the observed data. This study will not focus on the optimisation technique as it is 

not part of the aims. The BO’s overall goal was to find the maximum value of the 
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objective function, which is the similarity score between a query image and a set of 

support images. I ran hyperparameter tuning for about 200 trials during the first study 

using the Optuna library and checked the most important hyperparameters. Next, I 

omitted the less important hyperparameters for the subsequent studies up to 2000 

trials to find the optimal CNN’s hyperparameters. The final layerwise summary is three 

Convolutional layers with filters of 16, 32 and 64, each with a kernel size of 3x3 and a 

stride of 2. Two dense layers follow with 128 and 254 units, respectively. ReLU is used 

as an activation function in the hidden layers. Fig 6.1 below shows a visual 

representation of SNN. For ease of reference, this model will be referred to as SIAM-

MICR. 

 

Figure 6. 1: SIAM-MICR 

The CNNs were designed as pairs, and training was achieved using the two parallel 

CNNs with shared weights, trained on matched and unmatched character image pairs. 

Each image is fed through one branch of the CNN, generating a d-dimensional 

embedding for the image. The loss function optimised is based on contrastive 

representation learning, which aims to learn such an embedding space in which similar 

image pairs are close to each other while dissimilar image pairs are far from each 

other (Chopra et al., 2005). Contrastive loss aims to predict relative distances between 

model inputs when projected onto a hyperspace. The embeddings between the pairs 

are used to calculate the Euclidean distance to measure similarity. In the SNN 
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architecture, the Lambda layer computes the Euclidean distances between the outputs 

of the two parallel CNNs. 

 

6.4.2 Model + Attention Mechanism 

This study proposed using a channel attention mechanism as motivated by notable 

works by Wang et al. (2019) and Shen et al. (2018) to improve the previously designed 

SIAM-MICR model. The channel attention mechanism in each CNN generates 

channel-wise responses by using global average pooling to aggregate spatial 

information (Hu et al., 2017). Given the aggregated features obtained from the global 

average pooling (GAP), a fast 1D convolution of kernel size, k, is performed to 

generate the output channel weights. k is the kernel size of the 1D convolutional layer. 

It represents the coverage of local cross-channel interactions, that is, the number of 

pixel neighbours taking part in the output of one channel map. Using a 1D convolution 

avoids dimension reduction and allows efficient learning across the channel for 

significant and discriminating features of the input images for the SNN. Much 

investigation via experiments was carried out to determine the optimal position for the 

attention module on the SNN architecture, and these are presented in the result 

section. The optimal position for the attention module was investigated by alternating 

the insertion position and comparing it with the average accuracy achieved at that 

position. This setup improved the network’s ability to focus on learning weights for 

more primitive and discriminative features, such as curves, lines, and edges, which 

may appear similar across the character classes.  

The channel attention mechanism used in the SIAM-MICR is motivated by a notable 

work by Wang et al. (2019). The input tensor to the module is the output of a 
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convolutional layer and has a 4-D shape of B, C, H, and W, where B is the batch size, 

C is the number of channels, and H and W are the dimensions of each feature map. 

The output of the attention module is also a 4-D tensor of the same shape. Figure 6.2 

shows the SIAM-MICR with the attention module after layer 1. 

 

Figure 6. 2: SIAM-MICR + Attention 

 

6.5 Experimental Set-Up 

6.5.1 Dataset Description 

The datasets used are the same as described in Chapter 4 (Research Methodology), 

which were used for this chapter. 

 

6.5.2 Training Strategy 

To train and evaluate the Siamese network, the 62-class dataset is changed into a 

binary classification problem by creating a new dataset of pairs, where matched 

images are labelled 0.0 and unmatched images are labelled 1.0. RMSprop optimiser 

was used because of its advantage in fast convergence speed over a few iterations 

(Kandel et al., 2020; Hassan et al., 2023; Lee et al., 2022). The training pairs were 

formed randomly and were balanced across classes.  The sample size taken means 

the total data points per a single class. The pairing is done via the following procedure;  
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• A list of indexes for each class label is built using a for loop, and there are 62 

class labels. This outputs each data point's current class label, total sample 

size, and indexes. 

• The algorithm efficiently generates the positive and negative pairs based on the 

data point indexes. It selects a particular image and then randomly picks an 

image that belongs to the same class (positive pair). With both images, the 

current and the same class image, the new dataset of pairs list is created with 

a 2-tuple of the selected image and the same class image, and the target label 

of this new dataset is updated with a value of 0 to indicate a positive pair. 

• To generate the negative pair, the algorithm selects all indexes of class labels 

not equal to the selected image and randomly selects one of these indexes as 

the negative image. Similarly, the target label of this new dataset is updated 

with a value of 1, indicating a negative pair.  

• Finally, the newly formed dataset of pair images and pair labels is returned. A 

train-test split ratio of 70:30 is set and used for the model's training. 

For balanced pairing, classes with smaller class sizes were repeatedly paired for the 

training. Figure 6.3 shows samples of the training data after pairing for “W”.. 

 

Figure 6. 3: Pairing of images for training 

Based on visual inspection and taking note of the highest and lowest sample sizes, 

15, 20, and 25 samples per class were used for this pairing and training. The 

characters that are to be paired are 0~9, A~Z, and a~z, a total of 62 characters. In my 

dataset, there are 50 images for each character, e.g, 50 different “W” images  in “W” 
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sub-image set. So there are total of 62 sub-image sets for the 62 characters. Figure 

6.3 shows two ”W” images in the “W” sub-image set, one is clear and the other much 

fused.  When pairing, e.g., to pair “W”, firstly randomly pick up one “W” from the “W” 

sub- image set. Secondly, randomly pick up another “W” from the same “W” sub-image 

set, this constitutes a positive match as they are similar. This pair is assigned “0” class 

label. Thirdly, randomly pick up an image from “W” sub-image set and another image 

from any other sub-image set, this constitutes a negative match because they are 

dissimilar then a “1” class label is assigned to this pair. Figure 6.3 shows a positive 

match and a negative match labelled with 0 and 1, respectively.  This process carries 

on until all images are paired using non-replacement sampling.  Below Table 6.1 is the 

summary of the pairing for the MEDPIX dataset. 

Table 6.1. Summary of pairing results for MEDPIX dataset 

Characters No. of images in 

each sub-image 

set 

No. of positive 

pairs for each 

character 

No of negative 

pairs for each 

character 

Total number of 

pairs for each 

character 

0~9 50 25 25 50 

A~Z 50 25 25 50 

A~z 50 25 25 50 

 Total No of 

images in the 

dataset 

Total No of 

positive pairs 

that are labelled 

as 0 

Total No of 

negative pairs 

that are labelled 

as 1 

Total No of pairs 

in the dataset 

 Total 3100 775 775 1550 

The same process of pairing is implemented for the PRIVATEDT dataset, and the 

summary is in Table 6.2. 
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Table 6.2. Summary of pairing results for PRIVATEDT dataset 

Characters No of images in 

each sub-image 

set 

No of positive 

pairs for each 

character 

No of negative 

pairs for each 

character 

Total number of 

pairs for each 

character 

0~9 50 25 25 50 

A~Z 50 25 25 50 

A~z 50 25 25 50 

 Total No of 

images in the 

dataset 

Total No of 

positive pairs 

that are labelled 

as 0 

Total No of 

negative pairs 

that are labelled 

as 1 

Total No of pairs 

in the dataset 

 Total 3100 775 775 1550 

 

As seen in Tables 6.1 and 6.2, the ratio between similar and dissimilar images is 1:1, 

and the pairing is randomly done without replacement. During training, a train-test split 

ratio of 70:30 was used; bootstrapping and cross-validation were not used in the 

experiments. Online data augmentation was used during training to improve the 

model’s generalisation (Shorten and Khoshgoftaar, 2019). This was done by random 

rotation; each image was rotated up to 20 degrees, either clockwise or anticlockwise.  

This encodes rotational invariance in the SNN, increasing each CNN representational 

power and its classification accuracy (Quiroga et al., 2019). However, this leads to 

increased training time. The main goal is to learn a twin network on a small dataset 

and do classification based on the similarity between pair images (Li et al., 2022). 
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6.6 Results and Analysis 

This study investigated the accuracy of the SNN model with and without channel 

attention on sample sizes of 15, 20, and 25. Due to the overall small dataset size, the 

study preferred to use a maximum of 25 sample sizes to consider the classes with 

small sample sizes. The experimental results are presented in Table 6.1. 

Table 6. 3. Comparison of Model’s Accuracy with/without channel attention at 100 

epochs (Attention module inserted after 3rd CNN layer) 

Sample size Accuracy- SIAM-MICR (%) Accuracy - SIAM-MICR + 

Attention (%) 

MEDPIX 

25 samples per class 87.73±0.92 90.77±0.80 

20 samples per class 85.73±0.61 87.58±0.45 

15 samples per class 82.35±0.56 85.67±0.78 

PRIVATEDT 

25 samples per class 95.45 ±0.13 97.66 ±0.22 

20 samples per class 95.79 ±0.11 97.58 ±0.16 

15 samples per class 93.64 ±0.24 94.72 ±0.43 

 

For MEDPIX and PRIVATEDT, the standard deviation is represented as ±SD in Table 

6.3 to show the average dispersion of the results relative to the mean. The results from 

Table 6.3 show that adding the channel attention mechanism on the base SNN 

improved the accuracy by approximately 3.0%. The results further reveal that on the 

privately collected dataset, PRIVATEDT, the SIAM-MICR + Attention model remains 

high-performing and stable even with a reduction of 20% of its sample size from 25 to 

20. This supports the practical application and generalisation of the proposed channel 

attention-based model. However, without the attention module, 20 samples per class 
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perform slightly better than 25 samples per class because a small increase in sample 

size does not always lead to increased performance for all models (Bailly et al., 2022). 

The increase does not equally mean increased data quality available to the model 

(Alwosheel et al., 2018). 

The results also show that PRIVATEDT has a smaller standard deviation than 

MEDPIX; this indicates less variability in the image dataset and shows that the images 

in PRIVATEDT are more consistent and uniform than those in MEDPIX, which is open 

source. This is easily understood because this research collected PRIVATEDT from 

the designated location using similar acquisition machines, whereas MEDPIX is an 

open-source collection with diverse contributions from different sources. 

The study investigated the optimal layer for the attention module insertion on the SNN, 

and the results showed an accuracy of 96.29% ±0.16, 93.14% ±0.27, and 96.93% 

±0.23, at CNN layers 1, 2 and 3, respectively, averaged at 30 runs on the PRIVATEDT. 

Similarly, on MEDPIX, results on the optimal layer showed an accuracy of 88.64% 

±0.23, 89.81% ±0.27, and 89.89% ±0.33, at CNN layers 1, 2 and 3, respectively, 

averaged at 30 runs. During the investigation the training and test sets are split in a 

70:30 ratio, with a sample size of 25 per class and no online data augmentation. It is 

seen that the absence of online data augmentation in this investigation led to a 

reduction in the attention-based model’s accuracy for both datasets when compared 

to Table 6. 3; for instance, at the same 3rd CNN layer of insertion, MEDPIX reduced 

slightly from 90.77% ±0.80 to 89.89% ±0.33 while PRIVATEDT reduced slightly from  

97.66 ±0.22 to 96.93% ±0.23. 

Note that only three convolutional layers are present in the proposed model’s 

architecture, hence the range of investigation. This is presented in the plot in Figure 

6.4 below. 
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Figure 6.4: Optimal layer of insertion of attention module  

Figure 6.4 shows that the attention-based model's performance remains highest at 

layers 1 and 3 for the PRIVATEDT and layers 2 and 3 for the MEDPIX. These positions 

signify the best layers that learn the attention weights for each discriminating part of 

the input image by exploring the optimal insertion positions of the channel attention 

module. Figure 6.4 also shows that the change in the layer number has a bigger impact 

on PRIVATEDT than on MEDPIX, with the latter having a linear line on the plot. The 

reason is that the attention module selectively highlights salient features from the 

images and concatenates them with original input to improve the model's overall 

performance, and this will be more impactful in the PRIVATEDT, which has less noisy, 

irrelevant features, highly consistent and uniform images compared to the MEDPIX. 

Hence, changing the layers allows the attention module to simultaneously learn 

weights for features at different positions, leading to a bigger impact. 
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6.6.1 Performance Analysis on AUC - ROC Curve 

This is a performance measurement for classification that tells how much the models 

can distinguish the classes. The higher the AUC value, the better the model can 

distinguish whether the actual Euclidean distance is 0 or 1. This study’s experiments 

on 25 sample sizes on MEDPIX, as shown in Figure 6.5, show a 98.2% AUC value for 

the SIAM-MICR + Attention and a 94.9% AUC value for the SIAM-MICR. Similarly, for 

PRIVATEDT, the AUC values are closer to 1, as shown in Figure 6.5. From these 

results, it is agreeable that the model has a good measure of separability since the 

AUC values are closer to 1 than 0. 

 

 

Figure 6. 5: ROC AUC  on MEDPIX (a) SIAM-MICR + Attention (b) SIAM-MICR 
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Figure 6. 6: ROC AUC  on PRIVATEDT (a) SIAM-MICR + Attention (b) SIAM-MICR 

However, only a slight increase in the AUC value of 0.002% is seen when the attention 

module is included for the PRIVATEDT; this shows that both models are high-

performing at distinguishing between the matched and unmatched image pairs in 

PRIVATEDT compared to MEDPIX.  An increase in ROC AUC usually indicates better 

performance in distinguishing positive and negative classes, and a 0.002% increase, 

as seen in Figure 6. 6 for the PRIVATEDT, shows the discriminative ability of the 

SIAM-MICR model is not significantly affected by the inclusion of the attention module. 

This may be due to noise in the dataset because the attention mechanism can be 

sensitive to noise, and the PRIVATEDT images contain noise due to their acquisition 

mode. Also, attention mechanisms may have limited representation learning ability, 

especially when dealing with small sample sizes, as focus may be made on specific 

patterns or pixels in the images, leading to ignoring other potentially relevant 

information (Ou, 2023) that may be useful for distinguishing positive and negative 

classes. Weng et al. (2023) examined similar attention and non-attention deep 

learning models and agreed that not every time an attention mechanism improved the 

model's performance, especially with small sample sizes. 
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6.6.2 Performance Analysis Using Feature Map Visualisation. 

The intuition here is that the channel attention module inserted after the optimal CNN 

layer acts as a masking matrix that identifies and locates the prominent regions that 

contain significant morphological characteristics and passes these reinforced 

identified representations to the subsequent layers for better representation learning. 

This enables the network to focus only on a certain part of the feature maps that is 

more prominent and, therefore, more discriminating. This leads to a lower loss and a 

finer decision boundary between classes. This is demonstrated visually in Fig 6.8 

below, where the feature map visualisation of the output of the 2nd CNN layer with the 

channel attention module shows that more prominent regions of the characters are 

densely populated with pixels when compared with the output of the 2nd CNN layer 

without the attention module in Fig 6.7, where these prominent regions’ pixels are 

missing or very limited. Fig 6.7 and Fig 6.8 are shown below. 

 

Figure 6. 7: SIAM-MICR’s Second layer output for Character “Z.” 

 

 

Figure 6. 8: SIAM-MICR + Attention’s Second layer output after channel attention 

module insertion -Character “Z.” 
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It has been shown that a prominent data representation improves performance 

compared to a poor data representation, as the DL algorithm is highly dependent on 

the integrity of the input-data representation (Alzubaidi et al., 2021). 

6.6.3 Performance Analysis Using Confusion Matrix 

The study computed the confusion matrix for all the classes in both datasets and the 

class-wise accuracy metrics. The test set for the confusion matrix evaluation has only 

6 images per class based on the train-test split ratio. As mentioned earlier in the 

experiment design section, 30 runs are implemented. On analysing the confusion 

matrix for each of the 30 runs, the accuracies were the same up to two decimal places. 

The confusion matrix presented below shows one of the results. The 62 classes 

comprising “0-9,” “A-Z,” and “a-z” were used for the confusion matrix computation.  

The confusion matrices are presented in Figure  6.9 and Figure 6.10 for  MEDPIX and 

PRIVATEDT, respectively.
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Figure 6. 9: Confusion Matrix for MEDPIX (SIAM-MICR + Attention) 
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Figure 6. 10: Confusion Matrix for PRIVATEDT (SIAM-MICR + Attention)
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6.6.4 Interpretation of confusion matrix and class-wise evaluation metrics 

The confusion matrix in Figure 6.9 is obtained by training a classifier and evaluating the 

trained model on a test set for MEDPIX. Let that matrix be called “M,” and each element in 

the matrix be denoted by “M_i_j,” where “i” is the row number (predicted class), and “j” is 

the column number (expected class).  

• As usual, the diagonal elements are the correctly predicted samples. Out of 372 

samples of 6 test samples per each of the 62-character classes, the model 

accuracy is 90.59% by correctly predicting 337 samples. 

• A lot of the elements in M_i_j, are equals to 0, such as M_1_8 = 0 and M_2_8 =0. 

This implies that the model does not confuse samples originally belonging to 

different classes, i.e., the SNN learned the classification boundary well. 

• Looking closer at the confusion matrix, the SNN confuses some upper-case 

characters with their lower-case counterparts, such as incorrectly predicting I 

as i, with an error rate of 33.3%, that is correctly predicting 4 samples as I and 

2 samples incorrectly as i, in a total of 6 samples. 

• For visually similar characters "0" and "O", the model got 100% accuracy in 

predicting all samples correctly, as shown in M_0_0 = 6 and did not confuse it 

with O. This is encouraging considering the model was trained based on 

Euclidean distance, with only 17 samples per class. 

• To improve the model’s performance, the study can focus on the predictive 

results in the confusion matrix, which has the highest misclassification rate 

among all the classes, such as M_30_58 = 0. 
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Similarly, the following observations were made for the PRIVATEDT confusion matrix 

in Figure 6.10. 

• Out of 372 samples of 6 test samples per each of the 62-character classes, the 

model accuracy is 97.04% by correctly predicting 361 samples. 

• The model does not confuse samples originally belonging to different classes; i.e., 

the SNN learned the classification boundary well, as seen in most of the cells on the 

confusion matrix, which are equal to 0. 

• For visually similar characters “5" and "S" and "0" and "O", the model got 100% 

accuracy in predicting all samples correctly for “5” and “0”, respectively.  

• However, the model confuses some upper-case characters with their lower-

case counterparts, such as “T” and “t” and “C” and “c.”  

When comparing Figure 6.9 and Figure 6.10 for the performance of the SIAM-MICR + 

Attention model for the MEDPIX and PRIVATEDT, the PRIVATEDT shows higher 

performance, with an increased accuracy of 6.42%.  This difference in performance is 

because different datasets have different properties, no matter their similarities.   

Privately collected datasets are usually of higher quality, and a high-quality dataset 

can accurately represents real-world scenarios, have less noise and be free from 

biases (Gong et al.m, 2023). Hence, the quality of the PRIVATEDT had a significant 

impact on the accuracy and effectiveness of the SIAM-MICR + Attention model when 

compared to the MEDPIX, which is open source. 
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6.6.5 Classwise Evaluation Metrics on the SIAM-MICR + Attention 

Table 6. 4: Classification report for all character classes for MEDPIX. 

Class  

 

Precision      Recall   

 

f1-

score   

 

 Class  

 

Precision      Recall 

  

f1-

score 

 

0 1.00       0.75       0.86  a 0.83       1.00       0.91 

1 1.00       0.86       0.92    b 0.83       1.00       0.91 

2 1.00       1.00       1.00  c 1.00       0.86       0.92 

3 0.83       1.00       0.91  d 1.00       1.00       1.00       

4 1.00       1.00       1.00  e 0.83       1.00       0.91 

5 0.83       0.83       0.83    f 0.83       1.00       0.91 

6 0.83       1.00       0.91  g 0.83       1.00       0.91 

7 1.00       1.00       1.00  h 1.00       1.00       1.00       

8 1.00       0.67       0.80    i 1.00       0.75       0.86   

9 1.00       0.86       0.92    j 1.00       0.75       0.86 

A 1.00       1.00       1.00  k 0.67       0.80       0.73   

B 0.83       1.00       0.91  l 0.83       1.00       0.91 

C 0.83       1.00       0.91  m 1.00       1.00       1.00       

D 0.83       1.00       0.91  n 1.00       1.00       1.00       

E 0.83       0.83       0.83  o 0.83       1.00       0.91  

F 1.00       1.00       1.00  p 1.00       0.86       0.92   

G 1.00       0.75       0.86   q 1.00       1.00       1.00       

H 0.83       1.00       0.91  r 1.00       0.86       0.92 

I 0.67       0.80       0.73  s 0.67       1.00       0.80    
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J 0.67       1.00       0.80  t 1.00       1.00       1.00       

K 0.83       0.83       0.83  u 1.00       0.67       0.80   

L 1.00       1.00       1.00  v 1.00       0.86       0.92 

M 1.00       1.00       1.00  w 1.00       1.00       1.00       

N 1.00       0.86       0.92    x 0.67       0.67       0.67       

O 0.83       1.00       0.91  y 1.00       1.00       1.00       

P 1.00       0.86       0.92  z 1.00       1.00       1.00       

Q 1.00       1.00       1.00 

R 1.00       1.00       1.00 

S 1.00       0.75       0.86 

T 0.83       1.00       0.91 

U 0.50       1.00       0.67 

V 0.67       0.80       0.73 

W 0.83       1.00       0.91   

X 1.00       0.75       0.86 

Y 0.83       0.83       0.83       

Z 1.00       1.00       1.00 

 

Precision measures the accuracy of positive predictions, while recall measures the 

completeness of positive predictions. These are highly relevant evaluation metrics for 

data science models in medical applications (Hicks et al., 2022). 

The class-wise classification reports show improvement in recognition of visually 

similar character images compared to the MICR CNN classifier reports in section 

6.6.3. Instances of these are presented in Table 6.2 below 
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Table 6. 5. Improvement in VSC recognition compared to the multi-class MICR model 

(MEDPIX) 

Multi-class MICR model SIAM-MICR + Attention Model 

Class Precision Recall F1-score Class Precision Recall F1-score 

v 0.00 0.00 0.00 v 1.00       0.86       0.92 

z 0.00       0.00 0.00 z 1.00       1.00       1.00       

j 0.00       0.00 0.00       j 1.00       0.75       0.86 

 

Table 6.5 shows that the SIAM-MICR + Attention Model improves recognition 

accuracy in certain characters with visually similar pairs and small sample sizes. 

Hence, the improvement is noted using the metric learning technique proposed in this 

chapter. 

Table 6. 6: Classification report for all character classes for PRIVATEDT. 

Class  

 

Precision      Recall   

 

f1-

score   

 

 Class  

 

Precision      Recall 

  

f1-

score 

 

0 1.00       0.86       0.92    a 1.00           1.00 1.00 

1 1.00           1.00 1.00  b 1.00           1.00 1.00 

2 1.00           1.00 1.00  c 1.00       0.86       0.92   

3 1.00           1.00 1.00  d 1.00           1.00 1.00 

4 1.00           1.00 1.00  e 0.83       1.00       0.91 

5 1.00       0.86       0.92    f 0.83       1.00       0.91 

6 1.00           1.00 1.00  g 1.00           1.00 1.00 
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7 1.00           1.00 1.00  h 1.00           1.00 1.00 

8 1.00           1.00 1.00  i 1.00           1.00 1.00 

9 1.00           1.00 1.00  j 1.00           1.00 1.00 

A 1.00           1.00 1.00  k 1.00           1.00 1.00 

B 1.00           1.00 1.00  l 0.83       1.00       0.91 

C 0.83       1.00       0.91  m 1.00           1.00 1.00 

D 1.00           1.00 1.00  n 0.83       1.00       0.91 

E 1.00           1.00 1.00  o 0.83       1.00       0.91 

F 1.00           1.00 1.00  p 1.00       0.86       0.92  

G 1.00           1.00 1.00  q 1.00           1.00 1.00 

H 1.00           1.00 1.00  r 1.00       0.86       0.92  

I 1.00       0.75       0.86  s 0.67       1.00       0.80  

J 1.00           1.00 1.00  t 1.00           1.00 1.00 

K 1.00           1.00 1.00  u 1.00       0.86       0.92  

L 1.00           1.00 1.00  v 1.00       0.86       0.92  

M 1.00           1.00 1.00  w 1.00           1.00 1.00 

N 1.00           1.00 1.00  x 0.83       1.00       0.91 

O 1.00           1.00 1.00  y 1.00           1.00 1.00 

P 1.00           1.00 1.00  z 1.00           1.00 1.00 

Q 1.00           1.00 1.00 

R 1.00           1.00 1.00 

S 1.00       0.86       0.92 

T 0.83       1.00       0.91 

U 0.83       1.00       0.91 
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V 0.83       1.00       0.91 

W 1.00           1.00 1.00 

X 1.00       0.86       0.92 

Y 1.00           1.00 1.00 

Z 1.00           1.00 1.00 

 

Table 6. 7. Improvement in VSC recognition compared to the multi-class MICR model 

(PRIVATEDT) 

Multi-class MICR model SIAM-MICR + Attention Model 

Class Precision Recall F1-score Class Precision Recall F1-score 

v 0.00 0.00 0.00 v 1.00       0.86       0.92  

z 0.00       0.00 0.00 z 1.00           1.00 1.00 

j 0.00       0.00 0.00       j 1.00           1.00 1.00 

 

Similarly, Table 6.6 and Table 6.7 show for the PRIVATEDT that the SIAM-MICR + 

Attention Model improved recognition accuracy in certain characters with visually 

similar pairs and small sample sizes. However, the performance declined considering 

certain characters, such as G, in the MEDPIX, in Table 5.4 and the classwise results 

in Table 6.4. The difference in dataset size explains this: for instance, for letter G, the 

result in Table 5.4 was obtained by training on a larger sample size of 43, while only 

a sample size of 17 was used for training in Table 6.4. This is supported by Mehmood 

et al. (2020) on how an increased number of samples would improve a model’s 

performance.  
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6.6.6 Quantitative Analysis with Related Works with Background Interference 

To further support setting a benchmark on SNN for MICR, the study investigated 

notable past works on OCR using an SNN on a small dataset, which attempted to 

recognise VSC having complex backgrounds. MEDPIX, with 25 samples per class, 

was used for the quantitative analysis with the network architectures in Wang and Lu 

(2017) and  Koch et al. (2015). This experimental set-up's train: test ratio was 70:30, 

online augmentation by random rotation; each image was rotated up to 20 degrees, 

either clockwise or anticlockwise, and the attention module was inserted after the 3rd 

CNN layer. BO was not used for this experiment, as already existing models’ 

architectures were used for the training and comparison. 30 runs were conducted, and 

the results were averaged.  The results are presented in Table 6.6 below. 

Table 6. 8:  Comparison with related works on MEDPIX on 62-way 25-shot learning 

averaged over 30 runs. 

Works Trainable Parameters  Accuracy (%) 

Wang and Lu,  (2017) 50,184,000 83.12 ±0.34  

Koch et al., (2015) 10,234,502 80.24 ±0.28  

SIAM-MICR 187,406 87.36 ±0.64 

SIAM-MICR + Attention 187,409 90.58 ±0.71 

 

The results shown in Table 6.8 show that the proposed models require fewer 

parameters than existing SNNs from past works. Therefore, it can be agreed that the 

proposed models are more efficient than Wang and Lu (2017) and  Koch et al. (2015) 

in the MICR task. Hence, the models are more memory efficient, and less 
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computational power is an advantage, setting a benchmark for SNN on VSCs for MICR 

with small sample sizes. Table 6.8 is presented visually in Figure 6.11 below; 

 

Figure 6.11: Comparison with related works in accuracy and parameter size 

 

6.7 Chapter Summary 

This chapter proposed a channel attention-based SNN suited for metric learning to 

adequately learn a discriminative pattern of individual classes for MICR, with the 

existing problems of low resolution and background interference. The experiments 

revealed that the channel attention module, inserted after the third convolutional layer, 

can perform better than the SNN without attention. There is an overall increase in 

accuracy, especially with a small sample size for a class with visually similar character 

images and reduced training parameters compared to related past works. Hence, the 

proposed models achieved good character recognition with less computational 

resources. Furthermore, the architecture of the proposed model is generic. It can be 

applied for any few-shot learning task, where there are cases of small sample size per 
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class, visually similar images, and problems of low resolution with background 

interference. 

In future work, I will consider generative modelling techniques. They may help increase 

the sample size per class so that a deterministic model can learn more features from 

low-resolution images at different image scales, as seen in Mishra et al. (2022) and 

Yuan et al. (2018). I will also consider transfer learning for metric learning, which 

leverages feature representations from a pre-trained model.
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7.0 Generating Synthetic Training Data to 

Improve Character Recognition Accuracy using 

a Conditional variational autoencoder  

7.1 Introduction 

This chapter proposes a variant of the Variational Autoencoder (VAE) generative 

model, known as the Conditional variational autoencoder (CVAE), focusing on finding 

a solution to the small dataset problem in the medical image character dataset. This 

study proposes that increasing the dataset size will increase deterministic deep 

learning model diversity, model generalisation and better performance. Hence, this 

study aims to use supporting experimental evidence to investigate this proposal. 

In the domain of OCR for burnt-in textual data in MIM, the problem of large dataset 

availability to train DL algorithms is a pressing issue. Unfortunately, DL classification 

models may perform worse when trained with small datasets because small datasets 

typically contain fewer details. Hence, the classification model cannot generalise 

patterns in training data. In addition, over-fitting becomes much harder to avoid as it 

sometimes goes beyond training data to affect the validation set (Rahman et al., 2017). 

Obtaining a large dataset is a major challenge due to privacy concerns in accessing 

medical images with patients' interpretations in burnt-in text and the significant cost 

associated with data acquisition and labelling for research. The available medical 

datasets used for training these OCR models are relatively small, significantly affecting 

models’ generalisation and performance.  
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This study aims to solve the problem of small dataset size by proposing a specialised 

generative model, Conditional Variational Autoencoder (CVAE), as an effective and 

practical data augmentation approach to synthesise data character images to improve 

the character recognition rate of deterministic models. In the proposed approach, the 

condition represents the label of the images, and the CVAE learns the probability 

distribution of image data conditioned on optimally determined latent variables and the 

corresponding labels. Bayesian optimisation determines the CVAE’s architecture for 

the problem being investigated optimally. The trained CVAE model can be 

implemented as a data augmentation solution to synthesise low-resolution new 

images. Experimental results will demonstrate the approach's effectiveness on two 

independent medical image datasets consisting of open-source and privately collected 

images with textual interpretations.  

 

7.2 Background 

A generative modelling approach deals with models of distribution 𝑃(𝑋), defined over 

data points 𝑋 in some potentially high-dimensional space (Doersch, 2016). An image 

can be termed a data point, and these data points describe the image (Cromey, 2012). 

The task of a generative modelling approach is to capture the dependencies between 

these pixels on how they are organised and the pattern they appear morphologically. 

The generative modelling approach allows numerical computation of the distribution 

𝑃(𝑋) and, when trained successfully, can create new samples from the underlying 

distribution (Ruthotto and Haber, 2021). This approach can be utilised in the medical 

image character recognition (MICR) task to solve the problem of small dataset size 

and improve discriminative models’ performance.  
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The overall task of this chapter of the study will be to collect the datasets (MEDPIX 

and PRIVATDT), which have samples 𝑋 distributed according to an unknown 

distribution 𝑃𝑢𝑛 (𝑋) and propose a model that is model 𝑃,  that can learn and produce 

synthetic samples such that 𝑃 is as similar as possible to get 𝑃𝑢𝑛 (𝑋). The generated 

samples will augment the training dataset to improve the performance of deterministic 

models. This will improve the reliability of DL solutions in automated burnt-in textual 

data extraction, allowing better insights into MIM and pattern analysis and thereby 

easing data entry. Overall, this will improve healthcare service delivery and treatment 

plans. 

Training generative models have major setbacks, such as strong assumptions of data 

structures (Sabuncu et al., 2010), making suboptimal approximations leading to 

substantially increased uncertainty (Beck et al., 2012) and relying on heavy 

computational inference methods (Bond-Taylor et al., 2022). These challenges prompt 

major advancements in using neural networks as powerful approximators due to their 

stability of numerical approximation (Tang and Yang, 2021; DeVore et al., 2020). The 

variational autoencoder (VAE) is a major approach due to its weak assumptions and 

reasonably fast training (Kingma and Welling, 2019).  

VAE is a generative model whose training can be regularised to avoid overfitting and 

ensure that the latent space has good properties to enable the generative process. In 

contrast to the autoencoder training, where the input is encoded as a single point, the 

VAE is fed with the input as a distribution over the latent space. During training, a data 

point from the latent space is sampled, then the sampled data point is decoded, and 

the reconstruction error is calculated and backpropagated through the network. It 

assumes that the data is generated by some random process involving an unobserved 

continuous random variable 𝑧 and that 𝑧 is generated from some prior distribution 
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𝑃𝜃(𝑧) and the data, 𝑋, is generated from some condition distribution 𝑃𝜃(𝑋|𝑍). 𝑧 can be 

referred to as the hidden representation of data X (latent space). These encoded 

distributions are Gaussian distributions to enable the training to return the mean and 

covariance matrix (Liu et al., 2023). To form the Gaussian distribution in the latent 

space, the encoder neural network layers compute the mean 𝝁 and the covariance 𝜮 

from x. 

For further clarification, below is a step-by-step explanation of how VAEs work 

(Doersch, 2016; Bond-Taylor et al., 2022) with a visual representation in Fig 7.1. 

 

Figure 7. 1: VAE generative modelling process (source: author). Latent variables in 

the latent space are transformations of the data points into continuous lower-

dimensional space and 𝑍1… 𝑍𝑛 is less than 𝑋1… 𝑋𝑚.  In exploring the latent variable 

concept in terms of images, it is known that neighbouring pixels in an image are highly 

dependent on each other, as this determines the image’s colour, size and layout.  In 

this case, the latent variable is the underlying hidden features that determine the pixels 
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and interactions in the original input image. These latent variables are not explicitly 

known. For more clarification, a 28*28 input image will have observed variables of 

𝑋1… 𝑋784 and latent variables of 𝑍1… 𝑍𝑛, and n is less than 784. 

Step 1: Encoder Network maps the input data, denoted as x, to parameters of latent 

space distribution. The output of the encoder network, denoted as 𝒉𝒆𝒏, is computed 

as: 

ℎ𝑒𝑛  =  𝑓
𝑒𝑛

(𝑥) 

where 𝒇
𝒆𝒏

 represents the encoder network's transformation. 

The encoder neural network outputs parameters that define a probability distribution 

for each dimension of the latent space (standard normal distribution). For each data 

point, the encoder neural network outputs a mean vector 𝝁  and the diagonal 

covariance matrix 𝜮 (diagonal covariance simplifies the computation) for each 

dimension of latent space.   

Step 2: Latent Space Gaussian Distribution: The latent space follows a multivariate 

Gaussian distribution with 𝝁 and 𝜮. The neural network estimates these 

parameters. The Gaussian distribution is chosen due to its many advantages, such as 

faster analytical evaluation of the KL divergence in the variational loss and the ability 

to use the reparameterisation trick for more effective gradient computation. The 

reparameterisation trick allows the backpropagation during the training by 

approximating 𝑍 using the decoder parameters and another parameter, 𝜖, where 𝜖 is 

a random noise to enable the stochasticity of 𝑍.  Mathematically, reparameterisation 

is shown below. 

𝑍 =  𝜇 +  𝜎. 𝜖  
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𝜎 is the standard deviation of a Gaussian distribution derived from the decoder output. 

The Gaussian distribution allows easy sampling of the latent space to generate new 

samples. 𝝁𝒛 and  𝒍𝒐𝒈(∑𝒛), is computed mathematically as: 

𝜇𝑧 =  ∫
𝜇𝑧 (ℎ𝑒𝑛) 

𝑙𝑜𝑔(∑𝑧) =  ∫
∑𝑧 (ℎ𝑒𝑛) 

Step 3: Sampling: A random vector is sampled on the latent space to generate a 

sample from the latent space distribution. 

Step 4: Decoder Network takes the sampled latent vector 𝒛 and maps it back to the 

data space to reconstruct the original input. The output of the decoder network, 

denoted as 𝒉𝒅𝒆, is computed as: 

ℎ𝑑𝑒  =  𝑓𝑑𝑒(𝑧) 

 

where 𝒇𝒅𝒆 is the decoder neural network's transformation. 

Step 5: Reconstructed output, denoted as x*, is obtained by applying a suitable 

activation function 𝒈𝒅𝒆 to the decoder output 𝒉𝒅𝒆: 

𝑋∗ =  𝑔𝑑𝑒(ℎ𝑑𝑒) 

Step 6: VAE Loss Function: In VAE, the loss function combines reconstruction 

loss and Kullback-Leibler (KL) divergence loss. The reconstruction loss measures the 

difference between reconstructed output x* and original data x. It can be defined using 

a suitable distance metric such as mean squared error (MSE). The KL divergence loss 

quantifies the difference between the learned latent distribution and the assumed prior 

distribution. 
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The model is trained to minimise reconstruction error and Kullback-Leibler divergence 

(regularisation). The reconstruction error measures how much the decoder leans to 

reconstruct the samples from the latent distribution, and a higher error indicates the 

decoder's poor performance in the reconstruction of the data. The Kullback-Leibler 

divergence measures how much information is lost while encoding the data points into 

the latent space. It shows the difference between two probability distributions and 

quantifies how much extra information is needed to approximate the true distribution 

using an estimated distribution. Once the VAE is trained, it can generate new samples 

by sampling from the prior distribution and passing them through the decoder network. 

However, suppose the latent space is too small or restrictive based on the chosen 

latent variables. In that case, the generated data may be limited and not similar in 

structure to the original data. On the other hand, if latent space is too large or too 

unconstrained, the generated data may be unrealistic or difficult to interpret. Choosing 

the optimal value of the latent variables is essential for the performance of VAE. A 

common approach is to use a search over a range of latent variable values and 

evaluate the model's performance on a validation set based on the loss functions. This 

study experimentally evaluated the optimal latent variables for modelling the latent 

space of the medical image character datasets, and the experimental results are 

presented in the result section of this chapter. 

VAE is appealing as it is built upon standard neural networks and can be trained using 

stochastic gradient descent (Pu et al., 2017). An extensive literature search has shown 

its successful application in areas with optical character recognition (OCR), which 

motivated this study. Some of these relevant works with citations of over 3000+ each, 

Handwritten digit recognition (Rezende et al., 2014) and House number data 

recognition (Kingma et al., 2014) 
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Motivated by these works in digit and character recognition (Rezende et al., 2014; 

Kingma et al., 2014), this study aims to explore the VAE approach for data 

augmentation in solving the small dataset size problem in MICR, which affects the 

ability of classifiers to learn effective discriminative representation. However, the 

research on CVAE in low-resolution images and medical image character recognition 

is still very limited, as seen by extensive literature searches. This research problem 

can be better answered by asking these questions.   

• How well can CVAE generate a synthetic image from a low-resolution medical 

image character sample of 96 dpi? 

• How much accuracy improvement does the discriminative model show when 

trained and evaluated with the CVAE augmented dataset compared to the 

original dataset? 

A literature search up to 10 years ago shows that the VAE approach has not been 

explored in MICR for burnt-in textual data. Hence, this study will provide a 

comprehensive guide for research into this area. 

7.3 Conditional Variational Autoencoders (CVAE) and Limitations of VAE 

The problem with the regular VAE is that there is no control over what kind of data is 

generated since generation is done by sampling grid points on the latent space. The 

decoder attempts to generate new data based on these points. The latent space is the 

hidden layer that contains the latent variables used to generate the outputs.  To further 

understand this, if VAE is trained with a digit dataset, and I attempt to feed a label into 

the decoder to generate, the output will be randomly generated digits. Even if the 

training is good and the reconstruction loss is minimal, the output will remain randomly 

generated. Hence, there is a need to propose a conditional variant of the VAE, known 
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as CVAE, as a more specialised generative model for the research problem. The 

CVAE process can be summarised as: 

• If given an input label L and the expected output from the generative model will 

be X, the image. 

So, the generative model process will be modified as follows: 

Given label, 𝐿, 𝑧 is drawn from the prior distribution 𝑃𝜃(𝑧|𝐿) and the output 𝑋∗ is 

generated from the 𝑃𝜃(𝑥|𝐿, 𝑧), which is in contrast to the regular VAE, where the prior 

is 𝑃𝜃(𝑧) and the output is generated by 𝑃𝜃(𝑥|𝑧). So, data X's encoding in the latent 

space is conditioned by L, and the generated data's decoding is conditioned by L. Fig 

7.2 provides a simple visual explanation of the CVAE process.  

 

Figure 7. 2: CVAE generative modelling process (source: author). 

Fig 7.2 shows training the CVAE model to learn the representation of the original 

image data by feeding the concatenation of the flattened image and the label as a one-

hot encoding to the encoder. Using one-hot encoding increases the dimensionality of 
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the data set, as a separate column is added for each category in the vector. The 

flattening converts the pixel values into a single continuous vector, which retains the 

spatial information of the original image but in an organised linear form. The label L is 

the condition which gives this variant the name “conditional”, and images can be 

generated by feeding the label into the decoder, and the model returns the specific 

data required. The input to the decoder is the concatenation of the normal distribution 

sampling corresponding to the latent variable 𝑍 and the label information. This allows 

the resampling range to be constrained in the specified label space rather than the 

entire normal distribution. 

The CVAE model depends not only on the latent space for the encoding but also on 

the label information to encode other information, such as character stroke width, 

curves, and angles of these characters. To allow an easier comparison, Fig 7.1 shows 

the VAE, which takes input as image data only and produces probability distributions 

in the latent space, and the decoder takes sampled vectors in the latent space and 

returns generated image data.  There is no control of the data generation process in 

the VAE, which is problematic when there is a need to generate specific data (Lavda 

et al., 2019).  For example, if there is a need to generate a digit based on a query, 

rather than randomly sampling the latent space using a random vector, which may 

generate varying data. Suppose the query character is “5”; how do the VAE generate 

the images that are only character “5”? Random points have to be sampled and can 

give varied results. This is a major limitation of the VAE. The CVAE solves this 

problem, where labels are added to enforce the latent space to learn independent 

features per class (Pesteie et al., 2019).    

This chapter aims to propose a generic generative model based on a CVAE for 

data augmentation for MICR, which can be modified and extended into other medical 
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image data generation, especially in generating low-resolution image modalities. The 

architecture configuration was optimised using the Bayesian optimisation algorithm, 

where the objective function to minimise is the reconstruction error. 

 

7.4 Justification of CVAE instead of GAN for this research problem 

The choice of a model depends heavily on the problem and the data available. This 

study did an extensive literature review on generative models that can learn a low-

dimensional representation of the medical image character patch and generate new 

data similar to the original data. In this case, the original textual data has the 

constraints of low resolution, blurry when enlarged, complex background, and tiny text. 

The closest option was the Generative Adversarial Networks (GANs); the justification 

for choosing CVAE is below. 

• Regarding architecture and the ability to train with a small dataset, the GANs 

are difficult to train, as the discriminator quickly overfits the training data due to 

its deep layers. With the very deep layers, this overfitting causes a limited flow 

of feedback to the generator, which results in a training collapse due to the 

inability of the generator to learn salient feature representation. Hence, GANs 

require a large amount of training data for good performance. During training, 

the convolutional layer’s kernels are applied to the image's pixel according to a 

defined stride and padding, using element-wise multiplication, and the result is 

summed. This means that the output for a convolution of a pixel is a value that 

takes information from the pixel's neighbourhood. With the deep layers in 

GANs, applying more convolution operations as I move deeper into the GAN 

architecture may lead to a loss of information and overfitting when there is a 
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small MEDPIXnd low-resolution images, leading to a collapse. For instance, the 

Vanilla GAN (Goodfellow et al., 2014), the simplest of all GANs, has 4 layers in 

the generator and 4 layers in the discriminator, making a total of 8 layers with 

a dropout regularisation. A more popular and efficient GAN architecture known 

as CycleGAN (Zhu et al., 2017) is composed of 2 GANs, making it a total of 2 

generators and 2 discriminators, having with each generator have 7 layers, with 

9 consecutive residual blocks, making a total of 14 layers, and 18 residual 

blocks, each of the discriminators has 6 layers, making a total of 12 layers. In 

total, the CycleGAN has a total of 26 layers and 18 consecutive residual blocks. 

These GANs are deep and pose a problem as this study's medical image 

character dataset is small; hence, training these GANs using this small dataset 

typically leads to discriminator overfitting, causing training to diverge. 

Performing MEDPIXugmentations (such as rotation) causes a case of 

augmentation leakage, where the GAN generates the augmented images that 

have been rotated. 

• GANs have been used on medical images, magnetic resonance images (MRIs), 

computed tomography (CT), X-ray, and positron emission tomography (PET) 

and demonstrated promising results. However, these studies involved a quite 

large training set, averaging above 1000 training samples per class (Chadebec 

et al., 2022), whereas, in the present task of MICR, it remains very challenging 

to gather such large cohorts of labelled medical imaging modalities with burned-

in textual representation on it due to privacy reasons and acquisition cost. 

Compared to GANs, CVAE can learn an efficient latent space to generate new 

data samples from a small dataset (Clément and Stéphanie, 2021), which 

further justifies the choice of CVAE for this study.  



170 
 

• CVAE generates mainly low-resolution images from low-resolution inputs, 

which are similar to the original dataset of this study (He, 2023; Chen and Guo, 

2023), while studies have shown GAN generate high-resolution images from 

low-resolution inputs (Wang et al., 2023; Aggarwal et al., 2021). In deep 

learning, it is important that the training and testing datasets come from the 

same distribution, and it is also ideal that the inputs, once the model is deployed 

for practical use, come from the same distribution. Otherwise, the model’s 

predictions and quality will be highly inaccurate. This means that models are 

useless for inputs far from the training data in terms of distribution. An empirical 

study by Alkhalifah et al. (2023) supports this viewpoint that a different 

distribution of the synthetic data may lack many realistic features embedded in 

the original data, which results in poor performance of the trained neural 

network model during inference.  Therefore, ensuring that the synthetic images 

generated by the chosen generative model are as close as possible to the 

original data and have a similar distribution is highly necessary. A low-resolution 

image has smaller pixels with less than 300 pixels per inch, which is the 

opposite of a high-resolution image with more than 300 pixels per inch. The 

original dataset in this study is low-resolution images of 96dpi, as confirmed 

using the pillow library. CVAE produces these same low-resolution images and 

is a more appropriate choice for this study. 

This study argues that CVAE can reliably be used for data augmentation in MICR to 

improve the deterministic models’ performance during inference by optimally 

modelling the architecture and latent space and amending how the data is generated 

through conditioned sampling. 
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Figure 7. 3: MICR Model  

7.5 Models’ Architecture  

The baseline model is a classification model used to evaluate the effect of the 

proposed augmentation method for MICR. Fig 7.3 shows the architecture of the base 

model, which is the MICR classification model from the previous chapter. The 

networks are initialised with random weights and trained based on a train-test split 

ratio of 70:30. 

   

 

 

 

 

 

  

                                       (from Chapter 5, source: author) 

To show the effect of the augmentation data generated by the proposed CVAE model, 

the training data will be mixed with certain synthetic samples and used to train the 

MICR model. The model's accuracy will be presented to determine how much 

improvement can be achieved using CVAE-augmented character image samples for 

training models for MICR. 

The proposed CVAE model is motivated by the notable study proposing a Gaussian 

Stochastic CVAE by Sohnet et al. (2015). Their CVAE model was deep with 21 layers, 

and the aim was to generate an output 𝒚, conditioned on 𝒛. The authors experimented 
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with corrupted input data and attempted to reconstruct a clean copy of the data, and 

the results were convincing. Hence, this study made significant architectural changes 

to design a CVAE that is suited to the problem of small dataset size in MICR. 

This chapter proposed a model shown in Figure 6.4, comprising two dense layers in 

the encoder and three in the decoder. The non-linear activation for each layer is ReLU, 

and the output is activated via the sigmoid function. The dimension of the latent space 

is set to 2 after investigations to determine the optimal dimension by checking the 

minimum reconstruction loss for each value of latent variables, averaged after 50 

iterations each of 1000 epochs. The value with the lowest reconstruction loss is the 

optimal latent variable size for the CVAE model. The Bayesian optimisation (BO) 

technique was applied to determine the optimal architecture’s hyperparameters by 

taking the objective function as the reconstruction loss and balancing the exploration-

exploitation trade-off of hyperparameter search space. BO has the advantage of 

reducing computational cost by strategically choosing configurations to evaluate 

based on an informed approach rather than a random, expensive tunning process.  In 

this work, the proposed CVAE architecture can learn independent features per class 

for small dataset sizes, increasing the model’s ability to learn from limited information 

from low-resolution samples by introducing a dense-only connected layer in both the 

encoder and decoder parts. This yields improved approximation to allow 

concatenation of the label encoding, allowing the model to capture richer 

discriminative features from the input images. 

To ensure consistency, this architecture is maintained through the experiments.  See 

Figure 7.4 below. 
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Figure 7. 4: Proposed CVAE Architecture after Bayesian Optimisation with a Dropout 

of 0.3. Please see Figure 7.2 for the training and generative process. 

Figure 7.4 provides a visual representation of the proposed CVAE architecture. The 

input, consisting of the original image and a label encoded as a one-hot vector, is fed 

from the left, and the generated images are extracted on the right. The encoder 

processes the input image and the conditional variable (labelled as a one-hot encoded 

vector). The latent space, represented by the central box, captures the relevant 

features of the input data given the condition (label).  The decoder then takes the latent 

representation and the same conditional variable to generate an output that matches 

the data and the condition. This unique capability allows us to generate data that meet 

a specific condition, which is the label, and it enables the model to learn additional 

information about the input images based on their classes. Including labels in the 

learning process allows the model to learn conditional relationships, thereby 

enhancing the control over the data generation process. This practical implication of 

the proposed architecture underscores its potential in various real-world applications. 

7.6 Results and Evaluation 

This chapter’s experiments were conducted using a Python 3 Google Compute Engine 

backend, 12.7 GB system RAM, and TensorFlow and Keras libraries. Datasets 

described in Section 4.3 were used for this chapter. 
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7.6.1 Latent variable investigation 

This study conducted several experiments to find the optimal latent variables for the 

latent space that gives the lowest reconstruction loss of the input image based on the 

following procedures. 

1. Prepare the datasets, resizing the image size to 28x28 and manually checking 

that each class is represented in the train-test ratio of 80:20. 

2. Normalise the dataset by dividing each pixel value by 255 to scale the values 

to the range [0, 1] 

3. Initiate the CVAE model based on the optimised architecture configuration and 

a starting point of 2 as the latent variables.  

4. Train the CVAE for the generated output image and calculate the overall 

minimum reconstruction loss. 

5. Choose a different value for the latent variables for the CVAE model. Redo (4) 

to find the optimal value of latent variables based on the minimum 

reconstruction loss comparison. 

6. Online data augmentation was not applied for this experiment to maintain a 

high-quality dataset and ensure the CVAE model learned representative latent 

variables that can generate outputs as close as possible to the original image. 

The results of this procedure are shown in Table 7.1 below. 

Table 7. 1: Latent variables and Reconstruction loss for the CVAE model 

Latent variables    Minimum Reconstruction Loss 

(MEDPIX) 

Minimum Reconstruction Loss 

(PRIVATEDT) 

2 27.03 ±0.02 13.23 ±0.11 

3 28.22 ±0.03 14.58 ±0.04 
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4 28.78 ±0.04 14.69 ±0.02 

5 28.65 ±0.02  14.65 ±0.04 

6 28.72 ±0.03 14.87 ±0.04 

7 28.86 ±0.14 14.77 ±0.10 

8 29.62 ±0.39 15.29 ±0.07 

 

The ± represents the standard deviation, which ranges between 0.02 and 0.39. This 

low standard deviation indicates that data are clustered tightly around the mean, less 

dispersed, and therefore more precise. This is further presented visually in Figure 7.5 

below. 

 

Figure 7. 5: Optimal Latent Variables Investigation. Two (2) latent variables are shown 

in red and blue as the best choice for the CVAE model latent space configuration on 

the two datasets. The figure shows that the minimum reconstruction loss increases as 

the latent variables increase.  

This study did not include 1 latent variable size, as it may be insufficient to effectively 

encode the image’s pixel relationship and the one-hot labels' one-hot encodings. 
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When the latent space size is limited to 1, it becomes clear that the space is too small 

to encode the dataset effectively. The CVAE model finds filling the concatenated data 

information of the input image and label one-hot encoding into the 1 latent variable 

data space challenging, leading to an inconsistency between the encoded and latent 

space distribution. This may result in a large reconstruction error for the decoded data 

points and a failure to cover the entire data distribution with the samples from the latent 

space.  Increasing to large latent variable sizes may result in collapsed dimensions 

due to the encoder predicting a mean 0 and unit variance for the Gaussian, and this 

increases the reconstruction error, leading to an unnecessarily large model, which can 

be improved by finding the optimal variable value for the latent space with fewer 

parameters and less computational requirement. Relevant past studies show that 

going above 8 may result in using large latent variables, which greatly complicates 

training and convergence modelling (Ji and Lu, 2021).  The latent space is visualised 

in Figure 7.6 below. 

 

Figure 7. 6: Scatter plot of latent space. Two latent variables only to do principal 

component analysis, and the variance captured by the two PCs in percentage - 

58.34% and 41.66%. 
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As seen in Figure 7.6, the ideal goal is for encodings to be as close as possible to 

each other while being distinctly separated. This allows smooth interpolation and 

enables the generation of new image samples. The KL divergence loss function 

optimises the probability distribution to be close to that of the target distribution, 

thereby reducing the reconstruction error. This loss function enables the distribution 

of all encodings of the classes for the characters evenly around the centre of the latent 

space, as seen in the latent space visualisation in Figure 7.6. Thus, it follows a 

Gaussian distribution with most values concentrated and clustered around the centre 

region of the curve. Addition of the class label as a condition enforced the latent space 

to learn independent features per class. This is particularly noteworthy, as the training 

was done using a small dataset, yet the latent space was able to learn independent 

features per class effectively. The latent space maintains the similarity of nearby 

encoding by clustering the data points locally while globally packed at the latent space 

origin. This arrangement allows for a smooth mix of features when interpolating to 

generate new image samples. In Fig 7.6, the two latent variables were used to do a 

principal component analysis, and summing up the variance values in this array for 

each of the principal components [0.5834254, 0.4165746]. it is equal to the explained 

variance ratio of 1.0000, which measures the relative variance amount explained by 

each of the principal components, thus, indicating that the two principal components 

together explain 100% of the variance of the data.  

The training curve based on two latent variables is shown in Fig 7.7 below. 
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Figure 7. 7:  Minimum reconstruction loss curve (a) MEDPIX (b) PRIVATEDT 

Figures 7.5 and 7.6 show that the MEDPIX has a higher reconstruction error than the 

open-source dataset, PRIVATEDT. This may be due to noise associated with 

background interference, poor background contrast, and irrelevant distribution areas 

at the pixel level, such as white noise images (Pividori et al., 2019) from the publicly 

accessible images compared to the private onsite data collection done by this 

research. 

7.6.2 Generated Character Images – Samples 

 

Figure 7. 8:  Generated character images 

The samples of generated character images shown in Fig 7.8 were chosen randomly 

by querying the generative process with the required character. The repeated images 

show the stability of the CVAE model in generating image data by simply entering the 
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condition for the generative action, that is, the label. The generated image has a low 

resolution of 96 dpi, the same as the original image data. This was confirmed using 

the pillow image library.  

7.6.3 Qualitative Analysis - Augmenting Datasets with Synthetic Images 

This section provides a qualitative analysis of the synthetic images generated by the 

proposed CVAE and investigates the feasibility of augmenting medical image 

character image datasets with synthetic images. The augmented datasets are used to 

train the MICR models (discriminative models) to determine whether they achieve 

higher accuracy than models trained with original character images alone. The default 

sample size for each class is shown below in section 4.3 in the data description. The 

augmentation process involves adding N, the number of synthetic images in each 

class, to increase the total size of the dataset. Table 7.2 reports the following result, 

which investigates the impact of the generated samples on the accuracy of the MICR 

classification models based on a Train-Test ratio of 70:30. This experiment aims to 

reveal the impact of different augmentation sizes on the deterministic model’s 

accuracy in MICR. 

Table 7. 2: Accuracy of MICR(1) model on augmented datasets—averaged on 20 

runs. 

 Number of synthetic images per class (N) 

  0 50 100 150 

MEDPIX 87.13 ±0.18% 90.33 ±0.12% 90.63 ±0.10% 88.92 ±0.02% 

PRIVATEDT 91.42+0.14% 93.83 ±0.02 98.27 ±0.06 93.02+0.06% 

 

Table 7.2 is shown visually in the chart below in Figure 7.9 below. 
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Figure 7. 9:  Accuracy vs Sample Size Augmentation for both datasets 

In the training set, multiple synthetic images were generated by sampling different 

vectors based on the label's condition by querying the required character label. These 

generated images were used to augment the training set, according to Table 7.2. On 

MEDPIX and PRIVATEDT, the accuracy of the models trained with augmented 

datasets increases with respect to those trained without synthetic images.  Compared 

to Table 5.3, the results are different, as Table 7.2 uses a train-test split ratio of 70:30, 

compared to 80:20 in Table 5.3 for the MICR(1) model. I decided to increase the 

testing ratio in Table 7.2  so that more original data samples can be used to evaluate 

the models trained. The test set consists of original data samples only to evaluate the 

model’s effectiveness in a real-world case. For the training set, the synthetic images 

are generated and selected based on visual quality. The number of synthetic images, 

according to Table 7.2 (50, 100 and 150), is added to the training set. For instance, N 

= 50 means the training set consists of 70% original images with 50 extra synthetic 

images per class. 
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Maximum accuracy improvements of +3.2%, +3.5% and +1.79% were obtained when 

50, 100, and 150 synthetic images per class were added to the Medpix dataset, 

respectively. For PRIVATEDT, an increase of approximately +2.41%, +6.85%, and 

+1.60, when 50, 100, and 150 synthetic images per class were added, respectively. 

This shows that the privately collected dataset benefitted more from this data 

augmentation approach. 

These results are consistent with the intuition that adding synthetic images to smaller 

datasets should result in more significant improvement than adding them to larger 

datasets (Anderson et al., 2022). The results in Table 7.2 also suggest an optimal 

balance between the number of original and synthetic images per class in the dataset. 

Adding 150 synthetic images per class to the dataset resulted in a lower accuracy than 

adding 100 synthetic images per class since the proportion of original images per class 

becomes smaller.  Furthermore, these results show that adding synthetic images to 

smaller datasets improves the predictive accuracy of deterministic models. 

 

7.6.4 Evaluation of individual classes' Improvements 

Given that the classes are very imbalanced in both datasets, it would be insightful to 

investigate the impact of the synthetic data augmentation on individual classes and 

determine how well the performances are on small and oversized classes, 

respectively. The augmentation was done by adding 100 synthetic images per class, 

and the classification report showing the precision, recall, and F1-score evaluation 

metrics was reported together with each class’s sample size. The synthetic data was 

added only to the training data, and evaluation was done on the original data. The 

results for MEDPIX are summarised in Table 7.3 below. 
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Table 7.3. Investigation of Individual Classes' Improvements 

MICR model MICR + Synthetic Data Augmentation 

Class Sample 

Size 

Precision Recall F1-

score 

Class Sample 

Size 

Precision Recall F1-

score 

v 5 0.00 0.00 0.00 v 105 1.00       1.00 1.00 

w 6 0.00       0.00 0.00 w 106 0.80       1.00       0.89 

j 7 0.00       0.00 0.00       j 107 1.00       1.00 1.00 

S 111 0.92       1.00       0.96 S 211 1.00       1.00 1.00 

T 140 1.00       1.00       1.00   T 240 1.00       0.93       0.97 

2 101 0.83       0.95       0.89 2 201 1.00       1.00 1.00 

 

Smaller classes (“v,” “k,” and “j”) and big classes (“S,” “T,” and “2”) were taken as 

sample instances, and the improvement was seen irrespective of previous class sizes. 

However, the smaller classes benefitted more from the augmentation, as shown in 

Table 7.3.  

 

7.6.5 Investigation of Impact  classes with small sample size on latent space 

This study opines that investigating the pixel difference and similarity between the 

original input image and the generated image from the latent space would reveal how 

much information the CVAE model learns in encoding these small sample-size 

classes. This is done by loading the images and checking their structural similarity. A 

higher percentage of similarity shows that the CVAE model can learn from these small-

size classes and generate highly similar images with minimum pixel difference. The 
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results of these classes with small size, being compared with the generated output 

from the latent space, are shown in Figure 6.10 below. 

 

 

Figure 7.10: Similarity comparison of images from small classes. 

Figure 7.10 shows that there is a high structural similarity between the (a) original 

characters “Q” and “W”, at 93.21% and 97.86% approximately and (b) the generated 

image from the latent space. The arrays in (c) below the similarity score show the 

different pixels between the two images. This structural similarity technique of 

comparing local pixel difference and intensity is supported by the notable work of 

Wang et al. (2014). It can be implemented using the sci-kit-image Python library. 

These results comprehensively highlight the benefits of data augmentation in 

improving deterministic model performance with small-size datasets using a specially 

designed CVAE approach. 
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7.7 Chapter Summary 

This chapter has explored the feasibility of augmenting medical image character 

datasets with realistic synthetic character images for medical image character 

recognition under a small dataset problem with low-resolution images. Specifically, 

this chapter proposed a CVAE model that can generate realistic synthetic character 

images from latent variables encoding attributes and decoding via fully connected 

layers. The output of the model has the same distribution in terms of low resolution as 

the original medical image modalities of 96 dpi. This model’s architecture 

experimentally has resulted in faster convergence during training, reducing training 

time compared with a deeper generative counter of the GANs family.  Several CNN-

based MICR models with different combinations of real and synthetic images were 

trained to demonstrate the benefit of augmenting small datasets with the proposed 

method. Results show that the discriminative models trained with the augmented 

datasets outperformed those trained with original images alone. Compared to other 

character image synthesis methods explicitly designed to generate character images, 

the proposed generative method is more generic and can generate low-resolution 

images when the available dataset is small. The proposed method is useful for 

generating low-resolution MIM, as seen in the performance analysis of the two 

datasets MEDPIX and PRIVATEDT, which represent the open-source and originally 

collected images. 
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8.0 Conclusion  

8.1 Overview 

This PhD thesis aimed to explore and develop efficient DL-based solutions to 

recognise burned-in textual data in medical imaging modalities under the constraints 

of low resolution, background interference, tiny text, and small datasets. This chapter 

concludes this research by reviewing the findings, generalisation, significant 

contributions, limitations, and future works. The current works on recognising burned-

in textual data are still very limited, and many of these reasons are presented 

comprehensively in Chapter 3. 

 

8.2 Research Findings 

The primary research goal of this thesis was to develop DL techniques for MICR, with 

the constraints explained in the previous section. A thorough review of the existing 

literature highlighted significant research gaps, which served as a primary source of 

motivation for this research. These gaps were presented comprehensively in Chapter 

3, where the open issues and challenges in MICR were discussed; the content of this 

section was published in Osagie et al. (2023) as a review article.  Experiments were 

conducted for each primary research question, and the research findings answered 

these questions through critical interpretations and investigation of the experimental 

results.  The summary of the research findings are summarised in Table 7.1 below. 

Table 8. 1: Research questions and findings from experimental investigations. 

Research Questions Research Findings 
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1. Can a deep learning-

based solution be 

designed to recognise 

burned-in text data with 

small font sizes, low 

resolution, and 

background interference 

in varied medical image 

modalities? 

An enhanced and Bayesian-optimised CNN 

model based on Lenet-5 architecture was 

designed to recognise burned-in text data in 

varied medical imaging modalities, with the 

constraints of low resolution and background 

interference. The proposed model can recognise 

burned-in textual data in low-quality medical 

images with a low resolution of 96 dpi and a small 

font size.  

A majority voting ensemble model was designed 

based on the proposed model through a series 

of investigations to determine the best number of 

members. This can reliably recognise burned-in 

textual data in varied medical image modalities. 

The evaluation used publicly and privately 

collected datasets with varied imaging: 

ultrasounds, X-rays, MRI, and CT. Results 

showed improvement in the proposed model 

compared to existing works and the Lenet-5 

classical OCR model. The investigation showed 

further improvement in the ensemble’s 

performance due to reduced variance between 

members.  

2. Can a deep learning-

based solution based on 

A Siamese neural network based on a twin CNN 

with a channel attention module was designed to 



187 
 

few-shot metric learning 

be designed to recognise 

visually similar character 

images with a small 

dataset sample size in 

varied medical image 

modalities? 

employ metric learning with contrastive loss to 

recognise visually similar characters with a small 

data sample size. The evaluation used publicly 

and privately collected datasets with varied 

sample sizes. Results show that the proposed 

Siamese neural network can classify visually 

similar characters without difficulty based on 

their metric distance, even with the small sample 

sizes.  

3. Can generative modelling 

be proposed to improve 

burned-in text data 

recognition by generating 

synthetic data samples for 

each character? 

A generative model based on the conditional 

variant of the variational autoencoder was 

designed to improve MICR accuracy by 

generating synthetic data samples based on a 

Bayesian optimised architecture and best latent 

variables based on experimental investigations. 

The evaluation used publicly and privately 

collected datasets with varied sizes to add the 

synthetic data samples. Results reveal a high 

similarity between the original and generated 

images from the latent space, even for small 

sample size classes. The result also showed 

improved performance in deterministic models 

when trained with generated data samples from 

the proposed generative model. 
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8.3 Research Limitations 

The limitations of this research are : 

• Firstly, the hyperparameter optimisation techniques were chosen based on the 

justification of their effectiveness, speed, and flexibility in implementation in 

modelling complex relationships in data. This was used across all the modelling 

done in the three technical chapters of this thesis. However, experimentally, it 

is unclear if different hyperparameter optimisation techniques would be more 

appropriate for the different modelling methods. There was time constraint in 

experimentally testing several methods of optimisation, as they are a lot of 

varieties. 

• DL-based solutions have revolutionised image analysis in various domains, but 

implementation is computationally and resource-intensive. This research 

addressed this limitation by implementing a commercial Google Colab platform 

using TPUs and GPUs. However, accessibility to a high-powered computing 

platform would have allowed for more training, optimisation and evaluation 

experimentation. This research made optimum use of the available resources 

to achieve the results presented in this thesis. 

• The limitations of the dataset, as previously discussed, are that the DL-based 

solution requires a large amount of training samples per class to prevent over-

fitting during model training. The most successful results in DL are thousands 

to millions of samples per class, which allows for efficient representation 

learning. However, using a small dataset in this research is, at best, difficult 

and, frequently, challenging. 
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8.4 Research Contributions to Knowledge 

The main contributions of this thesis are : 

• This study introduces an enhanced CNN model motivated by the classical 

Lenet-5 model. The enhanced model is optimised using Bayesian reasoning. 

The Lenet-5 uses a filter size of 5x5 in its first convolutional layer, followed by 

average pooling. In this study, these are replaced by a 3x3 filter size and a 5x5 

filter size with a stride of 2, respectively. This enhancement ensures that the 

proposed CNN model can learn more local features, essential in designing a 

MICR solution for low-resolution MIM with background interference. 

• Performing MICR on burned-in textual data at a low resolution of 96 dpi with 

background interference. An outstanding accuracy score was achieved, and 

MICR at such low resolution has not been previously reported in the literature. 

• To analyse the impact of the ensemble technique on the enhanced model’s 

performance. The bootstrapping method was used to create three (3) subsets 

of the dataset. A classifier is fitted to each of these subsets and evaluated. An 

ensemble is designed using the trained classifiers of these subsets, and a final 

classification outcome is based on a majority voting algorithm. This improves 

the model’s performance in distinguishing visually similar characters. 

• This study proposes a Siamese neural network to learn semantic similarities 

between extracted embeddings of image pairs in metric space in the presence 

of small sample size, low image resolution, and background interference. The 

resulting model can discriminate between visually similar characters by learning 

a fine-tuned decision boundary. 
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• This study proposes a channel attention mechanism combined with a Siamese 

neural network to learn meaningful parts of an input image that discriminate 

when compared to a visually similar image.  

• This study provides a benchmark for using similarity learning in medical image 

character recognition (MICR). After an extensive literature review in the past 10 

years, no previous work has been done regarding MICR and SNN with and 

without channel attention mechanisms. Extensive reviews conducted by this 

study by searching notable databases such as Elsevier, IEEE, Nature, and 

Science did not reveal any existing work for medical image character 

recognition that used the Siamese network. There are no reviews that discuss 

or propose Siamese-based methods for MICR.  

• This study proposes a generic generative model based on a conditional 

variational autoencoder for data augmentation for MICR. This model can be 

modified and extended to generate other medical image data, especially low-

resolution image modalities. The architecture configuration was optimised 

using the Bayesian optimisation algorithm, where the objective function to 

minimise is the reconstruction error. The best latent variable dimension was 

determined via experimental investigations, which considered generating the 

same distribution of data samples as the training dataset. 

 

8.5 Research Significance 

A reliable and automated DL-based solution for recognising burned-in textual data 

from MIM will improve medical informatics by significantly improving the speed, 

accuracy, and management of medical data entry systems. It will also allow easy 

integration of heterogeneous data from multiple sources, including burned-in textual 
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data on MIM, in making critical decisions in diagnosis, prognosis, and patient treatment 

plans.  

Regarding the generalisability and transferability of these research findings, the 

modelling approach could be applied to image retrieval systems, image 

anonymisation, and other cases where text recognition is required in low-resolution 

images such as historical text documents and degraded text documents, amongst 

others. This research demonstrated the importance of applying specialised network 

architecture and small kernel size in CNN networks for character-wise recognition in 

low-resolution images and background interference. The results from the enhanced 

Lenet-5 CNN model corroborated this. Having domain knowledge of the images will 

contribute more meaningfully to the network architecture and hyperparameter 

configuration design and improve character recognition performance.  Another fact 

that this research highlighted was the application of few-shot learning techniques, such 

as the Siamese neural networks, in providing an algorithm that can learn a similarity 

function from a dataset having small sample sizes and yet produce more meaningful 

results compared to conventional multi-class classification algorithms trained on the 

same dataset. The evaluation results highlight that few-shot learning and Siamese 

neural networks are a solution to low-resource domains, where gathering large sample 

sizes for class in a dataset is challenging, such as satellite imaging, electronic health 

records, and degraded and historical documents. Following the application of CVAE 

in the augmentation of the medical imaging dataset, this research highlights the 

importance of using a training set augmented with synthetic images up to a determined 

peak to improve the classification performance of deterministic models trained on 

augmented training sets.  This thesis has shown that these techniques; specially 

designed network architecture, few-shot learning, and CVAE, are possible solutions 
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to the problems of low-resolution images with background interference and small 

sample sizes per class, and results from this thesis provide an early investigation into 

these techniques as regards imaging analysis 

 

8.6 Future Outlook 

Even with research limitations such as data acquisition, time constraints,  and limited 

past works in this domain, this thesis provides an early investigation into medical 

image character recognition based on DL techniques. In future work, a multi-scale 

CNN architecture and a more advanced ensemble will be considered. This research 

will also consider multi-scale modelling techniques in metric learning with Siamese 

neural networks; they may help learn more features at different scales from low-

resolution images. Transfer learning for metric learning to leverage feature 

representations from a pre-trained model will also be considered.  
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Appendix  A – Data Collection Approval (UH 

Ethics Committee) 
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Appendix B – Data Request to Data Collection 

Location 1 
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Appendix C – Data Approval to Data Collection 

Location 2 
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Appendix D – Data Request and Approval to 

Data Collection Location 2 
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Appendix E -  Risk Assessment for Data 

Collection 

Risk Assessment involving the consideration of physical and psychological risks and 

data privacy protection during the data collection stage have been adequately 

considered. The study has developed procedures that reduce and minimise risks to 

human participants, which is vital in the original data collection. These are itemised 

below: 

1. Documentation of informed consent would be collected using the Ethics’ EC3 

Consent form. 

2. Only approved medical laboratories with an in-house licensed Technologist 

were used for the data collection. 

3. The EC3 Consent form required only minimal data (Name and signature only) 

to ensure an acceptable level of anonymity for the participants' personal 

information. 

4. The licensed technologist, an assisting nurse, and the participant were present 

during the capture, as explained in the ethics application form. 

5. The MIM with textual data already burned in after image acquisition was 

collected on a secured USB drive and then transferred along with an 

electronically scanned copy of the EC3 Consent form to the University’s UH 

OneDrive Storage. 

6. The USB and the paper copies of the EC3 Consent form were destroyed after 

this. 
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Appendix F- Results from Commercial OCRs 

Note: The original image is on the left, and the OCRs’ result is on the right. 

 

Figure F1: Google Document AI results on sample medical image  

As seen in Figure F1, The Google Document AI could not recognise "DAVIDSON 

DOUGLAS accurately." Moreover, it did not provide any result for "HUGHES 

FATHLEEN" and other text on the image's upper right side. 

 

Figure F2: Amazon AWS Textract results on sample medical image  

Similarly in Figure F2, Amazon AWS Textract could not recognise the patient’s name 

or clinical information on the left side of the image. 
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