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Abstract 

The growing power densities and rapid miniaturisation of modern electronics necessitate 

advanced thermal management solutions beyond conventional heat sinks, which struggle with 

limited performance and adaptability. This research is the first of its kind to simultaneously 

combine machine learning, numerical simulations, and experimental investigations while 

incorporating manufacturing philosophies, creating a comprehensive methodology that 

establishes a new benchmark to provide holistic thermal management solutions. The proposed 

bioinspired designs via hybrid pin-fin structures inspired by mushrooms, scutoids, cruciform 

flowers, and flying fish represent a departure from conventional configurations. Due to 

strategic modifications, these unique geometries exhibited a 30-70% increase in heat transfer 

potential, coupled with reduced thermal resistance and enhanced flow manipulation. The 

research is also the first to systematically incorporate such complex nature-inspired structures 

into micro heat sinks, showing the potential for high thermal efficiency whilst addressing 

manufacturability. Additionally, the integration of machine learning significantly advanced the 

design process by enabling rapid, high-accuracy predictions of thermal characteristics and flow 

behaviours. Using ensemble learning and combined techniques the developed models achieved 

over 90% accuracy in predicting heat transfer coefficients and classifying complex flow 

regimes. This novel application of smart data-driven methods transformed the traditionally 

laborious optimisation process, reducing computational time by 60-70% and allowing real-

time performance monitoring. The introduction of such predictive capabilities for HTC, new 

correlations, sustainability analyses, and a custom data pipeline for flow regime identification 

represents a leap forward in artificial intelligence use in heat transfer research. Furthermore, to 

enhance scalability, a hybrid production strategy integrating Lean, Agile, and Design for 

Manufacturing resulted in a 43% reduction in production cost, a 29% savings in energy 

consumption, and a 19% cut in carbon emissions. Therefore, the research findings align with 

UK Net Zero and the EU Green Deal and Digital Agenda goals to present a practical model for 

developing high-performance thermal management solutions with minimal detrimental 

environmental impact. Thus, this research bridges the gap between theoretical innovation and 

practical implementation, offering a transformative framework for next-generation thermal 

management by adding new dimensions and strategies in air-cooled, liquid-cooled, and flow-

boiling systems. Its contributions have a wide range of applications in high-performance 

electronics, automotive and aerospace thermal systems, and renewable energy technologies, 

setting a new benchmark for adaptable, efficient, and sustainable global cooling solutions. 
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Nomenclature
Latin Symbols 

A Area, mଶ 

Cp Specific heat capacity, J/kg · K 

D Diameter, m 

Dh Hydraulic diameter, m 

HTC/h Heat transfer coefficient, W/

mଶK  

H Height, m  

K/k Thermal conductivity, W/m · K 

L Length, m 

ṁ Mass flow rate, kg/s 

N Number of points 

Nu Nusselt number, - 

Pr Prandtl Number, - 

Pu Pumping power use, W 

Q̇/Q Heat transfer rate, W/mଶ 

R Thermal resistance, K/W  

Re Reynolds number, - 

Rth Thermal resistance, K/W  

SA Surface area, mଶ   

T Temperature, °C/K 

U,V,W Dimensionless parameter 

u,v,w Directional velocity, m/s 

V Volume, mଷ 

W Width, m 

x,y,z Directional vectors 

X,Y,Z Dimensionless parameter 

Z Random variable 

 

z Z-score 

 

Greek Symbols 

Σ Covariance 

η Efficiency, dimensionless   

𝜖 Epsilon 

μ  Fluid viscosity, kg/m ∙ s  

μi Mean vector 

ρ  Fluid density, kg/mଷ  

𝝓 Phi 

δ 
 

Rate of change 

σ Standard deviation 

 

Subscripts/Superscripts  

a  air 

b base 

bc base case 

f fluid 

F fin 

i i-th value 

in inlet 

nc new case 

o outlet 

s surface 

th thermal 

ts test section 
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Abbreviations and Full Form 

AL Aluminium 
 

AM/3D Additive Manufacturing 

ANN Artificial Neural Network 

AR Aspect Ratios 
 

BCS Bare Copper Surface 

BS Biphilic Surface 

CFAS Cruciform Flower with Astroid 
Splitters 

CFD Computational Fluid Dynamics 

CFSM Cruciform Flower with 
Secondary Mini/Microchannels 

CHF Critical Heat Flux 

CM Commercially/Pre-made 

CML Combined Model  

CMOS Complementary Metal 
Oxide Semiconductor 

 
CNN Convolutional Neural 

Network 
 

CNT Carbon Nanotube 

COP Coefficient of 
Performance 

 
CPV Concentrated Photovoltaic 

CT Conical Top 

CSFT Conical Stem Flat Top 

CU Copper 

DCHE Desiccant-coated Heat Exchanger 

DH Hydraulic Diameter 

DMAIC Define, Measure, Analyse, 
Improve, Control 

  

 

DT 

 

Diamond/tetrahedral Top 

DV Dependent Variable 

DW Deionized Water 

EFE Exocoetidae -inspired with 
Filleted Edges 

EGaIn Eutectic Gallium-Indium 

EN Elastic Net 

ESE Exocoetidae -inspired with Sharp 
Edges 

ETC Etching 

FE Fin Efficiency 

FEEDS FEEDS  

FRIN Further Research Is Needed 

FSC Fan-Shaped Cavity Microchannel 

GBR Gradient Boosting Regression 

GMM Gaussian Mixture Model 

HCPV High Concentrated Photovoltaic 

HF Heat Flux 

HTC Heat Transfer Coefficient 

HTF Heat Transfer Fluid 

HTP Heat Transfer Performance 

HY Hybrid Nanofluid/microfluids 

IV Independent Variable 

KM K-means Clustering 

KNN K-nearest Neighbours 

LI Lithography 

LOHC Liquid Organic Hydrogen 
Carriers 

LR Linear Regression 
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MAE Mean Average Error 

MAPE Mean Absolute Percentage Error 

MC 

MCH 

Microchannels 

Micro Heat Sinks 

MCHE Microchannel Heat Exchanger 

MCHS Microchannel Heat Sink 

MEDS Materials, Experimental, Design, 
Sustainability 

MF Mass Flux 

MHS Micro Heat Sink 

MLM Multi-layered Microchannel 

MLP Multilayer Perceptron 

MLR Multiple Linear Regression 

MM Micromachining 

MMC Manifold Microchannel 

MPF Micro Pin-Fin 

MPFHS Micro Pin-Fin Heat Sinks 

MSE Mean Squared Error 

MT Mushroom/hexaprism Top 

MTC Moisture Transfer Coefficient 

NM Numerical Method 

NN Neural Networks 

NWH No Wall Heating 

OAM Other Analysis Methods 

OB Objectives 

OFM Other Fabrication Method 

OMT Other Materials 

OWF Other Working Fluids 

PCM Phase Change Materials 

PDF Probability Density Function 

PDMS Polydimethylsiloxane 

PHT Plain Hexagon Top 

PIF Performance Improvement Factor 

PLR Polynomial Regression 

PMMA Polymethyl Methacrylate 

PSDT Pentagonal Stem Diamond Top 

PW Porous Wall 

RF Random Forest 

RMSE Root Mean Squared Error 

RQ Research Question 

RR Ridge Regression 

SEM Scanning Electron Microscope 

SF Scutoid Fin 

SPF Square Pin Fin 

SVR Support Vector Regression 

SWOT Strength, Weakness, 
Opportunity, and Threat 

TED Turbulent Eddy Dissipation 

TEG Thermo-electric Power Generator 

TFA Time-Frequency Analysis 

TKE Turbulent Kinetic Energy 

TS Test Surfaces 

UA Uncertainty Analysis 

WF Working Fluid 

WH Wall Heating 

XGB XGBoosting 
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Chapter 1: Introduction 

Chapter Precursor: Bangla 

“As the act, so the result” 

This Bengali proverb from my homeland, Bangladesh, embodies 

the principle that intentional actions lead to meaningful outcomes. 

Starting my PhD during the COVID-19 pandemic lockdowns, I 

ventured into micro heat sink technologies—an area new to me—

which required resilience and purposeful effort. The Introduction 

chapter sets the foundation of the thesis, emphasising how 

deliberate choices—such as adopting sustainable design 

principles and advanced methodologies—directly shape the 

research's impact. By connecting my cultural background to my 

academic journey, the chapter illustrates that thoughtful research 

actions lead to significant advancements in thermal management 

and sustainability, reflecting the essence of the proverb. 
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1.1 Research Background and Motivation 

Consumer, industrial, and digital electronic devices are omnipresent today. The advent of 

Industry 4.0 and rising computational power have led to the integration of electronic devices 

into almost every application. As of 2024 reports, the global consumer electronics market is 

expected to bring over $1 trillion, despite the COVID-19 pandemic-related slowdowns [1]. 

Additionally, the demand for more compact devices has surged, though this comes with the 

challenge of managing higher operating power and increased heat dissipation [2,3]. While these 

devices have become more powerful and portable, advancements in thermal management 

technologies have not kept pace, necessitating continuous improvements and innovation. 

Effective thermal management has evolved beyond technical necessity to become a binding 

factor for success and sustainability across industries. In electronic devices, efficient cooling is 

critical to prevent overheating, ensuring the reliability and longevity of smartphones, 

microprocessors, and high-performance computing systems [4]. In aerospace, precise thermal 

control is essential for maintaining optimal performance and safety, while in the automotive 

sector, advanced thermal management systems improve engine efficiency and extend the 

lifespan of electric vehicle batteries [5]. Similarly, in industrial settings, enhanced heat transfer 

capabilities can significantly boost machinery efficiency and reduce energy consumption, 

aligning with global sustainability goals. 

In response to these trends, microtechnology such as micro heat sinks, particularly those 

based on microchannels (MC), have emerged as innovative solutions to modern thermal 

management challenges. Microchannels offer a promising pathway towards both improved 

performance and environmental responsibility. The development of microchannel heat sink 

(MCHS) technology can be credited to Tuckerman and Pease [6]. Faced with heat dissipation 

challenges in high-performance computer chips, their work in the 1980s led to a breakthrough 

by miniaturising heat sinks, significantly improving heat removal capabilities. Since then, 

MCHS technologies have evolved across multiple sectors, particularly in reducing energy 

consumption while maintaining high efficiency. 

Microtechnology generally refers to technologies with features on the micrometre scale. 

One key parameter in microchannel design is the characteristic length or hydraulic diameter 

(DH), particularly in non-circular tubes and channels. Many researchers define microchannels 

as those with a DH of one millimetre or less, calculated by dividing the cross-sectional flow 

area by the wetted perimeter [7]. By leveraging high surface area-to-volume ratios of 



3 
 

microchannels, these systems greatly enhance convective heat transfer, making them ideal for 

cooling applications in several industries. Recent innovations, such as pin-fins, 

microstructures, nanofluids, and flow boiling, are among the most promising techniques for 

optimising heat transfer in micro-heat sinks (MHS) [8]. Originally developed for computing 

and electronics, microchannel or micro heat sinks are now widely used in pharmaceuticals, 

biochemistry, automotive, aerospace, and energy production industries [9–11]. Their key 

advantages include compactness, high heat exchange efficiency, and cost-effectiveness. 

Additionally, microchannel technology aligns with the growing demand for sustainable 

solutions by reducing the energy footprint — aligned with the European Union (EU) 2050 

sustainability goals [12,13].  

With ongoing advancements in technology, experimental techniques, and manufacturing 

processes, there is significant potential to further enhance micro heat sink (MHS) performance, 

especially in addressing the challenges brought about by the rapid miniaturisation of electronic 

devices. This research is motivated by the need to improve both the efficiency and 

sustainability of next-generation MHS designs, leveraging cutting-edge technologies and 

integrating various methods. A comprehensive review of current trends, experimental 

approaches, and analyses of microchannels is crucial for identifying existing research gaps and 

driving future innovations in performance optimisation and sustainable design. 

1.1.1 Role of Micro Heat Sinks 

Micro heat sinks, including microchannels and micro pin-fins, offer exceptional thermal 

management in compact applications [4]. Although the exact definition of microchannels can 

vary and is up for debate, in this research, micro heat sinks are considered to have channels or 

paths with dimensions of 1mm or less [11]. Microchannels feature small channels that enhance 

heat transfer efficiency through a large surface area and optimised fluid dynamics, making 

them ideal for high-performance computing and microelectronics. Micro pin-fins, with their 

array of small pins, increase surface area and improve convection, providing excellent heat 

dissipation in high-density electronics [14]. These designs are particularly advantageous in 

space-constrained environments, delivering superior thermal performance than traditional heat 

sinks. However, they are expensive to manufacture, and the trade-off between thermohydraulic 

performance, energy consumption, and design complexity requires careful consideration. 

Nonetheless, they are one of the most promising currently available technologies; therefore, 

this research will deep-dive into heat sink technologies, specifically microchannel-based heat 

sinks with pin-fins. Fig. 1.1 gives the bibliometric output and maps the research landscape of 
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micro heat sinks using a SCOPUS search, highlighting interconnected themes such as heat 

transfer, design, and application. Prominent keywords like "thermal management", "design", 

and “application” indicate areas of intense research activity. This overview underscores the 

diverse focus within the field and points to opportunities for further exploration and innovation. 

Fig. 1.1 Micro heat sink trends and applications 
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1.2 Problem Statement 

Electric component miniaturisation is creating more powerful and portable devices every year, 

following the concepts of Moore’s Law — the number of packed transistors in integrated 

circuits doubles each year with minimal cost increase [15]. However, this progress comes with 

significant challenges, particularly regarding the increased heat generated inside these densely 

packed components. The heat accumulation or flux buildup within electronic devices can lead 

to performance degradation, a shorter device lifespan, and in extreme cases, permanent damage 

to internal components [16]. Addressing this heat build-up/heat flux has thus become a critical 

concern, particularly as poor thermal management systems not only reduce the efficiency and 

reliability of electronic devices but also result in increased energy consumption and negative 

environmental impacts [17,18]. Fig. 1.2 shows the growth of electronic chip components over 

the years taken from the works of He, et al. [4].  

 

Fig. 1.2 Evolution of electrical components [4] 
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In response to these challenges, various cooling technologies and thermal management 

strategies have been developed. These range from conventional methods, such as heat sinks 

[19], film cooling, and flow boiling [10,20], to more advanced approaches like nanomaterial-

based cooling systems [21], phase-change materials, microchannel heat exchangers, and 

synthetic jet cooling [22]. More recently, machine learning and artificial intelligence (AI) 

integration have offered innovative potential in optimising thermal management solutions. 

Among these technologies, pin-fin-based heat sinks have garnered attention due to their ability 

to enhance the surface area for heat transfer and generate turbulence, which improves thermal 

performance [14].  

Nevertheless, as electronic devices continue to shrink and power densities increase, 

traditional geometries face limitations in their effectiveness. Relying solely on conventional 

designs is inadequate for addressing the rising thermal demands of miniaturised electronics 

[23]. The key challenge lies in developing advanced micro-scale heat transfer systems that can 

efficiently dissipate heat while maintaining the compact form factor required by modern 

electronic devices. Hybrid, bio-inspired, and micro pin-fins (MPFs) present a promising 

solution. By increasing the available surface area for heat transfer through conduction, 

convection, and radiation, MPF heat sinks provide passive cooling mechanisms that 

significantly improve device thermal management and extend product lifespans [24–26]. 

A major concern, however, is that the design and optimisation of heat sinks must align with 

the growing demand for sustainability in manufacturing and product development. The 

electronics industry is under increasing pressure to reduce energy consumption and carbon 

emissions, especially as governments and industries set stricter environmental standards. 

Poorly managed thermal systems not only waste energy but also contribute to larger ecological 

footprints. Therefore, thermal management solutions must not only focus on performance but 

also address environmental challenges through sustainable design, materials, and 

manufacturing processes [27]. Developing heat sinks that meet both performance and 

sustainability criteria requires an agile approach to product development. Companies must be 

able to rapidly prototype and refine heat sink designs to ensure they meet evolving 

environmental regulations while maintaining thermal efficiency. 

Moreover, from a design and optimisation perspective, the effectiveness of pin-fin-based 

heat sinks is determined by several factors, including their geometrical configurations (such as 

the shape, spacing, and height of the fins), the working fluid used, and the thermal conductivity 
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of the materials. The performance of a heat sink is also influenced by its thermal load or heat 

flux, as well as the environmental conditions in which it operates [10,28]. Also, the fluid flow 

around the heat sink plays an important role in determining its cooling performance. While 

increasing the flow rate can improve heat transfer through enhanced convection, it can also 

lead to undesirable effects such as higher noise levels, increased pressure drops, and the need 

for larger fans or more powerful pumps. Consequently, achieving an optimal balance between 

cooling efficiency, device size, and energy consumption is essential [4]. 

Furthermore, from an experimental perspective, two-phase flow systems, particularly flow 

boiling mechanisms within micro heat sinks, add another layer of complexity to thermal 

management [29]. The interaction between liquid and vapour phases within these systems gives 

rise to varied flow patterns and heat transfer dynamics, which can be difficult to predict and 

control accurately. Classifying flow boiling regimes, therefore, becomes a critical task in 

optimising microchannel heat sink designs for specific operational conditions. Accurate 

classification helps engineers to tailor microchannel designs, maximising heat dissipation 

while minimising thermal resistance, pressure drops, and energy consumption [30]. However, 

the classification of these flow regimes presents challenges related to subjectivity, 

interpretability, and generalisability, which require innovative solutions to overcome [31].  

From a fabrication perspective, material selection and manufacturing processes are equally 

important in determining the effectiveness, cost, and scalability of pin-fin-based heat sinks. 

The materials used in these heat sinks must strike a balance between thermal conductivity, 

weight, and financial feasibility, depending on the application [32]. Additionally, the 

manufacturing of micro pin-fins presents its own set of challenges. The high aspect ratios and 

microscale dimensions of the fins make fabrication complex, and any defects during the 

process can significantly impact heat transfer performance. Furthermore, the relatively large 

surface area required for pin-fin heat sinks to be effective can limit their integration into devices 

with minimal available space [33]. As a result, the design, material, and manufacturing methods 

all contribute to the complexity of optimising micro pin-fin heat sinks for modern applications.  

As a result, all these challenges tie into sustainability concerns. Traditional manufacturing 

processes may not always prioritise environmental efficiency, leading to increased material 

waste and energy consumption. Agile product development, which allows for iterative design 

improvements and quick adaptation to new sustainability standards, is critical in this context. 

The adoption of sustainable materials and manufacturing techniques, alongside advanced 
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digital tools like machine learning, can contribute to greener, more efficient heat sinks, further 

supporting global efforts to reduce the environmental footprint of the electronics industry [34]. 

Recent advances in computational techniques, such as machine learning (ML) and artificial 

intelligence (AI), have opened up new opportunities for optimising thermal management 

systems. While most traditional research in this field has focused on experimental and 

numerical validation-based design optimisation, machine learning offers the potential to 

provide novel insights that may not be achievable through conventional methods [35]. In 

addition, machine learning has shown potential in addressing challenges by improving the 

accuracy and objectivity of flow pattern classification. Thus, by integrating machine learning 

techniques with simulations and experiments, researchers can expand the research space and 

efficiently enhance the predictive accuracy of heat sink performance models [36,37]. However, 

the application of machine learning in thermal management is still in its early stages, and 

further research is needed to fully explore its potential to provide holistic solutions [38]. 

To summarise, while the miniaturisation of electronic devices has driven the need for more 

efficient and compact thermal management systems, developing next-generation micro heat 

sinks presents several technical, material, design, and sustainability challenges. Advancements 

in machine learning, fabrication techniques, and two-phase flow understanding offer promising 

avenues for addressing these challenges. However, further research is needed to optimise heat 

sink designs that balance thermal performance with sustainability, size, cost, energy, and 

process efficiency. Agile product development, underpinned by sustainable engineering 

practices, is essential to the future of thermal management solutions. 

1.3 Research Aim, Questions and Objectives 

Heeding to the literature findings and assessing the current industrial needs, in this thesis, novel 

bio-inspired pin–fin heat sinks are proposed — whilst integrating manufacturing considerations 

and machine learning for enhanced process efficiency. Therefore, the main aim of this research 

is to develop novel hybrid bio-inspired pin-fin heat sinks, implement machine learning 

algorithms to optimise the design process, improve heat transfer efficiency, and overall thermal 

management while addressing challenges related to data availability, sustainability, and 

product development. To achieve the research aim, the following research questions (RQs) and 

objectives (OBs) were formulated. The method to build RQs and OBs was inspired and adapted 

from the works of Farrell, et al. [39]:  
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RQ1:  What are the key recent advancements and limitations in micro heat sink technologies 

for heat transfer and thermal management? 

OB1:  To comprehensively review recent advancements and limitations in micro heat sink 

technologies, identifying current gaps and opportunities in heat transfer and thermal 

management. 

RQ2: What insights can experimental and numerical investigations provide into the 

performance of bioinspired heat sinks, and how can these findings contribute to 

improved thermal efficiency? 

OB2:  To carry out investigations on bioinspired heat sinks, analysing their performance under 

various thermal conditions and extracting insights that contribute to improved design 

and heat transfer efficiency. 

RQ3:  How can machine learning approaches be applied to optimise heat sink design and 

enhance thermal management in light of current limitations in traditional methods? 

OB3:  To develop and apply machine learning algorithms for optimising the design and thermal 

management process of micro heat sinks, addressing the limitations of traditional 

design methods and improving overall efficiency. 

RQ4:  How can sustainable design principles and manufacturing philosophies be integrated 

into developing next-generation heat sinks, ensuring performance optimisation and 

environmental responsibility? 

OB4:  To critically appraise and integrate sustainable design principles and manufacturing 

approaches into developing next-generation heat sinks, ensuring a balance between 

performance optimisation, cost, and environmental responsibility. 

1.4 Thesis Outline 

This thesis is structured into several chapters, revolving around the main research aim, and 

each chapter focuses on a critical aspect of the research question and objectives, thermal 

management, and machine learning optimisation. The following give the chapter summaries.  

Chapter 1: Introduction   

The opening chapter establishes the foundational context and motivation for the research, 

addressing the escalating demand for effective thermal management in modern electronic 
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devices due to rising power densities. It introduces micro heat sinks as a promising solution, 

emphasising their significance across various sectors. This chapter also articulates the problem 

statement, research aim, questions, and objectives. Moreover, it underlines the importance of 

the study and its limitations. 

Chapter 2: Literature Review  

This chapter undertakes a thorough review of existing literature on the principles of heat 

transfer, as well as boiling heat transfer mechanisms. It examines contemporary thermal 

management techniques and emerging trends in micro-scale heat transfer, effectively 

addressing RQ1. Furthermore, the chapter considers material, design, and sustainability aspects 

in the development of micro heat sinks, contributing to RQ4. Additionally, the review 

highlights the synergy between machine learning and micro heat sinks, exploring optimisation, 

predictive modelling, and advanced cooling technologies. Finally, research gaps are identified, 

and key findings from the literature are summarised, aiding in answering the RQ2 to RQ4. 

Chapter 3: Materials and Methods 

Here, the materials and methodologies employed in the experimental and computational 

studies of bio-inspired pin-fin heat sinks are outlined. The chapter details the experimental 

setup, simulation tools, and machine learning algorithms used for design optimisation and 

thermal performance evaluation. It also provides a comprehensive explanation of the 

fabrication processes, data collection techniques, analytical methods, and validation 

procedures. 

Chapter 4-6: Results and Discussion 

The chapters lay the groundwork for decisions underpinning the final heat sink designs. It 

initially investigates, explores, and presents key findings concentrating on the numerical 

simulation results regarding the heat transfer performance of bio-inspired/biomorphic pin-fin 

heat sinks. Comparative analyses of different pin-fin geometries are presented, evaluating the 

potential for enhancing heat transfer efficiency through innovative design strategies, while 

machine learning is employed to improve Heat Transfer Coefficient (HTC) predictions. 

Building on the findings and design rationale from the air-cooled heat sink, the following 

chapters examine the hydrodynamic performance of the finalised, manufactured micro pin-fin 

designs, extending the scope to hybrid pin-fin configurations used in numerical simulations. 

Experimental data are integrated with machine learning regression models to optimise 
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predictions, enhancing the accuracy related to heat transfer and fluid flow metrics. New 

correlation models have also been built for the best-performing design. 

Lastly, these chapters explore the intersection of machine learning and boiling regime 

classification, particularly within flow boiling systems in microchannels and micro heat sinks. 

It demonstrates how ML models, when integrated, can outperform traditional methods in 

understanding, classifying/predicting flow patterns, thereby improving thermal performance. 

Chapter 7: Conclusion, Limitations, and Future Work 

This chapter summarises the principal findings and contributions of the research. It reflects 

on the achievement of the research objectives and addresses the research questions posed at the 

outset. The conclusion underscores the value of integrating bio-inspired design, machine 

learning, and sustainable engineering to push the boundaries of micro heat sink technology. 

Suggestions for future research directions are also proposed. 

References, Appendices, and Afterwords 

These sections consolidate the comprehensive list of sources cited throughout the thesis. 

The appendices provide supplementary materials that support the core content of the thesis. 

Finally, in the afterwords, the author reflects on the research journey, discussing the challenges 

encountered, personal insights gained, and the broader implications of the research, particularly 

its potential impact on industry and sustainability. 

1.5 Research Significance and Limitations 

This research brings several noteworthy contributions to the field of thermal management, with 

its innovative approach to developing bio-inspired pin-fin micro heat sinks. One of the most 

significant contributions is the integration of machine learning techniques to optimise the 

design and development process of heat sinks. By leveraging machine learning, this research 

offers a data-driven method for identifying optimal design parameters for heat transfer 

predictions, providing alternative analysis methods, and reducing computational and 

experimental time. This not only enhances the accuracy of design processes but also enables 

the prediction of complex thermal behaviours that traditional methods might miss. 

Another research strength is the multidisciplinary nature of the study. To the best of the 

author's knowledge, it is perhaps the only research that successfully combines experimental 

work, numerical simulations, and artificial intelligence, whilst considering manufacturing 

philosophies, allowing for a comprehensive evaluation of the heat sinks' performance under 
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various conditions such as air-cooled, liquid-cooled, and multiphase systems. This holistic 

approach provides a deeper understanding of the heat transfer mechanisms and offers a robust 

foundation for future research and industrial applications. 

Additionally, the holistic focus on sustainability adds a critical dimension to the research. 

By incorporating sustainable design and manufacturing principles, this study addresses current 

performance needs and future environmental responsibilities. It aligns with global 

sustainability goals by proposing solutions that not only enhance thermal efficiency but also 

minimise environmental impact through the use of sustainable materials and agile product 

development. This focus ensures that the designs are relevant and feasible in a market 

increasingly driven by ecological considerations. 

Moreover, the study provides practical insights for industry applications. The proposed bio-

inspired pin-fin heat sinks, with their optimised geometries, offer a solution for modern high-

performance electronics, where compactness, efficiency, and reliability are paramount. The 

study’s findings have the potential to influence a wide range of industries, from consumer 

electronics to automotive and aerospace, offering adaptable solutions that meet the growing 

demands for both thermal performance and sustainability. 

While the research offers a comprehensive examination of bio-inspired pin-fin micro heat 

sinks, several limitations must be acknowledged. Optimisation through machine learning 

models is dependent on the quality and availability of training data. Given the specialised and 

relatively novel nature of micro heat sinks, limited data availability could impact the accuracy 

of the models. Additionally, the reliance on representativeness and the relevance of selected 

features further underscores the importance of data quality in achieving reliable results. 

Although the study integrates both experimental data and numerical simulations, replicating 

real-world operating conditions—particularly in two-phase flow boiling systems—presents 

challenges. Experimental constraints, including equipment limitations, measurement precision, 

and result reproducibility, introduce further uncertainties into the findings. 

Beyond data limitations, practical constraints arise in terms of material efficiency, cost, and 

environmental impact, all critical to the sustainability focus of the research. The assumed 

uniformity of material properties, as well as simplifications in geometry within computational 

fluid dynamics (CFD) simulations, could overlook some real-world complexities. Boundary 

conditions such as fixed temperature or heat flux, and the assumption of steady, incompressible 

flow in CFD models, may also not fully capture the variability of operational conditions. 
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Additionally, achieving the balance between cost-effective and scalable manufacturing 

processes for micro-scale structures remains a key challenge, particularly as the study aims to 

balance economic feasibility with environmental responsibility. By clearly outlining these 

constraints and assumptions, a clearer context for the inherent limitations within the 

methodology is provided, guiding the interpretation of results and their application in future. 

In summary, this study is an important work that successfully integrates cutting-edge 

technologies and sustainable design principles, significantly enhancing heat sink performance 

optimisation. Its potential to influence both research and industrial practice makes it an 

important contribution to the evolving landscape of heat transfer solutions. Nevertheless, the 

author acknowledges any limitations or criticism arising from this work. Addressing these 

limitations in future studies will enhance the robustness and broader applicability of the 

proposed designs, refining their potential within the field of thermal management. Fig. 1.3 

shows the sample Strength, Weakness, Opportunities, and Threats (SWOT) analysis performed 

that summarises the research strengths and limitations, serving as a guideline for the overall 

research process. 

 

Fig. 1.3 Research SWOT analysis 
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Chapter 2: Literature Review 

Chapter Precursor: English 

“All that is gold does not glitter, 

Not all those who wander are lost; 

The old that is strong does not wither, 

Deep roots are not reached by the frost.” 

—  JRR Tolkien 

This quote mirrors my 10-year academic journey in the UK and 

sets the tone for the Literature Review. Just as the true value isn't 

always immediately visible and exploration isn't aimless, my deep 

dive into micro heat sink technologies has been a meaningful 

journey of discovery. The chapter explores foundational studies—

the deep roots of the field—that, while not always in the spotlight, 

provide essential support for innovation. By highlighting these 

enduring contributions, the Literature Review parallels my 

growth, emphasising that perseverance and profound 

understanding lead to significant advancements in research 
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2.1 Background to the Chapter 

As we are pushing the boundaries of what our everyday gadgets can do, they are generating 

more and more heat, creating a pressing challenge for engineers and designers. For instance, 

imagine trying to keep your smartphone cool during long gaming/social media sessions or 

ensuring your laptop does not overheat during an intense work project. These everyday 

situations underscore the critical role of effective thermal management. Even a few decades 

ago, cooling electronic devices was relatively straightforward, often relying on passive 

methods such as natural airflow. However, devices are now packed with high-performance 

components in increasingly confined spaces, pushing the limits of traditional cooling methods. 

This shift has driven the development of more advanced solutions, turning heat management 

into a sophisticated engineering and global sustainability challenge. 

Thermal management techniques are generally categorised into passive and active systems. 

Passive techniques utilise natural processes to dissipate heat. This might involve spreading heat 

through the three fundamental heat transfer methods, namely, conduction, convection, and 

radiation. These methods are often simpler and do not require additional power, making them 

cost-effective for many applications. On the other hand, active thermal management involves 

using external energy or pumping power to enhance cooling. This category includes fans, liquid 

cooling systems, and thermoelectric coolers. All these solutions introduce diverse mechanisms 

to actively move heat away from sensitive components, allowing for better temperature control. 

This literature review section dives into the various electronic cooling techniques available 

currently, with a particular emphasis on heat sink technology. Heat sinks are critical 

components that help dissipate heat away from high heat flux electronic components, and their 

design and mechanisms have evolved significantly over the years. Therefore, the section will 

explore different types of heat sinks, including traditional and advanced designs, but mainly 

focus on micro heat sink-based technologies such as microchannels and pin-fin heat sinks; this 

is because these micro heat sinks are becoming increasingly important as electronic devices 

move towards the "micro" scale and become compact and powerful.  

Overall, this literature review chapter endeavours to provide a detailed understanding of the 

current advancements in relevant technologies. Here, we will discuss recent research, highlight 

major innovations, and examine the practical applications of these technologies. By the end of 

this review, readers will have a clearer picture of the state-of-the-art strategies, techniques in 

thermal management, and the trends shaping the future of electronic cooling systems. 
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2.2 Fundamental Heat Transfer Mechanisms 

Heat transfer is an integral and critical phenomenon for most modern-day industries, most 

significantly for electronic devices, power plants, sustainable energy, and thermal management 

systems. Whether it is for digital applications, engineering systems or even biological 

processes, all involve different types of heat transfer or exchange on the macro or the micro 

scale. Heat transfer, in the simplest form, broadly refers to the thermal energy transfer from 

high-temperature to low-temperature regions; it primarily occurs due to complex physical 

interplay triggered by the temperature gradients between two points or objects [40]. Currently, 

designing efficient heat transfer systems is essential for regulatory, safety, performance, 

economic, and sustainability reasons. Conventionally, there are three primary methods of heat 

transfer: conduction, convection, and radiation — each working via its unique mechanism. The 

temperature and thermal energy distribution of a system are dictated by these three heat transfer 

mechanisms working in unison; however, depending on the type of the system, one heat 

transfer mechanism may exert a more dominating effect than the others.  

Conduction occurs mainly within solid materials due to interactions between atoms or 

molecules. When heated, the particles gain kinetic energy and vibrate, transferring thermal 

energy to neighbouring particles. Fourier's law gives the rate of conductive heat transfer: 

𝑸 =  −𝒌 ∙ 𝑨 ∙
𝜹𝑻

𝜹𝒙
 (1) 

Where: 𝑸 is the heat transfer rate (𝑊/𝑚ଶ); 𝒌 is material's thermal conductivity (𝑊/𝑚𝐾); 

𝑨 is the cross-sectional area (𝑚ଶ); 
𝜹𝑻

𝜹𝒙
 is the temperature gradient across the material [41]. 

The equation shows that the heat transfer rate is directly proportional to the temperature 

gradient and thermal conductivity. High thermal conductivity materials, like metals, are more 

efficient in transferring heat than insulators like ceramics or plastics. In the context of this 

research, conduction is not a primary focus due to the lower conductive heat transfer in fluids. 

Convection involves heat transfer through the bulk motion of a fluid (liquid or gas). 

Convection can significantly enhance heat transfer rates compared to conduction alone [42]. It 

can be classified into natural and forced convection. Natural convection occurs due to 

buoyancy effects, while forced convection uses external means, such as pumps, to enhance 

fluid movement and heat transfer [43]. Newton's law of cooling describes convective heat 

transfer rate as: 
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𝑸 = 𝒉 ∙ 𝑨 ∙ (𝑻𝒔 − 𝑻𝒇) (2) 

Where: 𝑸 is the heat transfer rate; 𝒉 is the convective heat transfer coefficient (HTC, 

𝑊/𝑚ଶ𝐾); 𝑨 is the surface area; 𝑻𝒔 is the surface temperature (K); 𝑻𝒇 is the fluid temperature.  

The Nusselt number (Nu) can also measure convective heat transfer [44], defined as: 

𝑵𝒖 =
𝒉𝑳

𝒌
 (3) 

Where: 𝒉 is the convective heat transfer coefficient; 𝑳 is a characteristic length; 𝒌 is the 

thermal conductivity. 

Different flow regimes (laminar, transitional, and turbulent) affect convective heat transfer. 

In this research, the focus is on forced convection to achieve enhanced heat transfer rates. To 

analyse flow behaviour and boundary layers, the Reynolds number (Re) is calculated by: 

𝑹𝒆 =
𝝆 ∙ 𝒖 ∙ 𝑳

𝝁
 (4) 

Where: 𝝆 is the fluid density (𝑘𝑔/𝑚ଷ); 𝒖 is the velocity (m/s); 𝑳 is a characteristic length 

(sometimes referred to as the hydraulic diameter, m); 𝝁 is the dynamic viscosity (𝑁𝑠/𝑚ଶ) [45]. 

Radiation is the transfer of heat via electromagnetic waves. Radiation has a minimal impact 

in this study and is not a primary consideration in the experiments and simulations. However, 

the Stefan-Boltzmann law quantifies the total radiated power: 

𝑷 = 𝝐𝝈𝑻𝟒  (5) 

Where: 𝝐 is the emissivity of the surface (no unit), 𝝈 is the Stefan-Boltzmann constant 

(𝑊/𝑚ଶ𝐾ସ), and 𝑻 denotes the temperature. In the context of this research, radiative heat 

transfer has a minimal impact and will mostly be ignored during experiments, simulations, or 

any other analysis. 

2.3 Boiling Heat Transfer Mechanisms 

Boiling heat transfer is a dynamic process in which a liquid undergoes a phase change from a 

liquid to a vapour while transferring heat from a solid surface. The boiling process can occur 

in various modes — with distinct characteristics and applications. Therefore, boiling can be 

classified or characterised by a boiling curve, originally introduced by Nukiyama in the 1930s 

[46]. When heating a surface in a liquid pool, the heat flux is commonly plotted against the 

excess temperature ∆𝑇௘௫௖௘௦௦, defined as the difference between the surface and liquid saturation 
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temperatures. Fig. 2.1 illustrates a classical boiling curve governed by surface superheat, which 

includes natural convection, nucleate boiling, transition boiling, and film boiling; additionally, 

flow boiling is a type of forced convection boiling. The various modes of boiling heat 

transfer—nucleate boiling, flow boiling, transition boiling, and film boiling—play important 

roles in a wide range of applications across multiple industries. Each mode offers distinct 

advantages and is significant for specific scenarios [47]. The following sections provide a 

breakdown of different boiling heat transfer modes. 

 

Fig. 2.1 Typical boiling curve [46] 

2.3.1 Nucleate Boiling  

Nucleate boiling can be characterised by small vapour bubble formations at discrete nucleation 

sites on a heated surface. The vapour bubbles detach and rise through the liquid, allowing 

continuous heat transfer. Nucleate boiling is highly efficient at transferring heat, offers high 

heat transfer coefficients, and is typically the dominant mode of boiling at low heat flux 

applications. Nucleate boiling is a common observation in conventional applications such as 

cooking, boiling water, and heating domestic water. In industrial settings, nucleate boiling is 

employed in electronic cooling components, ensuring they operate within safe temperature 
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limits. Nucleate boiling is vital in heat exchangers/heat sinks, which require thermal energy 

transfer between a hot fluid/surface and a colder fluid. The rapid heat transfer rates associated 

with nucleate boiling make it a preferred choice for achieving efficient heat exchange. 

Moreover, nucleate boiling can also be found in chemical processing for tasks like solvent 

recovery, distillation, and chemical synthesis; the efficiency of nucleate boiling in heat transfer 

aids in maintaining precise temperature control during chemical reactions. Nevertheless, 

despite its advantages, nucleate boiling can lead to surface fouling due to the accumulation of 

impurities at nucleation sites. Additionally, at high heat fluxes, nucleate boiling can transition 

to film boiling, which can reduce heat transfer efficiency [48]. 

2.3.2 Film Boiling 

In film boiling, a thin vapour film forms between the heated surface and the liquid preventing 

direct contact between the liquid and the surface. This results in a significant reduction in heat 

transfer efficiency. Film boiling occurs at very high heat fluxes and surface temperatures, and 

it is characterised by low heat transfer coefficients, leading to equipment overheating if not 

managed properly. Therefore, film boiling is typically undesirable in most applications due to 

its reduced heat transfer efficiency [47]. However, in specific applications, film boiling can be 

important. For instance, in quenching processes, film boiling is intentionally used for rapid 

cooling of hot metals to harden them and achieve controlled cooling rates to obtain desired 

material properties. Moreover, understanding film boiling is vital for nuclear reactor safety in 

predicting/mitigating film boiling, preventing overheating and maintaining reactor integrity. 

2.3.3 Transition Boiling 

Transition boiling occurs between nucleate boiling and film boiling and is characterised by 

intermittent contact between the liquid and the heated surface, with vapour and liquid regions 

coexisting simultaneously. Transition boiling is typically associated with moderate heat fluxes 

and surface temperatures. Heat transfer rates in transition boiling are higher than in film boiling 

but lower than in nucleate boiling. Thus, due to its semi-effective heat transfer capabilities, it 

exists in various applications, including industrial boilers, steam generators, and refrigeration 

systems. Much like in the case of film boiling, transition boiling helps control the heat transfer 

process and prevent overheating, contributing to reactor safety. Additionally, transition boiling 

can occur in heat exchangers and heat sinks under certain conditions. Thus, understanding and 

managing this mode is essential for maintaining heat transfer and preventing overheating [49]. 
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2.3.4 Flow Boiling  

Flow boiling, also known as forced convection boiling, occurs during liquid flows over heated 

surfaces or through a channel or pipe while undergoing a liquid-to-vapour phase change. The 

flow boiling process combines the complexities of fluid dynamics and phase change heat 

transfer and can be generally observed in applications where efficient cooling or heating is 

required. Flow boiling can be characterised via various two-phase flow patterns, including but 

not limited to jet flow, annular flow, slug flow, churn flow, stratified flow, and mist flow, 

among others. The flow boiling patterns depend on many factors such as flow rates, channel 

geometry, heat flux, surface modifications, etc. — each pattern/flow type has distinct heat 

transfer characteristics and flow behaviours. Flow boiling involves nucleation sites, similar to 

nucleate boiling, on the heated surface where small vapour bubbles form. However, in flow 

boiling, these bubbles are continuously carried away and replaced by the flowing liquid, 

allowing for more efficient heat transfer [50]. 

Flow boiling is known for its high heat transfer coefficients, making it a good candidate for 

applications where efficient heat dissipation or heating is critical. The phase change from liquid 

to vapour enables substantial heat absorption and finds applications in various industries, 

including refrigeration, electronics cooling (heat sinks), chemical processing, and power 

generation. Flow boiling is particularly well-suited for cooling electronic components due to 

its efficient heat transfer capabilities. Nonetheless, flow boiling can also bring its own set of  

challenges, such as flow instabilities, pressure drop fluctuations, and the need to predict and 

manage critical heat flux (CHF) to prevent equipment from overheating [50]. 

2.3.5 Variations of Primary Boiling Modes 

The four primary modes of boiling heat transfer discussed in more initial chapters encompass 

the most common and significant scenarios in which boiling heat transfer occurs. However, 

variations and complexities exist depending on various conditions, such as pressure, 

temperature, and fluid properties. Here are a few sub-categories and variations: 

1. Pool Boiling: occurs when a liquid boils in a stagnant pool on a heated surface, 

typically in open vessels or containers. It exhibits similar phase-change modes 

described above (nucleate, transition, and film boiling) but within a pool of liquid. Pool 

boiling is essential in both household and industrial settings, contributing to efficient 

heat generation and transfer for various applications. Its importance lies in its versatility 

and reliability in heating and cooling processes [51]. Pool boiling is routinely observed 
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in typical domestic applications, such as cooking on stovetops and heating water in 

kettles. It fulfils a fundamental role in preparing food and providing household hot 

water. In industrial settings, pool boiling is used for heating massive volumes of liquids 

in tanks and vessels. It is also employed in industries ranging from food processing to 

chemical manufacturing for applications such as refrigeration, heat exchangers and 

industrial boilers for power generation and heating. 

2. Onset Nucleate Boiling (ONB): a critical point in the boiling process where the first 

vapour bubbles begin to form on a submerged heated surface. It triggers the transition 

from a purely liquid-phase heat transfer to the initiation of nucleate boiling. 

3. Subcooled Nucleate Boiling: occurs when the bulk liquid temperature (𝑇௠) is below 

its saturation temperature (𝑇௦௔௧, subcooled) and shows nucleation sites on a heated 

surface — leading to vapour bubble formations. Subcooled nucleate boiling combines 

characteristics of nucleate boiling and convective heat transfer. 

4. Partial Nucleate Boiling: in some scenarios, nucleation sites may be active only 

partially on a distinct portion of a heated surface, leading to partial nucleate boiling and 

non-boiling regions on the same surface coexisting simultaneously. 

5. Critical Heat Flux (CHF): CHF represents the maximum heat flux the liquid can 

sustain without a catastrophic temperature rise. Beyond this point, the heat transfer 

process becomes unstable, leading to phenomena like vapour explosions, dry-out or 

burnout [52]. Therefore, accurately predicting and managing CHF is critical in various 

applications, particularly electronic chips, nuclear reactors, or other high-power 

electronic applications [53]. 

6. Leidenfrost Effect: happens when a liquid droplet comes into contact with a 

significantly hotter surface than its boiling point. As a result, instead of instantaneous 

boiling, the droplet can levitate on a vapour cushion created by rapid vaporisation [54]. 

It is commonly observed when water droplets skitter across a hot pan or a stovetop.  

While these variations and phenomena occur within the primary boiling modes, they are 

typically considered special cases or transitional behaviours and not separate modes of boiling 

heat transfer. The primary boiling modes, including nucleate, flow, transition, and film boiling, 

remain part of the fundamental categories in most practical heat transfer scenarios.  
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2.4 Thermal Management Techniques 

Thermal management mainly falls into active and passive techniques [55]. Passive thermal 

management relies on natural heat dissipation mechanisms without requiring external power. 

Among these methods, one of the most effective techniques is through heat sinks, which 

transfer heat away from electronic components to a larger surface area, allowing it to dissipate 

into the surrounding environment. Heat sinks are typically manufactured from aluminium or 

copper due to their high thermal conductivity. Similarly, thermal spreaders are another passive 

option that helps distribute heat from a hot spot to a larger area. Again, materials like copper, 

aluminium, or embedded elements such as graphite are often used as thermal spreaders [56]. 

Moreover, Phase Change Materials (PCMs) are widely used in passive thermal management 

systems. PCMs, such as paraffin wax, absorb and release stored thermal energy during phase 

transitions, providing thermal shielding by absorbing large amounts of heat without significant 

temperature increases [57]. Lastly, heat pipes offer another efficient passive strategy. These 

sealed tubes contain a liquid that evaporates at the hot and condenses at the cooled end [58]. 

Active thermal management uses external power sources to enhance heat transfer. Forced 

convection, for example, uses fans or blowers to increase airflow over heated sources [59], 

with axial fans commonly found in desktop computers and blowers in compact spaces. Liquid 

cooling circulates a coolant through channels to absorb and transport heat away from 

components, cooling it via a microchannel, radiator or heat exchanger [60]. This method is 

popular in high-performance computing, gaming systems, and industrial processes, with 

closed-loop systems requiring minimal maintenance and open-loop systems offering 

customisation. Thermoelectric Coolers (TECs) utilise the Peltier effect to transfer heat, making 

them ideal for precision cooling in applications like laser cooling and portable coolers. Peltier 

modules are used in small-scale cooling, while thermoelectric heat pumps provide temperature 

control in sensitive devices [61]. Furthermore, techniques like Electrohydrodynamic (EHD) 

pumps and ultrasonic-assisted cooling use external energy sources within heat sinks [62]. 

Hybrid thermal management combines passive and active techniques to optimise thermal 

performance. Examples include heat sinks with fans, which enhance heat dissipation by pairing 

passive heat sinks with active airflow, and liquid-cooled heat sinks, which integrate liquid 

cooling with traditional heat sink designs for improved thermal efficiency. Looking at current 

trends, heat sinks remain the most popular method for cooling electronics [63]. Fig. 2.2 
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summarises the prevalent thermal management techniques; however, note that this list is not 

exhaustive and only highlights some major active and passive methods and their application. 

 

Fig. 2.2 Overview of thermal management techniques 

2.5 Micro Heat Transfer: Recent Trends and Perspectives Overview 

Due to their effective heat transfer enhancement potential, micro heat sinks (MHS) primarily 

rely on microchannel-based heat sink (MCHS) technologies. Microchannels are an active area 

of research; for example, a Google Scholar search with the keyword "microchannel heat 

transfer" returns 335,000 results (427,000 when including patents). Therefore, understanding 

current research trends and gaining a holistic overview of recent strategies and methodologies 

in the literature is essential. Initially, data for this review was collected through descriptive and 

exploratory analysis, qualitative data, and findings from existing literature. This data was then 

converted into quantitative results and graphs to analyse and identify potential research gaps 

and trends in recent microchannel experimental investigations. Reviewing the existing 

literature helped establish the initial baseline for this thesis. Consequently, a variety of 

databases were explored, including Google Scholar, OpenAthens, Shibboleth, and journals 

such as Elsevier, Emerald, IEEE, SAGE, and Springer. Also, the methodology to conduct a 
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review was inspired and adapted from the work of [2,35,64,65]. The extant research has 

reviewed MC technologies focusing on electronic cooling [2], configurations and patents [64], 

heat sink applications [65], and modelling strategies [35]. 

Therefore, this review adapted from previous work and combined various aspects to produce 

a more diverse and holistic overview of current research levels, status, and trends in MCHS 

heat transfer and thermal management applications. The search methodology followed a 

funnelling process using broad keyword variations to maximise the chance of identifying 

relevant research articles. The author was mindful of previous studies suggesting methods 

based on relevance, publishers, year, industries, etc. Acknowledging these suggestions, the 

inclusion criteria for this literature review were peer-reviewed journal papers, titles or abstracts 

containing any variations of the used keywords related to MC experiments and investigations. 

Also, the initial search mainly focused on research papers dating from 2017 to 2023; recently, 

a five-year timeline has been followed by [35] for their review. Therefore, being mindful of 

the ever-decreasing product development times [66,67]. The seven-year range was deemed 

appropriate and selected to be more up-to-date with modern industrial and technological 

practices and to develop research questions aligned with current scopes.  

All microchannel (MC) applications were initially considered the whole population data to 

determine an optimal sample size. The focus was then narrowed to heat transfer topics, such as 

cooling, mixing, flow boiling, and related research areas. Ultimately, 100 research papers were 

selected and appraised for their experimental methods, areas of interest and impact, and 

recommendations for future investigations. The qualitative findings were categorised into a 

newly developed Materials, Enhanced Flow Control, Design, and Sustainability (MEDS) 

framework, which consists of four primary perspectives: material usage, experimental 

methods, design, and sustainability elements. The MEDS framework systematically helped 

identify potential research gaps. If articles covered multiple perspectives, qualitative emphasis 

was placed on experimental methods and research recommendations to categorise literature.  

The sample of 100 papers was considered ideal for appraising the current state-of-the-art 

literature. However, not all research papers were suitable for selection, as some lacked the 

necessary depth or did not align with the analysis needs of this paper. Initially, searches on 

Google Scholar based on the keyword and inclusion criteria yielded approximately 17,500 

potential research articles. Considering this as the target population, a sample size of 96 was 

deemed sufficient to make statistical inferences at a 95% confidence level with a 10% margin 
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of error. The sample size was determined using a combination of suggestions from Farrell, et 

al. [39] and the SurveyMonkey calculator [68]. Furthermore, it is widely debated that no 

universal rule exists for determining the appropriate size in convenience sampling. Fellows and 

Liu [69] have indicated that a sample size of 30 can be acceptable for making statistical 

analyses and inferences. Therefore, based on these calculations and previous studies, a sample 

size of 100 was arguably sufficient to assess current literature trends. The following equation 

was used to calculate the sample size for statistical analysis: 

𝑺𝒂𝒎𝒑𝒍𝒆 𝒔𝒊𝒛𝒆 =  

𝒛𝟐 × 𝒑(𝟏 − 𝒑)
𝒆𝟐

𝟏 + (
𝒛𝟐 × 𝒑(𝟏 − 𝒑)

𝒆𝟐𝑵
)

 

Where: N = population size (17500); p = population proportion (assumed 50% in this case); 

z = z-score (1.96); e = margin of error (10% or 0.1).  

2.5.1 Material Perspective 

2.5.1.1 Working fluids 

The use of different working fluids (WF) for MC during multiphase flow has been explored 

using hydrophobic sunflower oil and water as WF. To illustrate, Chiriac et al. [70] monitored 

multiphase flows in MC using two immiscible WFs. The flow visualisation and µPIV (micro 

micro-particle image velocimetry) measurements validated numerical results qualitatively and 

quantitatively. Their research advised quantitative exploration of the influence of material 

properties’ ratios and applying similar methods with non-Newtonian fluids with high viscosity.  

Hoang et al. [71] experimentally investigated a two-phase cooling heat sink using a 

hydrophobic dielectric (Novec/HFE-7000) WF. The heat transfer coefficient (HTC) increased 

with the flow rate in the single-phase and convective boiling region; in the nucleate boiling 

region, HTC increased notably with heat flux (HF). This increasing trend of HTC with HF was 

attributed to the refrigerant properties. Compared to water, the WF had lower surface tension 

and contact angle that generated bubbles with smaller departure diameters; thus, the refrigerant 

WF experienced nucleate boiling over a greater MC length and produced a positive trend of 

HTC with HF [72]. Also, HTC improved with reduced subcooling in the heat sink at the cost 

of increased pressure drop. Thus, the coefficient of performance (COP) was primarily 

dependent on subcooling in two phases. Fin height reduction produced better thermal 

performance until the optimum point due to a higher fluid penetrating factor. The experimental 
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findings can be related to Novec-type WF and utilised for different features: HFs, subcooling, 

Reynolds numbers, and DH.  

Dalkılıç et al. [73] analysed HTC and critical HFs of R134a (generally hydrophobic) in two-

phase flows. The results showed that raised vapour quality at constant inlet saturation 

temperature decreases Critical Heat Flux (CHF) and HTC. At the constant inlet vapour quality, 

the CHF lowered, and HTC increased with inlet saturation temperature. Nevertheless, a 

relatively higher temperature difference is required to reach the CHF at reduced temperatures 

than high inlet saturation temperatures. 

Guo et al. [74] researched pressurised filling processes of two working fluids in a porous 

closed-loop MC; the theoretical presumptions agreed with the experimental results. Their 

investigation successfully generated acoustic waves via hydrophobic eutectic gallium-indium 

(EGaIn) compound usage in MC. The recommendation for future work suggested assessing 

the feasibility of self-aligned comb-shaped single-electrode interdigital transducer (IDT) 

adoption in the industry.  

Alternatively, Abdulbari et al. [75] employed a hydrophilic Xanthan gum as a drag-

reduction (DR) agent for flow assessment in MC. The solution exhibited non-Newtonian 

behaviour due to increased viscosity from increasing concentration. The %DR increased by 

raising additive concentration, length of MC, and decreasing the width. Future research could 

involve advanced flow visualisation techniques with polymer molecular weight effect on DR. 

Chiriac, et al [76] investigated the interface evolution between two immiscible liquids in a 

three-branch symmetric microchannel, both numerically and experimentally. The aim was to 

compare numerical data with experimental results and evaluate the VOF method in Fluent for 

tracking the interface. Focus is placed on the oil-water interface near the bifurcation in a 400 

µm wide, 50 µm high microchannel. Micro-PIV measurements are performed in water, with 

results confirming the 3D simulations. The flow case is proposed as a benchmark for studying 

interfaces in branching microchannel geometries. 

2.5.1.2 Nanofluids/nanoparticles 

Experimental investigations with nanofluid/nanoparticle utilisation are another promising 

research area. Nanofluids are insoluble particle suspensions using solid materials (within the 

average size of 0–100 nm) [77]. Compared to pure liquids or water, high nanofluid 

concentrations show better thermal stability [78]; they can also provide improved cooling 

solutions and HTC [79]. Martinez et al. [80] developed an experimental methodology for 
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studying Titanium dioxide (TiO2)-H2O-based nanofluids as coolants in MCHS. Nanoparticle 

dispersion increased the base fluid thermal conductivity (k) within the examined temperature. 

Furthermore, incorporating nanoparticles into water improved heat dissipation in MCHS for 

the studied concentration range. The optimum thermal energy gain was shown by the nanofluid 

having a concentration of 1wt% and Re = 200. As a result, a more suitable MCHS nanofluid 

arrangement can be studied for subsequent research.  

Also, Ding et al. [81] appraised the effect of TiO2-H2O nanofluids in thermal energy storage 

(TES) MC to enhance the thermal conductivity (K) of phase change materials (PCM). TiO2-

H2O nanofluids having 0.5, 0.7, and 1.0 wt% can increase Nusselt number in the melting and 

solidification process. TiO2-H2O nanofluids addition results in increased pressure drop (<9%). 

Therefore, more TiO2-H2O applications with improved pressure drops can be investigated.  

Sarafraz and Arjomandi [82] explored the potential usage of liquid metal for HF transfer for 

next-generation solar thermal energy receivers. Liquid Gallium (Ga) showed superior thermal 

diffusion, conductivity, improved HTC, and heat transfer rate compared to water. Similarly, 

nanoparticles augmented HTC due to the internal thermal conductivity of AL2O3 and the 

Brownian motion of Ga nanoparticles. The pressure drop penalties were significantly higher 

for Ga nano-suspensions and pure Ga compared to water. Thus, Ga suspension applications for 

high HF applications with reduced pressure drops need assessment.  

In a separate study, Sarafraz and Arjomandi [77] investigated low HF conditions using an 

MCHS for thermal and pressure drop performances; the nanofluid used was copper 

oxide/indium (CuO/In). Higher HTC was observed for increased HF, peristaltic mass flow, and 

mass concentrations of over 8%. A high-pressure drop penalty was present for the liquid 

Indium nanofluid at a mass concentration above 8%. Thus, CuO/In nanofluids application with 

reduced pressure drop penalties needs analysis.  

In another investigation, Sarafraz et al. [83] assessed the thermal performance of MCHS in 

laminar flow. Silver (Ag) nanofluids improved HTC but at the cost of increased pressure drop, 

thermal resistance, and friction factor. Hence, the feasibility of Ag/water nanofluids with 

reduced friction factors and pressure drops in the micro-electric cooling application needs 

further exploration. Sarafraz et al. [84] also studied thermal performance and fouling inside a 

MCHS using a carbon-nanotube (CNT)-water nanofluid. The nanofluid produced a higher 

HTC and reduced temperature profile compared to water. The results also indicated that 

nanofluid flow rate and mass highly increase HTC. Also, increasing mass concentration 
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reduced the operating time to reach uniform fouling thermal resistance, but overall thermal 

resistance decreased with increasing nanofluid concentration. As a result, CNT usage requires 

further investigation related to friction factors and pressure drop penalty.  

On a different take, Simsek et al. [85] experimented with complementary metal oxide 

semiconductor (CMOS)-compatible monolithic MCHS convection heat transfer and pressure 

drop using Ag-nanowire suspension. Silver nanofluids showed the highest HTC amongst the 

examined working fluids, but all had similar hydrodynamic performance. A 56% increased 

HTC is possible without added pumping power. Thus, the adoption of Ag-nanowire suspension 

shows promise for heat transfer improvements. 

Wang et al. [86] investigated hierarchical microchannels and nanofluids for electronic 

cooling. It compares rectangular and circular microchannels with varying diameters and 

nanoparticle concentrations, assessing pressure drop, cooling uniformity, thermal resistance, 

and heat transfer coefficient. Rectangular microchannel-b has the highest heat transfer 

coefficient, while microchannel-a shows the lowest cooling uniformity. Circular 

microchannels generally offer better performance (PEC 1.26 vs. 1.08) but the rectangular 

microchannels have slightly lower thermal resistance. 

2.5.1.3 Surface treatment/manipulation 

The extant literature also indicates possibilities through surface manipulation using various 

materials to reach desired effects. Ahmadi et al. [87] conducted flow boiling experiments on 

wholly hydrophobic and three mixed wettability surfaces for a high aspect ratio (AR) MC. The 

biphilic surfaces (BS) performed better than the fully hydrophobic surface. Additionally, BS 

provided vapour breakup, enhanced flow boiling heat transfer, and reduced the time of bubbly 

flow regime; however, they extended the slug flow regime. Hence, BS for high heat flux 

cooling can be examined.  

Zhang et al. [88] investigated surface wettability by studying boiling heat transfer features 

on 3D heterogeneous surfaces with diverse wettability. The highest HTC was found in test 

surface three (TS3), over six times compared to a bare 2D surface (BCS). The BCS consisted 

of a copper surface polished with 5000-grit sandpaper having a water droplet contact angle of 

88.6°; the TS3 was a fluoridized copper oxide surface with a contact angle of 156.1° — 

meaning a hydrophobic/superhydrophobic surface having no affinity to water [89]. However, 

the highest CHF was in TS2, over 60% more than BCS. The TS2, on the other hand, was made 

via thermally oxidising the BCS at 400°C to produce an oxidised copper layer with a contact 
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angle of 8.6° — meaning a hydrophilic surface [89]. Consequently, the synergistic wettability 

effects and microstructures were linked to producing oblate and conical bubble growth patterns. 

This research provided a guideline for further MC developments with different wettability 

exhibiting hydrophobic and hydrophilic characteristics.  

Yin et al. [90] examined the chemical absorption effects on the formation of dynamic 

characteristics and preliminary length of Taylor bubbles. The results highlighted that the 

absorption process causes gas dynamic pressure drop reduction and increased expansion stage 

time in the total bubble formation process. Therefore, chemical absorption on bubble formation 

in MCHS can help lead to novel designs. On the other hand, Venegas et al. [91] evaluated a 

membrane-based micro-desorber design, working via low heating temperatures. The hot water 

temperature had a direct relationship with the desorption rate, solution temperature and partial 

pressure to improve the desorption process. Also, increasing the flow rate resulted in a minor 

reduction of the effective desorption surface; thus, an extended length may be used to reach 

initial desorption temperatures.  

Jayaramu et al. [92] comparatively assessed surface characteristics on flow boiling heat 

transfer and pressure in an MCHS using three cases: Case-1, freshly machined surface; Case-

2, aged Case-1 channel surface after multiple experimentations; Case-3, aged surface but 

cleaned using 0.1 M hydrochloric acid. Case-2 performed the worst due to increased wettability 

and thermal oxidation of the heating surface resulting from the repeated experiments; Case-3 

performed the best due to increased nucleation site density, but pressure drop changes are 

minimal. Accordingly, other material surfaces for flow boiling in MCHS are a good topic for 

further research.  

Surfactant usage is also an exciting area of research. Roumpea et al. [93] investigated droplet 

formation in an organic continuous phase within MC having surfactants. Surfactant additions 

reduced the squeezing and dripping regime areas but increased the jetting and threading regime 

areas. In comparison, surfactant-free solutions produced bigger and lower tip-curvature drops. 

Mean velocities showed that surfactant improved the local velocity difference between two-

phase flows. Therefore, studying the dynamics and effects of droplet formation with various 

surfactants is worthwhile.  

Moreover, Liang et al. [94], under condensation conditions, investigated the heat and 

moisture transfer characteristics of desiccant-coated heat exchangers (DCHE) and MCHE. The 

experiments revealed that the temperature of hot water correlates positively with 
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dehumidification but negatively with heat recovery. High inlet air velocity improved heat 

transfer while desiccant coating hampers it. Furthermore, the pressure drops increase with 

airspeed; an increase in cooling water temperature shows a minor reduction in the pressure 

drop, but the hot water temperature exerts minimal effects. 

Jiang et al. [95] enhanced a counterflow diverging microchannel heat sink with microscale 

cavities and nanoscale coatings, significantly boosting boiling heat transfer. It achieves a 4.8 

kW heat dissipation rate without reaching critical heat flux and a coefficient of performance 

over 150,000, far exceeding previous designs. In a separate study, Jiang et al. improved 

temperature uniformity and achieved a heat flux of 2677 kW·m², with a 45.1% increase in heat 

transfer coefficient, a 73.8% reduction in pressure drop, and 123.1% higher performance 

compared to traditional co-current designs. 

Kumar and Singh [96] studied single-phase flow in microchannels of various sizes, with and 

without micro inserts, analysing thermal-fluid properties such as fluid flow and heat transfer. 

Testing with distilled water across Reynolds numbers from 125 to 9985 shows that micro 

inserts significantly enhance heat transfer performance, though they also increase fluid flow 

resistance. The addition of micro inserts and smaller channel sizes leads to improved overall 

performance, as assessed by thermal performance factors. 

Wang et al. [97] experimented with microchannels with hydrophilic surfaces and 

hydrophobic dots, focusing on how dot pitch (122 μm to 172 μm) affects flow boiling heat 

transfer and pressure drop. Experiments with deionised water show that smaller pitch distances 

improve bubble coalescence and flow patterns. Heat transfer coefficient (HTC), critical heat 

flux (CHF), and pressure drop are strongly influenced by dot pitch and mass flux. A force-

balance model helps predict bubble diameters, providing insights for optimising microchannel 

designs for boiling. 

2.5.1.4 Manufacturing techniques 

The availability of different manufacturing possibilities presents new development 

opportunities. Zhang et al. [98] experimented with 3D-printed manifold MCHS with Inconel 

718 for high-heat aerospace purposes. The new design exhibited 25% improved heat transfer 

density at a coefficient of performance (COP) 62. The authors associated the heat transfer 

density improvement with size optimisation whilst minimising the mass of the plate-fin heat 

exchangers. The plate-fin heat exchanger sizing was gained by fixing the mass flow rate and 

COP to match the core design of a manifold MCHE. Furthermore, the researchers reported that 
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the additively manufactured design improved HTC due to two key factors — high area-to-

volume ratio and manifold-MCHE-inspired strategy that showed heat transfer enhancement in 

earlier studies. However, in terms of pressure drop, it displayed an expected trend where 

pressure drops increased with increasing Reynolds number. Moreover, additive manufacturing 

could produce a fin thickness as low as 0.18 mm. Therefore, further 3D-printed manifold 

investigations could be a worthwhile area for future investigations.  

Yameen et al. [99] studied heat transfer properties of an additively manufactured metal 

MCHE with complex interior designs — the smallest length produced was 0.48 mm. Thus, 

more 3D design manifolds can be further examined having non-conventional geometry.  

Moreover, Bae et al. [100] presented results of a two-phase, embedded cooling system for 

high HF electronics. Lower pressure drops and improved HTC were expected for higher ARs 

in SiC MC fabrication. Future research could cater to the following topics: thinner test chips 

(200 µm) with deeper SiC trenches for overall thermal resistance reduction and improved fin 

performance, detailed clogging assessment to prevent MC clogging, thermoelectric cooler into 

the thin-Film Evaporation and Enhanced fluid Delivery System (FEEDS) Manifold-

Microchannel (MMC) system for 5 kW/cm² hotspot cooling. 

Mohammed et al. [101] explored scaling up Fischer-Tropsch (F-T) synthesis using 3D-

printed stainless steel microreactors with Co-Ru-KIT-6 catalysts. Performance was tested in 

three configurations (stand-alone, two, and four reactors) at both atmospheric pressure and 20 

bar, with syngas at a 2:1 H2 ratio. All configurations showed comparable CO conversion (85.6–

88.4%), methane selectivity (~14%), and selectivity for lower hydrocarbons (6.23–9.4%). 

Higher hydrocarbon (C5+) selectivity reached 75–82% at 20 bars, demonstrating the potential 

of microreactors for scalable F-T synthesis. 

2.5.2 Enhanced Flow Control Perspective 

2.5.2.1 Flow boiling 

Flow boiling optimisation is arguably one of the most sought-after research areas for MC-based 

applications [102]. Flow boiling is a phenomenon caused when fluids move across a heated 

surface via external means or the naturally occurring buoyancy effect [103]. It is one type of 

flow where a phase change can occur and is characterised by a continuous two-phase flow of 

liquid and vapour [104]. However, due to the multiple dependencies and complex mechanisms 

behind flow boiling, researchers may sometimes focus on the general heat transfer behaviour 

during flow boiling rather than the bubble dynamics or phase change regimes [70] 
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Wang et al. [105] monitored the effects of refrigerant properties, mass flux (MF) and 

saturation temperature on the flow boiling friction pressure drop. The results show that 

increasing mass flux and reducing saturation temperature positively impact the two-phase 

friction pressure drop. Increasing mass flux leads to an increased two-phase friction pressure 

drop mainly due to the increasing liquid-vapour shear forces and partially from the liquid-solid 

shear forces. Additionally, two-phase friction pressure drops increase from a reduction in the 

saturation temperature because decreasing the saturation temperature causes enlarged liquid-

vapour velocity differences and increased liquid viscosity. Compared to single-side heating, 

heating from both sides leads to better two-phase friction pressure drops in MC arrays. 

Subsequent studies can focus on new empirical methods designed using experimental data that 

predicts data with high accuracy and a lower margin for error.  

Panda et al. [106] experimented with two-phase refrigerant maldistribution in the inlet 

headers of microchannel heat exchangers (MCHE). The loop header exhibited superior 

distribution performance. They also provided a comprehensive simulation approach for the 

MCHS header maldistribution problem. Future investigations can cater to developing a full-

scale heat exchanger simulation model with air-side calculations, condensate drainage, flow 

boiling in MCHS, flow expansion in the expander valve, and dynamics of oil and refrigerant.  

Xia et al. [107] researched the technique to reduce continuous flow boiling instability with 

intermittently moving gas-liquid interface that may potentially trigger pressure drop and wall 

temperature oscillations — leading to flow control issues and security risks. They proposed 

straight and triangular ridged MCs using multiple sensor setups. A prediction model 

highlighted that raising inlet flow restriction, reducing inlet temperature and HTC can reduce 

flow boiling instability significantly, along with unstable boundary slopes.  

On a different take, Jia et al. [108] compared flow boiling between novel and traditional 

rectangular designs with increasing HF from single-phase to CHF. The porous wall (PW) MC 

improved onset nucleate boiling, CHF, enhanced heat transfer, pressure drop reduction, and 

two-phase flow instabilities. Additionally, The PW design contained nucleation sites, and pin-

fins provided wicking effects.  

Lin et al. [109] numerically investigated single bubble growth by developing a custom 

solver using the VOF method and Hardt’s phase-change model. The results showed flow 

reversal suppression with increased MF but at the cost of reduced flow boiling enhancement. 

Finned microchannels provided around 40% less thermal resistance and minimal flow reversal 
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than a micro gap-microchannel setup. Therefore, further experiments to enhance flow boiling 

in similar configurations need appraisal.  

Oudebrouckx et al. [110] presented an innovative prototype system to measure thermal 

conductivity (K) under flow conditions via the Transient Thermal Offset (TTO) method. Based 

on their findings, flow rates can be calculated if K and the specific linear calibration curve for 

a liquid with this value are known. Moreover, if flow rate and the exponential calibration curves 

can determine absolute K values under continuous flow. Therefore, combined single systems 

for flow rate measurement and monitoring during flow boiling applications need exploration. 

 Li et al. [111] presented bidirectional counter-flow microchannels (CFMC) with regulated 

mass flux, showing significant improvements over traditional parallel-flow designs. 

Experiments with deionized water reveal a 42.9% to 53.8% increase in critical heat flux (CHF) 

and up to 170% enhancement in heat transfer coefficients. Uneven mass flux further improves 

CHF but may reduce the heat transfer coefficient. CFMC also cuts two-phase pressure drop by 

53.4% to 66.7% and offers precise control over temperature and pressure, making it a 

promising approach for optimising microchannel performance. 

Tang et al.’s [112] study enhanced flow boiling heat transfer in microchannels by adding 

expansion areas. Experiments show that microchannels with three expansion areas increase the 

heat transfer coefficient by up to 43.3% while keeping pressure drop variation within 3 kPa. 

The expansion areas also reduced inlet temperature fluctuations, indicating better control of 

boiling instability. Improved heat transfer is attributed to enhanced bubble nucleation and a 

nonuniform liquid layer near the expansion corners. 

2.5.2.2 Phase change flow patterns 

Phase change phenomena is another vital element related to MC-based technologies. The term 

phase change is a broader term that can refer to the transition of one state or phase of matter to 

another: for instance, solid to liquid, liquid to gas, gas to liquid, or even gas to plasma. Phase 

changes usually have technical terms such as melting, freezing, condensation, and boiling, 

amongst many other forms [113]. While the previous section deals mainly with general heat 

transfer and flow control aspects of flow boiling and two-phase flow, this section caters for the 

flow regime, patterns, and bubble dynamics. The phase change during flow 

boiling/condensation changes the fluid volume, crystalline structure, and frictional resistance. 

Therefore, as the literature indicates, these phase changes impact the HTC, shear forces, and 

velocity in the liquid-vapour flow regimes — which in turn, affect the overall heat transfer.  
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Matin and Moghaddam [114] studied elongated bubbles and wavy-annular regime 

transitions during flow boiling in rectangular MC with varying aspect ratios. The wavy-annular 

flow transitions link to the thickening of the liquid film and a drastic increase in the vapour 

velocity; this drastic change makes the interface go into unstable (wavy) transitions. Low 

vapour velocities resulted in a transition to annular flow with increased channel height (reduced 

aspect ratio). Therefore, critical shear stress at the vapour-liquid interface was suggested.  

Furthermore, Lei et al. [115] investigated the effects of dispersed phase viscosities, 

continuous phase viscosities, and two-phase flow parameters on droplet length. The 

dominating factors for flows in annular, slug, droplet, and jet regimes were inertia, interfacial 

tension, shear, and shear and drag forces, respectively. Viscosity fluctuations in the dispersed 

phase affected flow pattern transition processes of annular flow to slug flow and slug flow to 

droplet flow; however, it had minimal effect on slug properties and droplet length. Prediction 

scaling laws were proposed for the slug and droplet lengths formed by different flow patterns.  

Another important investigation was presented by Ronshin and Chinnov [116], who 

determined a novel method for appraising the two-phase flow patterns and regime boundaries. 

Transitions from one regime to another can occur as follows: jet to bubble – increasing bubble 

formation frequency and liquid’s superficial speed; jet to a stratified – massive increase in the 

film region’s lower walls and raising superficial gas speed; stratified to annular – significantly 

increasing the film area’s upper wall via an increase in the superficial liquid’s speed; bubble to 

the churn – destroying horizontal liquid bridges and, thus, reducing the frequency of bubble 

formation via increasing the gas velocity. Slug generation and control during phase change 

improved thermal management and heat transfer.  

Qian et al. [117] investigated dynamic dispersed phase injection flow rate effects on slug 

generation. The experiments to observe dynamic disperse flow rate showed rectangular waves 

most affected the slug size. Also, the triangle wave affected the separation distance and the 

slug generation time comparatively more.  

Zhang et al. [118] appraised hydrophobic MC with flow condensation of varying ethanol-

water mixtures. The flow condensation was highly dependent on the hydrophobic surface; the 

ethanol concentration increase resulted in slug/bubble flow and no droplet condensation. 

Similarly, Kovalev et al. [119] studied a liquid-liquid setup having a very low viscosity ratio. 

The research findings contradicted extant experiments for low plug velocity. Thus, the 

proposed usage of experimental values for classifying different plug patterns needs analysis. 
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Pontes et al. [120] optimised microchannel heat sinks for cooling PV panels. Experiments 

and simulations explore flow boiling effects, revealing stable bubble flow in narrow channels 

and bubbly flow in wider ones. Numerical simulations using OpenFOAM capture transient 

flow dynamics and heat transfer, providing insights into channel design and performance. 

Wang et al. [121] examined gas-liquid Taylor flow in a 1 × 1 mm microchannel. Reducing 

junction width shortens slugs, enhancing heat transfer, particularly at β = 0.5. At β = 0.67, 

performance drops due to higher pressure loss. For β = 0.33, slug length changes have minimal 

effect. Increased mixing velocity improves performance, but at low void fractions, the pressure 

drop may outweigh heat transfer gains. A new correlation for Nusselt number prediction has 

an average error of 11.77%. 

2.5.2.3 Flow resistance 

Flow resistance manipulation has been one of the key strategies for heat transfer at microscales. 

Microscale is a scale for items at the micrometre level, generally used to describe microscopic 

items ranging from 1 to 1000 μm [7]. Kravtsova et al. [122] investigated three flow regimes 

and the resistance effects of external periodic perturbation on flow regime distribution. The 

average downstream flow velocity changed from a parabolic curve to a three-peak curve — 

and then — showed a uniform zone after passing the Dean vortex. For the asymmetric flow 

regime, 33% mixing efficiency growth was obtained.  

Garg and Agrawal  [123] presented two different investigations related to inflow frictional 

resistance. Inflow frictional resistance is generally one of the biggest contributors to total flow 

resistance and depends on the wetted surface and surface roughness [124]. Initially, they 

measured pressure and temperature in a three-dimensional MC, consisting of planned 

roughness of varying lengths for gaseous slip flow regimes. Limited penetration for streamlines 

inside micro-ridges produced reduced contact of slipping gas molecules with the wall surface 

but increased Re. Therefore, experiments at higher Knudsen numbers could be done to observe 

gas rarefaction effects on the choking point of the micro-ridges. Also, different orientations 

and shapes of ridges can be investigated as per the application.  

In their second experiment, Garg and Agrawal [125] investigated the effect of adiabatic 

subsonic choking on frictional resistance for three-dimensional MC in a rarefied gas regime. 

The choked state of the 3D-MC was noted to be more adiabatic than isothermal. The findings 

also highlight conditions for AR, Reynolds number, and Knudsen number where significant 

expansion loss might occur in an MC slip flow. Future research can study the effects of high 
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Re on highly rarefied choked gas flows at high Knudsen numbers. The Knudsen number (Kn) 

is a dimensionless parameter characterising the flow’s boundary conditions. Kn can be defined 

by the ratio of the average free path to the average pore diameter [113].  

Wang et al. [126] investigated liquid pumping in MC via surface acoustic wave and heat 

expansion forces. The results showed that a thinner MC (250 µm compared to 500 µm) design 

with a hydrophobic CYTOP (fluoropolymer) surface boosted pumping velocity by over 130% 

for experiments with constant liquid volume with identical applied input power. Therefore, 

there is potential for this technique in small-scale liquid control and deliveries. Moreover, a 

similar setup for two-phase flow and pressure drop appraisal can be explored.  

Ji et al. [127] examined an oil-water mixture emulsification process for flow pattern 

characterisation having a wide range of Re. High turbulent flow leads to finer and increased 

monodispersed droplets in the emulsion. In mid-range Re numbers, a high oil volume ratio 

exhibits laminar flow; this is more noticeable in the 600-300 setup. Analysing droplet means 

diameter and polydispersity index, unequal configuration produced swirl flow and greater 

performance than equal size setup for high Re. The 600-300 impingement setup could have 

potential industrial applications for emulsions at high flow rates. Therefore, future studies 

should focus on drop deformations/breakup details in MC. 

Jin et al. [128] developed a lumped model for a microchannel heat exchanger-based cooling 

system with feedforward and feedback control strategies. The model shows prediction errors 

for temperature and pressure within 1%. Feedforward control offers a faster response than 

feedback, which has longer settling times. Combined feedforward and feedback control ensures 

quick and stable performance. A scheduled setpoint control optimises pump frequency for 

varying heat loads, with inaccuracies under 2%, effectively managing system deviations. 

2.5.2.4 Thermal resistance 

The reduction of thermal resistance is another intriguing research category. Al Siyabi et al. 

[129] examined the application of a multilayered-microchannel (MLM) heat sink in the highly 

concentrated photovoltaic (HCPV). The results showed that using MCHS with three layers 

increased electrical power; temperature reduction was detected in the solar cell when the 

number of layers increased from one to three for the identical flow rate. Also, the module 

performed with a better electrical performance outdoors than indoors.  

On a different take, Al Siyabi et al. [130] employed multi-layered MCHS for concentrating 

photovoltaic cooling. The number of layers was inversely proportional to heat sink thermal 
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resistance and heat source maximum temperature. Thermal efficiency significantly improved 

due to the heat transfer fluid (HTF) outlet temperature when the number of layers increased 

from one to three. Moreover, the heat sink could adapt to a range of power ratings with minimal 

changes in the thermal resistance. Nevertheless, further research is needed to employ MLM 

heat sinks in a single solar cell CPV module, combining the electrical and thermal performance 

appraisal using the indoor and outdoor classifications.  

Zhai et al. [131] designed and verified a theoretical model to predict flow and heat transfer 

in MCHS. Convective thermal resistance was found to be an important factor and should be 

reduced. Furthermore, to minimise entrance effects, the length of the entry channel needs to 

increase to gain uniform flow distribution. Therefore, similar theoretical frameworks can 

further aid in improving future MCHS designs. 

Tian et al. [132] used direct liquid cooling in microchannels, focusing on heat flux, inlet 

temperature, flow rate, and hydraulic diameter effects. Direct cooling has a coefficient of 

performance five times higher than indirect methods. New empirical correlations for the 

Nusselt number and Darcy friction factor were developed, with errors of 11.6% and 22.2%, 

respectively. These results aid in designing microchannel condensers. 

2.5.3 Design Perspective 

2.5.3.1 Aspect ratios 

Aspect ratio (AR) is the ratio of two-dimension sizes, usually using the largest against the 

smallest dimensions [133]; in the case of rectangular ducts/channels, AR is given by dividing 

the width by height. Numerous authors have indicated the need for further research on the exact 

effects of aspect ratios. Ozdemir et al. [134] appraised the results of the flow boiling of water 

in a single rectangular MC with identical hydraulic diameters (DH). Bubbly flows did not exist 

for the smallest AR (0.5) at the outlet, and the HTC showed a negative relationship with the 

channel AR until HF values reached around 480–500 kW/m². Channel ARs had a negligible 

effect on the HTC for higher HF. The researchers recommended further research regarding the 

impact of AR variation for clarity. Nonetheless, they gave a possible explanation for their 

findings; for their design, at lower ARs (deep channels), the heat transfer was better due to 

higher buoyancy effects and a thicker bottom-wetted surface. Alternatively, at higher HFs, the 

nucleate boiling regions were perhaps replaced with film evaporation regions, making the 

effect of ARs negligible.  
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Luo et al. [135] studied hydrodynamics and heat transfer performance (HTP) of annular 

flow boiling in a high width-to-depth ratio MC. The experiments showed that increased wall 

HF or inlet quality decreases the thickness of liquid thin film between the interface and the 

heating wall; thinner liquid films lead to larger local HTC, lower wall temperature, and 

improved HTP. Nevertheless, the downside of increasing the inlet mass flux is that it decreases 

the wall’s HTC.  

Li et al. [136] produced investigations related to aspect ratios in MC. They studied 

subcooled flow boiling in a high-aspect-ratio, single-side heated MC for varied alignments on 

hydrophilic and super-hydrophilic surfaces. The findings indicated that, in low mass fluxes, 

vertical downflow exhibits the highest pressure drop; maximum pressure drop was gained for 

high mass fluxes during bottom-heated horizontal flow. Also, dominating inertial forces 

weaken the effect of orientation; the impact of surface wettability is more prevalent for 

horizontal configuration at a given HF. Consequently, optimised flow orientation and surface 

wettability for MCHS at different aspect ratios can be further studied.  

On a separate occasion, Li et al. [137] experimentally evaluated saturated flow boiling in a 

single-side-heated vertical narrow MC. All experimental conditions show annular flow patterns 

and convective evaporation dominated the heat transfer system; thinner liquid film provided 

increased HTC. Furthermore, the local dry-out phenomenon occurred on the untreated 

hydrophilic surface, but the super-hydrophilic part kept the liquid film uniform and prevented 

the phenomenon. The authors suggested a modified correlation formula to calculate the HTC 

of saturated flow boiling in a vertical narrow AR single-sided heating MC.  

Duryodhan et al. [138] assessed mixing in spiral MC designs having different ARs. They 

visualised homogeneous mixing at a low (0.36) and high (1.2) AR at various angles but having 

the same Re. Their qualitative analysis of the flow mixing revealed that the spiral MC with 

higher AR provided comparatively better homogeneous mixing efficiency, but optimum Re 

and AR balance need consideration. Therefore, ensuing investigations could cater to 

developing optimised designs for spiral MC designs with superior efficacy. Again, a similar 

technique utilising high AR was performed by Yin et al. [139], where they analysed water flow 

boiling using a large AR MC. Their study revealed that nucleate boiling is prevalent in large 

AR, and HTC correlates to MF. Moreover, HTC for sweeping and churn flow are larger 

comparatively. The strengthening bubble confinement effect was not observed in large AR 

MC. Hence, the feasibility elements of large AR MCs can lead to further research. 
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Cheng et al. [140] studied the impact of groove-wall microchannel parameters (aspect ratio, 

spacing ratio, and groove depth) on flow boiling heat transfer. Channels with various aspect 

ratios (1, 2.5, 4) and groove depths (15-45 μm) are tested using deionized water. Results show 

that aspect ratio significantly affects heat transfer, with the best performance at 2.5. High aspect 

ratios reduce pressure drops, and critical heat flux occurs more easily at ratio 4. The findings 

provide insights for optimising groove-wall microchannel design for better heat transfer. 

Cui and Liu [141] experimented with an ultrahigh-aspect-ratio copper microchannel heat 

sink (AR = 25) shows significant improvements in heat transfer compared to lower aspect ratios 

(AR = 1, 5, 15). It achieves up to 40.95% better critical heat flux and 40.28% lower thermal 

resistance, despite having ten times lower mass flux. The improved performance is due to 

effective heat transfer from nucleate bubbles and enhanced evaporative heat transfer at HFs. 

Marseglia et al. [142] evaluated nine microchannel heat sinks (MCHs) with different aspect 

ratios (1.33, 2, 4) and wall thicknesses (0.25–0.75 mm), testing single and two-phase flows 

using HFE-7100. Three inlet temperatures were used: ambient (18–25°C), intermediate (38–

42°C), and near saturation (55–58°C). Results showed that narrower channels provide better 

thermal performance but higher pressure losses, while wider wall thicknesses improve heat 

transfer coefficients and reduce pressure losses. 

2.5.3.2 Geometry/shape manipulation 

Achieving the desired performance through changing geometries is probably the most followed 

technique to reach the desired HTP in MC. For instance, Abdo et al. [143] determined the 

optimum configuration for integrated MCHS in a CPV (hybrid concentrator photovoltaic)-TEG 

(thermoelectric power generator) combined system; this caused a minimal effect on the system 

performance. However, the new design achieved reduced mean solar cell temperatures and 

higher performance than the previous design. They suggested design improvements via a TEG 

with greater conversion efficiency and a more effective heat sink to minimise heat release.  

Ringkai et al. [144] studied the characteristics of water-in-oil droplets at the interfacial 

surface in an offset T-junction MC — with different radii. They noted that minor increases in 

the channel size produce a significant increase in the overall liquid flow. Likewise, increasing 

the radius of the offset MC increases the cross-sectional area but decreases the distilled water 

phase’s velocity. Lastly, droplet sizes increased with radius and were approximately equal to 

the width of the MC.  
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Vinoth and Sachuthananthan [145] compared heat transfer and flow characteristics of an 

oblique finned MCHS having pentagonal and triangular cross-sections. The pentagonal MCHS 

shows better characteristics in heat transfer, thermal resistance, flow characteristics, and 

pressure drop than the triangular design. In addition, the mixing of nanoparticles (Al2O3 + 

CuO) into the working fluid revealed a greater heat transfer rate than a single nanofluid.  

Hou and Chen [146] designed and simulated MCHE with three re-entrant cavity shapes 

(circular, trapezoidal, and rectangular). The findings pointed out that increased flow rate leads 

to higher pressure drops in the MCHEs; the rectangular shape had the most pressure drop and 

Darcy friction coefficients. Similarly, an increased flow rate leads to a gradual increase in hot 

water temperature in MCHE; circular shapes have the lowest hot water temperature, followed 

by trapezoidal and rectangular shapes. Moreover, circular re-entrant cavities-based MCHE had 

the highest combined performance at the examined Reynolds number. Accordingly, subsequent 

investigations could assess other re-entrant cavity shapes to achieve the optimised design.  

Ye et al. [147] evaluated cross-junction MC having gas cavities (MGC) to overcome mass 

transfer issues in Taylor flow. The results showed MGC bubble shapes being more sensitive to 

the capillary number due to thicker liquid film and a sharper bubble shape for given conditions; 

this produces a larger surface area. Also, velocity slip and radial fluctuations at the gas cavity 

interface notably enhanced liquid transport. Thus, mass transfer in MGC needs further 

appraisal via manipulating liquid film surfaces.  

Nadaraja et al. [148] studied multilayer MC arrangement and its effect on the thermal-

hydraulic performance of MC arrays. They found that thermal-hydraulic performance obtained 

in the two-layer MCHS is lesser compared to single-layer MCHS, going against extant 

literature findings. The abnormal deviation could be due to manufacturing limitations and heat 

losses in two-layer MCHS. As a result, further investigation could be done on solving heat loss 

problems, improving manufacturing precision, and the effects of additional layers on the 

thermal-hydraulic performance of MCHS.  

Li et al. [149] designed and examined MCHS with triangular cavities at sidewalls. The new 

design performed better than the traditional designs, enlarged the heat transfer area, developed 

liquid film formation, nucleation intensity and bubble departures, HTC, and lowered pressure 

drops. Thus, the new design was promising for efficient microelectronic cooling.  

Vinoth and Senthil [150] evaluated the influence of channel geometries of three oblique 

finned MCHS to study heat transfer and hydrodynamic features. Out of the three shapes — 
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semi-circular, square, and trapezoidal — the trapezoidal cross-section provided better heat 

transfer for electronic cooling systems. Therefore, more cross-section geometries can be 

investigated for future research. Walunj and Satyabhama [151] examined three designs for low 

HF applications. Results showed transitioning from rectangular to parabolic and stepped 

geometries improved heat transfer, HTC, and reduced incipient temperature. 

Ge et al. [152] designed a microchannel with serial converging-diverging geometries, 

inspired by rock porous structures to enhance mass transfer in two-phase flow with a phase 

injection ratio of up to 200:1. Experiments showed a fourfold increase in mass transfer 

compared to classic designs. This was due to dispersed fluid retention before the converging 

geometry, reducing mass transfer distance, and increased interfacial area at the diverging 

geometry. The design is ideal for high-phase ratio extraction applications. 

Li et al. [153] evaluated counter-flow stepped microchannels (CSMC) to improve boiling 

two-phase flow. CSMCs with step depths of 100 μm, 200 μm, and 300 μm significantly 

outperform traditional microchannels, increasing CHF by 50.0%-105.6%, heat transfer 

coefficient by 35.8%-90.3%, and reducing pressure drop by 61.7%-77.7%. They also better 

control boiling instability, with reduced pressure oscillations and lower inlet temperature rises. 

CSMCs, especially with deeper steps, enhance microchannel performance effectively. 

Han et al. [154] investigated flow boiling in copper microchannels with a saw-tooth design 

and an L/Dh ratio of up to 75. By enhancing two-phase mixing and disrupting thermal boundary 

layers, the heat transfer coefficient (HTC) and critical heat flux (CHF) are significantly 

improved. At a mass flux of 300 kg/m²s, HTC reaches 141.8 kW/m²K and CHF is 280 W/cm², 

showing improvements of about 87% and 110.7% over plain microchannels. A correlation for 

predicting CHF is also developed. 

Liu et al. [155] analysed an open diverging microchannel heat sink (ODMHS) to improve 

heat dissipation for future fusion reactors, handling up to 15.6 MW/m² at 3 L/min. Compared 

to straight channels, the ODMHS reduces pressure drop and maintains performance by 

enhancing channel height. The design offers a practical solution for high HFs in fusion reactors. 

Saffar et al. [156] examined how curved microchannels influence droplet trajectory and 

shape. By varying Reynolds number (3.5 ≤ Re ≤ 7), surface tension, and droplet size, it was 

found that surface tension directly affects droplet deformation and trajectory, while, Re, has 
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little impact. Droplets with sizes ranging from 95 μm to 610 μm in channels with 180° and 

270° curvatures were analysed, revealing significant effects of droplet size on deformability. 

Wang et al. [157] boosted heat dissipation in electronics by exploring hierarchical 

microchannel heat sinks (MCHS) with curved and straight corners and adding semi-circular 

and trapezoidal secondary flow structures. Deionised water proved the most effective. 

Hierarchical structures enhance heat transfer, with Nusselt numbers rising to 67.32%. The 

trapezoidal secondary flow structure reduces pressure drop by up to 2.46% and improves heat 

transfer by 9.70%, achieving the highest performance index of 1.10. 

2.5.3.3 Barriers/restrictions 

Previous research has shown positive implications when implementing barriers/restrictors 

to enhance flow boiling, heat transfer, and mixing. Haghighinia et al. [158] experimentally and 

numerically explored two designs having symmetric and asymmetric circular barriers. The 

results show that repetitive ‘split and recombine’ produced irregular motions and improved 

mixing. At bents, folding is the key factor to increase the inter-material area. Additionally, 

increasing the Reynolds number led to an increase in mixing efficiency in separate parts.  

Alternatively, Oudah et al. [159] investigated the effects of different inlet restrictors (IRs) 

configurations on the thermal-hydraulic performance of flow boiling in an MCHS. All IRs 

enhanced the CHF performance of the MCHS flow boiling. However, the 5IR setup worked 

best at low mass flux, whereas the 1IR case worked best at high mass flux. It was also noted 

that IRs decrease the HTC at low mass flux, increase the HTC at high mass flux and HF, and 

exhibit higher pressure drop penalties in all cases. Consequently, optimum MC dimensions 

with IRs should be explored depending on the operational parameters (MF/HF) of the MCHS.  

Also, Kumar [160] analysed rectangular and semi-circular type MC grooves using the finite 

volume method (FVM). It was noted that trapezoidal channels provide 12% more heat 

transfers; the semi-circular grooves show 16% more heat transfer over rectangular grooves in 

the trapezoidal MC. For trapezoidal MC, groove width impacts more than channel height.  

Moreover, Ma et al. [161]  explored optimised MCHS with offset zigzag cavities for 

enhanced flow boiling. The nucleate boiling area near the inlet showed severe instability and 

flow reversal strength improved with low HF. However, increasing flux generated steam that 

reduced fluctuations. Moreover, zigzag MC raised heat transfer characteristics having lower 

wall temperature at onset nuclear boiling, HTC, CHF, and enhanced flow boiling stability by 
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restricting flow reversal and pressure drops. Accordingly, similar MCHS configurations for 

flow boiling studies could be further examined.  

Pan et al. [162] showed a novel prospect by developing a fan-shaped cavity (FSC) MC for 

comparison with traditional rectangular MCHS. FSC showed superior performance than 

conventional designs and comparatively small pressure drop penalties. Nevertheless, the 

degree of coincidence, deviation, and distribution of FSCs have notable effects on HTPs; 

hence, methods for optimising FSC designs could lead to future research. 

Furthermore, Wang et al. [163] examined flow characteristics, mechanism, and underlying 

heat transfer improvements of bi-directional ribs (BR) MCHS. BR MCHS showed significantly 

better Nusselt number and heat transfer at identical mass flow rates. Additionally, BR-MCHS 

produced the highest friction factor and blocking effect. 

Memon et al. [164]  investigated the impact of secondary flow passages on longitudinally 

wavy microchannel heat sinks. Two types of flow bifurcations—abrupt (60°) and smooth 

(30°)—were tested with various inlet-outlet configurations. Results showed that the 30° 

bifurcation design achieved the highest Nusselt number below a flow rate of 1.8 × 10⁻⁶ m³/s, 

while the conventional wavy heat sink performed better above this flow rate. The study 

provides insights into optimising heat sinks for modern chips, like the Intel® Core™ processor. 

Sulaiman and Wang [165] evaluated the effect of adding a contraction before straight fin 

microchannels using refrigerant R-134a. Two setups were tested: one with a contraction (CBM) 

and one without (NCBM). The CBM achieved a 3-30% higher heat transfer coefficient and 

lower pressure drop at low mass fluxes for fully liquid inlets, though this advantage decreased 

at high mass fluxes. Flow visualisation showed that the CBM prevents flow reversal and 

stabilises temperature and pressure, unlike the NCBM, which exhibits flow reversal and 

sluggish bubble behaviour. 

2.5.3.4 Pin-fins 

Research related to pin-fin designs could be significant, as per the literature. To illustrate, Liao 

et al. [166] appraised flow boiling heat transfer. The conclusions were: mass velocity was 

directly proportional to the subcooled temperature variations, augmenting the surface HF 

generated various flow patterns, phase change on boiling induced almost three times pressure 

drop, and raising WF saturation temperature increased pressure drop. Therefore, there is scope 

to study the effects of fin inlet alignments and arrays on the boiling convection heat transfer.  
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Additionally, Tiwari et al. [167] investigated the role of precise flow patterns in MCHS via 

a 3D-printed manifold for single-phase flow under low to medium HF conditions. The total 

HTC for the MCHE reached higher than most available shell and tube heat exchangers. Also, 

utilising mass-manufactured fin tubes made the overall experimental setup fabrication 

economically viable. Thus, research is needed for optimised geometry to be used in large-scale 

heat exchangers. Moreover, the flow pattern in a multitube bundle needs an appraisal for 

developing shell-ad-tube type MCHE.  

Wang et al. [168] studied single-phase flow heat transfer downstream having one pin-fin. 

The findings noted vortex shedding and large-scale flow mixing caused higher HTC along the 

pin fin centreline. The numerical model from this experiment also helped trace the heat transfer 

map of the heater to the fluid and its surroundings.  

Vinoth et al. [169] examined a curved finned microchannel heat sink (MCHS) using 

deionised water, Al₂O₃/water nanofluid, and Al₂O₃+CuO/water hybrid nanofluid. The MCHS, 

with a cross-sectional area of 80 × 53 mm², improves heat transfer by 11.98%, performance 

enhancement coefficient (PEC) by 16.5%, and reduces pressure drop by 30.1% compared to 

straight channels. Hybrid nanofluid enhances heat transfer by an additional 3.5% and 2.1% 

over water and nanofluid. The curved finned design's secondary flow significantly boosts 

performance, making it a promising cooling solution for power converters in electric vehicles. 

Zhang et al. [170] addressed heat transfer in microchannel heat sinks by adding fins to create 

secondary channels. CFD analysis, validated by experiments, shows that optimised fins reduce 

maximum and average temperatures by 6.67% and 6.75%, improve temperature uniformity by 

8.47%, and cut pressure drop by 13.33%. The performance evaluation value is 1.285. The study 

advises selecting an appropriate mass flow rate to balance cooling efficiency and pump power. 

Fu et al. [171] explored flow boiling in a copper foam fin microchannel (FFMC) heat sink 

with channels 487 μm wide and 1061 μm high. The FFMC improves heat transfer by up to 

80% and enhances critical heat flux by 25% compared to a solid fin microchannel (SFMC), 

though pressure drop increases 1.2 to 2 times. It also reduces flow instability, including 

temperature and pressure drop fluctuations. Nucleate boiling and thin film evaporation 

dominate at different Bo numbers, with heat transfer increasing at high mass fluxes and varying 

at low fluxes. 
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2.5.4 Sustainability Perspective 

The initial literature review indicates a lack of research papers that explicitly focus on, cater to 

or blend sustainability and MC. Nonetheless, some research could be categorised based on the 

sustainable aspects noted in their investigations or future scopes. For such cases, deductions 

and inferences were made to link the studies to different sustainable development elements; 

these papers are discussed in the following paragraphs. Furthermore, the sustainability aspects 

were also linked to complement the three MEDS perspectives mentioned in the earlier chapters.  

Wang et al. [95] studied HTC and moisture transfer coefficient (MTC) variation in an MC 

under varying sizes and desiccant thicknesses. The experiments showed that heat and MTC 

increase with airflow velocity. Also, smaller fin and flat tube pitches exhibited larger HTC and 

MTC. The desiccant thickness negatively affected the HTC but positively impacted the MTC. 

Furthermore, the Taguchi method analysis concluded that airflow velocity significantly 

impacts dehumidification. This paper provided a baseline for future design and manufacture of 

adsorption chillers, heat pumps, energy storage equipment, and atmospheric water collectors 

based on DCHE application — effectively promoting environmentally sustainable approaches.  

Lin et al. [172] investigated flow boiling in a rectangular vertical MC with heterogeneous 

wetting and silicon surfaces. The combined hydrophobic and hydrophilic surfaces manipulated 

the bubble dynamics and HTP in flow boiling. Moreover, coating a Teflon solution on different 

positions of the silicon substrate significantly improved the HTP. Future investigations of more 

heterogeneous wetting surface usage in engineering applications could positively impact cost 

and ease of manufacture, which will positively impact profits and economic sustainability.  

Li et al. [173] investigated reactant flow rate and pin–fin design effects in MC reactors via 

time-frequency analysis for two-phase flow pattern transition. The pin–fin outlet reactors 

suppress the upstream compressible slug fluctuation to produce a conversion of 59.0% for 5 

ml/h, the highest value for H2O2 decomposition in MC reactors ever noted. Therefore, there is 

potential to utilise and mitigate two-phase flow instabilities in MC catalytic reactors and 

dehydrogenation of liquid organic hydrogen carriers (LOHCs). LOHCs lead to relatively safer, 

cheaper storage materials and cleaner energy systems. Similarly, Ali et al. compared hydrogen 

production from perhydro-dibenzyl-toluene in stirred tanks and continuous-flow microchannel 

reactors. The microchannel reactor achieved up to 88% hydrogen yield, outperforming the 

stirred tank. A kinetic model showed favourable conditions for dehydrogenation, making the 
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microchannel reactor a promising option. Thus, MC-based dehydrogenation and LOHC would 

aid economic and environmental sustainability in the overall production and supply chain.  

Lastly, social sustainability is perhaps the most complex sustainability aspect. Nevertheless, 

the work of Bhattacharjee et al. [174] does indicate the potential of producing socially 

sustainable developments via MC technologies. Bhattacharjee et al. [174] developed an MC-

based strain sensor that showed three times increased resistance value for 10% strain — better 

than most existing strain sensors. Also, the sensor was responsive to different bending and 

twisting due to effective strain. Therefore, the implications of employing feedback control with 

the strain sensor help to control a robotic finger motion using human interactions.  

On a different note, Kumar and Kumaraguruparan [175] proposed a personal cooling system 

(PCS) for firefighters using vapour compression refrigeration to reduce heat stress. Tested with 

two condensers (MC-1 and MC-2) and capillary tubes (0.84 mm and 1.18 mm) in high 

temperatures, the 1.18 mm tube with MC-2 performed best. The system weighs 4.335 kg, with 

a battery. By improving firefighter performance and safety, this research enhances social 

sustainability through better working conditions in extreme environments. Consequently, 

similar future technological advancements will further promote diversity and inclusivity in the 

industrial workforce, especially for people with disabilities — directly impacting and 

enhancing social sustainability. Fig. 2.3 summarises the key themes based on the MEDS 

Framework. While the framework is not exhaustive or comprehensive due to the diverse 

factors, methods, and available information, it offers a valuable generalisable holistic overview. 

 

Fig. 2.3 Summary of MEDS framework 
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2.6 Overview of Identified Research Scope and Trends 

After scanning the available literature, it was noted that there was a scarcity of recent papers 

providing detailed assessments of experimental methods and trends in MC. However, some 

authors have categorised partial data/research related to MC shapes or working fluids for their 

experiments or other purposes. Therefore, it can be said that due to the diverse factors and 

means available for MC-based experimentation, finding a generalised trend is challenging. 

Therefore, this research overview will arguably be the first to identify and appraise general 

trends and elements needed for MC experimentation. Additionally, the chosen strategy is 

aligned with the four perspectives in the MEDS framework and the ethos of tackling smaller 

issues to lead to wider technological advancements. All the common critical elements (along 

with their data) were extracted from the sample of 100 papers used for qualitative analysis. 

Appendix A highlights all the data and summarises the findings from earlier chapters for 

visualisation and analysis purposes; the table has been categorised in reverse chronological 

order and grouped using the MEDS elements.  

As sustainability is one of the research themes, the initial focus was on regional research 

contributions to gain a broad understanding of current trends. Fig. 2.4 presents the research 

distribution by geographical region (note: papers with first authors from Turkey are included 

in Europe as they are eligible for EU funding, and Russia is also grouped with Europe as its 

capital lies on the European side). Some countries, like China, are listed as separate categories. 

It is clear that MC-based experiments are predominantly conducted in China (44%) and the 

Rest of Asia (ROA) (23%), accounting for two-thirds of all contributions. As MCs are integral 

to sustainable engineering technologies, MC-related research has a positive impact on 

sustainability. In comparison, Europe’s contribution (18%) is relatively modest, given the 

alignment of MC technologies with the EU’s 2050 climate goals [12]. Moreover, MC research 

is less frequent in other regions, potentially due to the developing nature of Africa and South 

America, or differing research priorities in regions like the USA and Australia. 
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Fig. 2.4 Research distribution map 

Before experimenting with or assessing microchannel or micro-heat sink technologies, it is 

important to evaluate the design, manufacturing processes, and shapes covered in existing 

research. This approach not only aids in identifying research gaps but also provides a better 

understanding of the reasoning and challenges behind producing unfeasible or complex 

structures. Fig. 2.5 (a)-(d) presents a breakdown of various trends related to microchannel 

shapes, fabrication strategies, hydraulic diameters, and aspect ratios, respectively. 

MC Design/Configuration (Design Perspective) – Fig. 2.5 (a) illustrates the design trends 

for MC shapes and configurations. Some researchers experimented with more than one shape 

or design during their investigations, resulting in over 100 data samples for MC configurations 

and shapes, instead of 100. Over the last seven years, the traditional rectangular MC 

configuration has remained prevalent. However, square and circular shapes, along with 

Hierarchical (HCL) or T-shaped junctions, have also been employed. Other case-specific 

structures (12%), such as spiral or curved MCs, are less common. Novel-shaped designs are 

being experimented with, but rectangular-shaped geometries still dominate.  
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Fig. 2.5 Different microchannel designs and manufacturing trends: (a) Design shapes; (b) Fabrication 
strategies; (c) Hydraulic diameter; (d) Aspect ratio 

MC Fabrication (Design/Sustainability Perspective) – Fig. 2.5 (b) presents the trend of 

MC fabrication. MC fabrication relies on various methods, including micromachining (MM), 

etching (ETC), and lithography (LI). On average, MM remains the most consistently used 

technique (31%). Additionally, LI has seen an overall upward trend, while ETC has generally 

declined over the years. More recently, there has been a growing, albeit limited, use of 3D-

printed (3D) MC-based technologies. In several experiments, researchers opted for commercial 

or pre-made (CM) MCs. Lastly, around one-quarter chose distinct fabrication methods (OFM) 

or did not provide sufficient details about their MC fabrication processes. These two categories 

are combined as OFM, which shows current trends in MC fabrication methods. It is important 

to know the details of the fabrication process to make the overall life cycle of the microchannel 

from production to experiment and to usage more sustainable.  

Hydraulic Diameter and Aspect Ratios (Design Perspective) – Fig. 2.5 (c) and (d) depict 

the MC hydraulic diameters (DH) and aspect ratios (AR), respectively. To better evaluate the 

trend of commonly used DHs in experiments, the data was segmented into intervals of 0.2. Fig. 
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2.5 (c) visualises the DH trends, showing that approximately 50% of the experiments employed 

a DH within the 0.01–0.4 range (note: some studies used multiple designs and configurations, 

leading to a higher data count for DH and AR). Aspect ratios, calculated using the width and 

height, were presented alongside DH. Given the broad range of AR values, the data was 

categorised qualitatively into the following: extra-small (XS), small (S), medium (M), large 

(L), extra-large (XL), and ultra-large (UL). These correspond to the following AR ranges: XS 

(0.01 – 0.50); S (0.51 – 0.99); M (AR=1); L (1.01 – 5); XL (5.01 – 15); and UL (15+), as shown 

in Fig. 2.5 (d). About 90% of the experiments used an AR of less than 15, which is logical, as 

achieving higher ARs with smaller hydraulic diameters significantly affects cost, fabrication 

time, and product development. This can lead to unsustainable impacts, even if heat transfer is 

marginally improved by such designs. 

Alongside fabrication and design choices, another key factor in developing new types of 

micro heat sinks is the ease of manufacturability and experimentation, which facilitates faster 

and more agile product development. Consequently, the choice of material or working fluid 

becomes critical, as it influences both cost, efficiency and the integrated carbon emissions 

throughout the product's life cycle. Fig. 2.6 (a)–(b) illustrates the material and working fluid 

selections over the past seven years. 

 

Fig. 2.6 Material trends: (a) Material choice (b) Working fluids 

Materials Used (Material/Sustainability Perspective) – A range of materials have been 

used in MC fabrication. The most commonly used materials include Polymers (PLM), such as 

Polydimethylsiloxane (PDMS) and Poly-methyl-methacrylate (PMMA), Copper (Cu), Silicon 

(Si), Aluminium (Al), and Steel. Other materials (OMT) combine less frequently used 

materials, such as glass, SU-8, and tantalum, gold, amongst others. Fig. 2.6(a) shows the most 
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frequently used materials for MC experimentation, with the x-axis representing the materials 

used and the y-axis showing the percentage of experiments or papers that used those materials.  

Working Fluids (Material/Sustainability Perspective) – Fig. 2.6(b) depicts the most 

commonly used working fluids in MC experiments. Water (W) and water-mixture solutions 

(WM) have been frequently used in recent years, though de-ionised water (DW) remains the 

top choice. Hybrid nanofluids/micro-fluids (HY), containing elements like aluminium, copper, 

and silver, have also seen increased use. Other working fluids (OWF) and refrigerants (REF), 

such as Novec, R134a, and HFE-7100, have generally trended upward in usage. Additionally, 

nitrogen (N2) or Argon (Ar) gas has occasionally been used as a working fluid, though its 

application has been irregular and specific to certain investigations.  

Based on the potential research directions and suggestions made by authors in the existing 

literature, the MEDS framework categorised the literature into areas where Further Research 

Is Needed (FRIN). The current analysis strategies are also visualised in Fig. 2.7 (a). While the 

FRIN areas have relatively similar scores, the authors acknowledge possible criticism 

regarding the methods used to prioritise these areas. Nonetheless, the data on FRIN status and 

trends provide valuable insights to guide future research. 

 

Fig. 2.7 Further research needs: (a) FRIN trend (b) Analysis trends 

Analysis Methods (Enhance Flow Control Perspective) – Fig. 2.7 (a) summarises the 

analysis methods used in MC-based studies. This paper focuses on heat transfer and thermal 

management applications, with almost all experiments incorporating general flow visualisation 

analyses. Most researchers employ experimental and numerical methods (NM) to analyse and 

solve flow equations, with Computational Fluid Dynamics (CFD) being the second most 

common approach. MATLAB-based simulations have also received some attention, while 
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other methods (OAM), such as machine learning, uncertainty analysis, and correlation-based 

investigations, are emerging fields. Nonetheless, experimental and numerical methods remain 

the dominant approaches for MC studies. 

Further Research Requirement (Sustainability Perspective) – Fig. 2.7 (b) exhibits the 

FRIN trend, showing an upward trend in research needs from a design perspective and a slight 

decline in the materials area. The design area offers the greatest scope for research (36%), while 

enhanced flow control (30%) slightly exceeds the material perspective (28%). Additionally, 

the limited number of papers connecting sustainability (6%) with MC highlights a clear need 

for further investigations and frameworks addressing this area. 

2.6.1 Trends in Micro Heat Transfer 

In terms of MCHS designs and shapes, combining traditional rectangular (65%) and square 

(7%) channels accounts for around three-quarters of all MC structures, while distinct, non-

conventional designs combined a total of 22%. This highlights the potential of further exploring 

alternative MC structures, as conventional geometries have already been widely investigated. 

One promising direction is the study of pin-fin-based heat sinks, which could offer new avenues 

for enhancing heat transfer, given that traditional rectangular straight channels have been 

explored extensively. Additionally, the positive implications of multi-layer and pin-fin-based 

heat sinks could be a promising direction for future exploration, as they offer an alternative to 

the extensively studied rectangular straight channels, potentially providing superior heat 

transfer characteristics, and emerging design approaches such as generative design, low-data 

driven machine learning, additive manufacturing, and high-precision micro-machining open 

up novel possibilities. Bio-inspired structures and fractal or mixed designs are becoming viable 

due to these advancements, though the balance between design complexity, pressure drops, and 

heat transfer improvements needs careful assessment [176,177]. 

Regarding material usage in MCs, there is a more distributed trend. PLM (20%), copper 

(30%), and silicon (17%) are the most common materials. Material choice for mass production 

must consider factors such as heat transfer performance (HTP), ease of manufacture, cost, and 

sourcing challenges. This offers another valuable research area, particularly concerning 

sustainable materials and their lifecycle impacts.MC fabrication methods exhibit a variety of 

approaches. While some authors detailed their strategies, others did not provide sufficient 

information (28%, OFM). The data indicates that micro-machining (31%) is the most 

frequently employed, followed by etching (12%) and lithography (10%). Additive 
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manufacturing (AM), despite its potential, has only been used in 9% of cases, likely due to cost 

and complexity considerations. Commercially made MCs (10%) also feature in the data, 

though these are usually tailored for specific experimental purposes rather than innovation. 

Even though 3D-printed MCs show promising potential, the relatively low usage of AM 

may stem from difficulties in achieving high precision at the microscale or economic feasibility 

issues. Nevertheless, AM offers sustainability benefits and the ability to create complex shapes 

from a range of materials including polymers, metals, and ceramics, though standardisation 

remains a challenge [178]. The rough surface finishes often produced by AM can be 

advantageous, as they have been shown to enhance heat transfer coefficients (HTC) by 

reducing pressure drops [92]. Still, further research is needed to evaluate the feasibility of AM 

usage for microscale experimentation and to assess its overall viability for MC setups. 

In terms of working fluids, MC-based experiments typically rely on water-based solutions, 

which are generally safe and sustainable. However, more work is required to assess the 

performance and environmental impact of newer refrigerants and mixed metal-based 

nanofluids, particularly about stability, disposal, and lifecycle emissions. The trends also 

suggest that larger aspect ratios (AR) warrant further investigation, supporting arguments made 

in previous studies [139]. Machine learning (ML) and AI techniques could assist in modelling 

the behaviour of various AR and DH combinations, improving predictions of fluid dynamics 

and heat transfer performance. Integrating MC systems into cloud computing and digital twins 

would enable continuous improvement in design and testing. However, challenges such as data 

availability, overfitting, and the "black box" nature of ML/AI models must be addressed. 

Overall, while MC research continues to rely heavily on traditional methods, technological 

developments are slowly being adopted. Additive manufacturing, machine learning, cloud 

computing, and digital twins have already begun to influence MC-based technologies. 

Nonetheless, further investigation, re-evaluation of existing experiments, and combining 

different strategies are warranted to drive new performance and design innovations. The 

complexity of this field means that only certain themes and trends were explored, but the 

insights align well with the RQs and help address the foundational challenges for this thesis.  

2.6.2 Key research themes and sub-themes 

The key research themes (MEDS) and their sub-themes were determined and were categorised 

as follows: Materials (working fluids, nanofluids/nanoparticles, and surface 

treatment/manipulation); Experimental (flow boiling, phase change, flow resistance, thermal 



54 
 

resistance, and manufacturing techniques); Design (aspect ratios, geometry/shape 

manipulation, barriers, and pin-fins); Sustainability perspective (no general theme, 

environmental, economic, and social). 

Firstly, focusing on the material: 

 As per the findings from the literature, utilising hydrophobic refrigerants as a working 

fluid positively impacts the two-phase flow HTC and extends nucleate flow boiling 

length, provided the inlet temperature and HFs are increased progressively. 

Additionally, using two working fluids has generally shown to be reliable compounds 

during monitoring and verification heat transfer-based experimentation. However, 

relatively higher temperatures are required for working fluids to be effective, and there 

is scope for further research due to uncertainty on the effect of 

hydrophilic/hydrophobicity of working fluids on heat transfer, pressure drop penalties, 

and especially for non-Newtonian fluid experiments; 

 Metal-based nanofluids mixture, especially one containing silver, can significantly 

improve HTC; nanofluids improve the thermal conductivity of the base fluids. 

However, increased pressure drops, and friction factors are the leading drawbacks of 

nanofluid usage. There is also a lack of consensus regarding how nanofluids affect 

thermal resistance and two-phase flows. Previous studies have indicated long-term 

stability issues and increased pumping power requirements in nanofluid usage [179]. 

However, the study of Simsek et al. [85] indicated that nanofluids can increase HTC 

without adding pumping power. Therefore, the viability of silver nanofluids for reduced 

pressure drop, friction factors, and two-phase flow needs further research; 

 The literature suggested that the trend for common surface treatments was employing 

different wettability surfaces, surfactant additions, chemical treatment, and desorption. 

However, high thermal conductivity materials, such as diamond, for surface 

hydrophilization present alternate options for heat transfer enhancement [180]; albeit, 

they may not be the most cost-effective solutions. The coating surface appears to 

produce a significant impact. To illustrate, surface wettability variations in flow boiling 

investigations improved HTC, and biphilic surfaces (BS) and 3D heterogeneous 

surfaces provide enhanced flow boiling heat transfer and improved nucleation density. 

These heat transfer enhancements primarily occur because the thermal boundary layers 

during two-phase heat transfer rely on cavity size, surface roughness, surface 

wettability, and surface morphology [88]. For instance, gases trapped in the pores and 
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cavities can trigger bubble nucleation [181], whilst a hydrophobic surface enjoys a 

lower interfacial energy barrier than its hydrophilic counterpart [182]. Nevertheless, it 

is unclear how surface manipulations affect pressure drops and thermal resistance; 

 Overall, the studies of Ahmadi et al. [87] and Jayarmu et al. [92] indicated that whilst 

surface wettability has been studied in pool boiling, there is a lack of research on the 

effect of surface wettability in flow boiling. Consequently, this gives rise to future 

research areas. Elevated surface wettability tends to show higher HTC but with higher 

pressure drops and reduced CHF values. On the other hand, low surface wettability 

produces comparatively higher CHF values and reduced pressure drops. Furthermore, 

care must be taken whilst increasing surface wettability as it can lead to the thermal 

oxidation of materials. A biphilic surface or mixed wettability surface for flow boiling-

based applications is perhaps one of the most promising areas, as they contain both 

types of wettability surfaces to yield the desired results. Therefore, subsequent research 

can focus on employing different biphilic surfaces for flow boiling pressure drop and 

thermal boundary layer formation assessment. 

Secondly, considering the experimental elements: 

 Researchers emphasised flow boiling instability and friction resistance. However, it 

should be noted that there are some disagreements and a lack of clarity on how flow 

boiling enhancement can be achieved due to the complex mechanism and number of 

factors related to flow boiling transition and two-phase flows [104]. Nonetheless, 

research has shown that frictional pressure drop penalties could be reduced by 

increasing inlet saturation temperature and adding inlet restrictors; 

 Phase change phenomena via slug generation and control lead to improved heat 

transfer, but critical shear stress and interfacial tension need considerations to gain 

optimal results; 

 MLM heat sink thermal resistance can be reduced by using a multi-layered MCHS, but 

thermo-electrical performance needs further appraisal; 

 Convective thermal resistance and the length of entry channels represent critical factors 

for enhanced heat transfer. If mixing and turbulent flows are warranted, asymmetrical 

flow regimes/setups improve general performance; 

 Additive manufactured MCHS are also becoming viable candidates and can produce 

pin-fin with a thickness of 0.18mm. Additively manufactured MCHS have shown 

improved HTP, but further assessment is required for its feasibility. 
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Thirdly, appraising the design parameters: 

 Appraising the papers, there was no general trend regarding the effect of AR on heat 

transfer, flow boiling, and pressure drops. However, it was noted that in specific cases, 

AR could impact the flow mixing, boiling heat transfer, instability, and pressure drops; 

this is more noticeable at low heat flux conditions. However, there was a lack of clarity 

regarding how AR (high or low) affects the flow boiling due to the complex mechanism. 

The findings of this research align with previous studies that claimed that the results of 

AR effects were contradictory and developing a general conclusion regarding AR 

effects on flow boiling/two-phase flow is challenging [183,184]. However, depending 

on the heat flux and mass flux, it can be said that using high AR provide larger nucleate 

boiling regions, comparatively lesser flow instability, and higher HTC but also causes 

higher pressure drops. Also, HTC at higher HF is unaffected by small AR; alternatively, 

HF under 480 kW/m2 and mass flux can adversely affect the HTC. For high AR, 

increasing wall HF reduces the thickness of the liquid film and, in turn, improves the 

local HTC considerably; nevertheless, researchers need to be mindful of the wall HTC 

if inlet HF is increased; Large AR have also shown prevalent nucleate boiling region 

along with improved HTC for churn flow, but these require further verification. 

 Improved heat transfer performance and mixing via geometry manipulations can be 

gained by adding triangular/zigzag cavities at sidewalls, circular/semi-circular re-entry 

shapes with barriers, and trapezoidal/pentagonal designs. However, flow velocity needs 

monitoring as increased flow leads to higher pressure drops; 

 Barriers can improve flow boiling stability depending on the configuration and 

operating conditions. At low Heat Flux (HF), multiple-barrier setup delivers better 

performance; on the other hand, at high HF, fewer/single-barrier had better results. 

Similarly, grooves, wavy, or zigzag configurations appear to suit more in high heat flux 

conditions to provide better stability. However, barriers can also disrupt the flow, and 

provide high friction factors, and flow mixing; thus, care must be taken when 

implementing barriers to ensure the desired effects. As a result, more studies are 

required to establish the previous conclusions; 

 Overall, adding barriers and flow restrictions, in general, have shown positive 

performance improvements in microchannels. For single-phase flows, the addition of 

pin fins provided higher flow mixing and HTC. The general theme also shows that pin-

fins are typically employed to increase the surface area for heat transfer enhancement, 
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but barriers or restrictors show more diverse utilisation. As previous studies indicated, 

it is arguably complex to claim the best setup for either barrier or pin-fin configurations 

as flow boiling instability and pressure depend on several factors and further research 

is needed regarding many dependencies. The same pin-fin may generate significantly 

different results with surface roughness, heat flux, mass flux, aspect ratios, and 

nanofluids. However, the findings from this research and recent studies have shown 

that pin-fin setups can improve flow boiling with reduced pressure drops and instability 

compared to conventional geometries [185,186]. 

Lastly, for sustainability, numerous authors suggested that adopting modern technologies to 

provide better energy-efficient methods will lead to sustainable development and improve 

overall sustainability. Therefore, it can be debated that all MC-based research indirectly 

contributes towards sustainable development. However, sustainability remains a complex 

concept, possessing multiple factors; therefore, finding general research themes is challenging. 

Nevertheless, different experiments could perhaps be categorised into economic, 

environmental, and socially sustainable elements. Consequently, presenting diverse research 

areas to conduct more focused investigations can lead to better long-term sustainable solutions 

— rather than treating sustainability as an after-effect of MC-based studies.  

2.7 Focus on Pin-fin Heat Sinks 

The current challenge in electronic thermal management is to develop miniature heat transfer 

systems capable of dissipating heat quickly and effectively while maintaining the device's size 

and weight. To address these challenges, one promising solution that has gained significant 

interest is pin-fin-based heat sinks [24,25]. Pin-fin heat sinks consist of small pins that increase 

the available surface area for heat transfer. By facilitating more efficient heat transfer, pin-fin 

heat sinks can cool electronic gadgets and extend their lifespan [26]. 

The recent extant literature trends highlight diverse experimental and numerical 

investigations to identify potential solutions to enhance fluid flow and heat transfer 

performance via pin-fin-based heat sinks; these methods include design modifications 

[26,187], surface modification [10], nanofluids [188,189], phase change materials [190], two-

phase flows [191], inducing flow instabilities [192], amongst many other strategies [193]. 

Nonetheless, the literature indicates that design or geometrical adjustments mainly remain the 

focus. To illustrate, İzci et al. [194] numerically explored various single-arrangement pin-fins 

with shapes such as circular, square, diamond, triangular, cone, and rectangular fins. The results 
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hinted that rectangular fin had the highest Nusselt Number (Nu) and friction factor, but the 

cone-shaped fins retained the highest thermal performance index. Also, inline-arrangement 

pin-fins having splitter plates with circular and square shapes have been numerically 

investigated by Razavi et al. [195] and Sajedi et al. [196]. They found that utilising splitters 

behind pin-fins reduces pressure drops and thermal resistance; this was more effective in 

circular shapes than square pin-fins. Similarly, the numerical assessment of inline circular pin-

fins has been done many times [197–199]. It was observed that thermal performance has a 

positive relationship with the fin height but negative with the fin pitch; traditional setup of 

opposite positions of inlet and outlet have higher Nu and lower bottom temperature; the gap 

between the pin-fins and the sidewalls can manipulate heat transfer performance significantly.  

Other investigations have analysed triangular [200,201], square [202], rectangular, 

diamond, oblong, elliptic [203], cones [204,205], hemispherical [206], alternative dimples 

[207], multi-bulges [208], micropillars [209], textured [210], curved/inclined [211], splitter 

inserts [212], and grooves [213–215]; it was noted that the porosity and the angle of the fins 

have a great impact on the thermal performance; diamond-shaped fins had higher Nu, 

rectangular-shaped had higher pressure drops, and adding splitters, deep grooves, domes, and 

increasing the circular diameter — whilst reducing the spacing between the fins — improves 

heat transfer. Additionally, experimental investigations on pin-fin heat sinks have been carried 

out; however, these are less common than numerical studies, primarily due to the costs and 

difficulties involved in producing microscale pin-fins and heat sinks. Experimental studies 

having pin-fins exist in conventional shapes such as circle [216–218], semi-circle [219], 

conical [220], square [221], diamond , triangle, pentagon, and hexagon [222]. 

For experimental studies, staggered layouts represent a typical strategy [220,223]. Staggered 

arrangement pin-fins show that shape affects the vortex resistance, with a circular shape having 

the maximum resistance and the oval fins maintaining the minimum; the highest heat transfer 

was present in the hexagonal cross-section; circular fins showed the lowest pressure drops; 

also, the porosity and fin diameter affects the heat transfer rate. Due to the comparatively lower 

availability and complexities associated with experimental investigation, many numerical 

studies are cross-validated using other similar experimental/numerical data [224]. For instance, 

Xie et al. [225] appraised thermal and hydraulic performances of microchannel pin-fin heat 

sinks using data from external investigations [226,227]. The results of Xie et al. highlighted 

that in-lined pin-fins at a 30° inclined angle increase secondary flow at the cost of increased 

friction, but a steeper inclined angle doesn't necessarily improve heat transfer; 0° inclined angle 
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performs similarly to other conditions and switching from in-lined to staggered pin-fin 

arrangement had minimal impact on thermo-hydraulic performance; thus, the exact effects of 

staggered and inline pin-fin arrangements still needs a better understanding. Nonetheless, the 

staggered setup is generally more preferred [228,229]. 

Nonetheless, from a design and optimisation perspective, the effectiveness of pin-fin-based 

heat sinks depends on several factors, including the heat sink design, working fluid, and the 

thermal conductivity of the materials. Additionally, pins-fin geometrical configurations, such 

as shape, spacing, and height, can affect the heat transfer rate or coefficient [224]. Thus, the 

optimal design of a heat sink needs consideration of the device's thermal load or heat flux, size, 

shape, and operating environmental conditions [10]. In addition, the fluid flow around heat 

sinks significantly impacts their cooling performance. Increasing the flow rate can enhance 

heat transfer by promoting convective cooling. However, high airflow rates can also increase 

noise levels, induce higher pressure drops, require large fans or pumping power, and ultimately 

affect the device's size and weight. As a result, achieving the optimum balance between cooling 

performance and other design considerations is critical [16]. 

Further appraising more designs, in addition to the conventional geometries, researchers 

have attempted to utilise non-conventional shapes [230] and experimented with wings [231], 

hydrofoil [232], non-linear fins [233], NACA aerofoil pin-fins [229,234–236], irregular 

polygon [237], branched and interrupted [238], U-turn hybrid fins [239], and twisted fins [240]. 

With the recent rise of additive manufacturing-based heat sinks, more complex shapes are 

being explored [241,242]. Most recently, Bhandari et al. produced a review of the effects of 

different common and some unconventional pin-fin shapes [14] Interestingly, bio-inspired 

structures and surface morphologies are also increasingly becoming popular in heat sinks; 

however, the availability of bio-inspired and biomorphic pin-fin heat sink research tends to be 

scarce; the term ‘biomorphic’ refers to designs that use naturally occurring shapes and patterns. 

Recent research suggests some implementation of piranha [243], mushroom-shaped [244], 

tree-shaped [245], petaloid and shark skin-inspired pin-fins [246]. The results related to bio-

inspired pin-fins show superior performance over traditional shapes or geometries. 

2.7.1 Micro pin-fin strategies 

As covered in the earlier section, recent works have highlighted a significant amount of 

research on pin-fin-based heat sinks, relying on traditional geometries [4,8,34]. However, the 

prevalence of micro pin-fins (MPFs) and non-conventional or combined and hybrid pin-fins is 
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an area that requires much more attention to gain a comprehensive understanding of their 

effectiveness for optimal performance [14]. Peles et al. [247] were among the first to examine 

micro-pin fins; they investigated heat transfer and pressure drop phenomena in a micro pin-fin 

bank. A simplified expression for total thermal resistance had been derived, discussed, and 

experimentally validated. The study examined the impact of geometrical and thermo-hydraulic 

parameters on total thermal resistance, finding that pin-fin heat sinks can achieve very low 

thermal resistances comparable to those in microchannel convective flows. An increase in flow 

temperature significantly reduced thermal resistance. Also, another initial research by Siu-ho 

et al. [248] tested a copper micro pin-fin heat sink (MPFHS), finding that existing low Reynolds 

number correlations were inaccurate, highlighting the need for further research into MPF 

thermal and fluid dynamics — this is arguably still the case in recent years.  

Shemelash et al. [249] addressed microprocessor cooling challenges by designing Fibonacci 

phyllotaxis circular MPFHSs. They used multi-objective optimisation and factorial 

experiments to determine optimal parameters: 300 μm height, 122.6 μm diameter, and 130 μm 

phyllotaxis coefficient, with a coolant velocity of 2.263 m/s. This design achieved a maximum 

temperature of 51.6°C and a pumping power of 0.191 W, showcasing superior heat dissipation. 

Xu et al. [246] followed a similar bio-inspired MPF strategy. They investigated petaloid and 

placoid MPFs, inspired by Clematis Montana and Squalus Acanthias; they analysed thermal-

hydraulic characteristics under different conditions and found petaloid fins provided better heat 

transfer but higher flow resistance, while placoid fins had lower resistance but less heat 

transfer. Moreover, a new correlation for the Nusselt number and friction factor showed 

deviations below 2.0% and 4.5%, respectively. 

Roozbehi et al. [250] optimised the MPF geometry for improved performance. They varied 

the vertex angle and relative length and found that a vertex angle of 60° and a relative length 

of 1 provided the best results. This design improved fluid flow, reducing recirculation and 

thermal boundary layer effects, and increased the average Nusselt number by 24.46% and 

thermal performance factor by 23.89% at a Reynolds number of 1,000. Qidwai et al. [251] 

combined microjets and MPF in a cooling system, optimising geometric parameters such as jet 

diameter to pin fin diameter ratio, jet diameter to standoff distance, and pin fin pitch. They 

found that vortex generation significantly influenced heat transfer, achieving optimal 

performance at specific geometric ratios. The jet Reynolds number had minimal impacts. 
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Gupta et al. [252] used numerical simulations and NSGA-II to optimise perforated MPFs 

with square shapes and circular perforations. They focused on maximising the Nusselt number 

and minimising the friction factor while varying design variables. The study found perforations 

did not affect stiffness and provided insights into thermohydraulic features, enhancing the 

understanding of complex cooling systems. Harris et al. [253] also numerically compared 

square MPFs with a novel biomorphic scutoid pin-fin design under different wall-heating 

conditions. The results showed that the scutoid design outperforms traditional pin-fins, 

achieving a higher heat transfer coefficient with lower pressure drop and operating base 

temperatures. Wall heating improved heat distribution but reduced overall heat dissipation; 

pressure drop was more influenced by pin-fin geometry than wall heating conditions. Also, Xie 

et al. [254] studied staggered diamond MPFs in microchannels, analysing pressure drop and 

heat transfer characteristics. They found stable vortex-wake flow at low Reynolds numbers, 

but instability at higher Reynolds numbers affected heat transfer, highlighting the importance 

of vorticity and turbulent kinetic energy in heat transfer. 

Micro pin-fins have also been used in combination with refrigerants. Xu et al. [255] 

developed a petaloid micro pin-fin heat sink (MPFHS) to improve microelectronic cooling. 

They compared the performance of green refrigerants R1234ze(E) and R1234yf with R134a. 

R1234ze(E) showed the highest heat transfer coefficient and lowest frictional pressure drop. 

New correlations were created for the petaloid design, achieving mean deviations of 12.6% for 

heat transfer and 9.9% for pressure drop. Likewise, David et al. [256] investigated a micro pin-

fin microchannel heat sink using R134a refrigerant. They found the heat sink maintained nearly 

uniform temperatures and showed a peak heat transfer coefficient at an exit vapour quality of 

0.55. Their study introduced a cost-effective technique for enhanced cooling performance. 

Additionally, some researchers have investigated micro-pin fins with nanofluids. For 

instance, Ambreen et al. [257] investigated how pin-fin shapes and nanofluids affect heat 

transfer in heat sinks. Nanofluids improved performance for all pin-fin shapes, with circular 

fins performing best. At maximum pressure drop, nanofluids led to significant enhancements 

in heat transfer, with circular, square, and triangular fins achieving Nusselt number 

improvements of 23.1%, 16.5%, and 8%, respectively. On a separate occasion, Ambreen et al. 

[258] used a two-phase Eulerian-Lagrangian model to evaluate a MPFHS with water and 

nanofluids. They found nanofluids improved thermal performance, with the highest average 

heat transfer coefficient enhancement of 16% at higher particle concentrations and optimal 

pressure drop. Also, Keshavarz et al. [259] explored the effects of nanofluids and fin 
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distribution on heat sink performance. Drop-shaped fins increased outlet temperature slightly, 

but reduced pumping work compared to circular fins. Nanofluids like Al₂O₃–water improved 

performance, and staggered fin arrangements provided higher temperatures but required more 

pumping work than in-line configurations. 

Microfluidics cooling is another area where MPF are utilised. Rajan et al. [260] 

demonstrated microfluidic cooling for 2.5-D system-in-packages using integrated MPFHSs 

and 3-D printed manifolds. This approach effectively cooled an FPGA, maintaining core 

temperatures around 30°C while dissipating 107 W of power, with a thermal resistance of 

0.074°C/W, showing promise for high-power applications. Sarvey et al. [261] examined 

microfluidic cooling with a MPFHS integrated into an FPGA. Using deionized water, they 

achieved an average junction-to-inlet thermal resistance of 0.07°C/W, effectively cooling the 

FPGA and demonstrating the feasibility of this method for high-density electronic applications. 

Zhang et al. [262] designed a TSV-compatible MPFHS for high-power 3-D IC stacks, 

maintaining chip temperatures below 50°C at power densities over 100 W/cm². Their design 

achieved a 33% reduction in junction temperature compared to air cooling, demonstrating 

effective cooling for advanced ICs. Renfer et al. [263] utilised vortex-enhanced heat transfer 

in 3D chip stacks using TSVs and MPFs. They achieved up to 230% increase in local Nusselt 

numbers and reduced temperature non-uniformity significantly, improving overall thermal 

performance by up to 190%.  

Other investigations to assess the MPFHS performance were by Shi et al. [237] who 

explored different nozzle shapes for a composite heat sink to manage high heat fluxes in chip 

technology. They found that diamond nozzles achieved the highest local heat transfer 

coefficient but had poor performance on the MPF surface. Square nozzles offered the best 

overall performance with lower thermal resistance and pressure drop, demonstrating effective 

cooling for high-heat flux chips. Han et al. [264] studied subcooled flow boiling in MPF arrays 

under varying conditions. They observed that the heat transfer coefficient decreased with 

increasing heat flux and identified triangular wakes post-bubble nucleation. Their findings 

emphasised the role of vorticity and flow oscillations in heat transfer. Zhang et al. [265] tested 

silicon MPF with different pin sizes, achieving a maximum heat transfer coefficient of 60 

kW/m²K. They found that pin density significantly affects performance and used an empirical 

model to explore trade-offs between electrical and thermal performance. Sarvey et al. [266] 

explored nonuniform MPF heat sinks for cooling integrated circuits with varying power 
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densities. Clustering pin-fins over hotspots and spanning the channel width effectively reduced 

thermal resistance with a modest increase in pressure drop.   

Furthermore, machine learning and artificial intelligence-related research is rapidly 

advancing in pin-finned heat sinks and thermal management for thermal and fluid flow 

predictions [267], performance enhancement [36], external validation [268], evaluation [269], 

design optimisation [270], temperature predictions [271], physics-informed neural networks 

(PINNs) [272], and Bayesian optimisation [273], amongst other applications [274–276]. 

However, the research focusing on micro pin-fins is limited. The flow characteristics from a 

macro to micro scale vary greatly depending on many external and physical factors. 

Nevertheless, some research in MPFHS and machine learning exists. For instance, Markal et 

al. [277] used machine learning to predict flow boiling behaviour in expanding type micro-pin-

fin heat sinks (ETMPFHS). A new database with varying operational conditions was analysed 

using ML models, including Artificial Neural Networks (ANN), Support Vector Machine 

(SVM), Regression Trees (RT), and Linear Regression (LR). Results show that ANN is the 

most accurate for predicting heat transfer, temperature, and pressure, followed by SVM, while 

RT and LR were less effective. 

Lee et al. [278] employed a Multimodal machine-learning approach, combining boiling 

pattern images with geometric and operational data, to predict heat transfer in micro-pin fin 

heat sinks. Among the four ML algorithms tested, the Multimodal model excelled, achieving 

high accuracy with a MAPE of 1.81% for maximum temperature and 0.84% for average 

temperature. Zhu et al. [279] found that the conventional machine learning model achieved 

good prediction accuracy with a 4.11% deviation but was limited to the same data domain as 

its training data. By incorporating transfer learning, the model extended its applicability to new 

domains, achieving a similar accuracy with a 4.28% deviation when using 70% of new domain 

data. This demonstrates that transfer learning can effectively broaden the application range of 

machine learning models for predicting heat transfer in mini channels with micro pin fins. 

Kim et al. [280] developed universal machine learning models to predict the thermal 

performance of micro-pin fin heat sinks with various geometries and operating conditions, 

surpassing the limitations of existing correlations. Using a database of 906 data points from 15 

studies, the machine-learning models were compared with traditional regression models. The 

machine learning models achieved mean absolute errors (MAEs) of 7.5–10.9%, significantly 

improving prediction accuracy by approximately fivefold compared to existing correlations. 
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These models also demonstrated superior accuracy for rare geometric shapes and operating 

conditions, such as triangular pin shapes or using R134A as a working fluid, highlighting their 

effectiveness in predicting thermal performance across diverse scenarios. 

As part of our literature scanning, we searched in the Scopus document database to evaluate 

the existing research concerning heat sinks. The search aimed to identify key trends and gaps 

in the literature over the past 25 years. Our initial broad search used the term "heat sinks" within 

abstracts, titles, and keywords, resulting in 29184 publications; this search provided a general 

overview of the development of heat sinks and a research focus on them over the years. It was 

observed that the research in heat sinks has increased exponentially over the years, especially 

in the last three years, as heat sinks are an integral component in achieving thermal management 

and reaching sustainable development goals. 

Moreover, to gain deeper insights, we targeted searches combining "heat sink" with specific 

technologies and methods, such as "micro pin fin" and "machine learning." The search 

combining "heat sink" and "micro pin fin" yielded 458 publications, accounting for 1.6% of 

the total. Nonetheless, it should be noted that not all keywords fully capture the relevance of 

the investigation related to micro pin-fins due to the type of investigation or applications; 

therefore, this relatively small number suggests limited exploration in integrating micro pin-

fin technology with heat sinks despite its potential for enhancing thermal performance. 

Similarly, combining "heat sink" and "machine learning" returned 124 publications, 

representing 0.4% of the total. The application of machine learning in optimising heat sink 

design and performance appears to be emerging, with significant opportunities for innovation 

and development. Notably, searching for "micro pin fin and machine learning" resulted in only 

7 publications. Combining micro pin fin with artificial intelligence resulted in 0 publications, 

indicating a significant gap in this area.  

Although some nature-inspired pin-fin designs exist in different types of heat sinks 

[8,246,255,281], combining hybrid MFS with biomorphic or bio-inspired designs can 

significantly impact the design and efficiency of heat sinks; thus, it is an area that needs further 

investigation. The lack of substantial literature in these niche areas emphasises the need for 

focused and interdisciplinary research. Integrating technologies like MPF and machine 

learning into heat sink design could improve cooling efficiency for electronic devices and 

systems. Therefore, the potential findings of a combined strategy could strongly suggest a 

promising avenue for current and future investigations, impacting industries reliant on effective 
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thermal management solutions. Fig. 2.8 shows the trend of research over the years regarding 

heat sinks and micro pin-fins. 

 

Fig. 2.8 Research trend of micro pin-fin heat sinks 

2.8 Intersection of Machine Learning and Micro Heat Sinks 

The literature on heat sink optimisation and cooling technologies highlights notable progress 

in machine learning (ML) and optimisation algorithms to improve thermal management 

systems. These advancements are vital for enhancing both performance and energy efficiency 

in electronic devices, particularly in applications that demand highly efficient cooling 

solutions. Nevertheless, despite these developments, further investigation is required to fully 

comprehend the underlying mechanisms and to determine how machine learning and artificial 

intelligence (AI) can provide more comprehensive solutions to complex thermal challenges. 

While the integration of ML and AI in micro heat transfer is a rapidly growing field, it 

remains under-researched. A simple search on Scopus for heat sinks whilst using keywords 

such as 'pin-fins' and 'machine learning' yields just 15 relevant papers. Similarly, searching for 

'flow boiling' combined with 'machine learning' returns only six results. These figures clearly 

illustrate a significant research gap, particularly when compared to more conventional areas of 

heat transfer optimisation. This gap becomes even more apparent when 'machine learning' is 

replaced with 'artificial intelligence,' which further reduces the number of relevant studies. This 

suggests that although these emerging trends are promising, there remains considerable 
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potential for developing AI-driven methods to enhance heat transfer performance, particularly 

in complex systems involving phase change, such as flow boiling. 

The existing literature can be broadly divided into three primary areas of focus: design 

optimisation, cooling technologies, and machine learning applications. Design optimisation 

typically centres on improving heat sink geometries—such as pin-fin configurations and 

microchannels—to maximise heat dissipation while minimising pressure drop. Cooling 

technologies, on the other hand, explore innovations in nanomaterials, surface modifications, 

and hybrid cooling systems that offer avenues for more efficient thermal management. 

However, the role of machine learning in these fields is still in its early stages. 

There has, however, been growing interest in machine learning applications, particularly in 

the classification of boiling regimes and identification of flow patterns. Studies in this area 

investigate how ML models can improve the prediction, classification, and real-time 

monitoring of boiling processes and flow behaviour. This capability is particularly important 

for the reliability and performance of cooling systems in applications where phase change plays 

a significant role. These studies can be grouped into three main categories: boiling regime 

classification, flow regime identification and prediction, and bubble dynamics modelling. Each 

of these areas presents distinct challenges and opportunities, particularly when considering the 

integration of machine learning algorithms that can adapt and improve with real-time data. 

However, it is important to note that current ML and AI models are data-intensive, prone to 

overfitting, and may lack the agility needed for product development cycles. Thus, low-data-

driven solutions are required to foster more agile and adaptable design frameworks. 

The following sections will provide a detailed thematic review, examining recent 

contributions within these areas, critiquing the innovative methodologies employed, and 

highlighting where further research could yield the most significant impact. 

2.8.1 Design Optimisation of Heat Sinks 

Abdollahi et al. [282] explored the impact of square perforations in parallel finned heat sinks, 

demonstrating that peak performance occurs at high Reynolds numbers (39,900). Their 

combinatorial algorithm outperforms neural networks in this case, suggesting that traditional 

optimisation methods still hold value for specific applications. Zohora et al. [283] introduced 

novel pin-fin designs in microchannel heat sinks, including circular perforated fish fins and 

elliptical fins, with the latter reducing pressure loss by 67%. These innovative shapes underline 

the potential of unconventional geometries in thermal optimisation. Yang et al. [284] combined 
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deep learning and genetic algorithms to optimise pin-fin structures, employing pix2pix 

networks to predict temperature and pressure distributions. Their approach suggests promising 

opportunities for square pin-fins and integrating advanced neural networks with simulations to 

drive further optimisation. Shaeri et al. [285] utilised artificial neural networks (ANN) and 

greedy search algorithms to optimise air-cooled plate-finned heat sinks, focusing on reducing 

weight while maintaining heat transfer efficiency. Their effective analysis of performance 

versus structural integrity shows the importance of ensuring thin fins remain structurally sound. 

Suzuki et al. [286] applied random forests and neural networks to predict heat transfer and 

pressure loss in lattice-structured heat sinks, simplifying the design optimisation process by 

identifying four parameters, thus reducing computational power without sacrificing accuracy. 

2.8.2 Advanced Cooling Technologies 

Aldaghi et al. [287] explored hybrid cooling technologies combining multi-walled carbon 

nanotube (MWCNT) nanofluids with forced air convection and phase change materials 

(NPCM). The study identifies the RL-GMDH deep learning model as particularly effective for 

predicting PCB temperatures, showing the potential for hybrid cooling in preventing chipset 

overheating. Salari et al. [288] examined energy storage material (ESM) configurations in heat 

sinks, discovering that separating the material (HS-ESM-II) significantly enhances cooling 

performance. Their use of Random Forest and the Harris Hawks Optimiser to fine-tune these 

configurations underscores how machine learning can optimise complex systems for maximum 

efficiency. Farahani et al. [289] explored microchannel heat sinks utilising wavy structures, 

non-Newtonian fluids, and porous media, achieving an 80% improvement when combined with 

phase change materials. This research highlights the potential of hybrid systems combining 

different materials and geometries to elevate thermal performance. 

2.8.3 Machine Learning and Predictive Models for Thermal Systems 

Aksoy et al. [290] optimised heat sinks produced via Direct Metal Laser Sintering (DMLS), 

achieving a 99.8% accuracy rate with an ensemble-ANN algorithm. Their integration of an 

interface program for comparing experimental and model results demonstrates the potential for 

real-time applications in thermal management. Bard et al. [291] utilised support vector 

machines (SVM) to predict heat transfer coefficients during flow boiling in 

mini/microchannels. Despite a mean absolute percentage error (MAPE) of 11.3%, the study 

highlights the challenge of managing outlier data, especially in water-based systems. Herring 

et al. [292] leverage polynomial regression, random forest, and neural networks to optimise 
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air-cooled heat sinks, significantly reducing design lead times using large CFD datasets. This 

approach is particularly beneficial for industries like electronics, where rapid design iteration 

is critical. Shanmugam and Maganti [293] compared the performance of multiple machine 

learning models (ANN, XGBoost, LightGBM, and KNN) in predicting thermal resistance in 

microchannel heat sinks, with XGBoost performing exceptionally well (R² = 0.98). Their study 

underscores the importance of feature selection in enhancing model precision. Mengesha et al. 

[294] contrasted support vector regression (SVR) with kernel ridge regression (KRR) for 

predicting heat transfer coefficients, achieving an accuracy within ±1.9% of simulated values. 

Their findings suggest that these models can serve as computationally efficient alternatives to 

traditional methods. Ghosh et al. [295] employed multi-fidelity Bayesian optimisation, 

combining low and high-fidelity simulations for gas turbine cooling. This hybrid technique 

significantly reduces computational costs while boosting heat transfer efficiency, showcasing 

the value of integrating diverse data sources in thermal management. 

2.8.4 Boiling Regime Classification 

Barathula et al. [296] leveraged machine learning to classify boiling regimes using acoustic 

data from pool boiling experiments. Their decision tree ensemble model surpassed binary 

decision trees and naive Bayes, providing high accuracy and rapid inference. This method 

significantly improves real-time safety monitoring, which is essential in systems where boiling 

regimes can unpredictably shift, such as cooling systems. Hobold and Silva [297] utilised 

machine learning to classify natural convection, nucleate boiling, and film boiling, based on 

low-resolution images from pool boiling experiments. The use of support vector machines 

(SVM) and neural networks achieved an accuracy of over 93%, highlighting the power of 

visual data for regime classification, even when direct physical measurements are absent. 

Loyala-Fuentes et al. [298] developed machine learning models such as K-nearest neighbours 

(KNN), random forests, and multilayer perceptrons to classify flow regimes in pulsating heat 

pipes. Drawing on data from two fluids, their best models produced a flow pattern map that 

enhanced predictions of regime transitions, reducing uncertainty significantly. Ooi et al. [299] 

applied machine learning to classify boiling flow regimes in a vertical annulus channel, using 

support vector machines and KNN. A self-organising map (SOM) identified global regimes 

from conductivity probe signals, with classification accuracy exceeding 90%, demonstrating 

ML’s ability to categorise flow regimes even with limited sensor data. Manikonda et al. [300] 

focused on vertical gas-liquid flow regime classification in the oil and gas sector. Their study 

found KNN to be the most effective model, achieving 98% accuracy in distinguishing between 
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flow types like bubbly, slug, and churn. The KNN model outperformed multi-class SVMs and 

clustering methods, proving its effectiveness in real-world applications like flow control. 

2.8.5 Flow Regime Identification and Prediction 

Seal et al. [301] classified two-phase flow patterns of R-134a in inclined tubes using artificial 

neural networks (ANNs), achieving over 98% accuracy. Their use of Principal Component 

Analysis (PCA) for dimensionality reduction, followed by convolutional neural networks 

(CNNs) for enhanced image classification, resulted in real-time performance, making the 

method particularly valuable for industrial heat transfer systems. Zhu et al. [302] enhanced 

flow regime identification by mapping bubble distributions to machine learning features, 

attaining 86% accuracy in identifying three global flow regimes (e.g., bubbly, slug). This study 

introduced a new criterion for transitioning between bubbly and slug flow, offering insights 

into flow dynamics under boiling conditions. The use of unsupervised learning methods such 

as K-means and K-medoids underscores the importance of clustering techniques in flow regime 

identification. Schepperle et al. [303] developed a binary image segmentation method 

combined with a U-Net-based CNN to identify flow regimes and void fractions in 

microchannel flow boiling. Achieving a Dice score of 99.1% for image segmentation and 91% 

accuracy in flow regime classification, this method demonstrates the power of CNNs in 

analysing intricate flow patterns, particularly in applications requiring detailed visualisation. 

2.8.6 Bubble Dynamics and Heat Transfer Modelling 

He et al. [304] applied machine learning to predict bubble departure frequency in subcooled 

flow boiling, testing nine regression models on data from four fluids. The XGBoost model 

outperformed traditional methods, providing reliable predictions and surpassing conventional 

empirical correlations. This study makes a strong case for the replacement of traditional 

predictive models with machine learning techniques in boiling heat transfer applications. 

Hobold and Silva [305] showed how neural networks could estimate heat transfer in boiling 

processes using only visual data, with models achieving errors as low as 7%. This approach 

offers a real-time, non-invasive method for monitoring heat flux, with potential for low-cost, 

compact applications, such as those involving Raspberry Pi systems. Seong et al. [306] used a 

U-Net-based CNN to segment and track wall-attached bubbles in high-speed video images of 

boiling, achieving over 90% accuracy in bubble detection. Validated against infrared 

thermometry, the model estimated boiling parameters with a ±20% accuracy. This combination 

of visual data and machine learning highlights the potential for improving bubble dynamics 
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modelling without intrusive sensors. Suh et al. [307] applied CNNs and object detection 

algorithms to predict boiling curves based on bubble dynamics, achieving a mean error of just 

6%. This method provides an automated alternative to traditional heat transfer measurements, 

offering valuable insights for both research and industrial applications. 

2.8.7 Research Gaps 

In recent years, a substantial body of research has focused on optimising heat sink designs to 

enhance heat transfer while minimising pressure drop. These efforts, often leveraging 

computational models and machine learning techniques, underscore the importance of 

balancing thermal efficiency with other critical factors such as structural integrity and 

mechanical stresses. Despite the promising results obtained through machine learning, many 

studies remain constrained by their reliance on idealised simulations. Consequently, one of the 

key research gaps involves the need for integrated approaches that account for real-world 

constraints, including material limitations and mechanical durability. Moreover, the heavy 

dependence on simulation data highlights the pressing requirement for experimental validation 

to ensure practical applicability. 

Another prominent area of innovation is the exploration of advanced cooling materials, such 

as nanofluids and phase-change materials, which have demonstrated substantial potential in 

improving heat transfer. However, the literature reveals several unresolved challenges, 

including fluid stability, material compatibility, and long-term cost implications. For instance, 

the degradation of nanofluids and the repeated cycling of phase-change materials raise 

concerns regarding the durability and commercial viability of these systems. Addressing these 

factors through long-term studies and real-world testing is essential for advancing the field. 

Appraising the current literature, machine learning has proven invaluable for predicting heat 

transfer, optimising thermal management designs, and reducing computational costs. 

Nevertheless, the reliance on large datasets introduces new challenges, particularly in cases 

where experimental data is scarce or difficult to obtain. Additionally, while machine learning 

models demonstrate impressive accuracy in controlled environments, their robustness under 

varying operational conditions remains an open question. This signals a significant gap: future 

research should focus on adapting these models to more complex, real-world datasets. 

The convergence of machine learning techniques with innovative materials has led to 

considerable advancements in thermal management. Despite these technological strides, 

practical implementation encounters several hurdles, notably scalability, cost, and the need for 
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extensive real-world validation. Future investigations should prioritise the integration of 

experimental validation with computational models, exploring the long-term reliability of 

hybrid cooling systems. Additionally, refining machine learning algorithms to manage the 

complexity and variability of real-world scenarios remains a crucial research gap. 

Machine learning, particularly, deep learning techniques such as convolutional neural 

networks (CNNs) and decision trees, has demonstrated significant efficacy in classifying 

boiling and flow regimes. Techniques such as decision trees, support vector machines (SVM), 

and k-nearest neighbours (KNN) have outperformed traditional approaches, offering the 

potential for real-time, non-intrusive monitoring of thermal systems. However, these models 

depend heavily on large experimental datasets, which often do not capture the full range of 

complexities within industrial conditions. Therefore, extending the reach of these models to 

encompass more diverse datasets from different sectors or operational settings is critical for 

ensuring their broader applicability. 

One of the more exciting developments in the field has been the application of CNNs for 

identifying and predicting complex flow regimes, where real-time accuracy and precision have 

consistently been reported. This synergy between advanced image processing and machine 

learning holds promises, yet it also exposes another research gap. While these models perform 

well in controlled settings, they need validation on industrial-scale systems to confirm their 

robustness across diverse fluid flow conditions. Future research should thus focus on 

integrating machine learning techniques with broader datasets to ensure these models remain 

effective across varying operational environments. 

In sum, machine learning techniques such as CNNs, XGBoost, and KNN are reshaping the 

field of thermal management through enhanced real-time monitoring and more precise 

predictions of flow and heat transfer. Despite these successes, the research community faces 

several critical gaps. The key gap among them is the need to validate these methods on more 

complex, real-world datasets to ensure their utility across various industrial applications. 

Moreover, low-cost, real-time monitoring systems remain a priority to facilitate the broader 

adoption of these advanced machine learning techniques in thermal management systems. 

Key Research Gaps: 

1. Integration of Real-World Constraints: More comprehensive models must 

incorporate material limitations, mechanical, and long-term operational considerations. 
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2. Experimental Validation: A significant gap persists in validating machine learning-

based optimisation models with experimental data to ensure real-world applicability. 

3. Scalability and Cost: Future research should address the challenges of scaling 

advanced cooling systems and reducing their cost to facilitate commercial adoption. 

4. Dataset Limitations: Extending machine learning models to more diverse datasets 

from industrial applications are crucial for improving robustness. 

5. Low-Cost Monitoring Systems: The development of affordable, real-time monitoring 

solutions using machine learning should be prioritised to encourage broader use. 

2.9 Integration of Manufacturing Philosophies  

The literature review and past works have shown the diverse ways manufacturing strategies for 

micro heat sinks [308,309]. However, there is a notable gap in the literature that integrates 

design and manufacturing philosophies within the processes. In designing a novel pin-fin-based 

micro-heat sink, integrating various manufacturing philosophies, sustainable practices, and 

design thinking will be critical for optimising performance, sustainability, cost-effectiveness, 

and efficiency. Each philosophy offers a unique contribution to the development and 

production of innovative designs. The following paragraphs highlight the importance of 

different manufacturing philosophies in developing new micro heat sinks.   

Lean manufacturing can be key in reducing material waste during the design and 

fabrication of the micro pin-fin structure. By streamlining the production process and 

eliminating inefficiencies, we can ensure that resources such as metals and advanced 

composites are used effectively, lowering material costs and energy consumption [310]. In 

practice, we can apply lean principles by conducting process audits to identify wastage, 

adjusting workflows, and using simulation tools, such as CFD, to optimise design materials.  

Six Sigma concepts can be applied to maintain precision and accuracy during the micro-

manufacturing process. Given the intricate design of micro pin-fins, controlling variation, in 

dimensions is crucial for ensuring uniform thermal performance across the entire heat sink. Six 

Sigma methodologies will be implemented with advanced quality control measures to monitor 

production variations, and trade-offs, and ensure consistent pin-fin dimensions [311].  

Agile manufacturing allows flexibility throughout the design and development phases of 

the micro pin-fin heat sinks. Rapid prototyping and testing of different pin-fin configurations 

will be critical in determining the optimal design for heat dissipation. Agile methods will be 

applied by maintaining an iterative development cycle, where we will continuously test new 
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pin-fin geometries and combinations, making rapid adjustments to both design and analysis 

processes based on real-time performance data [312].  

Green manufacturing ideas ensure that the production of the micro pin-fin heat sink aligns 

with sustainability goals. By selecting environmentally friendly materials and processes, we 

can reduce energy consumption and emissions during production [313]. Additionally, 

implementing green manufacturing by prioritising materials like recycled metals or 

composites, and adopting energy-efficient fabrication techniques, such as low-energy micro-

machining processes, will minimise the carbon footprint of each heat sink.  

Design for Manufacturing and Assembly (DFMA) enables feasible designs, and cost-

effective and allows easy assembly for experimentation. By simplifying the design, reducing 

the number of components, and using materials that are both sustainable and efficient, we can 

create a heat sink that is easier to manufacture at scale while maintaining or even improving its 

thermal performance. DFMA will be applied by optimising pin-fin geometry for easy 

integration into existing manufacturing lines, minimising assembly steps, and using modular 

components to reduce costs and complexity [314].  

Total Quality Management (TQM) embeds quality throughout the development and 

production of the micro pin-fin heat sinks. By fostering a culture of continuous improvement 

(Kaizen), TQM will ensure that each design and production stage—from material selection to 

final assembly—adheres to stringent quality controls. We can apply TQM by implementing 

regular cross-functional reviews and quality checks at every stage of the product lifecycle, 

ensuring that feedback is acted on swiftly and integrated into design improvements [315]. 

Just-In-Time (JIT) philosophies can further reduce waste and increase process efficiency. 

By aligning production schedules closely with demand, we can reduce inventory costs. JIT will 

be applied by coordinating closely with suppliers and the in-house manufacturing team to 

ensure that materials such as metals, experimental consumables, and composites are delivered 

exactly when needed, minimising storage costs and reducing waste [316]. 

Sustainable engineering will guide the entire design process by ensuring that each material, 

process, and design decision prioritises minimal environmental impact. This includes selecting 

materials that are abundant, readily available in-house, recyclable and have lower carbon 

footprints, such as advanced composites or bio-based materials [317]. We can apply sustainable 

engineering by conducting explorative life cycle assessments (LCAs) for materials and 

processes used, ensuring that the micro pin-fin heat sink is designed to minimise its impact.  
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Design thinking can foster innovation and user-centric design. By empathising with the 

needs of industries that require high-performance cooling solutions, the design will evolve to 

meet specific operational and thermal management challenges [318]. Design thinking will be 

applied by conducting literature research to understand diverse cooling challenges (this can be 

air-cooled, single-phase water-cooled, and two-phase cooling) on prototypes, and testing 

different pin-fins to ensure the final product is high-performing and tailored to industry needs.  

By carefully considering and implementing these manufacturing philosophies, the 

development of novel designs will benefit from optimised processes, high-quality production, 

and a strong emphasis on sustainability. This holistic approach will allow delivering a product 

that excels in thermal management, is cost-effective to produce, and meets the growing demand 

for environmentally responsible solutions. Fig. 2.9 shows how the integration of manufacturing 

can work in each stage of the design and manufacturing process. 

 

Fig. 2.9 Manufacturing philosophy integration into the research 
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2.10 Summary of Literature Review 

The literature review comprehensively showcased the current research trends and 

fundamentally shaped the methodology and analysis required to address the research questions 

and objectives. Section 2.2's exploration of heat transfer fundamentals provided the theoretical 

foundation for designing this research's experiments and numerical simulations. By grounding 

the assessment of heat sink performance in established principles, the methods developed allow 

for a precise evaluation of innovations in micro heat sink technologies, as per RQ1 and OB1. 

Sections 2.3 and 2.4, focusing on boiling heat transfer mechanisms and thermal management 

techniques, highlighted the specific parameters and conditions essential for experimental 

investigations. These sections are critical for shaping the methodology, especially in the 

context of bioinspired heat sinks, aligning closely with RQ2 and OB2. Furthermore, by 

identifying the flow patterns in boiling systems, these sections also inform the analysis 

techniques—particularly the application of machine learning for flow classification and 

predictive modelling, corresponding to RQ2 and RQ3. 

The review of recent trends in micro heat transfer in Section 2.5, coupled with the findings 

from existing literature in Section 2.6, set the stage for a comparative analysis that informs both 

experimental and simulation phases. These sections clarify which performance metrics—

thermal resistance, pressure drop, etc.—should be prioritised, while also exposing the 

limitations of traditional methods, which this research aims to address with machine learning 

algorithms, linked to RQ2 and RQ3.The analysis of pin-fin geometries in Section 2.7 directly 

impacted the design of experimental models and simulations, ensuring that the methodologies 

test novel bioinspired geometries for thermal efficiency, central to RQ2. Similarly, Section 

2.8's discussion of machine learning drives the development of optimisation algorithms, 

ensuring that the design process is informed by data, improving both heat transfer and 

performance predictions. 

Finally, Section 2.9’s exploration of sustainable design principles and manufacturing 

approaches ensured that sustainability was integrated into the methodology. It shaped how 

performance, cost, and environmental impact are evaluated, aligning with RQ4 and OB4, 

where balancing high performance with environmental considerations is crucial. Ultimately, 

the literature review not only identifies gaps but also informs the structure of the methodologies 

and analytical techniques needed to address them fully. 
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In this literature review, we explored the diverse methodologies employed in recent research 

on micro heat sinks, highlighting their contributions and limitations. By examining a range of 

experimental setups, computational simulations, and machine learning techniques, we identify 

prevailing trends and best practices within the field. The research plans to leverage CFD for 

initial simulations, allowing design assessment, viability, and cost feasibility before making 

necessary adjustments for final manufacturing. Furthermore, we aim to implement data-driven 

machine learning approaches having less reliance on data-intensive models, effectively 

accounting for data availability while promoting smart data usage throughout the optimisation 

process. This strategy ensures that we consider multiple facets of design, performance, and 

sustainability rather than focusing on a single aspect, thereby promoting a holistic solution that 

addresses the complexities of micro heat sink technologies. As gaps remain in the literature, 

particularly in integrating innovative manufacturing philosophies and sustainable design 

principles, by framing this research within this context, we demonstrate how our 

methodological choices build upon and address the identified gaps, paving the way for future 

advancements in heat transfer efficiency. Table 1 summarises the key considerations, trends, 

gaps, and the resulting directions and proposed methods followed as a result.  

Table 1: Summary of trends, gaps, and research direction for the thesis 

Category Existing Trends Identified Gaps Proposed Methods 

Materials Copper-based 

materials, traditional 

fluids like water and 

nanofluids 

Lack of sustainable 

material choices; 

underutilisation of hybrid 

materials; refrigerant use 

Use Aluminium alloys 

for cost efficiency and 

air/water as sustainable 

thermofluids 
 

Heat Sink Design Rectangular, straight 

microchannels, and 

square pin-fin 

geometries 

Limited exploration of 

non-traditional geometries 

like bioinspired, or hybrid 

designs 

Develop novel hybrid 

bio-inspired pin-fin heat 

sinks (e.g., scutoid, 

cruciform designs) 
 

Heat Transfer 

Enhancement 

Use of microchannels 

and pin-fins, surface 

modifications for heat 

transfer improvement 

Over-reliance on basic 

geometries; inefficient 

exploration of turbulence-

inducing features 

Combine strategies to 

induce turbulence, 

vortices, and promote 

efficient flow mixing 
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Simulation and 

Modelling 

Focus on CFD 

simulations for 

performance 

evaluation 

Gaps in predictive 

modelling accuracy and 

lack of integrated ML 

approaches 

Combine CFD 

simulations with ML 

models for HTC 

predictions. 
 

Experimental 

Methods 

Use of standard 

experimental 

techniques with single-

phase systems 

Lack of consensus or 

standardisation  

Investigate both single-

phase and two-phase 

systems, employing 

advanced test rigs and 

experimental data 

validation 
 

Sustainability Limited consideration 

of sustainability in 

heat sink design and 

manufacturing 

Lack of focus on 

sustainable 

manufacturing, energy 

consumption, and carbon 

emissions 

Apply sustainable 

manufacturing to 

optimise material use, 

and reduce energy 

consumption and 

carbon emissions 
 

Manufacturing Use of conventional 

micromachining 

techniques for 

fabrication 

Under-explored use of 

advanced and agile 

manufacturing methods, 

lack of cost and time 

efficiency focus 

Integrate additive 

manufacturing, surface 

treatments, and JIT 

principles for more 

efficient and sustainable 

fabrication processes 
 

Machine 

Learning 

Non-generalisable, 

data-intense machine 

learning models used 

for performance 

prediction 

Still a growing area of 

research. Insufficient 

application of combined 

ML techniques for design 

process optimisation and 

real-time monitoring 

Implement combined 

ML models (ensemble 

PCA, Neural Networks) 

for improved prediction 

accuracy, design 

process optimisation, 

and monitoring 

  



78 
 

Chapter 3: Methodology 

Chapter Precursor: Chinese 

“The journey of a thousand miles begins with one step.” 

(千里之行，始于足下 ) 

— Lao Tzu 

This proverb by Chinese philosopher Lao Tzu mirrors the essence 

of the Methodology chapter and my research journey. Starting my 

PhD amid challenges, each initial step—learning new concepts, 

designing innovative heat sinks, and overcoming resource 

limitations—initiated a significant voyage. The PhD thesis 

methodology was deeply influenced by Chinese collaboration, 

from my principal supervisor to my heat sinks getting 

manufactured in China, and now getting assessed from Chinese 

expert examiners. This reflects how purposeful steps and cross-

cultural cooperation have been essential in progressing toward 

significant achievements in thermal management technologies. 
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3.1 Background to the Chapter 

The research project was methodically divided into four distinct phases, each targeting a 

specific objective. The initial phase involved an exhaustive review of existing literature and 

contemporary developments in thermal management systems, aimed at pinpointing key 

research gaps and directing the course of the investigation. This stage was the foundation for 

selecting appropriate methodologies and defining the scope of subsequent experimental and 

simulation-based work. During this phase, the 5 Whys technique was employed to 

systematically uncover root causes behind identified research gaps, ensuring a focused and 

thorough exploration of the underlying issues. 

In the second phase, iterative numerical simulations were performed, predominantly 

employing computational fluid dynamics (CFD) in ANSYS Fluent. These simulations 

established a baseline for the design and optimisation of heat sinks, wherein various design 

parameters were explored, including geometric configurations and material properties. The 

feasibility and cost assessments conducted at this stage were pivotal in refining the designs, 

narrowing down options to those that demonstrated the greatest potential for high-performance 

heat sinks. To structure this optimisation process, the DMAIC (Define, Measure, Analyse, 

Improve, Control) framework was utilised, guiding the progression from problem identification 

to refined solutions. 

The third phase focused on setting up the experimental test rig, calibration, and extensive 

experimental testing of the newly developed hybrid bio-inspired pin-fin heat sinks, assessed 

for their thermohydraulic performance, specifically, examining the heat transfer coefficient 

(HTC) and pressure drop characteristics. These experimental tests were essential in backing 

the practical viability of the bio-inspired design under real-world conditions. 

Machine learning (ML) techniques were systematically integrated throughout the project as 

part of an adaptive approach to augment design exploration and optimisation. Drawing on data 

from CFD simulations, experiments, external and synthetic data, ML models were developed 

to predict heat transfer metrics across a wide array of design configurations. This significantly 

accelerated the design exploration process by reducing dependence on laborious CFD 

simulations. By training the models on CFD-generated data, when necessary, ML algorithms 

were able to rapidly estimate HTC values for new design variations, thereby expediting the 

optimisation process and enabling a more comprehensive exploration of design possibilities. 

Furthermore, in the latter stages, machine learning played an instrumental role in uncovering 
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patterns and insights not readily discernible through traditional simulation methods. This 

facilitated the identification of critical factors most influential on thermal performance, guiding 

subsequent refinements to heat sink designs. 

The final phase was dedicated to a rigorous critical analysis of the results, concentrating on 

refining methodologies and affirming the robustness of the conclusions. This involved cross-

referencing findings from the literature review, numerical simulations, experimental tests, and 

machine learning predictions. The continuous feedback loop between these methodologies 

ensured that the conclusions were substantiated and that the machine learning models were 

optimally trained to enhance accuracy and process efficiency. Both the 5 Whys and DMAIC 

methodologies were instrumental in this stage, ensuring that all root causes and inefficiencies 

were addressed, resulting in a more streamlined and effective end outcome. 

3.1.1 Research Strategy 

While a comprehensive review of the research methodologies is beyond the scope of this thesis, 

the chosen approach is summarised here. The author's research philosophy was rooted in 

pragmatism, employing a mixed-method design. Pragmatism allows for the flexible application 

of insights to practical problems [319], which proved advantageous in this context, where 

experimental observations and strategic thinking drove data analysis, simulations, and process 

improvements. Although pragmatism is sometimes critiqued for lacking systematic rigour 

[320], this study employed a structured approach that mitigated such criticisms. 

The mixed-method design, combining both qualitative and quantitative approaches, is 

argued to offer more robust solutions [321], despite ongoing debates surrounding its 

methodology [322]. In this research, qualitative insights drawn from existing literature were 

integrated with quantitative data from experiments and numerical simulations. This integration 

was essential for formulating objectives and identifying solutions to manufacturing and thermal 

management challenges. Both approaches were used throughout the investigation, alongside 

various quality management techniques, to address the research problems effectively. 

Descriptive analysis and logical deductions were applied where necessary, establishing 

connections between key concepts, research questions, and data collection strategies. 

To ensure the accuracy and validity of the findings, regular feedback from colleagues, 

technical experts, and supervisors was sought, minimising potential errors in interpretation. 

Reflexivity was an integral part of the quality assurance process, using checklists adapted from 

the works of Tracy [323] and Pimple [324]. Although single-case studies are often critiqued 
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for their lack of generalisability, they are well-suited for detailed, focused investigations [325]. 

Gustafsson [326] posits that while multi-case studies can yield more robust findings, single-

case studies remain appropriate for in-depth exploration, particularly in manufacturing research 

[327–330]. Accordingly, various single-case and multi-case study designs were explored to aid 

the investigation. The findings from these single-case investigations were cross-synthesised to 

develop a comprehensive strategy for the final designs and overall research outcomes. 

Despite any critiques and limitations, the chosen research methodology was justified due to its 

potential for delivering valuable insights, its focus on a relatively unexplored area, and the 

broad benefits it offers at a macro level. The knowledge gained from this investigation can be 

adapted to different contexts. Fig. 3.1, adapted from Saunders et al. [319], visually summarises 

the methodology employed in this study. 

 

Fig. 3.1 Research Onion describing the overall research methodology 

3.2 CFD Simulation Setup 

3.2.1 Geometry Creation and Meshing 

The geometries for the heat sinks, encompassing both traditional and biomorphic pin-fin 

structures, were modelled in SolidWorks based on experimental dimensions. Key components, 

such as the pin fins (solid domain) and (air/water) fluid domain, were incorporated to ensure 

seamless transfer to ANSYS Fluent for meshing and simulation. The CAD model accurately 

replicated the experimental setup’s physical parameters. The meshing process aimed to 
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precisely capture the fluid flow and heat transfer dynamics. Element sizing and mesh 

refinement were focused on areas with high-temperature gradients and critical regions, such as 

the heat sink walls and pin fins; hybrid and multizone meshing were applied when necessary. 

A mesh independence study was conducted to determine the optimal mesh density, ensuring 

further refinement did not significantly alter results. Three mesh types were tested, with 

deviations of less than 2-3% and orthogonal quality values between 0.75 and 1, confirming 

mesh reliability. The refinement ratios of Mesh (II)/(I) and (III)/(II) were above 1.3, providing 

additional validation for grid independence.  

3.2.2 Boundary Conditions and Solver Settings 

The simulation was conducted using a pressure-based solver under steady-state conditions with 

gravity effects disabled due to their negligible influence on fluid flow. The energy equation 

was activated to account for thermal phenomena, and the k-ε turbulence model was employed 

with standard wall functions and near-wall treatment for consistency and computational 

efficiency. Aluminium, akin to the manufactured heat sinks, was used as the solid material, 

while water in its liquid phase served as the air/working fluid. Boundary conditions were 

designed to replicate experimental flow rates, utilising inlet velocity and heat flux as primary 

parameters, with inlet temperatures ranging between 20°C and 25°C to simulate room 

temperature conditions. Outlet pressure was fixed at zero. The SIMPLE algorithm facilitated 

pressure-velocity coupling, with second-order upwind spatial discretisation applied for 

parameters such as pressure, momentum, and turbulence quantities. Mesh interfaces 

incorporated coupled contact regions, and hybrid initialisation was employed. Convergence 

was ensured by reducing a criterion of 10ିହ for continuity, momentum, energy, and turbulence 

equations. The chosen settings provided balanced computational accuracy and efficiency, 

aligning with typical applications of micro heat sink simulations in prior research. Fig 3.2 

shows a sample setup and the boundary conditions followed during the CFD simulations.  
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Fig. 3.2 Sample setup and boundary conditions 

3.2.3 CFD Results and Post-processing 

The CFD simulations provided insights into the fluid flow and thermal behaviour within the 

heat sinks. Velocity profiles highlighted flow distribution around the pin fins, identifying 

regions of recirculation and stagnation. Temperature contours revealed hotspots and areas with 

enhanced heat transfer near pin-fin surfaces. Local heat transfer coefficients were calculated 

from velocity and temperature data, providing a direct measure of thermal performance. 

Dimensionless parameters such as the Nusselt number and Reynolds number characterised 

convective heat transfer and flow regimes, facilitating benchmarking against experimental 

results. The simulations solved the governing equations for mass, momentum, and energy 

conservation in fluid flow and heat transfer. Navier-Stokes equations were pivotal in modelling 

these phenomena. Several pin-fin geometries, including biomorphic/bioinspired and 

conventional designs, were simulated, allowing for detailed comparisons of thermal and flow 

performance in the initial stages. 

3.2.4 Model Validation and Limitations 

Validation of the CFD model was carried out by comparing simulation results with 

experimental data. Heat transfer coefficients and Nusselt Number values from simulations were 

compared to experimentally derived values, ensuring that the model captured real-world 

thermal behaviour. Quantitative error analysis showed a margin of ±10-15%, considered 

acceptable, although errors were minimised further at higher flow rates through mesh and 

turbulence model refinements. Despite successful validation, several limitations were 

acknowledged. Steady-state simulations do not account for transient thermal behaviours such 
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as fluctuating heat loads or fluid oscillations. Although the mesh independence study achieved 

a balance between accuracy and computational cost, further refinement in specific areas, 

particularly around small-scale pin-fin structures, could improve result precision. Additionally, 

while the k-ε turbulence model was effective, it may not fully capture complex flow patterns, 

which could be better addressed using advanced techniques like large eddy simulations (LES). 

3.3 Heat Sink Fabrication Setup 

The manufacturing of the biomorphic micro pin-fin heat sinks was influenced by practical and 

cost constraints. The heat sinks were produced using a 3-axis milling with CNC machining. 

One of the primary considerations was tolerance control during machining. While the chosen 

milling machine easily allowed a tolerance of 0.05mm, achieving a tighter tolerance of 0.01mm 

presented significant challenges. Thus, the relationship between cost and tolerance could be 

approximated by an exponential function—stricter tolerance requirements lead to a rapid cost 

escalation. Therefore, instead of pursuing the tightest possible tolerances, the design prioritised 

aspects like fin spacing and hole dimensions that directly impact heat sink manufacturability 

and performance. The manufacturing setup details can be found in Appendix B and Fig. 3.3 

shows the manufacturing machine and snapshot of the machining process.  

 

Fig. 3.3 Manufacturing equipment and process 

Fin spacing and height considerations: Fin spacing and height were critical design factors. 

With a 1 mm spacing and 1 mm in height, the milling process divides the height into 20 layers, 

each milled at a depth of 0.05 mm. Reducing fin spacing to 0.5 mm requires the milling tool to 

make twice as many passes per layer, effectively doubling processing time and cost. The 

narrower spacing necessitates more frequent, controlled passes because the tool must remove 

material in smaller increments to prevent damage to the adjacent fin walls. This process adds 
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layers or steps, ensuring accuracy and maintaining the structural integrity of each fin. A further 

reduction to 0.1 mm spacing can exceed equipment capabilities, making machining unfeasible 

due to increased time and expense — also going against the agile philosophy. 

Hole processing constraints: Hole processing constraints also influenced the design. The 

length-diameter ratio (hole length divided by diameter) is critical for machining ease. Holes 

with a ratio less than 8 are relatively easy to machine, but as this ratio increases, processing 

difficulty and cost rise exponentially. For very small holes (e.g., 0.5 mm diameter), the 

acceptable ratio becomes even more restrictive. These considerations ensured holes remained 

within manageable ranges for cost-effective manufacturability. 

Inline vs staggered configuration: To further optimise manufacturing efficiency and 

reduce costs, the micro pin-fins were arranged inline rather than staggered. For non-

conventional pin-fins, inline configurations can yield better results [229]. Inline arrangements 

simplify milling paths, reducing tool movement complexity, machining time, and required 

passes. In contrast, staggered configurations demand more complex paths and additional 

passes, increasing time and cost. Inline setups also streamline machine alignment, making the 

process more efficient. Overall, inline designs reduce processing time, complexity, and costs 

and keep production within budget. 

Integration with agile manufacturing concepts: Machining constraints were integral to 

the design strategy, aligning with agile manufacturing principles that emphasise flexibility, 

rapid prototyping, and iterative design [312]. Understanding the exponential cost implications 

of tight tolerances, reduced fin spacing, inline configurations, and challenging hole dimensions 

allowed the design to optimise key parameters for performance without excessive cost and 

time. Choosing a 3-axis milling process enabled rapid prototyping and testing of different 

iterations, quickly identifying feasible designs and balancing performance and 

manufacturability. In summary, agile manufacturing concepts shaped the final heat sink 

designs by iterative refining within practical constraints, achieving a balance between 

innovative geometry, thermal efficiency, and manufacturability. This approach optimised 

production, ensuring the final products could be produced timely, cost-effectively, and meet 

performance requirements. 

Surface Morphology: The scanning electron microscope (SEM) images and 3D depth map 

reveal channel and height variations up to 646.78 µm, featuring consistent grooves typical of 

micro heat sink fabrication due to micro-machining limitations and cost-efficiency needs; the 
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surface had roughness of 0.8 to 1.6 µm. While the SEM image shows surface textures and 

grooves, the 3D depth map provides a broader view, highlighting the overall height variations 

across the surface. The average surface channel depth of around 300-400 µm indicates a fairly 

consistent topography. This structured roughness can enhance heat transfer by promoting 

micro-turbulence, while the high surface homogeneity ensures minimal variation in flow and 

thermal performance. Importantly, the texture affects surface interactions without impacting 

the material’s thermal conductivity, preserving overall heat sink efficiency [331]. Therefore, 

aiming for an improved surface finish is neither a necessary nor cost-effective strategy, as the 

existing texture effectively supports the design's thermal performance requirements.  

The selection of a 3-axis milling process, while limiting in some respects, allowed for rapid 

prototyping and testing of different design iterations. This approach enabled the quick 

identification of feasible designs that balanced performance with manufacturability. In 

summary, agile manufacturing philosophy and concepts were instrumental in shaping the final 

heat sink designs. By iteratively refining the designs within the practical constraints, the 

process achieved a balance between innovative geometry, thermal efficiency, and 

manufacturability. This approach optimised the production process and ensured that the final 

products could be produced timely and cost-effectively while meeting the performance 

requirements. Fig. 3.4 shows the finalised machined part.  

 

Fig. 3.4 Finished machined parts 
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For experimental validation and instrument calibration, a micro/minichannel was fabricated 

in-house, as depicted on the far left of Fig. 3.3. The in-house fabrication of the microchannel 

allowed for a reduction in costs and ensured a swift turnaround. This approach—emphasising 

the internal production of simpler components while outsourcing manufacturing more complex 

parts—reflects efficient manufacturing philosophies aimed at minimising time and cost. 

Nevertheless, the hybrid pin-fins were outsourced and fabricated in China. Utilising the 

advanced CNC machine shown earlier, the process was expedited by directly importing 

SolidWorks or CAD files into the system, thereby reducing the time required for technical 

drawing preparation. Comparable efficiencies were observed when using additive 

manufacturing techniques and will be discussed in the latter chapters. 

As part of the quality assurance process, the surface characteristics of the outsourced pin-

fins were further scrutinised under a digital microscope (KEYENCE Digital VHX-7000 series, 

UK) with scanning electron microscopy (SEM) images and 3D surface graphs employed to 

verify surface consistency. The microscale surfaces were largely even, having been treated with 

alcohol to eliminate impurities and ensure cleanliness, thereby preventing thermal fouling. The 

surface treatment was meticulously controlled to yield a polished finish without compromising 

the intricate pin-fins. Fig. 3.5 outlines the design process, from the initial CAD geometry to the 

machined parts, incorporating SEM imagery and 3D surface profile characteristics of a sample 

pin-fin section. 



88 
 

 

Fig. 3.5 Design quality assurance 

3.4 Hybrid Manufacturing Benefits and Sustainability Analysis 

To evaluate the effectiveness of the hybrid manufacturing strategy, components were divided 

based on complexity and produced through a combination of in-house and outsourced 

manufacturing processes. Simpler components, such as heating bases and straight 

microchannels, were fabricated using in-house facilities at the University of Hertfordshire in 

the UK, leveraging readily available equipment to ensure quality control and minimise costs. 

In contrast, more complex parts, such as micropin-fin heat sinks, were outsourced to a green 

manufacturing company in China. This approach not only took advantage of specialised 

expertise and advanced capabilities at the outsourcing facility but also aligned with sustainable 

manufacturing practices.  

Fully producing in the UK would result in higher costs due to expensive machining and 

labour rates, while full production in China would lead to potential bottlenecks and extended 

shipping times, contradicting the principles of Just-In-Time (JIT) manufacturing. By producing 
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simple parts locally, we were able to leverage JIT philosophies, ensuring that only necessary 

quantities were manufactured without overstocking, thus reducing lead times and minimising 

storage costs. Additionally, the hybrid approach allowed us to retain tighter control over quality 

for critical components while taking advantage of green manufacturing from the manufacturer 

and cost benefits for more intricate parts. Another advantage of this hybrid strategy is improved 

flexibility in managing production changes, enabling a more agile response to market demands 

and design modifications without significantly disrupting the supply chain. 

To ensure the accuracy and reliability of our cost assessments, we consulted with in-house 

manufacturing experts and external collaborators to gather precise data and obtain multiple cost 

estimations from both sides. We chose a neutral USD to match the internal market trading 

standards. This consultation provided insights into machining costs, processing times, shipping 

rates, and material expenses. Further, we cross-validated these findings with data from the 

literature and credible online sources to validate the main parameters such as machining time, 

energy consumption, and carbon emissions. The integration of both primary and secondary 

data sources helped us form a robust basis for calculating overall estimated production costs 

and environmental impacts, ensuring that conclusions were well-founded. 

3.4.1 Main Parameters Driving Costs 

Based on the expertise of local and external technicians, we identified the main factors 

influencing production costs. Each region’s cost drivers were carefully assessed and optimised 

as much as possible. For example, in the UK, no shipping costs were added as components 

were produced and assembled locally, whereas shipping costs were factored in for complex 

parts produced in China. Additionally, despite adopting green manufacturing options to reduce 

energy usage intensity, the production in China still resulted in slightly higher CO₂ emissions 

per kWh compared to the UK. This discrepancy is mainly due to the region’s energy grid 

relying on higher proportions of fossil fuels. Consequently, we finalised the following as the 

primary parameters driving production costs and created a Pandas data frame to model our 

analysis. Fig. 3.6 shows a snippet of the identified main cost-driving factors data frame, used 

for the study, from Python/Google Collaboratory. A 1,000-unit production benchmark was 

followed as a standard unit for scalability and cost assessment. This approach is commonly 

used in the industry to evaluate development and manufacturing costs, providing a consistent 

basis for comparing different production strategies [332]. These parameters provided a 

comprehensive view of cost dynamics, enabling us to assess the impact of varying production 

strategies systematically. 
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Fig. 3.6 Main cost factor parameters 

3.4.2 Impact Assessment and Calculations 

Appendix C shows the full breakdown of the codes, calculations, and units used to calculate 

costs. For brevity, only the main results are discussed here.  The comparison of the Full UK 

Production with the Hybrid Production Strategy revealed substantial benefits. The detailed 

calculations showed that switching to hybrid production resulted in a cost savings of 42.76%. 

The energy consumption was reduced by 28.95%, corresponding to a savings of 1,100 kWh, 

while carbon emissions were lowered by 18.80% (150 kg CO₂). These savings were visualised 

using the bar chart in Fig. 3.7, which highlights the relative impact of each savings category.  

The enhanced visualisation highlighted the cost savings driven by lower machining and 

material costs in China for complex pin-fin structures, while energy savings were achieved by 

utilising China’s less energy-intensive processes for these parts. The carbon emissions 

reduction, although not as significant as the cost savings, still demonstrates the hybrid strategy's 

positive environmental impact, aligning with sustainable manufacturing goals. The hybrid 

approach thus effectively balances economic and environmental performance, making it a 

viable solution for the production of micro heat sinks. 
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Fig. 3.7 Savings for different categories 

3.4.3 Verification of the Hybrid Strategy through Machine Learning 

To further verify the impact of the hybrid strategy, machine learning techniques were utilised 

to compare the predicted production costs with the actual costs. Using two machine learning 

models—Linear Regression (LR) and Random Forest (RF) —we predicted production costs 

based on key features such as units produced, production type, machining costs, labour rates, 

and shipping expenses. The models were evaluated using Root Mean Squared Error (RMSE) 

and R² (R-squared) to assess their accuracy. 

The Linear Regression model achieved an RMSE of 30,983 USD and an R² of 0.888, 

indicating that it captured general cost trends but struggled to model the complex variations. In 

contrast, the Random Forest model showed significantly better performance, with an RMSE of 

11,116 USD and an R² of 0.986, demonstrating its ability to account for non-linear relationships 

and interactions between different production factors. This high accuracy added confidence to 

the hybrid manufacturing strategy, as the model’s predictions closely aligned with the actual 

cost outcomes. The initial cluster of points at the start denotes the same type of random 

initialisation for the type of production happening that is 0 or 1, and it is not an issue.  

Fig. 3.8 shows the visualisation of “Actual vs. Predicted Costs” using both models, and it 

further validates the chosen hybrid approach. The Random Forest predictions were clustered 

closer to the perfect prediction line, confirming the model’s reliability in capturing the cost 

dynamics of the hybrid production strategy. The strong predictive performance of the machine 
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learning model thus reinforces the feasibility and effectiveness of hybrid manufacturing, 

supporting the decision to adopt this strategy over full local or outsourced production.  

 

Fig. 3.8 Actual vs Predicted cost comparison 

Overall, the hybrid strategy not only reduced costs and improved sustainability but also 

enabled agile and efficient production management. This approach leveraged data-driven 

insights and expert consultation, combined with rigorous verification using machine learning, 

to comprehensively evaluate the manufacturing process. The resulting savings and 

environmental benefits made the hybrid production strategy an optimal solution for micro heat 

sink production, aligning with both economic and sustainable manufacturing objectives. 

3.5 Experimental Setup 

The setup involves a closed-loop flow circulation system suitable for single-phase and two-

phase flows, designed to study heat transfer and flow dynamics in mini/microchannels and 

micro pin-fin-based heat sinks. Key components include a Masterflex gear pump (GJ-N23-

PF1SA, UK), data loggers (Thermo Fisher Scientific DT80), a flow meter (Omega FTB332D-
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PVDF, USA), a pressure transducer (Omega PX2300, USA), a microscope (KERN OZM-5, 

Germany), thermal bath (Cole Palmer StableTemp Digital Bath, UK), and a 320W power 

supply. A desktop computer was the base for setup initiation, control, and data storage. The 

DT80 data tracker monitored temperature distribution along the heat sink and system 

inlet/outlet while maintaining the water bath temperature. The experimental section was 

positioned horizontally, with the heat sink's temperature monitored by evenly spaced K-type 

thermocouples (RS-397–1589, UK) to prevent localised heating effects. Table 2 summarises 

the major equipment, range, and accuracy. 

Table 2: Experimental equipment range and accuracy 

Equipment Model Manufacturer Range Accuracy 

Gear Pump GJ-N23-PF1SA MasterFlex (UK) -- ±0.1% 

Flow Meter FTB332D-

PVDF 

Omega (USA) 0.1– 1 l/min ±6% 

Pressure 

Transducer 

PX2300 Omega (USA) 0 – 1 PSID ±0.25% 

Power Supply PS 2084-10B Elektro-Automatik 

(Germany) 

Voltage: 0 – 84 V <0.2% 

   
Current: 0 – 10 A <0.3% 

Thermocouples RS-397–1589  

(K-type) 

RS Components 

(UK) 

Temperature: 

-75 – 260 °C 

±1.5 °C 

 

The flow originates from the thermal bath, which also serves as a storage tank. In this case, 

a gear pump circulates the working fluid—deionised water through the pipes to the 

experimental section (anticlockwise, from left to right). The fluid passes through an 

electromagnetic flowmeter, where the flow rate is measured along the way. A pressure 

transducer positioned behind the microscope records the pressure difference between the inlet 

(left port) and the outlet (right port). After passing through the experimental section, the fluid 

is cooled in an air-cooled radiator before returning to the thermal bath and then to the pump for 

recirculation, completing the closed-loop system. Fig. 3.9 shows the setup, instruments, and 

schematic diagram for a better understanding of the experimental setup’s working mechanism.  
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Fig. 3.9 Experimental setup and instruments 

3.5.1 Heat Sink Material and Working Fluid 

Aluminium was selected for the fabrication of micro heat sinks due to its distinct advantages 

over copper and other metals. Its primary benefit lies in cost-effectiveness, as aluminium is not 

only less expensive than copper but also easier to machine, particularly when handling intricate 

microstructures such as pin-fins and microchannels. Additionally, aluminium's lower density 

renders it significantly lighter, a critical consideration in applications where weight 

minimisation is paramount, such as aerospace engineering and portable electronic devices. 

Although copper boasts superior thermal conductivity, aluminium remains highly efficient at 

the microscale, owing to the increased surface area-to-volume ratio that is characteristic of 
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micro heat sinks. Moreover, aluminium naturally forms a thin oxide layer that offers superior 

corrosion resistance compared to copper, thus ensuring greater durability and longevity in 

diverse environmental conditions, including both single and two-phase flows. Its malleability 

further enhances its suitability, facilitating the precise fabrication of complex designs, which 

is crucial for the advancement of micro heat sink technologies. 

Concerning the working fluid, deionised water was selected over conventional refrigerants 

for several compelling reasons. A review of the literature identified it as the most commonly 

utilised working fluid. Deionised water offers a higher specific heat capacity and thermal 

conductivity, making it more effective in absorbing and transferring heat. Additionally, it is 

environmentally friendly, as it avoids the high global warming potentials of many refrigerants 

and aligns with sustainable engineering principles. Furthermore, deionised water is non-toxic 

and non-flammable, thereby, presenting none of the chemical hazards typically associated with 

refrigerants, which can be dangerous to handle and store. Its high latent heat of vaporisation 

makes it particularly efficient in two-phase cooling systems, where rapid heat dissipation is 

essential. Lastly, deionised water is both inexpensive and widely available, making it ideal for 

experimental applications, particularly when large volumes or extended testing periods are 

required, following Just-In-Time (JIT) principles. In contrast, refrigerants tend to be costly and 

subject to strict regulatory controls. 

3.5.2 Wall Temperature Variations 

To improve adaptability and ensure efficient changeovers in the experimental setup, a 3D-

printed housing was created to encase the heat sink/test section. The heat sinks were attached 

to a heating block equipped with six RSPro 300W heaters along its length. RS PRO Non-

Silicone Thermal Grease (4W/m·K) was applied at the contact interfaces to enhance heat 

transfer. Temperature measurements were taken using five K-type thermocouples placed 

equidistantly and parallel to the heating block, providing a detailed temperature profile. To 

assess the temperature distribution, any potential heat loss, and the impact of the thermal grease 

between the contact surface, an additional thermocouple was positioned 10 mm above the 

heating block to monitor the temperature at the centre of the heat sink wall that is attached to 

the heating block. The new 3D-printed casing (FormLabs Rigid 10K resin, USA) allows for 

quick changeovers in single-phase flow, and it is also adaptable to high-temperature two-phase 

boiling conditions due to its high melting point of the resin (over 170°C), heat deflection 

temperature at 0.45 MPa (218 °C), low thermal expansion coefficient (46 μm/m/°C for 0–

150 °C), and ability to prevent heat loss due to low thermal conductivity (0.83 W/m·K). Given 
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the resin’s thermal properties, temperature gradients between the fluid-solid interface and 

measurement points remain minimal, ensuring accurate readings without significant need for 

correction. For transient states, these material characteristics maintain stable temperature 

measurements, confirming negligible influence. Fig. 3.10 shows the modified experimental 

casing and the dimensions and details of thermocouple and heater placements. 

 

Fig. 3.10 Housing modification and dimensions for a detachable heat sink setup 
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The original acrylic setup was effective in minimising heat loss. Thus, due to the 

modification, one of the primary goals was to assess wall temperature differences and potential 

heat loss under various power outputs (100W, 150W, and 250W) as the heating block was 

heated from 20°C to 100°C under natural convection conditions; the dimension for the heating 

area is (80 mm x 60mm). The average temperature across the heating block wall (𝑇௔௩௚), 

measured by the five parallel thermocouples, as compared to the temperature at the centre of 

the heat sink wall (𝑇௖) recorded by the additional thermocouple. Results showed a temperature 

profile difference of 2 - 3% between 𝑇௔௩௚ and 𝑇௖ at all power levels. As we are using the 𝑇௔௩௚ for 

calculation of different thermal parameters, it was necessary to understand the effect of the 

thermal grease layer (between the heating block and the detachable heat sink) on the 

temperature difference; hence, the value of 𝑇௖ was cross-checked to ensure minimal impact.  

This slight 2-3% variation can be attributed to several factors: the residual thermal 

resistance of the thermal paste, which, despite enhancing heat transfer, still presents a minor 

barrier; differences in thermocouple placement, with the embedded thermocouples and the 

external one under the heat sink experiencing slightly different thermal environments due to 

height variation; and the inherent measurement accuracy of the thermocouples, which typically 

have a margin of error of ±1.5°C; this value encompasses both the intrinsic accuracy of the 

thermocouples and the minor differences observed due to height variation between the 

embedded and external thermocouples and due to the effect of the thermal grease layer’s 

conductivity. The 2-3% variation can be considered acceptable as it falls within the expected 

range of measurement uncertainty and does not significantly impact the overall thermal 

performance assessment. In terms of overall heat loss of the system from the housing, it varied 

between 11% to 16.4% for power outputs of 100W, 150W, and 250W. Fig. 3.11 shows the wall 

temperature distribution at different powers with times.  

Along with the adaptability benefits, the detachable setup promotes efficient material and 

component usage by allowing the same heating block to be used with different heat sink 

designs, enabling quick turnover times when experimenting with various configurations. This 

flexibility is crucial for optimising thermal management solutions and enhances the efficiency 

of the experimental process — in alignment with the sustainable and agile manufacturing 

philosophy followed in this research. Moreover, by leveraging technologies such as additive 

manufacturing instead of traditional machining processes and 3D-printed resin instead of 

acrylic glass, this approach provides an alternative, effective, and sustainable method for 

experimenting with thermal management and heat dissipation under varied conditions. 
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Fig. 3.11 Wall temperature variations for heating blocks and heat sinks 

This slight variation can be attributed to several factors: the residual thermal resistance of 

the thermal paste, which, despite enhancing heat transfer, still presents a minor barrier; 

differences in thermocouple placement, with the embedded thermocouples and the external one 

under the heat sink experiencing slightly different thermal environments due to height 

variation; and the inherent measurement accuracy of the thermocouples, which typically have 

a margin of error of ±1.5°C. The 2-3% variation can be considered acceptable as it falls within 

the expected range of measurement uncertainty and does not significantly impact the overall 

thermal performance assessment.  Along with the adaptability benefits, the detachable setup 

promotes efficient material and component usage by allowing the same heating block to be 

used with different heat sink designs, enabling quick turnover times when experimenting with 

various configurations. This flexibility is crucial for optimising thermal management solutions 

and enhances the efficiency of the experimental process — in alignment with the sustainable 

and agile manufacturing philosophy followed in this research. Moreover, by leveraging 

technologies such as additive manufacturing instead of traditional machining processes and 

3D-printed resin instead of acrylic glass, this approach provides an alternative, effective, and 
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sustainable method for experimenting with thermal management and heat dissipation in 

electronic and mechanical systems, ensuring reliable performance under varied conditions.  

3.5.3 Experimental Validation 

Experimental validation plays a critical role in establishing the accuracy and reliability of any 

scientific investigation. To validate our experimental test rig, the results were benchmarked 

against the well-recognised Shah model [333], a widely used method for predicting the Nusselt 

number under laminar flow conditions with constant heat flux, as outlined in Eq. (6). The Shah 

model has been consistently cited as a reliable reference in various studies [334,335], making 

it an ideal standard for validation. Additionally, for a more robust comparison, findings were 

evaluated against those of Babar et al. [44], who employed a similar experimental apparatus. 

To quantify the accuracy of our results, we calculated the mean absolute error (MAE) 

[229,336], as demonstrated in Eq. (7). The MAE values consistently remained below 1.5, which 

is deemed acceptable, thus confirming that our experimental data aligns closely with both the 

Shah model and Hamza et al.’s findings. Fig. 3.12 shows the experimental validation graphs at 

two power outputs 100W and 150W. 
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Fig. 3.12 Experimental validation 
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In small-scale experiments, particularly those at the micro or mini level, uncertainty analysis 

is essential to ensuring that the experimental results reflect reality with precision. It is not 

merely a matter of conducting the experiments, but of carefully accounting for potential errors 

arising from the measuring instruments involved. Following established methodologies 

employed by other researchers, an uncertainty analysis was conducted to provide a firm 

foundation for interpreting our experimental data and enhancing the reliability of the outcomes. 

Using a series of equations (Eq. 8–12), uncertainties for key parameters were determined. The 

highest uncertainties, observed in the hydraulic diameter, Reynolds number, and Nusselt 

number, were 1.41%, 6.18%, and 7.39%, respectively. Whilst these values are low, it is 

important to acknowledge that they do not fully negate the limitations inherent in small-scale 

experimental setups. A more detailed breakdown of instrument accuracy is provided in Table 

3, which summarises the precision of each instrument utilised during the study. 
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Table 3: Measuring apparatus range and accuracy 

Instrument Range Accuracy 

Flowmeter 0.1 – 1 l/min ±6% 

Thermocouple -75 – 260 °C ±1.5 °C 

Pressure Transducer 0 – 1 PSID ±0.25% 

Power Supply 0 – 84 V 

0 – 10 A 

Voltage < 0.2% 

Current <0.3% 
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3.6 Machine Learning Setup 

Machine learning algorithms are generally categorised into three types: prediction, 

classification, and clustering. Each type plays a crucial role in modelling and analysing 

complex systems. In the context of this study, a combination of supervised, semi-supervised, 

and unsupervised methods was employed to holistically address the challenges in the thermal 

management of heat sinks. These methods were applied and adapted at various stages of data 

analysis to enhance both predictive accuracy and system performance, contributing to the 

development of optimised heat transfer solutions. 

3.6.1 Role of Machine Learning and Artificial Intelligence  

Artificial intelligence (AI) and machine learning (ML) played a pivotal role in this research, 

offering advanced tools to enhance the design and analysis of micro heat sinks. These 

techniques were employed to provide quick performance indicators, enabling efficient 

identification of optimal designs. They also facilitated the prediction of key heat transfer 

metrics, supported the development of correlation models, and contributed to the verification 

and validation of results. AI-powered classification methods were used to identify flow boiling 

regimes, while clustering-based data pipelines were developed for effective monitoring and 

data analysis potential. This integration of AI and ML streamlined the research process, 

ensuring accurate and data-driven insights across multiple aspects of the study. 

3.6.2 Data Collection and Processing 

Data used in this thesis were acquired through a combination of experimental studies, 

numerical simulations, and external sources. Experimental data came from single-phase and 

two-phase flow experiments conducted as part of this research. Numerical simulations were 

performed using ANSYS Fluent, generating key parameters such as fluid velocity, temperature 

distribution, and design specifications. Additionally, external datasets from the literature were 

incorporated, particularly for cost and sustainability analyses. These diverse data sources were 

combined to generate a local dataset for machine learning. 

In the pre-processing phase, outliers were identified and removed, and missing data points 

were imputed using either median or K-Nearest Neighbours (KNN) imputation, chosen for its 

ability to account for the relationship between neighbouring data points. The dataset was then 

normalised using either min-max scaling or standard scaling to ensure all features were within 

a consistent range, preventing bias from variables with larger scales (e.g. geometric dimensions 

versus heat transfer coefficients). 
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The datasets comprised various data types tailored to the specific requirements of the 

analyses. Numerical data, often in floating-point format, represented continuous variables such 

as temperature, pressure, and velocity, offering high precision for capturing intricate variations 

in physical processes. Boolean data represented binary conditions or classifications, such as 

the presence or absence of a specific feature, providing a straightforward way to encode 

discrete states. Image data, particularly for flow boiling experiments, captured visual 

characteristics critical for classification tasks and pattern recognition. Each data type 

contributed uniquely to the robustness and comprehensiveness of the analyses. 

Measures were taken to ensure dataset robustness despite practical constraints on data 

availability. In Chapter 4, computational fluid dynamics (CFD) data was combined with 

external experimental datasets to create a reliable basis for model training and validation. 

Sample code and raw data outputs are provided in Appendix C2. Chapter 5 relied on in-house 

experimental data, which was limited due to resource constraints. To address this, the dataset 

was augmented to enhance its diversity and improve the model's generalisation capability; the 

dataset and augmentation process are detailed in Appendix C3. Chapter 6 employed over 1,500 

experimental images for flow boiling classification and generated a synthetic dataset to 

increase model robustness and reduce dependence on real-world data; corresponding codes and 

datasets are included in Appendix C4. These strategies ensured the models were trained on 

diverse and representative datasets, mitigating potential biases and gaps arising from limited 

experimental data. 

Furthermore, other raw data outputs, key variables, and processed results are provided in 

Appendix C for reference. While data availability posed challenges, the robust measures 

taken—including data augmentation, synthetic data generation, principal component analysis, 

and the integration of multiple data sources—ensured that the findings were reliable, 

generalisable, and reflective of real-world applications. 

3.6.3 Feature Selection 

The features selected for model training included fluid properties (density, viscosity, specific 

heat capacity), geometric configurations (fin height, fin area/volume), and thermal 

performance indicators (HTC, Nu). Feature selection was guided by domain knowledge and 

further refined using feature importance scores. This helped prioritise the most impactful 

features, such as fin volume and fluid velocity while discarding less relevant features that 

contributed noise or redundancy. Additionally, Principal Component Analysis (PCA) was 
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applied to reduce dimensionality and simplify the data without losing significant information, 

thereby improving model training efficiency and reducing computational cost. 

3.6.4 Model Training and Algorithms 

For prediction tasks, supervised machine learning algorithms such as Random Forest, Support 

Vector Machines (SVMs), and fully connected Neural Networks (NNs) were employed. The 

Random Forest model consisted of decision trees, and grid search was used to optimise 

hyperparameters such as the number of trees and the maximum depth of each tree. For the 

Neural Network, the architecture included two or three hidden layers with ReLU activation 

functions and an Adam optimiser with a variable learning rate. The choice of these algorithms 

was driven by their proven ability to handle high-dimensional, non-linear data, which is typical 

in fluid-thermal systems. To mitigate overfitting, dropout layers were introduced in the neural 

network to randomly disable certain neurons during training. For semi-supervised learning, 

self-training techniques were employed, using a small portion of labelled data combined with 

large unlabelled data to improve model performance where labelled data were scarce. K-means 

clustering, or Gaussian mixture models were applied in unsupervised learning contexts to 

discover patterns in fluid flow behaviours. 

3.6.5 Hyperparameter Tuning and Validation 

Hyperparameter optimisation was performed using grid search, adjusting parameters like the 

number of estimators, max features, and learning rate. For Random Forest, the number of trees 

was varied between 100 and 1,000 to find the optimal configuration. For the Neural Network, 

batch size and epochs were adjusted to ensure the model converged efficiently. Additionally, 

k-fold cross-validation was used to assess the generalisability of each model. This ensured that 

model performance was not overly dependent on a particular data split and helped detect any 

overfitting to the training data. The cross-validation process allowed for a more reliable 

assessment of performance on unseen data. To further enhance the model’s robustness, early 

stopping was implemented to terminate training when the model's performance ceased to 

improve on the validation set, reducing the risk of overfitting. 

3.6.6 Evaluation Metrics 

The performance of the predictive models was evaluated using a combination of R-squared, 

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean 

Square Error (RMSE). These metrics were selected because they measure the accuracy and 

variance of the model’s predictions, which are critical for determining the thermal performance 
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of heat sinks. For instance, high R-squared values indicated that the model captured most of 

the variance in heat transfer coefficient predictions, while low MAE and RMSE values 

suggested minimal error between the predicted and actual values. The choice of metrics was 

aligned with the physical significance of heat transfer efficiency, ensuring the models could 

predict real-world performance accurately. Feature selection and hyperparameter tuning were 

revisited for models that underperformed, particularly when RMSE values were high, 

indicating significant error margins. In such cases, further optimisation was conducted to 

improve model accuracy. 

3.6.7 Sample Process Flow 

The flowchart in Fig. 3.13 presents a structured methodology used as a guideline for Machine 

Learning-driven Optimisation, incorporating both Predictive and Descriptive Models. The 

optimisation process begins with training Predictive models, which include General Supervised 

Models (such as Random Forest, SVM, KNN, and XGBoost) and Neural Networks (CNNs, 

ANNs). These models are trained and fine-tuned using external CFD, experimental data, or 

synthetic data sources. In cases where the training process fails, the models undergo a cycle of 

troubleshooting, refinement, and potential combination with other models to address 

performance issues, followed by further testing. Once the training succeeds, the Predictive 

models are subject to further refinement and validation to ensure that they produce acceptable 

results. When satisfactory results are achieved, the models' data is stored within a centralised 

database for future use. 

On the other hand, Descriptive models, such as Computer Vision techniques, are applied for 

feature extraction and classification tasks. The performance of these models is similarly 

assessed, and if they fail, appropriate adjustments are made to improve their accuracy and 

effectiveness. Once these Descriptive models meet the required standards, their results are 

stored in the database. Finally, the optimised Predictive and Descriptive models are integrated 

to enhance overall system operations. This integration ensures the machine learning framework 

achieves optimal performance through repeated refinement, validation, and combination of 

model outputs. By employing this iterative and systematic approach, the process ensures robust 

development for both predictive analytics and feature classification. 
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Fig. 3.13 Guideline for machine learning optimisation 

3.7 Summary of Methodology Chapter 

The methodology chapter begins by defining the research worldview, grounded in pragmatism, 

which allows for a flexible and practical approach to problem-solving. A mixed-methods 

design was employed, combining both qualitative and quantitative approaches to provide 

comprehensive insights. The research methodology integrated data from various sources, 

including numerical simulations (CFD), experimental investigations, literature data, and 

synthetic datasets, to support predictive and descriptive tasks. Machine learning models were 

developed to analyse and unify these diverse data sources, streamlining the process for heat 

transfer coefficient predictions and enhancing design exploration. The chapter also details the 

manufacturing process of the heat sinks, the setup of the experimental test rig, and a flow chart 

guide outlining the machine learning process.  
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Chapter 4: Evaluation of Biomorphic Extended Top 
Pin-Fin Heat Sinks 

 

4.1 Background to the Chapter 

The initial exploration centered on mushroom-inspired pin-fins, Air, the thermofluid, was 

introduced to assess the heat transfer and flow characteristics through Computational Fluid 

Dynamics (CFD) simulations. These simulations unveiled the key dynamics governing 

performance, particularly in heat transfer coefficient (HTC) and pressure drop, paving the way 

for further innovations. Building on these findings, a novel biomorphic design inspired by 

scutoid-shaped skin cells was developed. This hybrid design was evaluated using a design-for-

manufacturing (DfM) philosophy to reduce weight while maintaining structural integrity. 

Additionally, machine learning algorithms were integrated to predict the HTC using minimal 

parameters such as Reynolds number (Re), surface area, and design volume. The results 

indicated significant improvements in thermal management efficiency, highlighting the 

potential for scutoid-based designs in next-generation cooling applications. Additionally, the 

study provided valuable insights into the underlying physical phenomena. 

4.2 Initial Design Investigation 

In this phase, two designs were created inspired by parasol fungus/mushrooms. The first design 

had smoother circular stems/pin-fins and flat tops (CSFT), but the second design maintained 

sharp edges, pentagonal stems, and diamond-shaped tops (PSDT). Next, a numerical study was 

performed to analyse the heat transfer and flow characteristics and compare the designs using 

CFD. The geometry of the parasol-inspired pin-fin heat sinks can be seen in Fig. 4.1. A sample 

of 30 pin-fins was selected to reduce simulation time and cost. Both designs had identical sizes, 

pin-fin spacing, and dimensions.  



108 
 

 

Fig. 4.1 Bio-inspired/biomorphic heat sink designs  

Model Pre-processing: ANSYS Fluent Mesh software was employed to create three 

distinct mesh sizes for fluid and solid domains. The mesh grid independence test/validation 

was done using a velocity metric. Table 4 provides the mesh statistics.  

Table 4: Grid independence test results 

Mesh Type Nodes Mean Velocity Maximum Velocity Refinement Ratio 

Mesh (I) 128016 1.349 1.494 -- 

Mesh (II) 278333 1.352 1.505 2.174 

Mesh (III) 534609 1.352 1.496 1.921 

 

Based on the minimal deviations between the velocity results, Mesh (I) was chosen as the 

suitable option; Mesh (I) orthogonal quality ranged from 0.75 on average to 1 at its highest. 

Furthermore, the refinement ratio of Mesh (II)/(I) and (III)/(II) were both above 1.3 providing 

additional validation to the grid independence results [337]. 

Equations: flow on the micro-scale exhibits dissimilar properties from the flow on the 

macro scale; albeit, some disagreements amongst researchers exist regarding this. 

Nevertheless, the governing equations used for modelling the simulation of the novel heat sinks 

and standard k-epsilon flow turbulence assumptions were adapted from previous works 

[338,339].  
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𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒊𝒕𝒚 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 
𝝏𝒖

𝝏𝒙
+

𝝏𝒗

𝝏𝒚
+  

𝝏𝒘

𝝏𝒛
= 𝟎 (13) 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 (𝒇𝒍𝒖𝒊𝒅): 𝝆𝒇 ൬𝒖
𝝏𝑻

𝝏𝒙
+ 𝒗

𝝏𝑻

𝝏𝒚
+ 𝒘

𝝏𝑻

𝝏𝒛
൰

=  𝛍 ∙ 𝐏𝐫 ቆ
𝝏𝟐𝑻

𝝏𝒙𝟐
+

𝝏𝟐𝑻

𝝏𝒚𝟐
+  

𝝏𝟐𝑻

𝝏𝒛𝟐
ቇ + 𝑺𝒕(𝒇𝒍𝒖𝒊𝒅) 

(14) 

𝑵𝒖𝒔𝒔𝒆𝒍𝒕 𝑵𝒖𝒎𝒃𝒆𝒓: 𝑵𝒖 = ൬
𝑫𝒉

𝒌
൰ 𝐥𝐧 ൤

(𝑻𝒔 − 𝑻𝒊)

(𝑻𝒔 − 𝑻𝒐)
൨ ൫𝒎𝑪𝒑/𝑨𝒉𝒕൯  

(15) 

 

Where, 𝑢, 𝑣, 𝑤 - velocity components; 𝑥, 𝑦, 𝑧 - directions; 𝜌௙ – fluid density; μ - dynamic 

viscosity; Pr - Prandtl number; 𝑆௧ - energy equation source term; 𝑇, 𝑇௦, 𝑇௜, 𝑇௢ are fluid, bottom 

wall, inlet, and outlet temperatures, respectively; 𝑚 - mass flow rate; 𝐴௛௧ - base area where 

heat is applied; 𝐷௛ - hydraulic diameter; 𝑘 – thermal conductivity; 𝐶௣ – specific heat.  

4.2.1 Discussion of Findings 

Fig. 4.2 exhibits the findings from the CFD simulations. The initial temperature and inlet 

velocity were 300 K and 1 m/s. For exploratory purposes, the initial heat source term was given 

a high value of 100 𝑀𝑊/𝑚ଷ. PSDT had a higher temperature saturation region/heat 

distribution near the outlet with some low temperature region on the bottom right edge. 

However, due to the potential influence of the laminar boundary layer, CSFT design showed 

lower temperature saturation regions but had a small high temperature zone on the bottom right 

edge — in contrast to the other design.  
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Fig. 4.2 Temperature distribution from the top view and outlets 

Fig. 4.3 shows the pressure distribution of CSFT and PSDT. Compared to CSFT, the sharp-

edged PSDT had a lower pressure zone at the outlet. Nevertheless, the difference between the 

inlet and outlet pressure in both designs was minimal.  

 

Fig. 4.3 Pressure distribution in the heat sinks  

Fig. 4.4 shows localised Nu variation using points along the pin-fin tops. PSDT had an 

average of approximately 14% higher Nu — the highest Nu coming at both designs' first 

row/set of pin-fins. The model simulations were validated against previous work [340]; the Nu 

and pressure change values were in acceptable ranges. Nevertheless, further investigation and 

verification were required to assess the feasibility of such sharp-edged pin-fin designs. 

Therefore, subsequent experiments needed optimisation and expansion of the initial designs. It 

should be noted that it was challenging to utilise past experimental data from the literature due 
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to the vastly different geometrical configurations and setup. Hence, the author acknowledges 

the limitations of the findings. However, the current research output was arguably still valuable 

to build the final prototype design. 

 

Fig. 4.4 Heat transfer comparison 

4.3 Finalised Prototype Heat Sink Design 

Building on the initial investigation, further analysis and designs were developed. The use of 

air-cooled pin-fin heat sinks for electronic devices remains a research hotspot [187,341–343]. 

For heat transfer enhancement, it is necessary to increase the contact/surface area between the 

pin-fins and working fluid and induce flow disturbances—while minimising the resulting rise 

in flow resistance. Therefore, a trade-off of different parameters needs consideration depending 

on the application. Additionally, adhering to the design for manufacturing (DfM) philosophy, 

designs must be replicable with reduced cost, materials, and manufacturing complexities. 

Consequently, an additive manufacturing strategy is required to manufacture pin-fins with 

complex shapes but with a reduced volume of material to save manufacturing costs [241].  

Therefore, this study aimed to provide the following major novel contributions: 1) design 

of a new type of hybrid pin-fins with non-conventional geometries that can be produced using 

additive manufacturing; this innovation could expand the current design space and offer 

advantages over traditional pin–fin designs. 2) appraisal of the effects of combined features 

with different pin–fin “top” geometries via numerical simulations to gain new insights into 

fluid flow and heat transfer characteristics, adding further domain knowledge to this area. 3) 
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heat transfer performance optimisation via manipulating design properties that can lead to 

improved performance with reduced volume and material usage — whilst considering the 

trade-off between design complexity and performance. 4) propose a simplistic machine 

learning model to predict heat transfer and provide quick performance indicators and reduce 

design development and exploration times. 

4.3.1 Biomorphic Design for Manufacturing (DfM) Philosophy 

Nature and organisms have developed various survival strategies and shapes to adapt to their 

environments. The authors’ previous works briefly explored the thermodynamics and thermal 

performance of nature-inspired biomorphic pin-fin designs [244,253]. Therefore, adopting a 

similar biomorphic approach, which involves designing inspired by nature, organisms, or 

naturally occurring shapes, a shape existing in skin cells (Scutoid) [344] was used as a baseline 

to propose four new pin-fin structures. While skin cells are linked together for material 

delivery, the biomorphic analogy to skin cells emphasises the efficient utilisation of surface 

area and generating flow disturbances for enhanced heat transfer, rather than a direct imitation 

of their mechanism and arrangement, which would be the case in biomimetic design philosophy 

and is outside the scope of this work. 

Moreover, the pin-fin utilises two geometries in a unique shape; thus, there is scope to save 

materials in the new designs compared to the base fin design — whilst still producing the 

desired results. The proposed pin-fin structure consists of arrays of staggered pin-fins, in 

comparison to the in-lined base rectangular/square pin-fin design (SPF). The "top features" of 

the biomorphic pin-fin structures are designed with specific characteristics, such as sharp 

edges, faces, and curvatures, aimed at enhancing heat transfer, inducing flow disturbances, and 

manipulating the volume of material used in the design. In other words, the "top features" are 

engineered protrusions strategically placed on the pin-fin structures. The design philosophy 

behind these features involves manipulating their shape/dimensions for maximum 

effectiveness in heat transfer enhancement while considering the constraints of manufacturing 

feasibility and cost of the material. 

By aligning with DfM principles, the proposed pin-fin designs aim to strike a balance 

between enhanced heat transfer performance, reduced product development time, and practical 

manufacturing considerations of complex pin-fin geometries via additive manufacturing or 

metal 3D-printing; this holistic approach offers efficient and sustainable air-cooled pin-fin heat 

sinks. Furthermore, in the existing literature, hexagonal, pentagonal, twisted, protrusions, etc., 
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have primarily been employed individually. Thus, one of the objectives of this study is to 

integrate various modifications to develop a hybrid pin-fin design and assess their combined 

effects to gain new insights into the underlying physics and performance. Despite the potential 

benefits of similar design modifications for flow and thermal boundary layer manipulation, 

there have been limited studies on combining these distinct concepts/strategies within pin-fin 

heat sink investigations; hence, this makes the current investigation worthwhile. Fig. 4.5 

displays the traditional base design featuring rectangular/square pin-fin designs (SPF) that is 

used for comparison and numerical validation purposes. Additionally, Fig. 4.5 includes a 3D-

printed prototype representing the base geometry of the novel scutoid pin-fins for visualisation 

purposes of the physical model. 
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Fig. 4.5 Base design and 3D-printed new prototype design 
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The new designs followed the same heat sink dimensions as the base design — such as the 

same internal fin-occupied width (𝑾𝒃𝒊), height of the base (𝑯𝒃), source/heat flux height (𝑯𝒇), 

etc. However, the new designs incorporated different shaped "top" features with a scutoid base 

geometry. Moreover, they vary in the surface area of the "top" geometry, aiming to manipulate 

the volume of materials used and comprehend the impact of different shapes. For detailed 

geometrical information, refer to Table 5, which outlines the dimensions of each design. The 

material usage (%M) shows a reduction of weight in comparison to the base design (SPF). 

Table 5: Details of geometrical data for all designs 

Model Top-fin 

Geometry 

Fin-Height 

(𝑯𝒇 , 𝒎𝒎) 

No. of 

Fins (𝑵) 

Surface Area 

( 𝒎𝟐) 

Volume

( 𝒎𝟑) 

Mass 

(𝑴, 𝒈) 

Material 

(%M) 

SPF Square 60 25 80000 271500 271.5 - 

PHT Hexagon 63 23 70646 232542 232.5 -14% 

CT Cone 60 23 73540 250542 250.5 -8% 

DT Tetrahedral 60 23 71590 245093 245.1 -10% 

MT Hexaprism 60 23 75419 254437 254.4 -6% 

 

As mentioned in the earlier paragraphs, the base geometry of the pin-fins utilised a 

combination of pentagonal and hexagonal shapes to save materials and introduce twists to 

generate flow disturbances. Additionally, alterations in the top geometry enable the 

manipulation of boundary layers, providing insights into the flow characteristics of these novel 

shapes. Given that the proposed designs are intended for additive manufacturing, the critical 

goal is to save material/weight while ensuring efficient heat transfer. A reduced surface area 

hampers heat transfer, while an increased surface area adds more volume — contributing to 

higher material usage and costs. Therefore, the volume of the new pin-fins was constrained 

within a ±15% range from the base design SPF to strike a balance between reduced material 

usage and increased heat transfer efficiency. Maintaining a ±15% range in the volume of the 

new pin-fins relative to the SPF design ensures a reasonable degree of flexibility in design 

modifications without deviating significantly from the original parameters. Moreover, this 

range arguably aligns with industry standards and current engineering and design practices.  

In the initial paragraphs, the existing literature suggested that hexagons, tetrahedrons, cones, 

and mushroom/prism shapes can enhance heat transfer. Consequently, a combination of various 
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pin-fin strategies was investigated to get a more robust understanding of underlying flow 

characteristics and physical processes. While the PHT and DT designs focused on altering the 

flow through a change in the height of the top fins, the CT and MT designs elongated the lateral 

surfaces of the fins. The first PHT design featured a plain hexagon top with 5% more pin height 

and 0.5mm more side width than the other scutoid pin fins. This adjustment aimed to maintain 

the reduction in volume/surface area of PHT within the initially discussed ±15% acceptable 

range. The plain surface of PHT could potentially enable boundary layer formations on top 

while inducing turbulence between and around the fins. All the other designs had 4.5mm 

sides/60mm fin height. However, there are minor variations between the spacing distances of 

the fins due to the difference in the fin-top geometry, to avoid interactions, and leave a 

reasonable amount of gap between the extended surfaces, especially for the CT and MT.  

The second design, CT, featured a cone-shaped pointed top geometry, where the pointed 

shape was expected to cause flow separations, while the smooth surface of the cone can lead 

to flow attachments. The third design, DT, incorporated an extended tetrahedral diamond-

shaped structure inside the top geometry of the fins, with sharp edges capable of generating 

turbulence. The last design, a sharp biomorphic mushroom-shaped prism, covered the top of 

the fins extensively in an attempt to increase the heat transfer area. In addition to these design 

modifications, there was a 90-degree twist and a vertex within the fin-base geometry converting 

the pentagonal shape into a hexagon and causing the designs to have a slight curve. Thus, all 

the combinations existing within these design modifications produced a new type of novel 

hybrid pin-fins. Despite the complexity of the pin-fin shapes, as illustrated in Fig. 4.6 for the 

3D printed prototype, they represent a feasible option for future manufacturing through additive 

manufacturing and casting process, if needed. Fig. 4.6 displays the 3D geometry of all the new 

pin-fins designed for this study. 
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Fig. 4.6 All biomorphic scutoid pin-fin designs: a) Plain Hexagon Top (PHT), b) Conical Top (CT), c) 
Diamond Top (DT), d) Mushroom Top (MT) 

4.3.2 Numerical Simulation Setup and Validation 

4.3.2.1 Physical and Mathematical Model 
The initial numerical simulations were validated using the experimental findings of El-said et 

al. [240] . One of the primary motivations behind this research was to minimise computational 

time and cost on a holistic level. To achieve this, certain methods allow conducting simulations 

with half designs or geometries, assuming setups exhibit symmetry. However, the current study 

deals with non-symmetrical shapes and complex geometries, which may result in non-

symmetrical flow characteristics. Therefore, the experimental setup was replicated for 

validation purposes to ensure more reliable and robust findings. Therefore, achieving an 
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optimised number of meshing and nodes was preferred to save on computational time and cost. 

In the experiments of El-said et al. [240], an extended area of 200 mm exists on either side of 

the test section; therefore, the inlet effect or outlet reflux is avoided by default. The pressure 

drop in the system was also relatively minimal due to the extended length of the fluid domain, 

no flow re-circulation, and the outlet being exposed to atmospheric pressure. Conventionally, 

Reynolds Number (Re) < 2000 tends to be laminar flow; transition region, 2000 < Re < 4000; 

turbulent flow is Re > 4000 [345]. However, for flows in micro scales, diverse and conflicting 

characteristics are reported. Extant research reported transition and turbulent flow regions 

within micro-scale flows for 300 < Re < 2000 [346]. Therefore, in this paper, flows with Re > 

3000 were assumed as turbulent. Consequently, a standard 𝑘 − 𝜖 model was chosen for 

turbulence modelling. The simulations were performed with single-phase phenomena 

considerations, as the working fluid is air. Additionally, adapting and modifying previous 

research [26,246,338,339,347,348], the simulations considered the following assumptions: 

1) The working fluid (air) is incompressible; 

2) Gravity can be ignored due to the low mass of air; 

3) The material properties are isotropic; 

4) Surface radiation and viscous heat dissipation are negligible. 

The baseline governing equations for simulations, validation, and data reduction were: 

Continuity equation: 

𝝏𝑼

𝝏𝑿
+

𝝏𝑽

𝝏𝒀
+ 

𝝏𝑾

𝝏𝒁
= 𝟎 

(16) 

Energy equations: 

𝝆𝒇 ൬𝒖
𝝏𝑻

𝝏𝒙
+ 𝒗

𝝏𝑻

𝝏𝒚
+ 𝒘

𝝏𝑻

𝝏𝒛
൰ =  𝛍 ∙ 𝐏𝐫 ቆ

𝝏𝟐𝑻

𝝏𝒙𝟐
+

𝝏𝟐𝑻

𝝏𝒚𝟐
+  

𝝏𝟐𝑻

𝝏𝒛𝟐
ቇ + 𝑺𝒕(𝒇𝒍𝒖𝒊𝒅) 

(17) 

𝒌𝒔 ቆ
𝝏𝟐𝑻𝒔

𝝏𝒖𝟐
+

𝝏𝟐𝑻𝒔

𝝏𝒚𝟐
+  

𝝏𝟐𝑻𝒔

𝝏𝒛
ቇ = 𝟎 (𝒔𝒐𝒍𝒊𝒅) 

(18) 

Dimensionless parameters: 𝑿 =
𝒙

𝑫𝒉
, 𝒀 =

𝒚

𝑫𝒉
, 𝒁 =

𝒛

𝑫𝒉
, 𝑼 =

𝒖

𝒖𝒊𝒏
, 𝑽 =

𝒗

𝒖𝒊𝒏
 , 𝑾 =

𝒘

𝒖𝒊𝒏
   

Conductive heat transfer/Fourier’s law 



118 
 

𝑸 = −𝒌𝑨
𝝏𝑻

𝝏𝒙
  

(19) 

Where, thermal conductivity (𝒌) is a thermophysical constant, 𝑲 =
𝑸𝒅𝒑

𝑨∆𝑻
  

Mean convective heat transfer coefficient (HTC): 

𝒉 =
𝒎̇𝒂𝒄𝒑,𝒂(𝑻𝒐𝒖𝒕,𝒂 − 𝑻𝒊𝒏,𝒂 )

𝑨𝒔[𝑻𝒃 − ൬
𝑻𝒊𝒏,𝒂 + 𝑻𝒐𝒖𝒕,𝒂 

𝟐
൰]

 
(20) 

Nusselt Number (𝑵𝒖): 

𝑵𝒖 =
𝒉𝑳𝒃

𝒌𝒂
 

(21) 

Thermal Resistance (𝑹𝒕𝒉): 

𝑹𝒕𝒉 =
𝑻𝒃 − 𝑻𝒂,𝒊𝒏

𝒎̇𝒂𝒄𝒑,𝒂(𝑻𝒐𝒖𝒕,𝒂 − 𝑻𝒊𝒏,𝒂 )
 

(23) 

Fin efficiency (𝜼𝑭): 

𝜼𝒇 =
𝐭𝐚𝐧𝐡 (𝐌 × 𝐇𝒂)

𝑴 × 𝑯𝒂
  

(24) 

𝑾𝒉𝒆𝒓𝒆, 𝑴 =  √(
𝟒𝒉

𝒌𝒇𝑫𝒉
) 

Pressure drops (∆𝑷): 

∆𝑷 = (𝑷𝒊𝒏𝒍𝒆𝒕 − 𝑷𝒐𝒖𝒕𝒍𝒆𝒕) (25) 

Performance Improvement Factor (PIF): 

𝑷𝑰𝑭 = ቆ
𝒉(𝒏𝒄)

𝒉(𝒃𝒄)
ቇ / ቆ

𝜼𝒇(𝒏𝒄)

𝜼𝒇(𝒃𝒄)
ቇ

𝟏
𝟑

 

(26) 

4.3.2.2 Grid Independence and Numerical Validation 
ANSYS Fluent’s Finite Volume Method (FVM) was used for simulations and meshing. A 

mixture of hybrid and rectangular-grid type meshing was implemented to increase the overall 

mesh quality whilst reducing computational time and meshing nodes. The mesh independence 

test was conducted and compared with the experimental data for rectangular pin-fins for 

validation of the simulation setup; this was the base design (SPF). The element sizes of the 
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solid domain were 0.004 mm, 0.0035 mm, and 0.003 mm; the element size of the fluid domain 

varied from 0.002 to 0.001 mm. The three different meshes (with varying element count) were 

Mesh I (164269), Mesh II (255186), Mesh III (530970), respectively. The element sizes were 

chosen and adjusted based on a target average orthogonal quality. The average orthogonal 

quality of the mesh was over 0.75 (very good). Refinement ratios between two different mesh 

types were above 1.3. The grid validation considered two variables: maximum velocity at the 

outlet, 𝑉௠௔௫(௢௨௧), and average temperature of the outlet, 𝑇௔௩௚(௢௨௧). The numerical validation 

considered the heat transfer coefficient, HTC (ℎ), from 𝑅𝑒 = 3182 𝑡𝑜 9971. The grid 

independence results are summarised in Fig. 4.7; it shows that deviations between the 

corresponding mesh qualities are minimal. Furthermore, to complement the visualisation in 

Fig. 4.7 and Fig. 4.8, Table 6 displays a sample of the mesh and grid independence results, 

providing a quantitative assessment of the values obtained for accuracy and uncertainty. 

Table 6: Sample grid independence test accuracy results 

𝑹𝒆, 𝑽𝒊𝒏 

(3182, 0.3 m/s) 

𝑻𝒂𝒗𝒈(𝒐𝒖𝒕) 

(𝐊) 

𝑽𝒎𝒂𝒙(𝒐𝒖𝒕) 

(𝐦/𝐬) 

𝒉 

൫𝑾/𝒎𝟐𝒌൯ 

% 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 (𝒉) 

[240] 

Mesh I 306.98 0.47 54.96 12% 

Mesh II 306.85 0.46 53.00 8% 

Mesh III 306.88 0.46 56.66 16% 

𝑹𝒆, 𝑽𝒊𝒏 

(3182, 0.3 m/s) 

𝑻𝒂𝒗𝒈(𝒐𝒖𝒕) 

(𝐊) 

𝑽𝒎𝒂𝒙(𝒐𝒖𝒕) 

(𝐦/𝐬) 

𝒉 

൫𝑾/𝒎𝟐𝒌൯ 

% 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 (𝒉) 

[240] 

Mesh I 300.70 1.34 107.64 12% 

Mesh II 300.72 1.36 108.48 10% 

Mesh III 300.68 1.34 111.93 8% 
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Fig. 4.7 Grid independence test results 

After considering all the findings and computational time, Mesh II was taken as the preferred 

option for simulations. Fig. 4.8 shows the deviation between the simulations and experimental 

data [240]. As mentioned earlier, Re < 4000 values are generally in the transitional range before 

turbulent flow conditions occur. Therefore, using the 𝑘 − 𝜖 model, the initial value overshoots 

by 10%, but, in higher Re values, the data points are relatively consistent. 

 

Fig. 4.8 Numerical validation of the simulation 
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4.3.2.3 Meshing and Boundary Conditions 
One of the objectives of our research was to appraise different volume and implement machine 

learning. Hence, after the numerical validation, to avoid overfitting of the data and enable a 

more broader data analysis, the operating conditions were slightly changed to investigate higher 

Reynolds Numbers not examined in the available literature for similar designs. Therefore, the 

simulations were set up with the following boundary condition: a uniform velocity and constant 

temperature at the inlet, with values of 𝑢 = 𝑢௜௡, 𝑣 = 0, 𝑤 = 0, 𝑇 = 𝑇௜௡ = 298 𝐾; zero pressure 

at the outlet, and scalable wall function for the near-wall treatment. The heat flux value was 

15500 𝑊/𝑚ଶ .  

The mesh interaction boundary was coupled at the fluid-solid contact surface, while all other 

surfaces were adiabatic. The momentum and energy equations used second-order upwind 

schemes, and the velocity-pressure coupling was selected using the SIMPLE algorithm having 

monitors’ residual value set to 10ିହ and 10ି଻, respectively. Lastly, hybrid initialisation was 

chosen for the calculations. Fig. 4.9 illustrates the simulation setup, including the fluid domain, 

solid domain (pin-fins), and meshing. The simulation fluid and solid domains are depicted with 

a sliced plane, revealing 3D mesh blocks to provide a more three-dimensional perspective of 

the mesh employed — the sliced view utilises the base design SPF. Next to the simulation 

domains, the meshes for the scutoid pin-fins are also presented, with the PHT design view 

intentionally rotated to offer an alternative perspective of the mesh within the designs. In 

certain regions or cases, minor or local face refinements were employed to minimise the 

number of elements or improve the average orthogonal mesh quality. 
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Fig. 4.9 3D Mesh visualisation of fluid and solid domains for the pin-fins 

4.3.3 Results 

4.3.3.1 Heat Transfer Performance 
Figs. 5.10-5.13 illustrate the performance metrics to evaluate the pin-fins. Firstly, Fig. 4.10 

presents a graph that plots the Heat Transfer Coefficient (HTC) against the Reynolds Number 

(Re). The HTC is significant in thermal management research as it quantifies heat transfer 

efficiency between a solid surface and a fluid medium. HTC represents the rate at which heat 

is convectively transferred from the solid metal surface to the surrounding air — in this case. 

The results reveal that the plain hexagon top (PHT), showcases the highest overall HTC, 

despite having the lowest volume and surface area (𝑣𝑜𝑙𝑢𝑚𝑒 (𝑉) =  232541.53 mmଷ,

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 (𝑆𝐴) =  70646.26 mmଶ). In comparison, the hexaprism or mushroom-inspired 

top (MT) design showed, on average, 5% lower HTC values whilst having the highest material 

usage among all pin-fin designs (𝑉 = 254437.03 𝑚𝑚ଷ, 𝑆𝐴 =  75418.77 𝑚𝑚ଶ). The 

diamond/tetrahedral top (DT) and conical top (CT) were the two least-performing pin-fin 
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shapes, with CT demonstrating the worst HTC performance (96.6 𝑊/𝑚ଶ𝑘 𝑎𝑡 𝑅𝑒 = 5500). 

The DT and CT designs might suffer from boundary layer separation or inadequate mixing of 

the fluid flow. In the case of the conical top (CT) design, its particularly poor HTC performance 

can be attributed to its geometry, which might induce strong separation of the boundary layer 

and hinder effective heat transfer. 

 

Fig. 4.10 Heat transfer coefficient comparison with different Re 

The Nusselt Number (Nu), similar to the HTC, is a critical metric for assessing heat transfer 

and insights into convective heat transfer properties of systems. By comparing the conductive 

heat transfer to the convective heat transfer at the surface, the Nu quantifies the convective heat 

transfer rate. Fig. 4.11 shows the Nu comparison; since the Nu is directly proportional to the 

HTC, it exhibits a similar trend. In this study, the plain hexagon top (PHT) design consistently 

exhibited the highest Nu across different Reynolds Numbers (Re). In contrast, the conical top 

(CT) design showed the lowest Nu value. The Nu performance of different pin-fin shapes, just 

like the HTC, can be influenced by flow reversal and recirculation phenomena. Pin-fin shapes 

that promote flow reversal or recirculation might experience reduced heat transfer rates due to 

inefficient removal of the heated fluid and replacement with cooler fluid. 
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Fig. 4.11 Nusselt Number comparison with different Re 

Fig. 4.12 illustrates the thermal resistance (𝑅௧௛) of the pin-fins. Thermal resistance 

represents the obstruction to heat flow in a material or system, serving as a fundamental 

parameter in heat transfer analysis and thermal management. It enables the evaluation and 

optimisation of the overall thermal performance of heat sinks. Notably, in this case, both the 

PHT and MT designs, which feature hexagonal bases, exhibited the lowest 𝑅௧௛ values, 

indicating their superior heat dissipation capabilities compared to other designs. On the other 

hand, the DT and CT designs displayed the highest 𝑅௧௛, with CT demonstrating the most 

resistance. The thermal resistance of a pin-fin design is influenced by the thickness of the 

thermal boundary layer surrounding the fins. Designs that effectively reduce the boundary layer 

thickness can achieve lower thermal resistance. The PHT and MT designs may minimise 

boundary layer thickness more effectively compared to other designs, leading to lower 𝑅௧௛. 
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Fig. 4.12 Thermal resistance comparison with different Re 

Interestingly, the findings and trends diverged when considering the fin efficiency values 

depicted in Fig. 4.13. Fin efficiency (𝜂ி) is a parameter used to assess the effectiveness of a 

fin in enhancing heat transfer; it quantifies how efficiently a fin transfers heat from the solid 

surface to the surrounding fluid medium. Fin efficiency is particularly relevant in heat transfer 

applications involving extended surfaces or fins, where the primary objective is to increase heat 

dissipation capacity. Based on the values in Fig. 4.13, the CT design demonstrated the highest 

𝜂௙, followed by the DT, while the MT and PHT designs exhibited the lowest 𝜂௙. However, it 

is noted that the differences in fin efficiency among the pin-fin designs were minimal (≤1%). 

Therefore, a marginally lower fin efficiency as a trade-off can be acceptable. The CT design 

could benefit from smoother flow attachment and detachment along its streamlined shape; this 

reduces flow separation and enhances the effectiveness of the fin in transferring heat to the 

surrounding fluid. 
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Fig. 4.13 Fin efficiency comparison with different Re. 

4.3.3.2 Pressure Drop and Pumping Power 
In the design and optimisation stage for heat sinks, one of the key considerations includes 

pressure drop and pumping power expenses [349]. However, as previously mentioned, the 

reference system exhibited minimal pressure drops mainly due to its open outlet (exposed to 

atmospheric pressure) and the absence of flow recirculation. Thus, the focus of this study was 

on enhancing heat transfer and fluid flow characteristics — with the understanding that any 

trade-offs in pressure drop would remain within acceptable limits. Fig. 4.14 shows the pressure 

drop comparisons. In this investigation, the highest value of Re = 13500 was chosen for 

comparison for two reasons: i) existing literature lacks experimental/numerical values for 

similar designs within the Re range of 10000 – 15000; ii) Re = 13500 corresponds to the point 

of maximum heat transfer in the new designs, implying that it will also lead to the conditions 

with the highest-pressure drops. Consequently, the highest pressure drop was associated with 

PHT fins, and the lowest pressure drop was observed in SPF fins.  

The pressure drop trend is consistent with the heat transfer coefficient (HTC), as PHT had 

the highest HTC. Furthermore, the simulated pressure drops values closely matched the ranges 

from previous numerical validations with similar Reynolds Numbers [206,350] . It is important 

to note that a system's pumping power is directly related to the pressure drop. When comparing 

the pressure drop values between PHT and SPF, even when factoring in a pump with 70% 

efficiency, the resulting increase in pumping power is approximately 55 mW, which remains 
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relatively low. As a result, this trade-off is deemed acceptable in exchange for achieving 

superior heat transfer rates. Additionally, it can be remarked that the extended flow build-up 

region length employed in the initial experiment had a role in achieving these low pressure 

drops and pumping power. 

 

Fig. 4.14 Pressure drop comparisons 

4.3.3.3 Machine Learning Predictions 
In this study, one of the points of interest was investigating the influence and relationship 

between the design volume, surface area, and heat transfer in a system. The data indicated that 

volume manipulation via different geometrical adjustments can help to achieve enhanced heat 

transfer with material savings. Therefore, this led to the assessment of a prediction model to 

determine HTC whilst incorporating design properties such as volume and surface area. 

Accordingly, a combination of four independent variables (IV) — volume, surface area, 

Reynolds number (Re), and inlet velocity — was used to predict the dependent variable (DV) 

— heat transfer coefficient (HTC). The rationale behind this idea was that developing a 

simplistic model that relates volume to the HTC would have significant implications, as it 

would provide a quick performance indicator and assessment of heat transfer effectiveness 

without the need for extensive experiments, CFD simulations, or requiring vast datasets. 
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Consequently, six different types of machine learning models were compared for predicting 

the HTC: Multiple Linear Regression (MLR), K-nearest Neighbours (KNN), Random Forest 

(RF), Gradient Boosting Regression (GBR), and ensemble methods such as Bagging and 

Stacking. The description and mechanics of all the machine learning models go beyond the 

scope of this work and have been extensively detailed in existing literature. While MLR, KNN, 

and RF have been commonly used [351], GBR and ensemble methods like Bagging and 

Stacking are relatively unexplored, compared to the popular algorithms such as MLR and RF, 

especially in heat transfer analysis; thus, these algorithms could produce promising results. 

GBR employs a boosting technique to create an ensemble of weak predictive models, typically 

in decision trees [352], while Bagging (also referred to as bootstrap aggregation) and Stacking 

are ensemble methods that combine multiple models to improve predictions [353]. Regression 

models generally do not require many data points compared to neural networks; hence, two 

distinct datasets were created for the machine learning predictions (CFD and Combined).  

The first dataset consisted solely of data points from CFD — gained from the novel pin-fins 

produced in this investigation. The second dataset combined CFD simulation and experimental 

results to form a broader dataset and enhance accuracy or avoid overfitting. The experimental 

data consisted of rectangular and hexagonal pin-fins' best and worst performing designs from 

El-said et al. [240]; the volume and surface area information was gained via the SolidWorks 

evaluation tool. It should be noted that even though the dataset has a limited number of points, 

due to the different types of data considered, it can arguably provide good predictions. 

Additionally, recent research suggests that condensing datasets and using reduced data can 

potentially provide better predictions for thermal analysis [354]. 

The performance of each model was calculated using Root Mean Squared Error (RMSE) 

and Mean Absolute Percentage Error (MAPE). RMSE measured the average deviation between 

predicted and actual HTCs, while MAPE assessed the relative errors in percentages. Table 7 

shows the data of the model performances. RMSE and MAPE metrics enabled a thorough 

comparison and ranking of the models' performance. To exhibit the results clearly, a grouped 

bar graph in Fig. 4.15 compares the model's predictive capabilities. The evaluation process 

using RMSE and MAPE ensured an objective assessment of the predictive models and aided 

in determining the most suitable approach for predicting HTCs in heat sinks.  

The results showed that Bagging and Stacking methods had the best performance, with an 

average MAPE value of 4.6% and 4.4% and RMSE values of 8.7 and 8.4, closely followed by 
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MLR at 4.7% and 8.4. RF and KNN had a poorer performance, with KNN performing the worst 

among all models. Although GBR had slightly higher errors than the top-performing models, 

the percentage deviation between the two datasets for GBR was the lowest; this shows that 

GBR is less sensitive to the differences in datasets. In forced air convection, the HTC values 

can range between 10 to 500 (W/mଶk)  [355]. Therefore, considering the range for prediction, 

mean MAPE <5% and RMSE <10 can arguably be considered relatively good and acceptable; 

this is especially valid considering the original experiments and the CFD simulations had 

approximately ±10% margin for error. 

Table 7: Data for machine learning model performance 

Model Type RMSE (CFD) MAPE (CFD) RMSE (Combined) MAPE (Combined) 

MLR 6.09 4.3% 10.72 5.0% 

GBR 7.37 5.5% 9.32 4.9% 

RF 6.99 4.4% 15.71 9.0% 

KNN 13.97 11.3% 15.36 7.2% 

Bagging 6.55 4.9% 10.77 4.2% 

Stacking 6.28 4.5% 10.56 4.3% 

 

 

Fig. 4.15 Comparison of machine learning model performance 
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4.3.3.4 Fluid Flow Characteristics 
Fig. 4.16 (a)-(d) showcases the temperature contours across three planes at Re = 13500 — 

where the highest heat transfer occurs. The first plane is positioned in the mid-section of the 

heat sink, the second plane is 0.1m from the first plane, and the third plane is at the outlet 

position. Temperature contours provide visualisation of temperature variations across specific 

regions, enabling interpretation of thermal and flow behaviour.  

In Fig. 4.16a, hotter temperature spots near the bottom portion of the fins are observed, 

while no apparent similar features are evident at the tops. In the middle/second plane, a thin 

high-temperature (red colour zone) thermal boundary layer is present; thinner boundary layers 

can promote better heat transfer performance as seen in Fig. 4.10. However, the dominant 

temperature range in the second plane consists of mid-temperature (300K – 306K) values. Fig. 

4.16b illustrates the temperature distribution in the CT design. One primary difference between 

CT and PHT is the presence of localised hotter regions around the conical tops, extending 

beyond the solely bottom portion that was observed in Fig. 4.16a; this indicates that the contact 

between air and the pin-fins are more prominent compared to the other design and validates 

the initial assumption of better flow attachments leading to higher fin efficiency in Fig. 4.13. 

At the outlet, a high-temperature region appears, and it is broader compared to PHT, forming 

sinusoidal-shaped thermal layers; this denotes the presence of uneven flow distribution.  

Fig. 4.16c depicts the temperature contours for DT. Akin to Fig. 4.16a, there is no region of 

high temperature (red zones) at the top of the fins, but the bottom portion exhibits higher 

temperatures (1K to 1.2̇K̇ more) than the surrounding air. Interestingly, a localised cold spot or 

anomaly is present at the bottom-right position of the outlet, due to uneven flow distribution 

and inefficient flow mixing; hence, this will be further investigated in the next sections to assess 

the flow characteristics and turbulence buildup in DT. Lastly, Fig. 4.16d shows the temperature 

distribution of the MT fins. The temperature contours of MT are similar to those of CT; 

however, some notable differences exist. In the middle plane, the temperature regions showed 

distinct thermal boundary layers, more pronounced than CT; thus, showing a more even flow 

distribution/less turbulence compared to CT. Nevertheless, the outlet section displays a 

sinusoidal distribution of thermal boundary layers, similar to CT, but with a slightly lower 

maximum outlet temperature — 0.5K less than CT. 
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Fig. 4.16 (a)-(d). Temperature contours of all scutoid pin-fins (planar views). 

Fig. 4.17 (a)-(d) depicts the velocity contours at Re = 13500. Velocity contours are valuable 

tools for understanding fluid flow patterns and dynamics. They provide visualisation of fluid 

velocities across specific regions or objects, such as heat sinks. In this study, for a more 

thorough understanding of heat transfer and fluid flow characteristics, various parameters were 

evaluated from distinct points of interest across multiple perspectives. Fig. 4.16 showed 

temperature contours, emphasising the diverse temperature distribution across three important 

regions. Meanwhile, the velocity contours concentrated on delineating the velocity and its 

boundary layers between and behind the pin fins, ultimately guiding the flow toward the outlet. 

This visualisation of flow features from different viewpoints, using different metrics or 

parameters, provided a deeper insight into the underlying flow characteristics and physics. The 

contours were drawn in the exact mid-plane of the heat sinks; as mentioned earlier, due to the 

minor differences pin-fin spacing and geometry, the pins (white cavities) are not identical.  

Fig. 4.17a illustrates the velocity distribution within the PHT fins region. Notably, PHT 

exhibited no significant dead (blue) zones alongside the pin-fins compared to the other designs, 
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where such zones are apparent in distinct points, such as the bottom of the fins (DT) or the last 

row (CT). Concerning "top" features, designs with pointed tops like CT, DT, and MT show 

noticeable flow separation, forming thick boundary layers of rapidly moving air above the pin 

fins; the varying thick boundary layers ultimately reduce the heat transfer efficiency. The most 

pronounced velocity hotspot for flow separation was observed on the first row of pin-fins in 

the CT design (maximum velocity = 2.86 m/s), due to the pointed tops. Since all the pin-fins 

shared an identical base design and thickness, the base contributed minimal variation to the 

thermal boundary layer flow. However, the varying top designs resulted in a visual difference 

of 10–15% in the thermal boundary layers at the top of the pin-fins. Notably, in the PHT design, 

the boundary layer (red) on top of the fins appears comparatively thinner than the other designs; 

this was primarily due to the 5% increased height, showcasing positive implications of the 

height increase. PHT also recorded the second highest maximum velocity among the designs 

(2.84 m/s), while DT exhibited the lowest (2.74 m/s).  

Observing the wake profile behind the pin fins, it becomes evident that PHT fins had a 

steady and widespread wake compared to other designs, hinting at a steady or slow-moving 

flow. Conversely, other designs displayed a relatively larger gap between fast-moving red 

regions and slow-moving thick dead regions (dark blue). Therefore, such a difference between 

fast and slow-moving fluids will lead to high-pressure and low-pressure zones. Although there 

is a relationship between pressure drop and wake profiles behind objects, the geometrical 

variations led to an acceptable level of minimal overall system pressure drop as shown in Fig. 

4.14, and the differences in pressure changes within that region were not significant enough 

(cross-checked using a data probe point and pressure contours, yielding values less than 1Pa). 

As mentioned earlier, such minor pressure differences were expected in these systems. Thus, 

to better comprehend the differences in flows and turbulence, the next sections focused on 

streamline velocity and turbulent kinetic energy. 
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Fig. 4.17 (a)-(d). Velocity contours of all scutoid pin-fins (side view). 
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Fig. 4.18 (a)-(d) displays the Turbulent Kinetic Energy (TKE) contours for the pin-fins at 

Re = 13500. It can be remarked that TKE parameters are not commonly used in thermal 

analyses of pin-fin-based heat sinks, primarily due to the complexities associated with turbulent 

flows. However, TKE patterns can offer crucial insights for comparing the fluid dynamics of a 

system. TKE involves the conversion of kinetic energy from chaotic eddy motion into thermal 

energy [356]. Moreover, TKE contours provide valuable insights into the spatial distribution 

and intensity of turbulence within flows. In Fig. 4.18, the TKE contours visually represent 

dissipation patterns and aid in identifying turbulent hotspots, offering a top-down perspective 

of the designs. 

The figures revealed that, compared to other designs, PHT fins displayed a more evenly 

distributed TKE within the pin-fins at the centre of the heat sinks. Furthermore, the PHT 

designs exhibited some turbulence throughout all the fins. In other designs, TKE intensity 

diminished after the initial rows of pin-fins, with a wake profile immediately behind the last 

row; this suggests a transition to laminar flow or turbulence not contributing to thermal energy 

conversion. In CT and MT, the second row of pins generated the two highest maximum 

turbulence values (7.13 Joules and 8.84 Joules) due to top features acting as a restrictor between 

the pin fins, compressing airflow into thinner lanes, promoting faster fluid movement and 

higher energy conversion and efficient flow mixing.  

Conversely, PHT featured no such flow restrictors, resulting in less intense and spread-out 

turbulence wake profiles; thus, it contained reduced maximum TKE (4.89 Joules). In DT, a 

turbulence hotspot, notably in the lower second row of fins, created an asymmetrical wake 

profile that leans slightly left, potentially contributing to localised hotspots observed in Fig. 

4.16c's temperature contours. Despite CT and MT having the highest turbulence values, 

turbulence intensity decreased after the third row of fins, evident in small localised blue 

regions; this indicates flow separation and recirculation. Consequently, evaluating velocity 

streamlines around the pin-fins and turbulence near the outlet in the following section is crucial 

for understanding flow development before reaching the outlet. 
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Fig. 4.18 (a)–(d). Turbulent kinetic energy contours of all pin-fins (top view) 
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Fig. 4.19 (a)-(d) Velocity streamlines with TKE outlet contours (isometric view) 

Fig. 4.19 (a)-(d) offers insights into the underlying mechanisms by combining velocity 

streamlines and TKE contours (outlet). Except for PHT, all other designs showed flow 

instability and vortex formations behind the pin-fins. The extended top features caused these 

flow disturbances and detachments that resulted in flow recirculation, eddy formation, and 

reversed flow behind the fins, contributing to the dead zones observed in the previous figures' 

contours. The difference between fast and slow-moving fluid layers, combined with pressure 

differences, played contributing roles in vortex formation. However, the geometry's shape and 

pin-tops appeared to have a greater influence, as shown in Figs. 5.19b and 5.19d depict CT and 

DT, respectively. Flow separation leading to localised cold spots in temperature contours was 

also influenced by vortex formation in DT — depicted in Fig. 4.19c. Additionally, CT and DT 

showed the most intense vortices, resulting in the highest turbulent kinetic energy at the outlet, 

while PHT displayed minimal or no vortex formations due to the lack of turbulent flow mixing 

and the geometry causing efficient flow movement. Active and passive vortex formations have 
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been shown to enhance heat transfer efficiency [357]. However, studying vortex-related heat 

transfer goes beyond the scope of this work. 

4.3.4 Discussion of Findings 

The findings from this study on heat transfer and fluid flow provide insights into the 

performance, underlying mechanisms, and limitations of various pin-fin designs. The 

combination of CFD, experimental data, and machine learning helps bring a fresh perspective 

in the development of hybrid bio-inspired pin-fin designs, along with the possible reduction in 

manufacturing time and costs. Evaluating performance metrics such as heat transfer coefficient 

(HTC), Nusselt Number (Nu), thermal resistance, fin efficiency, velocity, temperature, and 

turbulent kinetic energy (TKE) allows for a critical assessment of the heat transfer 

characteristics and thermal performance of the novel scutoid-based pin-fins having non-

conventional geometry. 

The results presented in Figs. 5.10 and 5.11 highlight the dominant performance of the plain 

hexagon top (PHT) design in terms of HTC and Nu. Surprisingly, despite having the lowest 

volume and surface area, the PHT design consistently demonstrates the highest heat transfer 

efficiency. For reference, the base geometry (SPF) had a volume of 𝑉 = 275000 𝑚𝑚ଷ,

𝑚𝑎𝑠𝑠 =  275 𝑔. Thus, this raises questions about the prevailing understanding of the 

correlation between enlarging geometry and heat transfer performance. On the other hand, the 

Mushroom Top (MT) design, with its larger volume and surface area, exhibits slightly lower 

HTC values, indicating a potential trade-off between geometric complexity and heat dissipation 

capability. Fig. 4.20 presents a comparison of the designs at Re = 13500. By comparing the 

best-performing PHT design (in terms of HTC) against the worst and second best-performing 

alternatives, it was observed that PHT had approximately 8.6% and 7.2% less mass/volume 

than MT and CT. Despite its lower mass/volume, PHT demonstrates around 5.2% and 14% 

higher HTC than MT and CT, respectively. Furthermore, with 1.6% more mass/volume than 

CT, MT exhibits approximately 8.3% higher HTC than CT; however, this is to be expected due 

to the larger surface area. 

Based on the graphical values and simulation results, the variation in heat transfer 

coefficients (HTC) and Nu among the different pin-fin designs can be attributed to different 

factors. Despite having the lowest volume and surface area, the PHT design exhibits the highest 

HTC, due to its geometry promoting better fluid flow and heat transfer. Conversely, the 

hexaprism or mushroom-inspired top (MT) design, with higher material usage and surface area, 
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shows slightly lower HTC values because of flow reattachment and separation around its 

protruding elements. The least-performing designs, diamond/tetrahedral top (DT) and conical 

top (CT), suffer from boundary layer separation and inadequate mixing, especially the CT 

design, which demonstrates the worst performance due to its geometry inducing strong 

boundary layer separation and intense vortex formations.  

All these factors interacted to influence heat transfer performance, with turbulence 

enhancement, flow reversal, and thermal boundary layer thickness also playing roles in 

determining the HTC of each pin-fin design. The underperformance of the conical top (CT) 

and diamond/tetrahedral Top (DT) designs in HTC and Nu further emphasises the need for 

critical evaluation of the assumptions and design principles underlying conventional and non-

conventional pin-fin configurations. This is because a shape which had positive impacts 

previously may negatively affect heat transfer based on modifications, as shown in this study.  

 

Fig. 4.20 Mass, volume, and heat transfer performance comparison at Re = 13500 

With increasing Re, the thermal resistance (𝑅௧௛) decreases due to the increased velocity. 

Examining the thermal resistance results presented in Fig. 4.12, it is evident that the PHT and 

MT designs, featuring hexagonal bases for their top features, outperform other designs relating 

to thermal resistance. Comparing the range of 𝑅௧௛, PHT had 7.2% and 7.4% lower range than 

CT and DT; similarly, MT had 2.9% and 3.1% lower range of 𝑅௧௛ than CT and DT. This 

potentially suggests that the pin-fin tops' base shape and the resulting flow characteristics play 

a crucial role in determining the overall thermal performance of the heat sinks. The variation 

in thermal resistance among the different pin-fin designs can be attributed to several physical 

factors related to heat transfer and fluid dynamics. Notably, the PHT and MT designs, both 
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featuring hexagonal top features, promote better heat transfer, minimised boundary layer 

thickness, efficient heat conduction paths, and adequate flow mixing. Conversely, the 

diamond/tetrahedral top (DT) and conical top (CT) designs suffer from boundary layer 

separation and lower heat transfer rates due to their geometrical features. These findings 

underscore the importance of optimising pin-fin designs to minimise thermal resistance for 

improved thermal management efficiency. Therefore, the higher thermal resistance observed 

in the CT and DT designs, particularly in the CT design, raises concerns about their suitability 

for high-performance heat dissipation applications. 

The assessment of fin efficiency in Fig. 4.13 reveals slightly different trends among the pin-

fin designs. While the CT design demonstrates the highest fin efficiency, the differences among 

the designs are minimal; thus, a potential trade-off can be considered if other heat transfer 

parameters give superior results. The surface shape/roughness, from edges or sharp features, 

of the fin structures can influence turbulence levels in the fluid flow, affecting heat transfer 

efficiency. The specific configurations of the CT and DT designs promote turbulence 

enhancement, contributing to their higher fin efficiency values; nevertheless, the sharp 

hexagonal tops promote better overall heat transfer. Therefore, adding chamfers or smooth 

edges can strike a balance within these designs. The marginal differences in fin efficiency 

underscore the need to explore alternative design approaches that prioritise overall thermal 

performance and heat dissipation capability over specific geometric characteristics. The 

minimal pressure drops and pumping power is another metric where the trade-off can be 

arguably deemed acceptable for this case due to the superior heat transfer performance of the 

hexagon-top-based designs.  

To further understand the heat performance enhancements of the new pin-fins alongside 

their trade-offs, the Performance Improvement Factor (PIF) was compared between the new 

design and the base design. The PIF calculations revealed that, compared to the base design, 

the heat transfer performance was improved by 1.70, 1.50, 1.56, and 1.60 times using the 

designs PHT, CT, DT, and MT, respectively. Moreover, this investigation presented a variety 

of parameters for comparison. Therefore, Fig. 4.21 consolidates and synthesises the findings 

of this research to highlight which designs exhibit the best performance. However, due to the 

significant differences in parameter ranges and their units (e.g., Rth values are 200 times 

smaller than HTC values), the heatmap/colourmap was generated using normalised and scaled 

data, often used in machine learning-related data analysis, to make it dimensionless [358]. 

Linear scaling of the original data was employed to convert it into values ranging between 0 
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and 100, where dark green indicates minimum values and yellow indicates maximum values 

(as shown by the colourmap legend). The heatmap visualisation offers a mixed-method 

(qualitative and quantitative) approach to gain a condensed understanding of heat transfer 

performance improvements and comparisons between the base and new designs within this 

study. The best-performing designs can be inferred using either colour alone or both colour and 

data. The heatmap, illustrating six parameters [Heat Transfer Coefficient (HTC), Pressure Drop 

(PD), Thermal Resistance (RTH), Performance Improvement Factor (PIF), Fin Efficiency 

(FE), and Mass], consistently demonstrates that PHT and MT designs are the overall optimal 

designs and outperform the conventional designs and geometries.  

 

Fig. 4.21 Colourmap and summary of heat transfer performance of all design 

The assessment of velocity and temperature contours, along with TKE and velocity 

streamlines, offered insights into fluid flow behaviour, temperature distributions, and energy 

dissipation within pin-fin structures. The PHT design exhibited relatively even velocity 

distribution and efficient heat dissipation, while the CT design shows concerns regarding flow 

separation and turbulence hotspots. In contrast, the DT design presented challenges in 
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achieving efficient heat transfer due to the asymmetrical wakes and the presence of cold spots. 

The presence of hotspots and variations in TKE across designs underscore the complexity of 

turbulent flows and highlight the need for comprehensive analysis for heat transfer 

effectiveness throughout the fin structure. As one of the primary objectives of this study was 

to investigate the underlying physical mechanisms in air-cooled heat transfer strategies, several 

key insights were observed: 

1) Utilising complex fin geometries manufactured through additive manufacturing can 

enhance heat performance while reducing weight. The data and numerical simulations verified 

the initial assumptions that these intricate geometries can effectively disrupt airflow without 

inducing significant flow instability and offer improved heat dissipation, demonstrating the 

potential for improved heat transfer beyond the traditional surface area relationship; 

2) The incorporation of twisted scutoid geometry and various hybrid pin-fin topologies can 

augment heat transfer by manipulating boundary formation above the pin-fins and controlling 

wake region formation between and behind the fins. However, careful monitoring of pin-fin 

spacing, and height is crucial for optimal heat transfer performance within acceptable trade-off 

limits. Greater pin-fin height can promote thinner boundary layers and uniform flow 

distribution; 

3) Sharp-edged top designs tend to outperform pointed or curved surfaces. While pointed or 

conical surfaces may induce flow separations, they result in the formation of intense passive 

vortices and increased wake or dead zones. Further investigation into passive vortex 

manipulation is warranted in air-cooled heat sinks to refine heat transfer strategies; 

4) Pin-fin geometry not only influences heat transfer but also impacts thermal resistance and 

pressure drop within the system, particularly under varying operating conditions. Previous 

studies showed that conical and tetrahedral geometries have promising results, yet their effects 

on temperature distribution along the fins and behind the pins can be significant, influenced by 

factors such as velocity boundary layers and turbulent kinetic energy, leading to non-uniform 

and unstable flow patterns. All these factors combined ultimately reduced their heat transfer.  

Moreover, moving on to the machine learning model predictions, determining whether 

volume and surface area could predict the HTC while employing underutilised algorithms such 

as Gradient Boosting Regressor and ensemble methods in heat transfer analysis, holds several 

key motivations and advantages. The HTC is a critical factor in determining the efficiency of 
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heat transfer processes. Thus, through understanding the relationship between volume, surface 

area, and HTC, heat sink designs and other thermal management systems can be optimised.  

Also, current prediction models can be further utilised via transfer learning methods to help 

researchers, engineers, and designers develop more efficient and effective cooling solutions, 

leading to improved performance and energy savings. The current dataset can also be 

augmented with more experimental and numerical simulations in the future via an open-source 

database. Additionally, by predicting the HTC based on volume and surface area, the need for 

extensive and costly experimental testing can be avoided in the design development stage. 

Instead, these easily measurable geometric parameters can estimate the HTC, significantly 

reducing both time and resource requirements during the design and evaluation phases. In this 

era of Industry 4.0, with a continuous reduction in product development times [67], finding 

innovative solutions via technology is warranted to trigger continuous improvement. 

Furthermore, if design properties such as volume and readily available heat transfer 

parameters prove to be effective predictors of the HTC, as highlighted by the findings of this 

investigation, it simplifies the modelling process. Instead of relying on complex and 

computationally expensive simulations, a simpler model could make dependable predictions 

using available geometric parameters or operating conditions. Following this approach can lead 

to a 60-70% reduction in development times by using key parameters like Reynolds number, 

volume, and surface area for rapid pre-screening. For example, while a single high-fidelity 

simulation or a physics-informed neural network can take up to 5 to 6 hours per configuration, 

the proposed method reduces this to just 1-2 hours by narrowing down the design options early 

on, significantly cutting the total optimisation time when testing multiple designs. 

This simplicity can streamline the design process and facilitate agile analysis of different 

heat sink configurations. Additionally, this allows flexibility and scalability as the knowledge 

and predictions can be applied to various applications, providing valuable insights for different 

engineering scenarios. Moreover, the relationship between volume, surface area, and the HTC 

contributes to a deeper understanding of the underlying physics and mechanisms involved in 

heat transfer processes. It enables the study of complex shapes, and new configurations of pin-

fin heat sink via additive manufacturing methods, and it allows researchers and engineers to 

gain insights into how these geometric parameters impact the convective heat transfer 

characteristics, enhancing their comprehensive knowledge base. 
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Comparing new designs and setups with multiple existing literature findings can often pose 

challenges due to differences in operating conditions, characteristic dimensions, and design 

applications. Furthermore, in some instances, authors may withhold critical data from 

simulations or experiments due to confidentiality concerns. This research reveals that the 

hybrid pin-fins with top geometries can outperform traditional shapes and conventional designs 

in terms of HTC performance, as reported in prior related studies [240,350]. However, it's 

crucial to recognise that, depending on the acceptable trade-offs in the application and HTC, 

our design may or may not also excel or underperform at extremely high Reynolds numbers 

employed in other investigations. Hence, the availability of future rapid performance 

indicators, facilitated by machine learning and based on readily available parameters such as 

volume or surface area, will aid both the design and optimisation stages of heat transfer research 

and beyond. 

Moving forward, the critical findings from this study call for a paradigm shift in pin-fin heat 

sink design. The traditional reliance on simplistic geometric configurations may limit the 

potential for optimal heat dissipation. Instead, a holistic approach that considers the intricate 

balance between flow dynamics, heat transfer efficiency, and energy dissipation patterns 

should be pursued, especially given the availability of advanced manufacturing techniques. 

Similarly, advanced techniques and combined approaches involving machine learning, multi-

objective optimisation algorithms [359], CFD simulations and experimental investigations can 

drive the next generation of heat sinks and enable a broader design choice to identify novel 

configurations that offer enhanced thermal performance. Furthermore, future research should 

focus on integrating advanced materials and surface enhancements into complex pin-fin 

designs to amplify cooling and heat transfer, but with reduced cost [360]. Integrating combined 

innovative approaches, such as surface coatings, micro/nanostructured surfaces, and additive 

manufacturing techniques, have the potential to significantly alter flow characteristics and 

enhance convective heat transfer, thereby overcoming the limitations of conventional designs. 

The discussion of the findings emphasises the need for a comprehensive re-evaluation of 

pin-fin heat sink designs. The dominant performance of the biomorphic PHT and MT design 

in most metrics, coupled with the limitations observed in other designs, highlights the potential 

for significant improvements. By embracing a multidisciplinary approach that combines 

insights from fluid dynamics, heat transfer, machine learning, and design for manufacturing 

considerations, researchers can unlock the full potential of pin-fins and develop next-

generation heat sink solutions with superior thermal performance, reduced size and cost, and 
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improved energy efficiency. Nonetheless, despite ensuring different measures and robust 

methods to ensure the reliability of this study, it is also important to acknowledge the 

limitations of this study. The findings rely on a specific set of experimental and simulation 

conditions and limited data points, and therefore, generalisability to other scenarios needs 

further assessment. Additionally, while advanced materials and additive manufacturing were 

discussed as potential avenues for improvement, their practical implementation and scalability 

need to be explored [241,361]. Future research should address these limitations to ensure the 

practicality and real-world applicability of the proposed design strategies. Therefore, although 

the study produces valuable findings, the author accepts the limitations for this analysis. 

4.3.5 Summary of Chapter 

In conclusion, this chapter provides valuable insights into the performance and limitations of 

various novel pin-fin designs for heat transfer and fluid flow. The combination of 

computational fluid dynamics (CFD), experiments, and machine learning techniques offers a 

fresh perspective in the development of hybrid biomorphic pin-fins, with potential reductions 

in manufacturing time and costs. The key findings include: 

 Dominant performance of the plain hexagon top (PHT) design in heat transfer 

coefficient (HTC) and Nusselt Number (Nu), challenging the conventional understanding of 

the correlation between surface area and heat transfer. The novel scutoid-based designs 

produce 1.5 to 1.7 times better heat transfer performance with a 6% to 14% weight reduction 

compared to the base rectangular/square fin design;  

 Numerical thermal analysis demonstrates the superiority of hexagon-based designs 

(PHT and MT) and raises concerns about the suitability of conical (CT) and tetrahedral (DT) 

designs for high-performance heat dissipation. Fin efficiency shows minimal differences 

among designs, with the CT design having the highest efficiency. 

 Temperature, velocity, and turbulent kinetic energy contours highlight the importance 

of geometry and even velocity distribution within the pin-fin region for efficient convective 

heat transfer, with the PHT design excelling in this aspect. The CT and DT designs exhibit 

flow separation regions, compromising heat dissipation uniformity due to intense vortex 

formation, leading to uneven heat distribution. Turbulent energy dissipation patterns further 

emphasise the complexity of heat transfer but gives insights into the underlying mechanism; 
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 Machine learning predictions demonstrate the potential of using volume and surface 

area as predictors of the HTC, simplifying design optimisation and exploration, and 

providing quick performance indicators. Ensemble methods and multiple linear regression 

perform the best among the compared models (mean absolute percentage error <5%). 

In summary, this study contributes to the knowledge of pin-fin heat sink designs, 

highlighting the dominance of non-conventional designs and the importance of combining 

multiple strategies. Integrating advanced design and manufacturing techniques and utilising 

machine learning can unlock the full potential of pin-fins, leading to next-generation heat sink 

solutions with superior performance, reduced size, cost, product development times, and 

improved energy efficiency. 
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Chapter 5: Thermohydraulic Assessment of Bio-
inspired Hybrid Micro Pin-Fins  

 

5.1 Background to the Chapter 

In this chapter, water was employed as the working fluid to investigate the hydrodynamic 

behaviour of bio-inspired micro pin-fins. The research initially focused on numerical 

simulations to evaluate the pressure distribution and thermal performance under wall heating 

conditions. The analysis revealed the impact of bio-inspired geometries on the pressure 

distribution, heat, and fluid flow characteristics of micro heat sinks.  

Afterwards, this study then evolved to include four newly developed hybrid micro pin-fin 

designs, combining various pin-fin optimisation strategies, and incorporating agile 

manufacturing and cost-feasibility assessments. These designs aimed to balance hydraulic 

performance (such as pressure drops) and heat transfer improvements (Nu number). Existing 

correlations were found inadequate for these complex geometries, and new machine-learning-

driven correlation models were developed to fill this gap. These models enhanced prediction 

accuracy, enabling more efficient design optimisations. 

5.2 Initial Design Investigation 

Initially, for this study, two designs were compared. The first base design featured traditional 

inline rectangular pin fins (RF) and was used for numerical validation from the works of [362]; 

The second design, containing pentagonal-hexa-prism fins (SF), drew inspiration from a skin 

cell shape called scutoid, similar to the previous case. The SF combined the effects of two 

different shapes and offered new insights. Then, a CFD study analysed heat transfer and flow 

characteristics to understand the underlying physics. The micro pin-fin geometries, heat sink 

design, along with the different wall heating setup, are depicted in Fig. 5.1; the heat sinks had 

identical dimensions and number of pin fins (17 × 34). 
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Fig. 5.1 Initial micro pin-fin heat sink designs 

Governing Equations: There are some disagreements between authors regarding the flow 

characteristics and Reynolds Number (Re) at which turbulent flow occurs at the microscale. 

However, 550≥Re≥400 generally fall in the laminar region. The governing equations and 

assumptions used for modelling were adapted/modified from previous works [281,338]:  

𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒊𝒕𝒚 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 
𝝏𝒖
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= 𝟎 (27) 
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𝝏𝟐𝑻
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𝝏𝟐𝑻

𝝏𝒚𝟐
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ቇ (28) 

𝑯𝒆𝒂𝒕 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓 𝒄𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 (𝑯𝑻𝑪): 𝒉 =
𝒎̇𝒂𝒄𝒑(𝑻𝒐 − 𝑻𝒊)

𝑨𝒔[𝑻𝒃 − ቀ
𝑻𝒊 + 𝑻𝒐

𝟐
ቁ]

  
 

(29) 

Where, 𝑢, 𝑣, 𝑤 - velocity components; 𝑥, 𝑦, 𝑧 - directions; 𝜌௙ – fluid density; μ - dynamic 

viscosity; Pr - Prandtl number; 𝑆௧ - energy equation source term; 𝑇, 𝑇௕, 𝑇௜, 𝑇௢ are fluid, base, 

inlet, and outlet temperatures, respectively; 𝑚 - mass flow rate; 𝐴௦ - base area where heat is 

applied; 𝐶௣ – specific heat. 

Model pre-processing and numerical validation: ANSYS Fluent Mesh software helped 

to create three mesh sizes for fluid (water) and solid (aluminium) domains. One of the goals 

whilst using CFD is to improve mesh/accuracy and reduce the time and cost of simulation. 

Therefore, the mesh grid independence test was done using a velocity metric (𝑽𝒎𝒂𝒙) at the 
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outlet; the numerical validation was done using the base temperature (𝑻𝒃) from [362]. Table 8 

provides the mesh statistics and related data for the pre-processing.   

Table 8: Numerical validation and grid independence test results 

Mesh (No. 

of Nodes) 

𝑽𝒎𝒂𝒙 (𝑹𝒆

= 𝟓𝟓𝟎) 
𝑻𝒃 (CFD) 

%Error, 

𝑻𝒃 [362] 

𝑽𝒎𝒂𝒙 (𝑹𝒆

= 𝟒𝟎𝟎) 
𝑻𝒃 (CFD) 

%Error, 

𝑻𝒃 [362] 

Mesh I 

(58443) 
0.246 m/s 329.3 K 2% 0.179 m/s 337.6 K 18% 

Mesh II 

(76000) 
0.240 m/s 325.6 K 13% 0.178 m/s 337.5 K 18% 

Mesh III 

(143695) 
0.245 m/s 328.5 K 4% 0.174 m/s 334.0 K 7% 

 

The minimal difference between the 𝑽𝒎𝒂𝒙 values and acceptable %error for 𝑻𝒃 highlights 

the success in numerical validation. Mesh (III) was preferred for simulations, with orthogonal 

quality above 0.70 (considered good). The refinement ratio of Mesh (II)/(I) and (III)/(II) were 

both above 1.3, further supporting the grid independence and CFD simulation results [337].  

5.3 Discussion of Results 

Fig. 5.2 presents CFD simulation results for temperature variations and velocity streamlines. 

Boundary conditions included an initial inlet temperature of 298 K, zero outlet pressure, and 

Re = 550, with a system heat flux of 37.2 𝑘𝑊/𝑚ଶ. NWH designs (RF, SF) lacked extended 

heat flux, while SFX and RFX designs had heated inlet and outlet regions. WH designs 

exhibited higher temperature saturation near the outlet, contrasting with NWH designs, 

showing cold spots near the inlet. Due to the geometric influences and potential laminar 

boundary layers, the RF design displayed thick boundary layers, but generally, there were no 

significant difference between NWH and WH. Overall, WH designs had more evenly 

distributed distinct temperature regions and higher base temperatures than NWH designs. Also, 

SF and SFX designs showed potential flow recirculation and turbulence near the right side of 

the inlet, influencing boundary layer formations. 
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Fig. 5.2 Temperature distribution from the top view 

It can be said that the three of the most important considerations for heat sink designs include 

pressure drop, HTC, and the base operating temperature. Fig. 5.3 shows the 3D surface plot 

used for visualising the data and comparing the designs. 

 

Fig. 5.3 Pressure distribution in the heat sinks 

In analysing the performance metrics of the four designs—RF, RFX, SF, and SFX—

several observations are made. While RF boasts the highest Heat Transfer Coefficient (HTC) 

at 3892 𝑊/𝑚ଶ𝐾, the slightly elevated operated Base Temperature (BT) of 326 K and pressure 
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drop values may impact its overall performance. SF demonstrated a commendable HTC of 

3298 𝑊/𝑚ଶ𝐾 and, notably, the lowest operating base temperature at 323 K, suggesting 

superior continuous heat dissipation. Additionally, when considering the Pressure Drop (PD), 

SFX emerges with the lowest value at 103.6 Pa, closely followed by SF at 103.65 Pa. Despite 

RF's impressive HTC, the combination of SF's substantial HTC, lowest base temperature, and 

lowest pressure drop makes SF as the overall best option, striking a balance between efficient 

heat transfer and fluid dynamics. Also, it should be noted that the WH designs showed lower 

HTC values and higher BT for both types of pins.  

The study explored the influence of wall heating conditions, particularly the impact of 

extended heat flux and new micro pin-fin geometries on heat distribution and fluid dynamics. 

The extended heat flux resulted in distinct and uniformly distributed heat regions. However, in 

wall-heated (WH) designs, the absence of pin-fins in the heated inlet and outlet areas affected 

heat dissipation, leading to a higher overall operating base temperature than non-wall-heated 

(NWH) designs. Notably, the data indicated that pressure drop values were predominantly 

influenced by pin-fin geometry rather than wall heating conditions, as evidenced by the lower 

pressure drop values in designs like SF and SFX. Despite SF operating at a lower base 

temperature with approximately 4% less pressure drop than RF, its HTC was roughly 15% less 

than RF. Therefore, this discrepancy was due to the reduced surface area/volume of SF pins.  

Additionally, the complex geometry may have induced turbulence, potentially disrupting 

the flow and thermal resistance, which could have been better computed using different 

turbulence models; some research has indicated turbulent transition regions in microscale flows 

for Re>400 under various operating conditions [346]. Nonetheless, the study's significance lies 

in giving insights into design optimisations, understanding trade-offs between operating 

parameters, and researching future assessments of complex pin-fins under different operating 

conditions to advance sustainable cooling technology. 

5.4 Finalised Prototype Micro Pin-Fin Heat Sink 

The scutoid-based pin-fin simulations showed promising results due to their unique 

incorporation of a mixture of shapes. However, manufacturing constraints required 

modifications to the original design, leading to adopting a mixed geometry and strategy 

approach that still retained the bio-inspired philosophy derived from the numerical simulations. 

The literature further revealed additional advantages linked to the inclusion of secondary lanes 

or splitters within microchannels, which were subsequently factored into the design process. 
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As a result, four innovative hybrid heat sinks were developed for manufacturing, evolving from 

the initial scutoid-based concept to a more versatile approach, driven by the dual goals of 

overcoming manufacturing challenges and maximising thermal performance and efficiency. 

Consequently, this case aimed to advance the understanding and optimisation of micro 

pin-fin (MPF) heat sink technologies by designing and experimentally analysing four distinct 

biomorphic hybrid MPF geometries. The research uses an agile manufacturing approach, 

including a detachable and quickly reconfigurable heat sink setup with a 3D-printed case to 

explore various designs efficiently. By integrating experimental data with machine learning 

models, this research also endeavours to develop predictive tools and design strategies that 

enhance thermohydraulic performance across various high-demand applications, thereby 

contributing to academic knowledge and practical solutions. To achieve our research aim, we 

established a series of objectives. First, we designed and experimentally evaluated four 

innovative micro pin-fin (MPF) geometries to appraise their performance across important 

thermal metrics. Second, we investigated the impact of design shape and geometry on MPF 

performance to assess how the design variations influence overall heat transfer. Third, we 

created new empirical correlations for the best-performing hybrid biomorphic MPF heat sink 

(MPFHHS) to predict the Nusselt number and pressure drops. Fourth, we analysed machine 

learning regression models using experimental data to evaluate the viability of predicting 

thermohydraulic performance in future heat sinks. Finally, we critically analysed insights from 

both experimental and machine learning models to propose optimised MPF-based thermal 

management solutions, all while incorporating an agile manufacturing philosophy. 

5.4.1 New Heat Sink Designs, Rationale, and Manufacturing 

In this study, four distinct biomorphic micro pin-fin heat sink designs were developed and 

manufactured. Each design was inspired by biological forms and tailored to optimise thermal 

performance by enhancing flow dynamics and mixing. By manipulating thermohydrodynamic 

properties such as turbulence, thermal resistance, and heat transfer efficiency, these designs 

aim to improve the overall thermohydraulic performance of the heat sinks. The key features 

and underlying thermohydrodynamic rationale for each design are detailed below. 

5.4.1.1 Cruciform Flower-inspired Designs 
Cruciform Flower with Astroid Splitters (CFAS): The first design features a cruciform 

flower pattern, characterised by a cross-shape at the centre of the heat sink. To enhance flow 

mixing and redistribution, petal-shaped and astroid-shaped splitters are integrated between the 
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cruciform sections. These splitters are strategically placed to redirect the coolant flow into the 

surrounding pin-fin sections. From a thermohydrodynamic perspective, the design intends to: 

 Increase Turbulence: By introducing obstructions in the flow path, the splitters induce 

turbulence, disrupting the laminar boundary layer and enhancing heat transfer; 

 Enhance Mixing: The splitters promote coolant mixing, leading to a more uniform 

temperature distribution and reducing thermal resistance; 

 Optimise Flow Distribution: Redirecting the flow ensures that all pin-fin surfaces are 

effectively utilised, preventing hotspots and improving overall heat transfer efficiency. 

This design aims to balance flow distribution and mixing efficiency, potentially improving the 

interaction between flow redirection and pin-fin cooling surfaces to improve performance. 

Cruciform Flower with Secondary Microchannels (CFSM): Building upon the 

cruciform shape, this design omits the astroid splitters. The absence of splitters allows the gaps 

between the sections to act as secondary microchannels, providing additional and unrestricted 

pathways for coolant flow. Thermohydraulic considerations for this design include: 

 Reduced Pressure Drop: The open microchannels decrease flow resistance, lowering 

the overall system pressure drop compared to designs with flow obstructions; 

 Laminar Flow Maintenance: The additional channels may promote laminar flow 

conditions, which can be beneficial for certain operating regimes; 

 Optimised Flow Distribution: The secondary lanes facilitate more uniform coolant 

distribution, potentially enhancing thermal performance by ensuring consistent cooling. 

This configuration evaluates the effect of secondary flow lanes on overall system pressure drop 

and heat transfer, aiming to find an optimal balance between enhanced mixing and effective 

flow distribution, as previous literature has reported potential benefits of having secondary lanes. 

5.4.1.2 Exocoetidae-inspired Designs 
Exocoetidae-Inspired Shape with Sharp Edges (ESE): The third design draws 

inspiration from the morphology of Exocoetidae (flying fish), with pins shaped to emulate this 

natural form. Key features include: 1) Hexagonal Base: each pin fin has a hexagon base, a 

shape that offers favourable thermal performance due to increased surface area and ability to 

induce turbulence; 2) Kite or Diamond-Shaped Fins: extending from the base are fins 

reminiscent of wings, to compress and expand the coolant flow, enhancing mixing and 

promoting turbulence; 3) Trapezoidal Tail: designed to expand the flow further, ensuring 

effective utilisation of all pin fins and minimising areas of stagnant flow; 4) Interspersed 



153 
 

Circular Pins: placed between the kite-shaped fins, these contribute to additional flow mixing 

by continuous expansion and convergence zones. Thermohydrodynamic rationale includes: 

 Controlled Flow Expansion and Compression: By manipulating the flow pathways, the 

design increases turbulence intensity, disrupting thermal boundary layers and 

enhancing convective heat transfer coefficients; 

 Maximised Surface Area: The complex geometry increases the contact area between 

the coolant and the heat sink, reducing thermal resistance; 

 Enhanced Turbulence: Sharp edges and abrupt changes in flow direction induce 

turbulence, potentially improving heat transfer; albeit, pressure may also increase. 

This design focuses on leveraging complex geometry to optimise thermal management by 

controlling flow expansion, convergence, and mixing. 

Exocoetidae-Inspired Shape with Filleted Edges (EFE): Retaining the overall geometry 

of the third design, the fourth design introduces filleted edges to the pin fins instead of sharp 

edges. From a thermohydraulic and thermohydrodynamic performance consideration, the 

filleted-edged designs are intended to: 

 Reduce Flow Resistance: Streamlining the geometry decreases pressure drop across the 

heat sink by minimising frictional losses; 

 Alter Turbulence Levels: Smoother edges may reduce turbulence intensity, potentially 

lower levels of turbulence; 

 Improve Thermal Efficiency: By decreasing flow resistance, the coolant can flow more 

freely, which may enhance heat transfer efficiency under certain conditions; 

 Balance Between Turbulence and Pressure Drop: The design seeks to maintain 

sufficient turbulence for effective heat transfer while reducing the pressure losses 

associated with high turbulence levels; 

 Thermal Resistance Reduction: Smoother flow paths may lower thermal resistance by 

facilitating more efficient heat exchange between the coolant and heat sink surfaces. 

By comparing the ESE and EFE designs, the study assesses the impact of edge geometry on 

flow dynamics and thermal performance, aiming to find an optimal balance between enhanced 

mixing and reduced flow resistance.  

Fig. 5.4 shows the drawing and dimensions of the pin-fins. Note that all the heat sinks have 

the same base dimensions and cover the same effective heating area (80 mm × 60 mm); 

therefore, for brevity, the ESE design is shown as the base design.  
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Fig. 5.4 Pin-fin surface dimensions and drawing 

5.4.1.3 Overview of design features and rationale 
By incorporating innovative geometric elements, the designs contribute to a deeper 

understanding of how biomorphic-inspired hybrid pin-fin heat sink geometries can be utilised. 

Table 9 shows the key design features. The pin fins were designed in segments with equidistant 

rows and columns for uniform flow and thermal performance. The height of each pin-fin was 

1mm. Fig. 5.5 provides overview of the design rationale and the final manufactured heat sink. 

Table 9: Summary of key design feature details 

Design PF 
Segments 

Total 
No. of 
PFs 

Geometry Type Interreuptor PF Area 
(mm²) 

EFE 108 (12×9)  520 Hexagon, Kite, Trapezoid 
(0.2mm filleted edges)  

Cylindrical 
Total = (11×8) 

2468 

ESE 108 (12×9) 520 Hexagon, Kite, Trapezoid  Cylindrical  
Total = (11×8) 

2675 
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CFSM 72 (12×6) 792 Curved Arcs;(90° angled 
segments); petaloid rectangle 

lanes (2mm) 
Total = (5×1) 

3122 
 

CFAS 72 (12×6) 852 Curved Arcs (90° angled 
segments); petaloid rectangle 

Astroids 
Total = (12×5) 

3410 
 

 

 

Fig. 5.5 New heat sink designs and inspirations 
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5.4.2 Data Reduction 

During the experimental run, data was recorded at timed intervals to examine the thermal 

performance of single-phase heat transfer. The recorded data included the inlet and outlet 

temperatures of the deionised water as a working fluid, along with temperatures at five equally 

spaced points within the heat sink. Parameters such as flow rate, pressure drop, and heat 

dissipation were also monitored. Additionally, various equations were employed to study the 

experimental results, enabling the calculation of crucial performance parameters related to heat 

transfer and thermal characteristics, including thermal resistance, Reynolds number, Nusselt 

number, and pressure drops. As mentioned in the earlier section, the test section was well 

insulated to minimise heat loss, therefore adapting previous works [8,44,362,363], the baseline 

governing equations for data reduction were as follows: 

Convective heat transfer rate (Q): 

𝑸 =  𝒎̇𝒄𝒑(𝑻𝒐𝒖𝒕 − 𝑻𝒊𝒏 ) (30) 

where 𝑇௜௡  and 𝑇௢௨௧ , 𝑚̇, and 𝑐௣ refers to the inlet and outlet temperature, mass flow rate, and 

coolant’s specific heat capacity respectively 

To calculate density, specific heat, and the mean fluid temperature (𝑻𝒎) is given by: 

𝑻𝒎 = (
𝑻𝒊𝒏 + 𝑻𝒐𝒖𝒕

𝟐
) 

(31) 

Although the current designs have some degree of developing flow due to the inlet entrance, 

Eq. (2) provides reliable calculations with minimal errors, as highlighted in past research 

[229,362,364].  

Characteristics Length (𝑳) or Hydraulic diameter (𝑫𝒉): 

𝑳 = 𝑫𝒉 =
𝟒𝑨

𝑷
 

(32) 

where 𝐴 is the cross-section area and 𝑃 is the perimeter of the inlet 

Reynolds Number (𝑹𝒆): 

𝑹𝒆 =
𝝆𝒗𝑳

𝝁
 

(33) 

where 𝝆, 𝒗, 𝝁 are fluid density, velocity, and viscosity, respectively 



157 
 

Wall Temperature (𝑻𝒘): 

𝑻𝒘 = 𝑻𝒃 − (
𝑸𝑳𝒙

𝒌𝒔𝑨𝒘
) 

(34) 

𝑨𝒘 = 𝑳𝒕𝒔  × 𝑾𝒕𝒔 (35) 

where 𝑇௕ temperature below the channel wall (cw); 𝐿௫ is the distance from the base to cw; 𝑘௦ 

is the thermal conductivity of the heat sink; 𝐴௪ is the surface area of the cw given as a product 

of the length (𝐿௧௦ ) and width (𝑊௧௦) of the test section covered by the pin fins. 

The logarithmic mean temperature difference (LMTD):  

𝑳𝑴𝑻𝑫 =
(𝑻𝒘 − 𝑻𝒊𝒏) − (𝑻𝒘 − 𝑻𝒐𝒖𝒕)

𝐥𝐧 [
(𝑻𝒘 − 𝑻𝒊𝒏)
(𝑻𝒘 − 𝑻𝒐𝒖𝒕)

]
 

(36) 

The LMTD approach provides a representative average driving force for heat transfer across 

the length of the heat sink, capturing the effects of this temperature variation more accurately 

than a constant wall-to-fluid temperature difference. 

Effective fin area (𝑨𝒆𝒇𝒇): 

𝑨𝒆𝒇𝒇 = 𝑵𝑨𝒇𝑯𝒇 + 𝑨𝒘 (37) 

where N is the number of fins or fin sections 

Convective heat transfer coefficient (h) 

𝒉 =
𝑸

𝑨𝒆𝒇𝒇 × 𝑳𝑴𝑻𝑫
 

(38) 

Nusselt Number (Nu) 

𝑵𝒖 =
𝒉 × 𝑫𝒉

𝒌𝒇
 

(39) 

where 𝒌𝒇 is the thermal conductivity of the fluid 

Thermal Resistance (𝑹𝒕𝒉): 

𝑹𝒕𝒉 =
𝑳𝑴𝑻𝑫

𝑸
 

(40) 

Pressure drops (∆𝑷): 
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∆𝑷 = (𝑷𝒊𝒏𝒍𝒆𝒕 − 𝑷𝒐𝒖𝒕𝒍𝒆𝒕) (41) 

Pumping Power Usage (𝑷𝒖): 

𝑷𝒖 =
∆𝑷 × 𝒎̇

𝝆
 

(42) 

5.4.3 Results 

5.4.3.1 Nusselt Number 
The Nusselt number (Nu) is an important dimensionless parameter that helps to quantify 

convective heat transfer between fluid and solid surfaces. Nu varies with fluid flow conditions, 

providing insights into fluid behaviour. When Nu equals 1, heat transfer by conduction equals 

that by convection. Nu values of >1 imply more efficient heat transfer by convection, 

highlighting effective cooling mechanisms. The study evaluated the heat transfer efficiency of 

four micro pin-fin heat sink designs — EFE, ESE, CFSM, CFAS — by calculating their Nusselt 

numbers (Nu) across Reynolds numbers (Re) ranging from 101 to 507, with a power output of 

150W and 250W. Fig. 5.6 (a)-(d) shows the Nu performance of the designs. 

Looking at Fig. 5.6(a) and (b), the results show that the filleted design (EFE) steadily 

increased in Nusselt number from 8.4-8.9 at Re 101 to a maximum of 12.4-12.9 at Re 507, 

indicating improved heat transfer efficiency with higher flow velocities. However, the overall 

Nu values at 250W are around 4-5% lower than at 150W. In comparison, the edged design 

(ESE) shows a more moderate increase in Nusselt number, from 7.6-7.9 at Re 101 to 9.6-10.2 

at Re 507, suggesting that the sharp edges provide less significant improvement in heat transfer 

compared to the filleted design. For ESE, the overall Nu is also lower at 250W than 150W.The 

CFSM design demonstrated the lowest Nusselt numbers, increasing from 5.2-5.3 at Re 101 to 

8.0-9.1 at Re 507, indicating lower effectiveness in enhancing heat transfer. For CFSM, the 

heat transfer efficiency shows a different trend than other designs, with the overall Nu being 

more effective at 250W than 150W. The CFAS design, featuring astroid splitters, achieves the 

second-highest Nu overall and the highest Nu at lower Re values, ranging from 8.8 to 9.8 at Re 

101. At max Re value, the Nu ranges from 12.1-12.5 at Re 507, indicating superior heat transfer 

performance relative to the two other designs. As observed with the other two designs, the heat 

transfer efficiency is slightly better at 150W than at 250W. 

Overall, across both power outputs, the EFE and CFAS designs consistently demonstrated 

the highest Nusselt numbers, confirming them as the most efficient designs for heat transfer. 

The CFAS design performs well initially but shows signs of a gradual decrease in heat transfer 
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efficiency at higher Reynolds numbers and power outputs. The ESE design provides moderate 

performance with steady but limited improvements, while the CFSM is the least effective. 

 

Fig. 5.6 (a)-(d) Nusselt Number comparison 

To further evaluate the performance of the new designs, the Nusselt number (Nu) results of the 

two best-performing designs at 150W were compared with those reported in the existing 

literature, as shown in Fig. 5.6(c). Also, to gain a more comprehensive understanding, different 

setup strategies were considered. For instance, Ali and Arshad examined conventional square 

pin fins arranged in inline and staggered configurations using both water and nanofluids. Their 

experiments were conducted at a power output of 192 W within a Reynolds number (Re) range 

similar to this study. However, since this current research focused on an inline configuration 

and did not involve nanofluids, the first comparison was limited to their inline square fin setup 

with water as the working fluid. The second study considered micro pin fins from the research 

of Ambreen and Kim, who experimented with hexagonal pin fins—a key feature of ESE and 

EFE designs—and conducted within a Re range of 250 to 550. However, because they did not 

provide Nu performance values using water, their use of nanofluids for performance 

enhancement was taken as an additional basis for comparison. 
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Moreover, Chai et al. [365] investigated a three-dimensional numerical model of a non-

conventional interrupted microchannel heat sink with mixed geometries. They explored the 

effects of pressure drop and heat transfer characteristics resulting from various dimensions and 

positions of rectangular ribs within transverse microchambers. Although their research focused 

on microchannels, the presence of interrupted and varied geometries makes it a valuable basis 

for comparison with this study. Additionally, the mixed geometry with interruptions in Chai et 

al.'s [365] design can be appraised against the new designs, which also feature mixed geometry 

with asteroid splitters/cylindrical interrupters. Lastly, Uddin and Sifat [366] analysed the 

thermo-hydraulic characteristics of Mini-Channel Heat Sinks (MnCHS) featuring different 

secondary channel shapes—rectangular, oblique, and curvy—across a Re range of 150 to 1050; 

however, for a more like-for-like comparison, their Re values will be limited to 550 as the 

current research investigates Re values between 100 to 500. In summary, the four studies with 

comparable strategies implemented in various types of heat sink setups provided a solid 

foundation for performance evaluation.  

Additionally, to focus on both the maximum and minimum performances, Fig. 5.6(d) shows 

the performance comparison of the EFE and CFAS designs with those from extant literature at 

the lowest Reynolds number (requiring the least pumping power) at 250W. The findings were: 

 EFE Design: The EFE design shows a significant enhancement in performance, with 

improvements ranging from 23% to 42% over the designs presented in the literature. 

The highest enhancement (42%) is observed when compared with the design by Ali and 

Arshad, suggesting that the design offers substantially better heat transfer efficiency. 

Additionally, when comparing at the highest Re Number and pumping power, the EFE 

and CFAS designs show over 140% Nu enhancement compared to the inline 

rectangular pin-fins of Ali & Arshad. Even the lowest enhancement of 23% against 

Chai et al. [365] still represents a meaningful improvement, highlighting the efficacy 

of the EFE design. 

 CFAS Design: At lower Re, the CFAS design performs slightly better than the EFE 

design, with enhancements ranging from 27% to 45% compared to the literature. The 

maximum improvement of 45% over Ali and Arshad demonstrates that the CFAS 

design is particularly effective, likely due to its ability to manage fluid flow and surface 

interaction more efficiently. The lowest improvement of 27% against Chai et al. [365] 

still exceeds the performance, reaffirming the superior performance of the CFAS. 
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The performance comparison with existing literature indicates that the EFE and CFAS 

designs developed in this study offer substantial enhancements in Nusselt number at 250 W 

compared to previously reported designs. The CFAS design, in particular, outperforms the EFE 

design at lower Re, but the EFE design outperforms CFAS overall, making it the most effective 

in enhancing heat transfer efficiency. This comparative analysis further validates the 

effectiveness of these innovative heat sink designs and suggests that they could offer significant 

advantages in practical applications where efficient thermal management is critical. 

5.4.3.2 Thermal resistance 
Thermal resistance, a key factor in heat transfer analysis, defines the resistance a system 

presents to heat flow. Reducing thermal resistance is crucial for improving heat transfer 

efficiency and ensuring electronic devices and other heat-generating systems operate safely. 

This study measured thermal resistance across different heat sink designs—EFE, ESE, CFSM, 

and CFAS—under various flow rates (Reynolds numbers) and heating powers (150 W and 250 

W). Fig. 5.7 (a)-(b) shows the thermal resistance trend for 150W and 250W. 

As anticipated, thermal resistance generally decreased with increasing Reynolds numbers, 

signifying enhanced heat dissipation at higher flow rates. At 150 W, the CFAS design 

consistently exhibited the lowest thermal resistance, recording a minimum value of 0.0333 

K/W at Re = 507. This superior performance can be attributed to the CFAS design's optimised 

surface area and fluid flow channels, which likely promote more effective heat transfer. In 

contrast, the CFSM design showed the highest thermal resistance, reaching 0.0821 K/W at Re 

= 101. The higher resistance in CFSM could be due to less efficient fluid flow patterns, leading 

to reduced surface heat removal. 

The EFE and ESE designs displayed thermal resistance values between CFAS and CFSM 

data, with EFE generally outperforming ESE. This suggests that the EFE design may have 

better thermal contact or more favourable flow characteristics than ESE but is not optimised as 

CFAS. 

At 250 W, a similar pattern was observed: CFAS continued to outperform the other designs, 

achieving a thermal resistance of 0.0343 K/W at Re = 507, while CFSM again showed the 

highest resistance, especially at lower flow rates, with 0.0815 K/W at Re = 101. The slightly 

higher thermal resistance across all designs at 250 W compared to 150 W could be due to the 

increased heat load, which might exacerbate the inefficiencies in heat transfer, particularly in 

designs like CFSM. 
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The results highlight that among the tested configurations, CFAS is the most effective in 

minimising thermal resistance, particularly at higher flow rates. This efficiency likely stems 

from its design, which facilitates better fluid distribution and heat removal. Conversely, the 

CFSM design’s higher thermal resistance suggests potential areas for improvement in its 

thermal management strategy, such as enhancing flow uniformity or increasing surface contact. 

The apparent dependence of thermal resistance on heat input (Q) in the pin-fin heat sinks 

likely results from slight temperature-induced variations in fluid properties, which can affect 

convective heat transfer. Additionally, some effect arises from the thermal properties of the 

thermal grease layer used, as its conductivity and thickness can influence overall thermal 

resistance, particularly at higher heat fluxes. Regarding the potential for mixed convection, we 

calculated the Grashof and Rayleigh numbers. We found them to be relatively low, indicating 

that natural convection effects were negligible in our single-phase flow setup. Consequently, 

mixed convection was not a contributing factor, and the system remains governed by forced 

convection. 

 

Fig. 5.7 Thermal resistance performance 

5.4.3.3 Pressure drop and energy consumption 
In the design and evaluation of heat sinks, understanding pressure drop values, pumping power 

requirements, and energy consumption is essential for optimising performance and operational 

costs. Pressure drop measures the resistance to fluid flow through the heat sink, which affects 

the amount of pumping power needed to maintain adequate coolant circulation. Higher pressure 

drops usually result in greater energy consumption, influencing the overall efficiency and cost-

effectiveness of the cooling system. Thus, balancing these trade-off factors is important for 

selecting the most appropriate heat sink design for a given application. 
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The analysis of heat sink designs—EFE, ESE, CFSM, and CFAS—was conducted at both 

150 W and 250 W heating powers. Fig. 5.8 (a)-(d) presents the data related to pressure drops 

and associated parameters. Although the values were assessed for both power outputs, the 

differences between them were minimal, as seen from Fig. 5.8(a) and (b), so the results 

primarily focus on the higher heat flux/power output of 250 W data for brevity purposes.  

The ESE design, with sharp-edged micro pin-fins, demonstrates the second highest pressure 

drop among the designs, measuring 350.6 Pa at Re = 101 and reaching 4001 Pa at Re = 507. 

This significant resistance to fluid flow translates into a high pumping power requirement of 

60.1 mW. Consequently, the ESE design has one of the lowest energy efficiencies, consuming 

1 kWh of energy in 692.8 days. The sharp edges create substantial turbulence and flow 

disruption, potentially leading to increased pressure drop and operational costs. 

Conversely, the CFSM design features a secondary flow lane between the pin fins, which 

helps to alleviate some of the flow resistance. This results in a moderate pressure drop of 220 

Pa at Re = 101 and 3340 Pa at Re = 507. Despite this moderate pressure drop, the CFSM design 

requires a lower pumping power of 50.2 mW. It demonstrates the longest energy consumption 

time of 830.3 days for 1 kWh, indicating better overall energy efficiency. 

The EFE and CFAS designs excel in heat transfer performance, as indicated by their high 

Nusselt numbers (Nu). The EFE design, with its curved filleted edges, achieves a pressure drop 

of 160 Pa at Re = 101 and 3463 Pa at Re = 507. This design strikes a balance by minimising 

flow separation and turbulence, requiring 52 mW of pumping power and consuming 1 kWh of 

energy in 800.6 days. The energy consumption is relatively low, considering its effective 

thermal performance. Similarly, the CFAS design incorporates splitter inserts between the flow 

lanes to enhance heat transfer efficiency. However, this design leads to the highest pressure 

drop of 216 Pa at Re = 101 and 4224 Pa at Re = 507. It requires 63.5 W of pumping power and 

consumes 1 kWh of energy in 656.3 days. Although CFAS has a higher resistance than EFE, 

its energy consumption remains manageable and justifiable due to its thermal performance. 

While designs like EFE and CFAS exhibit higher pressure drops, their overall performance 

justifies these trade-offs. The EFE design offers an effective balance between heat transfer 

efficiency and energy consumption, making it a cost-effective choice despite its moderate 

pressure drop. The CFAS design, although it incurs a higher pressure drop and pumping power, 

provides good thermal performance, and its overall energy consumption remains relatively low 

as shown in Figs. 6.7(c) and 6.7(d). Thus, despite the higher pressure drops, the energy 
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consumption metrics of both EFE and CFAS align well with their heat transfer benefits, making 

them acceptable choices depending on the specific needs of the application. 

 

Fig. 5.8 (a)-(d) Pressure drop and pumping power comparison 

5.4.3.4 Effect of fin shape on thermohydraulic performance 
The thermohydraulic performance of heat sinks is closely tied to the geometric design of the 

fins, which influences the flow dynamics, heat transfer efficiency, and pressure characteristics 

of the system. This section discusses how different micro pin-fin heat sink designs—EFE, ESE, 

CFSM, and CFAS—affect key performance metrics such as the Nusselt number, thermal 

resistance, and pressure drop, offering insights into the underlying physics for these outcomes. 

In this study, the EFE design, which features filleted (curved) edges, consistently achieved 

the highest Nu values across a range of Reynolds numbers (Re). The rounded edges in the EFE 

design likely facilitate smoother fluid flow over the fin surfaces, reducing the formation of 

turbulent wake regions that can disrupt the thermal boundary layer. By maintaining a more 

stable and attached flow, the EFE design enhances convective heat transfer by maximising the 

effective surface area exposed to the fluid and minimising thermal resistance at the interface. 
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In contrast, the ESE design, characterised by sharp-edged fins, demonstrated lower Nu 

values. The sharp edges likely induce early flow separation, creating vortices and turbulent 

wake regions that, while increasing local heat transfer, disrupt the overall flow pattern and 

reduce the effective surface area available for heat exchange. The increased turbulence can lead 

to higher localised heat transfer. It also introduces inefficiencies by causing larger pressure 

gradients and non-uniform heat transfer distribution, resulting in a less effective overall 

convective HTC than the EFE design. 

The CFSM design, which incorporates secondary flow lanes, exhibited the lowest Nu values 

among the designs. The secondary lanes led to less direct fluid interaction with the fin surfaces, 

reducing the overall heat transfer coefficient. These lanes might cause the fluid to bypass 

certain areas of the fins, leading to lower surface area utilisation and weaker convective heat 

transfer. The design may also create a more complex flow path, increasing the residence time 

of the fluid without significantly enhancing heat transfer, resulting in a lower Nu. 

The CFAS design, with its innovative astroid splitters, achieved the second-highest Nu 

values, particularly at lower Re. The splitters likely act to increase turbulence in a controlled 

manner, enhancing mixing and ensuring that cooler fluid is continually brought into contact 

with the hot surfaces. This design likely improves the surface interaction of the fluid, increasing 

the effective convective heat transfer area and leading to higher Nu values. However, at higher 

Re, the increase in turbulence might lead to diminishing returns, as excessive turbulence could 

disrupt the flow too much, reducing the overall heat transfer efficiency. 

Thermal resistance measures a heat sink's ability to dissipate heat, with lower values 

indicating better performance. The CFAS design consistently exhibited the lowest thermal 

resistance, particularly at higher Re. The design's astroid splitters likely optimise the flow paths 

within the heat sink, ensuring a more even distribution of the fluid over the surface area. This 

enhanced fluid distribution reduces hotspots and maximises the contact between the fluid and 

the fin surfaces, leading to more efficient heat removal and, consequently, lower thermal 

resistance. The complex geometry increases the effective surface area without significantly 

impeding fluid flow, which helps in maintaining low thermal resistance. 

In contrast, the CFSM design showed the highest thermal resistance, particularly at lower 

Re. The design's secondary flow lanes might cause non-uniform flow distribution, leading to 

areas of stagnant flow where heat builds up. The reduced surface area contacts due to the flow 

bypassing certain regions result in inefficient heat removal, thereby increasing thermal 
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resistance. Additionally, the potential for flow recirculation within the secondary lanes could 

further impede heat transfer by trapping hot fluid in certain regions, worsening the thermal 

resistance. 

The EFE and ESE designs exhibited intermediate thermal resistance values, with the EFE 

generally outperforming the ESE. The filleted edges of the EFE design likely promote 

smoother fluid flow and better surface contact, reducing thermal resistance compared to the 

ESE design. The sharper edges in the ESE design may cause flow disruptions that limit the 

effectiveness of heat removal, leading to higher thermal resistance. These flow disruptions 

could cause uneven temperature distribution on the fin surfaces, further contributing to 

increased thermal resistance. 

Pressure drop is a critical factor in the design of heat sinks, as it influences the energy 

required to pump the coolant through the system. The ESE design, with its sharp-edged fins, 

exhibited one of the highest pressure drops. The sharp edges likely cause significant turbulence 

and flow separation, which increases the resistance to fluid flow. This increased resistance 

requires more pumping power to maintain the desired flow rate, leading to higher energy 

consumption. The substantial pressure gradients created by the sharp edges increase the energy 

required to overcome these resistances, making the ESE design less energy-efficient in long-

term operation. 

On the other hand, the CFSM design, featuring secondary flow lanes, demonstrated a 

moderate pressure drop and the lowest pumping power requirement. The secondary lanes likely 

help streamline the flow by providing alternate paths, reducing the overall resistance to fluid 

flow. This design, while not maximising heat transfer, offers better energy efficiency due to 

the lower pressure drop, which translates to reduced pumping power and lower operational 

costs. The trade-off here is between reduced heat transfer and improved energy consumption. 

The EFE design, with its filleted edges, achieved a balance between pressure drop and 

thermal performance. The rounded edges minimise flow separation and reduce turbulence, 

leading to a moderate pressure drop. This design's ability to maintain efficient heat transfer 

while also reducing the pressure drop makes it a cost-effective option, as it requires less energy 

for pumping while still providing good thermal performance. 

The CFAS design, though resulted in the highest pressure drop, maintained an acceptable 

energy consumption due to its superior thermal performance. The complex geometry with 

astroid splitters enhances heat transfer but at the cost of increased flow resistance. The high-
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pressure drop indicates that the design creates substantial flow disruptions, likely due to the 

intricate flow paths around the splitters. However, the improved heat transfer efficiency 

justifies the higher pumping power required, making it suitable for applications where 

maximising heat dissipation is critical, even at the expense of higher energy use. 

Therefore, the shape of the fins plays a crucial role in determining the thermohydraulic 

performance of micro pin-fin heat sinks. Designs like EFE, which offers a balance between 

smooth fluid flow and efficient heat transfer, tend to perform well across all metrics, while 

more complex designs like CFAS can push the limits of heat transfer at the cost of higher 

pressure drops. Understanding the interplay between these factors is essential for optimising 

heat sink design to meet specific thermal management needs. 

While a comprehensive comparison including thermal resistance and pumping power is 

beneficial, it is challenging to produce a direct, like-for-like comparison with conventional heat 

sinks from the literature due the varying flow rate, leading to massively different Re and 

pumping power, and configurations across studies. Additionally, most studies in the literature 

do not compare thermal resistance across different investigations; instead, they typically 

compare thermal resistance between designs within the same study. Many comparative studies 

also do not consistently report values for parameters like pressure drop, further complicating 

direct comparisons. However, to provide a combine thermohydraulic comparison, we have 

incorporated a performance improvement factor (Eq. 14) relying on Nusselt number and 

pressure drop to provide relevant heat transfer enhancement; to achieve this we have used the 

experimental values of [246]. The results show that compared to circular pin-fins, the new 

designs EFE and CFAS, show a combined improvement of 1.30 and 1.33 respectively. 

Therefore, this further highlights the effectiveness of the mixed geometries in providing a 

balanced thermohydraulic improvements.  

 

Performance Improvement Factor (PIF): 

𝑷𝑰𝑭 =

൬
𝑵𝒖(𝒏𝒄)

𝑵𝒖(𝒃𝒄)
൰

൬
𝜟𝑷(𝒏𝒄)

𝜟𝑷(𝒃𝒄)
൰

𝟏
𝟑

 

(43) 

Where nc refers to the new case, and bc is the base case (circular fins) gained from the 

experimental results of [246]. 
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5.4.4 Building empirical correlation models 

The currently available empirical correlation models, including classical models developed by 

Shah [333] or London or Kosar, et al. [367], are not suitable for the new types of hybrid micro 

pin fin geometries, even if they initially show good agreement at lower Reynolds numbers. 

These traditional models, designed for simpler microchannel or pin-fin configurations, fail to 

account for the complex flow dynamics introduced by the intricate geometries of hybrid micro 

pin setups. While Xu et al.'s correlation, tailored for petaloid geometries, demonstrated 

reasonable accuracy at lower Reynolds numbers, its applicability diminishes as the flow 

approaches the transitional regime. In this study, the flow transition occurs between Reynolds 

numbers 300 and 400, a range where flow behaviour becomes unstable and difficult to model 

accurately. Xu et al’s [246] correlation, developed for a broader range of 300 to 1500, reports 

turbulence around a Reynolds number of 900. However, existing literature suggests that 

transitional regimes can begin at Reynolds numbers greater than 300 [346]. This transitional 

behaviour is evident in the graphs of Nusselt number (Nu) and thermal resistance, where the 

values show only limited increases or massive fluctuations.  

Although MSE is a commonly used metric, this research primarily focuses on R² and MAPE 

values due to the different data scales between Rth, Nu, and pressure drops. MAPE values are 

more generalisable when the data ranges vary significantly in magnitude. Hence, the 

breakdown of the equations for calculating MSE, MAPE, and R² are as follows: 

The 𝑅ଶ (R-squared) is a statistical measure that represents the proportion of the variance in 

the dependent variable that is predictable from the independent variables given by this 

equation: 

𝑹𝟐 = 𝟏 −
∑  𝒏

𝒊ୀ𝟏 (𝒚𝒊 − 𝒚ෝ𝒊)
𝟐

∑  𝒏
𝒊ୀ𝟏 (𝒚𝒊 − 𝒚ഥ)𝟐

 (44) 

Where: 

 𝑛 is the number of data points. 

 𝑦௜ is the real value for 𝑖௧௛ data point. 

 𝑦ො௜ is the prediction for 𝑖௧௛ data point. 

 𝑦ത is the average of the real values. 

 ∑  ௡
௜ୀଵ (𝑦௜ − 𝑦ො௜)

ଶ is the sum of squared errors. 
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 ∑  ௡
௜ୀଵ (𝑦௜ − 𝑦ത)ଶ  is the total sum of squares (the total variance in the actual values). 

The Mean Absolute Percentage Error (MAPE) is a measure of prediction accuracy in a model. 

The equation calculates the average of the absolute percentage errors between actual and 

predicted values, expressed as a percentage. The equation for MAPE is: 

𝐌𝐀𝐏𝐄 =
𝟏

𝒏
෍  

𝒏

𝒊ୀ𝟏

ฬ
𝒚𝒊 − 𝒚ෝ𝒊

𝒚𝒊
ฬ × 𝟏𝟎𝟎 (45) 

Where: 

 𝑦௜ is the real value for 𝑖௧௛ data point. 

 ቚ
௬೔ି௬ො೔

௬೔
ቚ is the absolute percentage error for the 𝑖௧௛ data point. 

The Mean Squared Error (MSE) is used as a quality measure for a model estimator; it calculates 

the average of the squared differences between actual and predicted values, given by:  

𝐌𝐒𝐄 =
𝟏

𝒏
෍  

𝒏

𝒊ୀ𝟏

(𝒚𝒊 − 𝒚ෝ𝒊)
𝟐 

 (𝑦௜ − 𝑦ො௜)
ଶ is the squared error for the 𝑖௧௛ data point. 

(46) 

Despite the limitations of existing correlations, the experimental values from this research 

remain robust, with the Mean Absolute Percentage Error (MAPE) between Nu, thermal 

resistance (Rth), and pressure drops ranging between 2.5% to 7.5% for power levels of 250W 

and 150W. This indicates that the experimental data are consistent and reliable. Notably, the 

Nusselt number is slightly lower at 250W compared to 150W, which can be attributed to the 

increased thermal load at higher power levels. This higher thermal load may lead to elevated 

fluid temperatures and reduced heat transfer efficiency due to changes in fluid properties or 

boundary layer effects under these conditions. Therefore, while existing correlations fall short 

in predicting the behaviour of hybrid micro pin-fins, the experimental results are robust and 

give valuable performance insights. 

Nonetheless, to develop new correlation models, the data and parameters were combined to 

assess the Pearson correlation between various dependent and independent variables (DVs and 

IVs). Fig. 5.9 shows the correlation matrix, where it is evident that Nu, Re, pressure drop (PD), 

and power (Pu) have strong positive correlations, while Rth has a strong negative correlation. 

In many empirical correlation models, Nu is calculated using Reynolds number (Re) and 



170 
 

Prandtl number (Pr). The Pr for the flows were calculated depending on the temperature; 

however, the Pr values vary inconsistently across different models, with only the EFE model 

showing any significant correlation between Nu and Pr. This inconsistency further highlights 

the complexity of the dataset and the intricate underlying physics. To determine if Pr 

significantly influences the dataset, a principal component analysis (PCA) was conducted for 

feature engineering and to ensure that any power law correlation equations developed are 

robust and generalisable. 

 

Fig. 5.9 Correlation matrix for parameters 

Principal Component Analysis (PCA) is a dimensionality reduction technique used to identify 

key parameters which influence variability in the original dataset. Although domain knowledge 

suggested that Nu, PD, Re, and Pr are key variables, the irregularity and weak correlations of 

Pr warranted the application of PCA as an additional confirmation. PCA was applied to identify 

the key variables that contribute most to the variability in the dataset, which is composed of 

different power configurations and thermal performance metrics. The strategy involved 
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standardising the data to ensure each feature contributed equally to the PCA. PCA was then 

performed, and the first two principal components were analysed, as they typically capture the 

most variance in the data. The loadings of the variables were examined to determine which had 

the most influence on these principal components. Generally, variables with the highest 

absolute loading values in the first two components are considered the most impactful, 

providing insight into the underlying structure of the data and allowing for a more focused 

analysis of the key factors driving the observed patterns.  

In this case, Rth and Nu were the most influential. Nevertheless, the other three factors—

Re (0.77), PD (0.76), and Pr (0.74)—showed strong and closely matched loading values to Nu 

(0.80). Therefore, the PCA confirmed the inclusion of Pr as a parameter in forming empirical 

correlations for the new hybrid micro pin-fins. However, since CFAS and EFE were the two 

best-performing configurations from the two types of MPFHS setups, power law empirical 

equations were derived for them, along with their MAPE and R² values, to demonstrate the 

model's accuracy and variations. Table 10 presents the new empirical correlation equations 

created using Python and power law equations for the best-performing Cruciform and 

Exocoetidae-inspired biomorphic heat sinks 

Table 10: Empirical correlation equations 

Design Equation Accuracy 

EFE Nu = 1.9434 × Re଴.ଶଵଶ଺ × Pr଴.ଷହଵ଻ MAPE = 1.34%; Rଶ = 0.987  

 Δ𝑃 = 0.0283 × Reଵ.଼ଵଶ଴ × Pr଴.ଶ଼଺଺ MAPE = 3.11%; Rଶ = 0.99  

CFAS Nu = 3.4822 × Re଴.ଵ଺଴ଶ × Pr଴.ଵସ଺଺ MAPE = 1.63%; Rଶ = 0.957  

 Δ𝑃 = 0.1737 × Reଵ.଺଺ଶ଺ × Prି଴.ଵସଽଶ MAPE = 7.06%; Rଶ = 0.98  

 

5.4.5 Machine learning-driven analysis 

This research employs machine learning algorithms for investigative data analysis and to 

enhance validation of the dataset; thus, providing an in-depth description of each algorithm 

goes beyond the scope of this paper. Furthermore, these algorithms have been extensively 

discussed in the existing literature [8,351,352,368]. The experimental data results and 

subsequent empirical correlations yielded high R² values. Therefore, a key point of interest was 

determining whether machine learning algorithms could provide more accurate Nu predictions 



172 
 

using Re and Pr and if they can better capture the complex data patterns to show the existence 

of meaningful relationships and valid patterns in the dataset. As a result, 10 different types of 

regression models were used.  

Firstly, Linear Regression (LR) models the relationship between dependent and independent 

variables (DV and IV) by fitting a straight line. On the other hand, Polynomial Regression 

(PLR) extends LR by modelling non-linear trends through polynomial relationships. XGBoost 

(XGB) is an optimised version of a gradient boosting algorithm that enhances prediction 

accuracy via ensemble learning, and it is highly efficient for structured data. Random Forest 

(RF) is another ensemble learning method that improves prediction accuracy and robustness 

by averaging outputs from multiple decision trees.  

On a different note, Support Vector Regression (SVR) leverages support vector machines 

to make predictions by finding the optimal hyperplane to minimise errors. K-Nearest 

Neighbours (KNN) predicts values by averaging the outputs of the closest data points, offering 

a simple yet effective approach. Ridge Regression (RR) is a regularised version of linear 

regression that adds a penalty on high coefficients to reduce overfitting; Elastic Net (EN) 

combines the penalties of Ridge and Lasso regression, balancing variance and bias. MLP 

Regression, based on a multi-layer perceptron, uses neural networks to model complex, non-

linear relationships in data. Lastly, a Combined Model (CML) blends multiple models to 

enhance prediction accuracy by leveraging their strengths — in this case, it combines MLP, 

KNN, and LR. The reason multiple different models are compared against each other is to 

assess and address any overfitting issues. Table 11 shows the initial model performances. 

Table 11: Different regression algorithm performance 

Model MSE MAPE R² 

XGBoost 0.000 0.07% 1 

Polynomial Regression 0.010 0.72% 0.995 

Random Forest 0.050 1.67% 0.9748 

Support Vector Regression 0.209 3.17% 0.894 

K-Nearest Neighbors 0.099 2.72% 0.8026 

Linear Regression 0.108 2.95% 0.7833 
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Ridge Regression 0.110 2.79% 0.7808 

Combined Model 0.134 2.26% 0.7317 

Elastic Net 0.262 3.30% 0.4762 

MLP Regression 0.388 5.21% 0.2225 

 

The performance of various predictive models for Nusselt number (Nu) based on Reynolds 

number (Re) and Prandtl number (Pr) revealed significant differences in accuracy and 

reliability. They were categorised into four different categories discussed in the following. 

Very High Accuracy Models, Possible Overfitting (R² > 0.95), include XGBoost, 

Polynomial Regression, and Random Forest. XGBoost stands out with a perfect R² of 1.00, 

therefore there is overfitting. However, its near-zero MSE and MAPE indicate that it effectively 

minimises prediction errors and handles the non-linearity and interactions between Re and Pr 

adeptly, and, thus, is too reliant on this dataset. Polynomial Regression also performs 

exceedingly well with an R² of 0.9950, leveraging polynomial terms to capture intricate 

relationships between the variables. This model’s high performance is due to its flexibility in 

fitting complex patterns, despite a slight increase in error metrics compared to XGBoost. 

Random Forest achieves an R² of 0.9748, demonstrating strong predictive power with an 

ensemble of decision trees that reduces overfitting and captures a broad range of interactions 

between Re and Pr. The slightly higher MSE and MAPE compared to XGBoost and Polynomial 

Regression suggest it might not model the data’s most intricate patterns as precisely. 

High Accuracy Models (0.95 > R² > 0.80) consist of Support Vector Regression (SVR). 

SVR, with an R² of 0.8940, shows effective performance but with higher MSE and MAPE, 

which might be due to its sensitivity to the choice of kernel and hyperparameters. Although 

SVR handles non-linearities well, its performance is slightly less robust than very high-

accuracy models. KNN, with an R² of 0.8026, offers reasonable predictions but struggles with 

higher MSE and MAPE due to its reliance on local data and sensitivity to the choice of k-

neighbours.  

Good Accuracy Models (0.80 > R² > 0.70) included Linear Regression and Ridge 

Regression, with R² values of 0.7833 and 0.7808 respectively, show basic predictive 

capabilities but are limited by their assumptions of linear relationships. Ridge Regression 

improves upon Linear Regression by adding regularisation to handle multicollinearity. Yet, 
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both models fail to capture the non-linear interactions as effectively as more advanced 

techniques, resulting in higher errors. The combined model produces even lower accuracies 

than a single model.  

Low Accuracy Models (R² < 0.70) are represented by Elastic Net and MLP Regression. 

Elastic Net, with R² of 0.4762, demonstrates poor performance due to the challenges of 

balancing L1 and L2 regularisation, which may not suit the complex relationships in the 

dataset. The high MSE and MAPE suggest that the regularisation terms are not effectively 

tuning the model. MLP Regression also exhibits the lowest R² of 0.2225, attributed to its 

complexity potential underfitting issues and limited data. The model’s architecture might not 

be well-suited for this problem, leading to significant inaccuracies in prediction. 

Overall, XGBoost and Polynomial Regression are the most reliable models for predicting 

Nu, offering the highest accuracy and lowest errors due to their ability to handle non-linearity 

and complex interactions. Nevertheless, these show signs of overfitting too. Models in the high 

accuracy category are effective but may not provide the same level of precision due to their 

inherent limitations. The lower accuracy models show notable deficiencies in capturing the 

data’s nuances, indicating a need for different modelling approaches or further optimisation to 

improve performance. Therefore, to cross-validate the results and alleviate overfitting issues 

for better data generalisation. The original dataset was synthetically augmented with large 

Gaussian noise to distort the dataset and further analyse if the models can still make robust 

predictions. The reason Gaussian noise was used for regularisation over other methods is due 

to its versatility and continuity in handling data. Additionally, gaussian methods have 

previously yielded good performance results [31]. As in the original code, Re and Pr data were 

standardised using ‘StandardScaler’ so the features have mean 0 and standard deviation 1 after 

scaling, a noise of scale of 0.5 of standard deviation is added which is quite significant. The 

specific equation for generating Gaussian noise would be: 

Noise = 𝝈 ⋅ 𝒁 (47) 

Where: 

 Z is a random variable sampled from the standard normal distribution N (0,1) 

 𝜎 =0.5 is the standard deviation. 

So, for each data point 𝑦௜, the noisy version would be: 
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Noisy 𝒚𝒊 = 𝒚𝒊 + 𝝈 ⋅ 𝒁𝒊  

Where: 𝑍௜is sampled from N(0,1) independently for each data point. 

Gaussian noise was chosen for its effectiveness in replicating minor variations commonly 

observed in experimental measurements, helping to prevent overfitting by introducing 

controlled random variability. Compared to standard scaling, which uniformly adjusts data, 

Gaussian noise allows for more realistic, small-scale fluctuations that align with natural 

measurement uncertainties, thereby better simulating the variability in experimental 

conditions. By simulating realistic measurement uncertainties, Gaussian noise enhances the 

model’s robustness, making it less sensitive to minor discrepancies and improving predictive 

accuracy across diverse conditions in the dataset.  

The addition of Gaussian noise had an interesting impact on the performance of various 

regression models used to predict Nu based on Re and Pr. Fig. 5.10 shows the comparison 

between the original and augmented datasets. Initially, the models trained on the original 

dataset demonstrated near-perfect performance metrics, with XGBoost achieving an MSE of 

0.0001, a MAPE of 0.07%, and an R² of 1. These metrics, while impressive, suggest a potential 

risk of overfitting, where the model might be capturing noise and specificities of the training 

data rather than generalisable patterns. Hence, introducing substantial noise allowed 

assessment of the model's ability to generalise beyond the overly specific patterns of the 

original data. The augmentation showed that models could better handle data variability, 

leading to improvements.  

 

Fig. 5.10 Model comparison for original and augmented synthetic data 
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Nonetheless, such perfect predictions shown by XGB are unrealistic in a real-world scenario, 

therefore further assessment of XGB is required. Random Forest's performance improved from 

an MSE of 0.0498, a MAPE of 1.67%, and an R² of 0.9748 to an MSE of 0.0096, a MAPE of 

0.76%, and an R² of 0.9951. Similarly, SVR's metrics improved from an MSE of 0.2093 to 

0.0973, with MAPE decreasing from 3.17% to 2.02%, and R² increasing from 0.8940 to 0.9507. 

The KNN and Polynomial Regression models also exhibited enhanced performance, reflecting 

a robust generalisation ability after augmentation. Therefore, based on the overall performance 

of aR² and MAPE and considering potential overfitting issues, PLR and RF are perhaps the 

most suitable models for future predictions of Nu. 

These results underscore the utility of data augmentation in capturing complex relationships. 

The substantial noise introduced in the augmentation process helped simulate real-world 

variability, making the models more adept at handling noise and less prone to overfitting. This 

process is particularly valuable for predicting Nu from Re and Pr, as it helps in modelling the 

intricate and often non-linear relationships between these variables. Moreover, using 

augmented data is beneficial in the context of empirical correlation models, where complex 

relationships might be oversimplified. Traditional empirical models often rely on limited data 

or simplistic correlations, which may not capture the true dynamics of the system. By contrast, 

regression models trained with augmented data can explore a broader range of relationships 

and interactions, providing more accurate and reliable predictions. 

It is important to acknowledge that the dataset used is limited, and acquiring more 

experimental data is both expensive and impractical. Thus, data augmentation becomes a 

crucial technique to enhance the robustness and accuracy of the models without the need for 

extensive new data collection. This approach supports agile manufacturing concepts by 

offering a time-efficient method to improve model performance and adaptability. Therefore, 

the augmentation of data with a large Gaussian noise scale has proven to be a powerful 

technique in improving model performance, capturing complex relationships, and aligning with 

agile manufacturing principles. The enhanced generalisation, reflected in improved MAPE and 

R² values, demonstrates the practical benefits of this approach in handling real-world data 

variability and refining predictions. However, this data-driven approach for exploration is 

aligned with the ethos of continuous improvement via technology in advancing manufacturing 

efficiency [369] and provides a good baseline for future predictions of thermohydraulic 

performance without using extensive datasets. 
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5.4.6 Summary of Chapter 

In summary, this research illustrates the effectiveness and limitations of various innovative 

micro pin-fin configurations in assessing the thermohydraulic performance of biomorphic heat 

sinks. By integrating different design strategies, agile manufacturing, experimental methods, 

and machine learning approaches, the study offers a novel perspective on the design and 

production of hybrid biomorphic pin-fins, potentially reducing production time, development 

costs, and manufacturing expenses. The key conclusions were: 

 The Exocoetidae-inspired pin-fins with filleted edges (EFE) and Cruciform-inspired 

pin-fins with a novel type of astroid splitters (CFAS) outperformed other designs in 

terms of Nusselt Number (Nu), thermal resistance, and pressure drops. These new 

designs achieve a 23% to 45% enhancement in heat transfer at lower Reynolds numbers 

compared to existing designs in the literature, with manageable increases in pumping 

power and energy consumption. 

 Further thermal assessments reveal that adding secondary lanes or sharp-edged features 

results in uneven heat distributions, leading to increased turbulence and less efficient 

heat transfer. However, secondary lanes do help reduce system pressure drop. 

 New empirical correlations and machine learning predictions demonstrate high 

accuracy in forecasting Nusselt Numbers, streamlining design optimisation and 

providing rapid performance assessments. Among the tested models, ensemble 

methods such as XGBoost, Random Forest, and Polynomial Regression produced the 

most accurate results, with a mean absolute percentage error of less than 3% and high 

R² values. 

Overall, this study enhances our understanding of pin-fin heat sink designs by highlighting 

the advantages of unconventional designs and the benefits of integrating diverse approaches. 

Combining advanced design techniques with machine learning can significantly improve pin-

fin performance, reduce size, cost, and development time, and enhance energy efficiency in 

next-generation heat sink solutions. Future research should focus on optimising the distribution 

of pin-fin segments and developing more robust methods for using limited datasets to provide 

more accurate predictions of thermohydraulic parameters. 
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Chapter 6: Flow Boiling Regime Classification in 
Microchannel Heat Sinks 

 

6.1 Background to the Chapter 

The chapter focused on accurately predicting and classifying flow boiling regimes in straight 

microchannels using a custom semi-automated data pipeline. A combined Convolutional 

Neural Network (CNN) and clustering algorithm approach was utilised to streamline data 

capture, analysis, and processing. This method not only improved the interpretability of the 

results but also significantly reduced the time and manual handling required for analysis. The 

CNN-clustering method was found to align well with sustainable manufacturing philosophies, 

as it facilitated continuous improvement in both data analysis efficiency and the overall 

development process. Furthermore, the implementation of this technology demonstrated a clear 

link to sustainable design, reducing resource waste in testing and manufacturing while 

providing accurate, scalable insights for future heat sink development and a working data 

pipeline that can be used for further investigations. 

6.2 Research Scope 

The flow boiling mechanism involves intricate interactions between liquid and vapour phases, 

resulting in varied flow patterns and heat transfer dynamics within microchannel heat sinks. 

However, due to the complex interchange and physical phenomena involved, flow boiling 

classification contains many challenges related to subjectivity, interpretability, generalisability, 

and accuracy, amongst other issues [30]. Therefore, understanding and accurately categorising 

these flow patterns is crucial for enhancing heat transfer efficiency and ensuring dependable 

thermal management. Furthermore, classifying flow boiling regimes helps engineers to tailor 

microchannel designs to specific operational conditions, thereby maximising heat dissipation 

while minimising thermal resistance, pressure drops, or energy consumption. 

Consequently, this study conducted a comparative assessment of flow boiling classification 

in micro/mini channel heat sinks, employing neural network-based classification and pattern 

recognition via clustering algorithms under varying mass flow rate conditions (ranging from 

180 mL/min to 600 mL/min using 1600 images. The research aimed to offer a new perspective 

and evaluate different algorithms via a custom dataset gained from experimental findings; thus, 

the focus lies in assessing machine learning-based approaches, specifically clustering methods, 
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for accurately recognising and labelling boiling patterns in microchannel heat sinks. Thus, the 

research provides the following major contributions: 

 A streamlined, generalisable flow boiling image segmentation pipeline; 

 A semi-automated system to generate data and classify images for flow boiling; 

 A baseline boiling regime classifier using a combined CNN-clustering that can be 

expanded/built upon; 

 A methodological comparative analysis of clustering algorithms not reported in similar 

preceding works; 

 Furthermore, the system considers a mixture of different bubble formations and regimes 

with data augmentations, so there is the generalisability of the proposed work in real-

world applications such as different lighting conditions, backgrounds, and orientations. 

6.3 Overview of available technologies 

Reviewing the literature shows that boiling heat transfer classification, particularly in 

micro/mini channels, has various implications for diverse engineering applications. Flow 

boiling patterns directly impact heat transfer efficiency, system stability, and energy usage. In 

micro/mini channels, where space constraints and high heat fluxes prevail, precise 

classification becomes even more critical for effective thermal management. Therefore, 

accurate classification of boiling heat transfer regimes is integral for optimising heat transfer 

processes, enhancing system performance, and ensuring operational safety. However, 

achieving robust classification methodologies in such intricate systems presents many 

challenges, warranting a critical review of existing techniques and further research. 

The current flow pattern classification and recognition strategies encompass a spectrum of 

approaches ranging from traditional empirical correlations, computer vision and advanced ML 

algorithms [297]. Flow pattern detection methods can mainly be categorised into direct and 

indirect techniques. Direct methods like high-speed photography, X-ray computed 

tomography, provide insights into flow patterns, but can be subjective in their interpretation 

and often require manual feature extraction or data labelling. On the other hand, indirect 

methods, such as time-frequency analysis methods (TFA), can analyse fluctuation signals (such 

as pressure drop, flow, or electrical impedance) to identify flow patterns [370]. While TFA is 

popular, other techniques include statistical analysis like probability density function (PDF). 

One of the main limitations of indirect methods like TFA is their sensitivity to noise and signal 
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interference, making them unsuitable for accurately capturing the dynamics of complex 

systems such as flow boiling, ultimately leading to incorrect results. 

Moreover, relying on traditional methods and empirical correlations may struggle to capture 

the intricate dynamics/changes of flow boiling phenomena, leading to limitations in accuracy 

and generalisation. The prospect of machine learning and deep learning algorithms has 

revamped flow boiling classification by offering data-driven, automated, and scalable 

solutions. Techniques like K-nearest neighbours (KNN), Random Forest, Support Vector 

Machine (SVM), and Multilayer Perceptron (MLP) have demonstrated promising results in 

classifying flow patterns based on diverse input parameters [298]. These algorithms leverage 

large datasets to uncover intricate patterns and relationships, enhancing classification accuracy 

and generalisation across different operational conditions. Nevertheless, the effectiveness of 

machine learning or deep learning-related pattern recognition or classification relies on several 

critical factors, including training data quality, feature selection, data labelling, and model 

robustness. Furthermore, the interpretability of machine learning models remains a concern, 

particularly in safety-critical applications where classification decisions are crucial. 

Clustering methods, such as K-means, Gaussian Mixture Models (GMM), and Hierarchical 

Clustering, are widely recognised unsupervised learning techniques extensively employed in 

pattern recognition tasks like image analysis [371]. Despite their popularity, they remain 

underutilised in flow boiling research, particularly in microchannel/minichannel studies. 

Recent research in this field has predominantly focused on bubble dynamics in flow boiling 

via chord lengths and bubble diameters [302]. However, boiling dynamics within a generalised 

system may significantly differ in micro-scale systems, necessitating more targeted 

investigations for a comprehensive analysis. Moreover, experimental data acquisition is costly, 

and large dataset-based artificial intelligence models demand considerable computational 

power and expenses. Therefore, there is a growing need for robust yet agile methods that 

address the current demands of rapid product development times — while minimising 

complexity and data requirements. Recent reports suggest that smaller datasets, especially in 

the thermal management area, can yield superior results  [354]. Additionally combining 

different strategies and technologies can further improve the continuous improvement of 

diverse processes in heat sinks [8]. Accordingly, clustering techniques combined with CNNs 

are a worthwhile strategy to extract meaningful insights from such datasets, potentially 

enhancing the understanding of flow boiling phenomena in microchannel and minichannel. 
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6.4 Clustering Algorithms for Flow Boiling 

While the definitions and intricacies of these methods are well-documented in existing 

literature [371–373] a brief overview of their underlying mechanics and equations is provided 

in the following: 

K-means Clustering: The objective function for k-means can be expressed as: 

𝐚𝐫𝐠 𝒎𝒊𝒏
𝐒

෍  

𝒌

𝒊ୀ𝟏

෍  

𝐱∈𝑺𝒊

‖𝐱 − 𝝁𝒊‖
𝟐 (48) 

where: S = {S1, S2, ..., Sk} represents the partitioning of the dataset into k clusters; μi is the 

centroid (mean) of cluster Si; ∥x − μi∥2 denotes the squared Euclidean distance between a data 

point x and the centroid μi. The goal is to find the optimal partitioning S and centroid positions 

{μ1, μ2, ..., μk} that minimise the objective function. The algorithm iterates between two steps: 

assigning each data point to the nearest centroid to form clusters and updating the centroids 

based on the mean data points in each cluster. The rationale behind choosing the k-means 

algorithm is that it can group similar patterns or features extracted from flow-boiling images. 

For instance, it can cluster images based on pixel intensities, texture features, or other image 

descriptors, helping identify different flow regimes or anomalies. 

Gaussian Mixture Models (GMM): The probability density function (PDF) of a GMM is 

given by this equation: 

𝒑(𝐱) = ෍  

𝒌

𝒊ୀ𝟏

𝝓𝒊 ⋅ 𝓝(𝐱|𝝁𝒊, 𝚺𝒊) (49) 

Where: x represents the observed data point; k is the number of mixture components; ϕi is the 

mixing coefficient associated with the ith Gaussian component, satisfying Pk  

∑  ௞
௜ୀଵ 𝜙௜ = 1 and 𝜙௜ > 0; μi is the mean vector of the ith Gaussian component; Σi is the 

covariance matrix of the ith Gaussian component; N (x|μi, Σi) denotes the multivariate 

Gaussian PDF with mean μi and covariance Σi. As GMM can model complex distributions in 

flow boiling images, it potentially enables the identification of different patterns or regions of 

interest. It can be applied to segment images into distinct regions based on pixel intensities or 

texture features (such as bubble formation or coalescence), aiding in feature extraction and 

subsequent recognition tasks.  
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Hierarchical Clustering: There are two main types of hierarchical clustering: 

agglomerative and divisive. This study investigated agglomerative hierarchical clustering as it 

is more commonly used. The linkage criterion defines the distance between two clusters A and 

B as:  

𝒅(𝑨, 𝑩) = 𝒎𝒊𝒏
𝐱∈𝑨,𝐲∈𝑩

 𝐝𝐢𝐬𝐭(𝐱, 𝐲) (50) 

where: A and B are two clusters being considered for merging; dist(x, y) is the distance between 

data points x and y. Based on this linkage criterion, different distance measures such as 

Euclidean distance, Manhattan distance, or cosine similarity can be used to calculate dist(x, y). 

The dendrogram generated by hierarchical clustering visually represents the merging process 

and can be cut at different heights to obtain the desired number of clusters. Hierarchical 

clustering can reveal hierarchical structures in flow boiling images, identifying both 

macroscopic and microscopic patterns. Additionally, it can help understand relationships 

between different features or segments in the images, aiding in the interpretation and analysis 

of flow boiling phenomena. 

Therefore, based on the discussion regarding the three chosen algorithms, it can be remarked 

that in flow boiling image pattern recognition, these clustering methods can preprocess data by 

segmenting images into meaningful regions, extracting features, or reducing dimensionality. 

They can enable distinct flow regimes’ identification, anomalies, or critical patterns, 

facilitating further analysis or decision-making processes inflow boiling systems. 

6.5 Strategic Process Plan 

This image analysis and pattern recognition study was done using a custom dataset derived 

from experimental findings. The process involves creating a data pipeline and synthetic 

datasets, detailed across subsequent sections covering data collection, augmentation, model 

construction, and evaluation. While other studies explored pattern recognition with custom 

datasets to create data pipelines for other applications [374], this research addresses challenges 

like subjectivity, feature extraction, and data labelling by comparing the performance of 

manually labelled flow boiling data and unlabelled clustering algorithm data through a 

clustering-based convolutional neural network (CNN) classification. Given the high costs of 

experimental investigations and diverse behaviours of flow boiling systems, custom datasets 

play a critical role in enhancing future pattern recognition techniques. Therefore, while 

ResNet50 or CIFAR10 datasets may yield good results elsewhere, using a custom dataset for 
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training flow boiling images offers unique advantages: ensuring the model learns relevant 

features, adapts to image characteristics, and enables fine-tuning for optimal performance. 

Measurement and monitoring were achieved through a suite of instruments. Temperature 

measurements utilize K-type thermocouples with an accuracy exhibiting an error margin of 

±0.5°C. Five thermocouples were evenly spaced across the heating base to ensure no heating 

hot spots were present that could affect the flow of boiling bubble formations, ultimately 

leading to incorrect results. An image acquisition system, consisting of a high-speed camera, 

and an optical microscope with an LED background light source was deployed. This entire 

system captured the evolution of various gas-liquid two-phase flow patterns during the 

experiment; four distinctive flow patterns were observed: dispersed bubbly flow (jets), bubble-

slug flow, annular-like flow, and mist flow (local dry-out), shown in Fig. 6.1. 

 

Fig. 6.1 Different flow regimes 
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6.5.1 Dataset Description 

In the classification of flow boiling regimes, several criteria are utilised to delineate distinct 

patterns and behaviours within the boiling process. These criteria encompass factors such as 

bubble size and distribution, the thickness of the liquid film surrounding bubbles, the presence 

of dry-out regions, and the overall flow dynamics observed. By analysing these parameters, 

researchers can categorise flow boiling regimes into different phases, each characterised by 

unique thermal and hydrodynamic properties. Identifying different flow regimes within a flow 

boiling system involves careful observation and analysis of several key characteristics unique 

to each regime as highlighted in section 2.3.  

In general, flow boiling can be categorised into four broad categories [30]. Jet flow is 

typically characterised by the presence of small, dispersed bubbles resembling jets within the 

liquid phase, while slug flow is marked by the alternating presence of elongated bubbles (slugs) 

and liquid slugs moving through the flow channel. Annular flow is distinguished by the 

formation of a continuous vapour phase surrounding a thin liquid film along the walls of the 

flow channel, and mist flow occurs when the liquid film becomes thin enough to expose patches 

of the wall directly to the vapour phase. In practice, distinguishing between these flow regimes 

often involves a combination of visual observation, analysis of flow patterns, measurement of 

bubble or slug sizes and velocities, and monitoring changes in local heat transfer rates. 

The high-speed camera utilised in this study initially recorded videos capturing the entire 

duration of the boiling process. However, to focus on the analysis and extract meaningful 

insights, the authors specifically selected the first phase of boiling, spanning from the initiation 

of the jet-like dispersed bubbly flow to the occurrence of local dry-out regions. This selective 

approach allowed for a detailed examination of the critical transitional stages within the flow 

boiling process, shedding light on the mechanisms underlying heat transfer and vapour-liquid 

interactions. From the videos, 1600 images were extracted for further investigation, Appendix 

C4 shows a portion of the dataset. However, subtle changes in flow regime dynamics proved 

challenging to follow, emphasising the complexity of flow boiling phenomena and the 

necessity for advanced visualisation techniques and detailed analysis. Hence, through this 

targeted investigation, a deeper understanding of flow boiling and its practical implications in 

various engineering applications can be achieved. 



185 
 

6.5.2 Data Pipeline 

The experimental setup generated data and was stored in a local dataset, stored in the computer 

as part of the experimental setup. To aid analysis, manual data labelling was performed to 

distinguish between flow boiling regimes. Initially, the labelled datasets were used to construct 

the base Convolutional Neural Network (CNN) model, enabling an assessment of its accuracy. 

Following this, the base CNN model acted as a foundation for analysis and classification using 

clustering techniques. The raw data undergoes augmentation and progresses through feature 

mapping stages such as convolutional, pooling, flattening, and ultimately resulting in fully 

connected layers capable of enabling multi-class classification of flow boiling regimes. 

In the Feature Extraction stage, before augmentation, the images underwent resizing from 

1280x1024 to 500x500. However, this reduction in dimensions resulted in a deterioration of 

image lighting. Thus, to rectify this issue and improve contrast, a histogram equalization was 

applied. Regarding the convolutional layers, the initial layer comprised 64 filters, with each 

subsequent layer containing 32 filters. The stride size for each step was set to 2, and a max 

pooling of 2 was utilised. The image preprocessing phase was initiated with an image size of 

224 and a batch size of 64. Following this, the images underwent augmentation, which included 

rescaling, zooming, shearing, and horizontal flipping (Appendix C4 shows the sample code for 

this process). Given the significance of preserving bubble features, extensive noise or Gaussian 

augmentation was intentionally omitted. Fig. 6.2 shows a sample data augmentation process. 

 

Fig. 6.2 Sample data augmentations 
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Furthermore, in the Classification Stage, the dataset had a 90% training and 10% test split. 

This division aimed to maximise the effective utilisation of the dataset for training whilst 

ensuring reliable results on the test sets [375]. In real-life applications, test datasets often tend 

to be small — hence the rationale behind this choice. Additionally, the division ensures reliable 

evaluation by maintaining a separate test set to enable a realistic assessment of the model's 

generalisation to unseen data; thus, replicating limited testing scenarios helps simulate real-

world conditions. Moreover, a smaller test set reduces the risks of overfitting, where the model 

may memorise training data. To address overfitting, techniques such as regularisation, dropout, 

or adjustment of model complexity can be employed later to optimise the best-performing 

model. The accuracy of the models and the loss function was assessed using the categorical 

cross-entropy loss (softmax loss) [376], which is typically defined as follows: 

Given: 

• yi: the true label (ground truth) for sample i 

• pi: the predicted probability distribution over all classes 

for sample i 

• N: the total number of samples 

• C: the total number of classes 

Then, the categorical cross-entropy loss L is calculated as: 

𝑳 = −
𝟏

𝑵
෍  
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𝒊ୀ𝟏
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𝑪
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𝒚𝒊,𝒄 ⋅ 𝐥𝐨𝐠 ൫𝒑𝒊,𝒄൯ (51) 

where: 

• yi,c is the indicator function, which is 1 if the true label of sample i is class c, and 0 otherwise. 

• pi,c is the predicted probability of sample i belonging to class c according to the model’s 

output. 

This loss function penalises models based on the difference between predicted probabilities 

and true labels across all classes, encouraging the model to assign high probabilities to the 

correct class labels. 

The evaluation of the base CNN model was then carried out using the initial labelled data. 

Simultaneously, unlabelled data was fed into three distinct clustering algorithms, segmenting 
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and classifying images into four distinct clusters for the four different flow regimes, with results 

stored in a desired local directory. The coding of the data pipeline facilitates clustering analysis 

and saves data, requiring minimal preprocessing and fostering agile analysis from experiments, 

leading to agile product development. With each iteration or data capture, new data seamlessly 

integrates to train clustering algorithms, allowing for semi-supervised generation and storage 

of synthetic data, pattern recognition, and organisation into four directories. This streamlined 

process significantly reduced the need for manual data handling, ensuring consistency between 

the root and save directories. The data pipeline loop, illustrated in Fig. 6.3, underscores the 

iterative nature of the process. Subsequently, in the Post Processing Stage, the clustered data 

was reintegrated into the base CNN setup to assess training and validation accuracy, thereby 

evaluating the feasibility and effectiveness of employing clustering-based pattern recognition 

to ultimately reduce the need for extensive manual labelling of future datasets. 

 

Fig. 6.3 Architecture for data pipeline and model implementations 

6.6 Results and Discussion 

6.6.1 CNN Classification 

The experiment and images from Fig. 6.1 highlighted how the confined space within narrow 

channels restricts bubble development, altering bubble morphology compared to traditional 
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tubes or pipes. The deformation or bursting of bubbles under different wall flow conditions 

significantly influences flow patterns and can produce mixed patterns. Consequently, labelling 

the data and flow patterns poses challenges and is subject to interpretability issues, affecting 

the accuracy of classification models and the usability of datasets for generalisation or specific 

applications. To further assess these challenges, initially, a convolutional neural network 

(CNN) was trained on the dataset, incorporating a fully connected layer along with two 

additional layers, and the model was further fine-tuned with additional epochs. Fig. 6.4 

illustrates the comparison of classification accuracy achieved by the CNN.  

 

Fig. 6.4 CNN classification accuracy 

The results from the CNN indicate significant variations between each epoch, ranging from 

10-50% for the base CNN model. Although the addition of extra layers or epochs improves the 

accuracy of the validation on test sets, the overall variation across different epochs keeps the 

reliability of the classification below 75%, dropping to lower than 70% for the other two 

models. These substantial variations or the zigzag pattern suggest the challenge for neural 

networks to consistently identify flow patterns accurately, indicating potential subjectivity and 

complexity issues in labelling datasets where one image could belong to multiple categories 

visually. While high accuracy values of 90% to 95% seem promising, they also imply 
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overfitting problems based on the validation results, highlighting the need for a more objective 

assessment and methodology to enhance the classification robustness. 

6.6.2 Clustering Results 

Three different types of clustering algorithms were implemented. It can be seen that K-means 

has a relatively even distribution of cluster points where Hierarchical clustering classifies one 

type of cluster more than the others. For the Gaussian model, cluster 3 contains the most points. 

The cluster outputs were fed into the same base CNN model for classification comparison. The 

comparative analysis of flow boiling regimes across clustering algorithms yields interesting 

findings. Despite consistent total input counts of data points assigned to each algorithm, 

variations exist in how these points are distributed across clusters, as seen in Fig. 6.5 (a)-(c). 

 

Fig. 6.5 (a)-(i) comparative analysis for algorithms 

Notably, Hierarchical clustering demonstrates the greatest diversity in cluster sizes, with the 

highest cluster containing 689 data points for the slug flow regime, while K-means and 

Gaussian clustering exhibit more uniformity. Specifically, K-means allocates 458 data points 

to Cluster 1, Gaussian assigns 440, and Hierarchical only 158, indicating disparities in their 
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categorization approach. Moreover, Hierarchical clustering assigns 491 data points to Cluster 

2, while Gaussian assigns 273 and K-means 365, further accentuating distinctions. Gaussian 

clustering tends to allocate more points to the annular flow cluster, with 580 data points, 

compared to K-means (442). These disparities underscore the importance of selecting an 

appropriate clustering algorithm based on the specific characteristics of the flow boiling 

regimes under study. While the total counts remain consistent, understanding the nuances of 

cluster distribution offers valuable insights into the underlying structure of the data and 

facilitates informed decision-making in analysing flow boiling regimes.  

Examining the two different flow types in the slug [red spots, (d)-(f)] and annular (blue 

spots, [(g)-(i)], which are often the most desired flow regimes for high heat transfer. For K-

means at the same image and instance, it focuses more on the bubble separations, whilst GMM 

categorises the region between bubble separation and coalescence efficiently, but Hierarchical 

considers merging bubbles into the same category as during dry out. Although the differences 

in the overall images are minimal, these small differences compound and ultimately lead to the 

distinctions of clusters overall and affect the efficacy of the algorithms.  

6.6.3 Comparative Analysis 

For a detailed quantitative discussion of the findings based on the training and validation 

accuracy of the four different models, the trends and data insights are presented in Table 12 

(best values bolded). Table 13 compares the key findings and differences between the datasets.  

Table 12: Model metrics 

Model Metric Mean Median SD 

KMeans Training Accuracy 0.8788 0.8879 0.0432 

 Validation Accuracy 0.6198 0.6226 0.1232 

Base CNN Training Accuracy 0.9743 0.9749 0.0061 

 Validation Accuracy 0.7706 0.7816 0.0504 

GMM Training Accuracy 0.9142 0.9195 0.0323 

 Validation Accuracy 0.8837 0.8994 0.0538 
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Model Metric Mean Median SD 

Hierarchical Training Accuracy 0.9013 0.9088 0.0310 

 Validation Accuracy 0.7364 0.7166 0.0796 

 

Table 13: Key highlights and differences 

Dataset Key Points 

Dataset 1 

(Base CNN, manually labelled data) 

- High training accuracy suggests potential 

overfitting.  

- Minimal SD and variance in validation accuracy 

indicate good generalisation.  

- Quick convergence to high accuracy implies 

dataset suitability for the model architecture. 

Dataset 2 

(K-means, unlabelled data) 

- Discrepancy between training and validation 

accuracy indicates potential overfitting.  

- Low training accuracy and poor generalisation 

suggest model complexity issues.  

- High variance in validation accuracy indicates 

instability. 

Dataset 3 

(GMM, unlabelled data) 

- Close training and validation accuracy (less than 

5%) suggest minimal overfitting.  

- Consistently high validation accuracy indicates 

good generalisation.  

- Slight fluctuations suggest the potential for 

further optimisation. 

Dataset 4 

(Hierarchical, unlabelled data) 

- Moderate overfitting with consistently higher 

training accuracy.  

- Wide variation in validation accuracy indicates 

sensitivity to hyperparameters or dataset 

characteristics.  

- Decent validation accuracy (over 70%) despite 

overfitting. 
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In terms of overall performance, the Gaussian Mixture Model offers the most stable and 

promising performance, with both high training and validation accuracy. The manually labelled 

base CNN also shows decent performance, although slight fluctuations suggest room for 

improvement. Hierarchical clustering exhibits overfitting but still achieves decent validation 

accuracy, indicating that the model might be capturing relevant features despite the noise. K-

means shows the most erratic behaviour with a significant gap between training and validation 

accuracy, suggesting issues with model generalisation and potential overfitting. Nevertheless, 

while GMM appears to be the most promising based on the provided metrics, further analysis 

was done regarding the data splitting performance to cross validate the initial decision for the 

90/10 data split, which is 90% train data and 10% test data. Fig 7.6 shows the data split 

performance comparison. 

 

Fig. 6.6 Data split performance comparison 

The data split performance comparison graph demonstrates the model's performance across 

three data split ratios: 90/10, 80/20, and 70/30. For the 90/10 split, the model achieves high 

validation accuracy (88%) with a low standard deviation (5%), alongside a strong training 

accuracy of 91% with minimal variation (3%), indicating stable and generalised performance. 

In contrast, the 80/20 split shows a significant drop in validation accuracy to 56%, though 

training accuracy remains reasonably high at 86%. The similar standard deviations for both 
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training and validation (5%) suggest increased variability and a possible struggle to generalise 

with a larger validation set. The 70/30 split reveals the highest training accuracy (93%), but 

validation accuracy dips to 74%, with a higher standard deviation of 7% for validation 

performance, hinting at overfitting and increased instability as the model is trained on less data. 

The observed trend can be attributed to the fact that smaller validation sets (like in the 90/10 

split) allow the model to be trained on more data, improving its ability to generalise while also 

retaining high performance in validation. However, as the validation set increases (in the 80/20 

and 70/30 splits), the model has less data to train on, which can lead to overfitting or 

underfitting. In the case of the 80/20 split, the model might not have enough capacity to 

generalise well, resulting in poor validation accuracy. For the 70/30 split, overfitting could 

occur as the model becomes too specialised to the training set, resulting in higher training 

accuracy but lower validation accuracy due to poorer generalisation. Therefore, based on the 

results, the initial 90/10 split was justified as it provided the best balance between training and 

validation performance with minimal variability. 

6.7 Research Impact and Limitations 

The flow boiling classification developed in this research offers a highly effective method for 

predicting critical heat flux (CHF), a key parameter in ensuring safe and efficient thermal 

management in boiling systems. By employing a clustering-based Convolutional Neural 

Network (CNN) approach, the model can accurately classify flow regimes and detect the onset 

of CHF by tracing back the point of clustering separation. This feature provides an intuitive 

way to identify critical transition points that signal performance limits, allowing engineers to 

monitor these shifts in real time. Unlike conventional methods reported earlier and in Chapter 

2 that rely on high-frequency data or complex imaging techniques like x-ray tomography, 

which require extensive computational resources and are costly, the proposed method achieves 

comparable accuracy using significantly less data. Traditional approaches can take several 

hours to process, especially when using detailed time-frequency analysis, whereas the 

developed pipeline reduces the entire data processing time to just a few minutes, making it 

highly efficient for real-time monitoring. This reduction in time and resource demand enables 

faster decision-making and makes it feasible to implement the technique in practical systems, 

providing a reliable and cost-effective solution for CHF prediction and flow monitoring. 

This research significantly advances thermal management in microchannel heat sinks by 

addressing the challenge of flow boiling pattern recognition and streamlining inefficient data 
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handling. It illuminates effective classification techniques and presents practical approaches to 

enhance accuracy, offering invaluable insights for the industry. These findings enable the 

development of more efficient cooling systems and facilitate rapid, precise pattern recognition 

in real-world scenarios. Moreover, this quick flow boiling identification technique aligns well 

with agile product development principles and continuous improvement through technology, 

reducing the need for manual data analysis and handling.  

However, it's crucial to acknowledge the limitations of this study. The reliance on a specific 

dataset underscores the need for additional experimental data to validate the efficacy of similar, 

efficient data pipeline creations and accurate flow boiling recognition. Additionally, traditional 

clustering algorithms, such as k-means, can be sensitive to the initial placement of cluster 

centres [377]. Enhancing performance through robust initialization methods like K-means++ 

or multiple random starts could yield more consistent and accurate clustering results. Future 

research should explore further comparisons to fine-tune and optimise current models, 

presenting a promising avenue for advancement. 

In complex heat sink designs, such as those presented in Chapter 6, accurately identifying 

flow boiling regimes poses a significant challenge. The variability in geometries leads to the 

absence of a singular onset of bubble formation that can be distinctly labelled as a jet, slug, or 

annular regime. Instead, multiple phenomena can coincide at different locations, complicating 

holistic labelling. For instance, Fig. 6.7 illustrates the diverse flow boiling patterns observed 

across the new types of heat sinks, highlighting that various patterns emerge around different 

geometries. This underscores the necessity of establishing a comprehensive ground truth 

dataset, which remains critical for future research. Furthermore, exploring machine learning 

techniques capable of handling unlabelled data with minimal ground truth information presents 

another promising avenue for investigation. These approaches could enhance the classification 

of flow regimes, even without extensive labelled datasets, thereby advancing the understanding 

and optimisation of complex heat sinks. 
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Fig. 6.7 Complex boiling patterns 

6.8 Summary of Chapter 

In conclusion, this research provided valuable insights into recognising flow boiling patterns 

within rectangular micro/mini channel heat sinks. Through systematic analysis and 

methodological refinement, the Gaussian Mixture Model clustering-based CNN approach 

demonstrated superior performance, achieving a mean accuracy of 91.4% on the training, and 

88.4% on the test set, with minimal overfitting. Conversely, the K-means clustering approach 

exhibited the poorest performance, with a mean validation accuracy dropping as low as 62% 

and the highest variations, underscoring its inability to identify complex underlying patterns. 

Additionally, the research methodology facilitated the creation of an agile semi-automatic data 

pipeline, aiding accurate classification and expediting product development processes. 

Consequently, these findings advance the heat transfer and thermal management research 

space, and the study findings also provide opportunities for enhancing predictive analytics, 

safety protocols, and real-time monitoring in industrial settings — whilst reducing subjectivity 

and interpretability issues. Thus, this study laid the groundwork for further exploration and 

innovation in advancing thermal management practices. Future research can focus on 

conducting extensive comparative analyses of similar algorithms and data pipelines. 
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Chapter 7: Conclusion 

Chapter Precursor: Arabic 

“So, surely with hardship comes ease.” 

يُسۡرًا ٱلۡعسُۡرِ  مَعَ  فَإنَِّ    

 القرآن  ,الانشراح ٩٤:٦

This Arabic quotation from the Holy Quran encapsulates the 

essence of the conclusion chapter. Facing numerous challenges—

be it initial experiments that didn't yield expected outcomes, 

simulations that posed difficulties, or just waiting to submit my 

thesis—I reminded myself that perseverance through hardship 

leads to ease. This mindset helped me persist, ultimately 

achieving meaningful results and valuable insights. Additionally, 

engaging with my Arabic-speaking colleagues and friends 

provided profound perspectives that enriched the thesis, 

demonstrating how overcoming obstacles can lead to significant 

academic growth and contributions. 

 

  



197 
 

7.1 Advancing the Next Generation of Thermal Management Strategies 

The need for effective thermal management in modern electronics has become increasingly 

critical due to the rapid miniaturisation and escalating power densities of devices. Conventional 

micro heat sink designs, such as straight and rectangular channels, face inherent limitations, 

including high thermal resistance, increased pressure drops, and manufacturing complexities. 

These issues are compounded by a lack of integration with sustainable design philosophies, 

which has hindered the development of next-generation micro heat sinks that can balance 

performance, cost, and environmental responsibility. This thesis addresses these challenges by 

systematically exploring bioinspired micro heat sink geometries, applying machine learning to 

optimise performance and process efficiency, and integrating sustainable manufacturing 

strategies to enhance these designs' scalability and environmental impact. The study is 

structured around four core research questions, each corresponding to a specific objective to 

overcome the limitations of conventional heat sinks to build and advance the next generation 

of thermal management technologies. 

7.2 Summary of Key Findings 

7.2.1 RQ1: What are the key recent advancements and limitations in micro heat 
sink technologies for heat transfer and thermal management? 

Objective 1 (OB1): To comprehensively review recent advancements and limitations in micro 

heat sink (MCHS) technologies, identifying current gaps and opportunities in heat transfer and 

thermal management. This objective aims to serve as a foundational reference for newcomers 

to the field and a valuable resource for industry professionals seeking an updated overview of 

emerging trends. The key highlights are: 

1. Design Opportunities: The prevalence of conventional rectangular and square channels 

(totalling 72%) in MCHS underscores a significant opportunity for innovation. Exploring 

non-conventional structures, such as pin-fin and bio-inspired geometries, can achieve 

performance improvements exceeding 30%, presenting a compelling case for adoption; 

2. Material Considerations: A heavy reliance on materials like PLM and copper (50% 

combined) necessitates immediate attention to refining their thermal properties, 

manufacturability, and cost. There is a need to prioritise mixed-material approaches that 

enhance performance and identify alternatives capable of high heat transfer efficiency while 

minimising environmental impact; 
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3. Emerging Fabrication Techniques: The widespread use of micromachining, alongside 

the growing interest in additive manufacturing (9% of studies) for intricate geometries, 

marks a shift in fabrication strategies. A more focused effort is needed to integrate these 

methods, balancing precision and cost challenges to fully unlock the potential of these 

technologies for complex and novel heat sink designs; 

4. Fluid Dynamics and Flow Boiling: Despite being a heavily researched area, there is still 

a lack of clarity on the optimal strategies for managing flow boiling dynamics. There is a 

need to utilise advanced working fluids (e.g., green refrigerants, stable hybrid nanofluids), 

introduce flow disturbances through novel geometries, and leverage surface treatments like 

biphilic coatings to further enhance flow boiling heat transfer effectiveness; 

5. Global Research Landscape: China’s substantial contribution—accounting for nearly 

50% of research output in MCHS technologies—solidifies its leadership. This dominance 

should prompt EU countries to step up their efforts (18%), promote cross-border 

collaboration and remain competitive to meet the EU 2050 sustainability goals; 

6. Integration of Advanced Technologies: The gradual integration of cutting-edge 

Industry 4.0 technologies such as machine learning and artificial intelligence is transforming 

the field. However, these tools must be adaptable and less data-intensive, and alternative 

methods are urgently needed to enhance the efficiency of the overall process. Without robust 

strategies to refine and integrate these technologies, the field risks lagging in meeting the 

evolving demands of thermal management systems while addressing sustainability and cost. 

7.2.2 RQ2: What insights can experimental and numerical investigations provide 
into the performance of bioinspired heat sinks, and how can these findings 
contribute to improved thermal efficiency? 

Objective 2 (OB2): To carry out investigations on bioinspired heat sinks, analysing their 

performance under various thermal conditions and extracting insights that contribute to 

improved design and heat transfer efficiency. This research question involved developing 

and evaluating eight novel bioinspired heat sinks—four for air-cooled systems, and four for 

liquid-cooled systems. The main findings are summarised as follows: 

1. Significant Heat Transfer Gains: Air-cooled heat sink designs featuring a novel twisted 

base and extended top surface, inspired by mushrooms and scutoids, achieved a 1.5 to 1.7 

times heat transfer efficiency compared to traditional square or rectangular pin-fin 

configurations.  Liquid-cooled heat sink geometries inspired by cruciform flowers and 
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flying fish showed a 20%-30% increase in Nusselt number at lowest Re compared to 

existing designs, even when combined with other techniques such as nanofluids; 

2. Reduced Thermal Resistance: All bioinspired heat sinks demonstrated minimal thermal 

resistance, ensuring uniform temperature distribution. This performance was attributed to 

the optimised hybrid geometries, which enhanced heat dissipation and maintained lower 

temperature gradients across the surface; 

3. Enhanced Flow Manipulation:  Air-cooled pin-fin designs having extended pin-fin top 

surfaces induced turbulence and generated vortices, disrupting boundary layers and 

improving convective heat transfer.  Liquid-cooled micro pin-fins, featuring multiple flow 

disruptors, facilitated the early transition to turbulent flow at Reynolds numbers between 

300 and 400, enhancing mixing and promoting efficient heat transfer at lower flow rates; 

4. Material Efficiency and Energy Consumption:  The combined approach led to a 14% 

reduction in material usage without sacrificing performance in air-cooled systems. 

Moreover, both systems showed an acceptable raise in pressure drops and strategies to 

reduce pressure drops for future research, making these bioinspired designs suitable for 

sustainable heat transfer solutions. 

7.2.3 RQ3: How can machine learning approaches be applied to optimise heat 
sink design and enhance thermal management in light of current limitations 
in traditional methods? 

Objective 3 (OB3): To develop and apply machine learning algorithms for optimising the 

design and thermal performance process of micro heat sinks, addressing the limitations of 

traditional design methods and improving overall efficiency. The research integrated 

various machine learning techniques into developing micro heat sinks to enhance 

development efficiency, improve predictive accuracy, and reduce the need for time-

intensive simulations. The key insights and contributions are summarised below: 

1. Accurate Predictions for Air-Cooled Systems: The machine learning model, using 

ensemble learning like the bagging and stacking algorithm, predicted the heat transfer 

coefficient (HTC) with a Mean Absolute Percentage Error (MAPE) of 5-10% for air-cooled 

systems. This precision allowed for quick pre-screening of different design configurations, 

eliminating the need for extensive CFD simulations in the initial stages. 
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2. Reliable Correlation Models for Liquid-Cooled Systems: For liquid-cooled systems, 

Principal Component Analysis (PCA) identified the main factors affecting Nusselt number 

and pressure drop. The XGBoost, polynomial regression, and random forest models 

achieved R² scores above 0.97, resulting in new correlation equations for these bioinspired 

heat sinks that can be used for rapid design validation evaluations; 

3. Informed Decision-Making through Data Integration: By incorporating domain 

knowledge, external datasets, and synthetic data, throughout the research project, the ML 

models produced acceptable results even with limited experimental data. This not only 

improved decision-making by highlighting promising designs, but it also validated the 

results against traditional methods, ensuring reliability and accuracy; 

4. Facilitating Flow Regime Classification: A custom data pipeline was developed using 

a clustering-convolutional neural network (CNN) approach to classify flow boiling regimes 

with over 90% prediction accuracy. This pipeline can be built upon to enable real-time 

monitoring of flow patterns and provide a robust tool for predicting critical heat flux, which 

is essential for optimising thermal management; 

5. Significant Time Savings and Enhanced Analysis: Pre-screening designs using 

machine learning models helped select the most promising candidates for detailed CFD 

simulations, reducing the overall optimisation time by 60-70%. Additionally, manual image 

analysis time for flow boiling regimes was decreased from around 2 hours to minutes, using 

the pipeline, which significantly sped up experimental analysis and enabled faster insights. 

7.2.4 RQ4: How can sustainable design principles and manufacturing 
philosophies be integrated into developing next-generation heat sinks, 
ensuring performance optimisation and environmental responsibility? 

Objective 4 (OB4): Objective 4 (OB4): To critically appraise and integrate sustainable design 

principles and manufacturing approaches into developing next-generation heat sinks, ensuring 

a balance between performance optimisation, cost, and environmental responsibility. The 

research followed a structured seven-stage development process guided by a manufacturing 

philosophy integration flowchart, incorporating specific philosophies at each stage: 

Stage 1: Research and Design – Design Thinking and Sustainable Engineering 

 Design Thinking: Enabled understanding of cooling issues and facilitated innovation 

via iterative prototyping, ensuring designs addressed real-world requirements. 
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 Sustainable Engineering: Focused on minimising the environmental impact from the 

beginning by selecting low-carbon footprint materials and identifying trade-offs 

between thermal efficiency and environmental responsibility using MEDS framework. 

Stage 2-4: Prototype Development, Design Optimisation, and Production Planning 

 Agile Manufacturing: Supported rapid prototyping and iterative testing, reducing the 

development cycle and enabling quick validation of new configurations. 

 Design for Manufacturing and Assembly (DFMA): Simplified geometries, optimised 

assembly, and ensured compatibility with existing manufacturing lines, reducing costs 

by ~43%. 

 Just-In-Time (JIT): Implemented a hybrid approach, manufacturing simpler parts in-

house and outsourcing complex geometries, which reduced lead times, minimised 

inventory costs, and supported efficient resource allocation. 

Stage 5-6: Manufacturing and Quality Assurance 

 Lean Manufacturing: Identified and eliminated waste via detailed process audits, 

causing a 14% reduction in material usage without compromising thermal performance. 

 Six Sigma: Maintained precision and dimensional accuracy for micro pin-fin structures, 

minimising performance variability and ensuring consistent quality. 

 Total Quality Management (TQM): Fostered Continuous Improvement, using expert 

feedback and real-time quality checks to refine processes and ensure high standards. 

Stage 7: Testing and Continuous Improvement 

 Agile Manufacturing: Enabled rapid feedback loops, allowing the design to evolve 

quickly in response to real-time testing data. 

 Green Manufacturing: Employed sustainable production methods, such as energy-

efficient micromachining and eco-friendly materials, reducing overall carbon 

emissions by an estimated 20% and energy consumption by approximately 30%. 

 Continuous Improvement: Integrated real-time performance data and expert feedback 

to refine designs, ensuring that the final heat sinks achieved an optimal balance between 

thermal efficiency and sustainability. 

7.3 Cross-case Synthesis 

This thesis employed distinct methodologies across three cases to address specific challenges 

in micro heat sink research, with a focus on prioritising sustainable and agile manufacturing 
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philosophies. The strategic application of machine learning was pivotal in reducing reliance on 

computational fluid dynamics (CFD), traditional experimental methods, and highly intensive 

dataset usage, thereby enhancing the overall efficiency of the designs and product cycle. 

Chapter 4 (Case 1) explored mushroom-inspired pin-fins and scutoid geometries, utilising 

CFD simulations to evaluate thermal performance with air as the working fluid. While CFD 

provided critical insights into fluid dynamics and thermal behaviour, incorporating machine 

learning algorithms facilitated the development of predictive models for heat transfer 

coefficients (HTC) based on minimal input parameters. This shift aimed to reduce dependency 

on CFD, allowing for faster iterations and adaptations in design while aligning with agile 

manufacturing principles. 

Building on the insights from Case 1, Chapter 5 (Case 2) transitioned to a stronger emphasis 

on experimental methods, focusing on the hydrodynamic performance of liquid-cooled micro 

pin-fins. This case aimed to gather crucial performance data using water as the working fluid 

under real-world conditions by prioritising empirical validation rather than CFD. This approach 

supported agile manufacturing practices and provided robust evidence of how innovative 

geometries perform in practical applications. Furthermore, machine learning was employed to 

develop new correlation models, effectively combining empirical data with predictive insights. 

This integration minimised reliance on CFD, traditional experimental setups, and the need for 

highly intensive datasets, reinforcing the applicability of the designs and heat transfer while 

maximising efficiency. 

Chapter 6 (Case 3) advanced this progression by introducing a machine learning framework 

that utilised convolutional neural networks (CNNs) to classify flow boiling regimes in straight 

microchannels. This case also marked a methodological shift, minimising reliance on 

traditional analytical methods, data-intensive machine learning models, and extensive 

experimental data. By leveraging smarter datasets and synthesising domain knowledge with 

external data, it was demonstrated that high prediction accuracy could be achieved even with 

smaller sample sizes. This innovation enhanced operational efficiencies and real-time 

monitoring capabilities, illustrating how advanced analytics can effectively address the 

complexities of flow boiling phenomena while reducing the burden of intensive data or 

expensive analytical requirements. 

Therefore, the cases collectively reflect a strategic progression towards minimising reliance 

on specific methodologies, including highly intensive dataset usage, while building on the 
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findings from each stage. This research not only underscores the importance of integrating 

machine learning and empirical validation to foster innovation in micro heat sink technologies 

but also advances the field of thermal management and heat transfer. By optimising the design 

and performance of micro heat sinks, the findings contribute to enhanced thermal efficiency, 

operational effectiveness, and sustainability in thermal management systems. Ultimately, this 

multifaceted approach represents a significant step forward in developing advanced solutions 

that meet the growing demands for efficient and effective heat transfer technologies. 

7.4 Research Limitations and Future Recommendations 

Despite the significant contributions, this research is not without limitations, which provide 

opportunities for further refinement and expansion. Addressing these limitations in future 

studies could enhance the applicability and robustness of the proposed methodologies. 

1. Scope of Working Fluids and Boundary Conditions: The experimental and 

numerical evaluations were primarily conducted using water and air as the working 

fluids under controlled boundary conditions. This narrow scope may not fully capture 

the performance variations under more complex multi-phase flow regimes, such as flow 

boiling or refrigerant-based systems. Extending the investigation to include diverse 

working fluids and dynamic conditions would provide a more comprehensive 

understanding of heat sink performance. 

2. Scalability and Manufacturing Constraints: Due to manufacturing constraints and 

limitations, alternative designs were explored to ensure feasibility within the scope of 

this research. Although the study introduced novel hybrid manufacturing strategies, 

challenges related to fabrication precision and scalability for mass production 

remained. The complex bioinspired pin-fin structures, while demonstrating excellent 

thermal characteristics, presented significant manufacturing challenges. These 

structures may require advanced techniques, such as additive manufacturing, which 

were not fully explored in this study. As a result, alternative design approaches were 

considered to balance performance with manufacturability. Future research should 

focus on improving the scalability of these designs, refining the fabrication processes, 

and maintaining the performance benefits of the bioinspired structures. 

3. Generalisation of Machine Learning Models: While the machine learning models 

used in this research achieved high accuracy for the specific dataset and geometric 

configurations, their generalisation capability for other types of heat sinks and 
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manufacturing scenarios has not been fully established. A broader dataset 

encompassing a wider range of designs, materials, and operating conditions is needed 

to validate the robustness of the predictive models. 

4. Lack of Full Life Cycle Assessment (LCA): The sustainability analysis was limited 

to evaluating energy consumption, carbon emissions, and material usage. A full LCA, 

encompassing the environmental impact from material extraction to end-of-life 

recycling, was not conducted. Incorporating a complete LCA would provide deeper 

insights into the environmental footprint of the proposed designs. 

5. Simplification of Complex Flow Patterns: The use of simplified flow patterns in the 

CFD simulations and machine learning classification models might overlook the 

nuances of real-world flow dynamics, particularly in turbulent or transitional flow 

regimes. This simplification could affect the accuracy of performance predictions under 

highly dynamic conditions. Future work should include more detailed turbulence 

models and experimental validation under varying Reynolds numbers. 

7.5 Concluding Remarks and Research Impact 

The research presented in this thesis contributes significantly to the fields of thermal 

management and micro heat sink technology by introducing novel bioinspired designs, 

integrating machine learning for enhanced design optimisation, and applying sustainable 

manufacturing philosophies. The work addresses critical limitations in traditional 

microchannel geometries and provides a comprehensive framework for the development of 

next-generation thermal management systems that are both efficient and sustainable. The 

impact of this research extends beyond academic contributions, offering practical solutions for 

industries that require advanced cooling technologies. The major impacts on industry and 

research domains are highlighted in the following sections.  

7.5.1 Innovation in Bioinspired Geometries 

Developing hybrid bioinspired pin-fin heat sinks establishes a new paradigm for heat sink 

design by moving away from conventional geometries and embracing nature-inspired 

structures. The unique configurations demonstrated significant performance improvements in 

both air-cooled and liquid-cooled systems, achieving up to 70% higher heat transfer 

performance compared to traditional designs. These findings can be leveraged in sectors 
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such as high-performance electronics cooling, automotive thermal management, and renewable 

energy systems, where efficient heat dissipation is critical. 

7.5.2 Application of Machine Learning for Design and Development:  

By integrating machine learning models into the design process, this research demonstrated 

how data-driven techniques can enhance the efficiency and accuracy of thermal performance 

predictions. The ability to quickly identify optimal designs using smaller datasets and minimal 

computational resources is a transformative approach that can shorten development cycles and 

reduce costs. This methodology directly applies to industries seeking to implement rapid 

prototyping and agile product development, offering a scalable solution for complex designs. 

7.5.3 Sustainability Integration in High-Performance Cooling Solutions:  

The adoption of sustainable design and manufacturing philosophies, such as Lean, JIT, and 

Agile, showcased the feasibility of achieving high thermal efficiency while minimising 

environmental impact. The research demonstrated that it is possible to balance performance 

with sustainability, achieving significant reductions in production costs, energy usage, and 

carbon emissions. This has implications for companies aiming to align with Industry 4.0 and 

environmental regulations, providing a practical model for sustainable production in the field 

of thermal management. 

7.5.4 Framework for Next-Generation Thermal Management Systems 

The comprehensive framework developed in this thesis—spanning bioinspired geometries, 

machine learning integration, and sustainable manufacturing—can serve as a blueprint for 

future research and development in thermal management technologies. By combining 

innovative design methodologies with robust validation techniques, this research sets a new 

standard for creating heat sink systems that are adaptable, efficient, and environmentally 

responsible. This can inspire further research into more complex multi-phase cooling systems 

and smart materials for adaptive thermal control, pushing the boundaries of what is achievable 

in thermal management. 

7.5.5 Overall Impact 

The research's Knowledge Contribution Areas—spanning Design, Application, Development, 

and Research—demonstrate a holistic approach to advancing micro heat sink technologies. The 

innovative bioinspired designs, integration of machine learning for HTC predictions, 

sustainable manufacturing practices, and application of agile concepts ensure that this work is 
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academically robust and highly applicable to industries aiming to improve thermal performance 

while meeting sustainability goals. This multi-disciplinary framework offers a comprehensive 

toolkit for designing and optimising next-generation thermal management solutions, bridging 

the gap between research and scalable practical industrial implementation. Fig. 7.1 summarises 

the key research and knowledge contributions of this PhD Thesis.  

 

Fig. 7.1 Summary of knowledge contributions arising from this research 
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Appendices 
Appendix A: Overview of Recent Trends Table 

Author Shape DH  AR  PR  MT  WF  Analysis Country  Contribution  FRIN 

Chiriac et al.  Y-shape  0.05 1 LI  PDMS  W, Oil  CFD  Romania  µPIV result verification  M 

Hoang, et al.  Rectangle  0.19 30 OF
M  

CU  Novec  NM  USA  New correlation model  M 

Liang, et al. Rectangle  *  0.22 CM  OMT  W  UA  China  DHCE MC system  M 

Martinez et al.  Rectangle  0.42 2.83 CM  OMT  ZnO  SIMUL  Chile  Zn nanofluid arrangement  M 

Yin et al.  T-shape  0.4 1 OF
M  

PMMA  Ethanolamin
e  

NM  China  Chemical absorption  M 

Ahmadi et al.  Square  0.97 30.6 LI  AL  W  NM  Turkey  Biphilic surface high HF cooling  M 

Dalkılıç et al.  Rectangle  0.42 0.81 MM  CU  R134a  UA  Turkey  R134a in two-phase flows  M 

Venegas et al.  Rectangle  0.29 20 CM  Steel  WM  NM  Spain  Membrane-based micro-desorber design   M 

Ding et al.  Spiral  0.9 1 CM  OMT  DW, TiO2  NM  China  TiO2-H2O nanofluid  M 

Jayaramu et al.  Rectangle  0.32 2.08 MM  CU  DW  NM  India  Different Wettability surfaces  M 

Roumpea et al.  Rectangle  0.19 1.03 OF
M  

OMT  HY  MATLA
B  

UK  MC with surfactants  M 

Yameen et al.  Rectangle  0.65 0.48 3D  Steel  Air-W  NM  USA  3D-printed MC manifold  M 

Abdulbari et al.  Rectangle  0.17 5 LI  PDMS  WM  NM  Malaysia  Drag-reducing agent assessment  M 
  

0.16 4 
       

  
0.15 3 

       

  
0.13 2 

       

Guo et al.  Rectangle  0.08 4.26 LI  PDMS  HY  NM  China  EGaIn usage in MC  M 

Sarafraz & Arjomandi  Square  0.4 1 MM  CU  W, Ga  NM  Australia  Application of gallium nano-
suspensions   

M 

Sarafraz & Arjomandi  Rectangle  0.31 0.63 MM  CU  W, CuO2(I)  NM  Australia  CuO/liquid indium nanofluid  M 

Sarafraz et al.  Rectangle  0.31 0.63 MM  CU  DW, Ag  NM  Iran  biological silver-water nanofluid  M 

Simsek et al.  Rectangle  0.08 4 OF
M  

Glass  HY  NM  Turkey  silver nanowire suspension   M 

  
0.07 2 
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0.06 1.4 

       

Zhang et al.  Rectangle  0.69 1.33 3D  CU  DW  NM  China  3D heterogeneous wetting MC surfaces  M 

Zhang et al.  Rectangle  0.3 1.56 3D  Inconel  N2  NM  USA  3D-printed Inconel 718 MC manifold  M 

Bae et al.  Rectangle  0.02 0.2 ETC  SiC  R245fa  NM  USA  Embedded cooling system   M 

Li et al.  Rectangle  0.2 1 MM  Si  DW  NM  China  MC with hydrophobic surfaces  M 

Sarafaraz et al.  Rectangle  0.31 0.63 MM  PDMS  HY  NM  Iran  carbon nanotube nanofluid  M 

Wang et al Square  0.38 4.86 ETC Si DW NM China  Non-wetting fraction/pitch distance 
effects 

M 

Jiang et al Rectangle  0.8 0.25 MM  CU DW NM  China  Counter flow diverging 
microchannels 

M 

Jiang et al Rectangle  0.8 0.25 MM  CU DW NM  China  Surface modification of microscale 
cavities 

M 

Mohammad et al T-shape  1 1 3D  Steel  h2/Ar CFD  USA  3D-printed microreactors for (F-T) 
synthesis 

M 

Chiriac et al.  Y-shape  0.09 0.12
5 

LI  PDMS  W, Oil  CFD  Romania  Trifurcation microchannel M 

Lei, et al.  T-shape  0.4 1 MM  PMMA  Glycerol, Si  MATLA
B  

China  Prediction scaling laws  E 

Lin, et al.  Rectangle  0.2 1 OF
M  

OMT  W, Si  CFD  China  Novel CFD solver  E 

Matin & Moghaddam  Rectangle  0.12 4 OF
M  

PDMS  OWF  NM  USA  Critical shear stress at liquid-vapour 
interface  

E 

  Rectangle  0.2 2 
       

  Square  0.3 1 
       

Oudebrouckx et al.  Rectangle  0.02 4 OF
M  

CU, 
AU  

WM  NM  Belgium  Transient Thermal Offset method  E 

Zhang et al.  Rectangle  1 5 OF
M  

AL  W  CFD  China  Corrugated MCHS  E 

Al Siyabi et al.  Rectangle  0.67 0.5 OF
M  

AL  W  NM  UK  MLM heat sinks   E 

Garg & Agrawal  Rectangle  0.13 0.49 LI  PDMS  N2  NM  India  High Knudsden number experiments  E 

Garg & Agrawal  Rectangle  0.13 0.49 LI  PDMS  N2  NM  India  Mach/Re number relationship  E 

Ji et al..  Rectangle  0.4 2 OF
M  

PMMA  W, Oil  NM  France  High flowrate emulsification  E 

  
0.6 1 
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Panda et al.  Circular  0.86 1 OF
M  

OMT  OWF  CFD  Japan  Two-phase refrigerant maldistribution   E 

Wang et al.  Rectangle  0.3 0.41 ETC  OMT  R134a  NM  China  New empirical method  E 

Al-Siyabi et al.  Rectangle  0.67 0.5 MM  AL  W  CFD  UK  MLM arrangements  E 

Qian et al. Square  0.6 1 OF
M  

GLAS
S  

WM  CFD  China  Dynamic dispersed phase injection   E 

Ronshin & Chinnov  Rectangle  0.1 200 OF
M  

Steel  DW  NM  Russia  Method to determine regime boundaries  E 

Xia et al.  Rectangle  0.1 1.88 ETC  Si  W  NM  China  Triangular corrugated MC  E 
  

0.12 1 
       

Kovalev et al.  T-shape  0.12 1 CM  SU8  WM  SIMUL  Russia  New hydrodynamic features of plug 
flows  

E 

  
0.16 0.5 

       

Kravtsova et al.  T-shape  0.12 1 CM  SU8  WM  SIMUL  Russia  Flow regime distribution features  E 
  

0.16 0.5 
       

Wang et al.  Rectangle  0.12 7.14 OF
M  

PDMS  DW  CFD  USA  Surface acoustic wave pumping  E 

Zhai et al.  Rectangle  0.11 3.57 MM  Si  DW  NM  China  Flow prediction theoretical model  
 

Zhang et al.  Rectangle  0.13 2 ETC  Si  WM  NM  China  Two phase flow condensation  E 

Abdo et al.  Rectangle  0.15 3 3D  OMT  W  UA  Egypt  Hybrid CPV-TEG-MCHS  E 

Li et al Rectangle  0.4 2 MM  CU DW NM  China  Bidirectional counter-
flow microchannels 

E 

Jin et al Rectangle  0.5 1 OF
M  

Cu W MATLA
B  

China  Feedforward and feedback control E 

Kumar et al. Rectangle  0.55 0.62 MM  CU W NM  India  Asymmetric fluid flow distribution E 

Fu et al Rectangle  0.66
8 

0.45
9 

MM  CU DW NM  China  Flow boiling in copper foam MCHS E 

 
0.66
1 

0.49 

Pontes et al Rectangle  0.66
7 

0.5 3D  PDMS  HFE-7100 NM  Portugal Fluid flow and heat transfer E 

Sulaiman and Wang Rectangle  0.37
5 

15 MM  CU R-134a NM  Taiwan  Effect of contraction on the convective 
boiling 

E 

Wang et al Rectangle  1 1 MM  AL  DW NM  China  Gas-liquid Taylor flow in a square 
microchannel 

E 
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Wang et al Heirarchica
l 

0.4 1 OF
M  

OMT HY CFD  China  Secondary vortices drag reduction E 

Tian et al.  Rectangle  1.6 4 OF
M  

CU W NM  China Experimental correlation assessments E 
 

3 3 

Saffar et al. Curved 0.45 1 3D  PMMA  W NM Canada Deformation of droplets in curved 
microchannel 

E 

Haghighinia et al.  Circular  0.8 1 LI  PDMS  W, 
Rhodamine  

CFD  Iran  Split and recombine mixing   D 

  
0.16 1 

       

Özdemir et al.  Rectangle  0.56 2 CM  CU  DW  NM  Turkey  Small AR comparison  D 
  

0.56 0.39 
       

Ringkai et al.  T-shape  0.57 0.2 OF
M  

PMMA  Oil, 
Polysterene  

MATLA
B  

Malaysia  Time-resolved image sequencing   D 

  
0.4 1 

       

  
0.5 1 

       

  
0.75 1 

       

Vinoth & 
Sachuthananthan  

Rectangle  1 1 MM  CU  AL2O3/CU
O  

NM  India  AL/CU based nanofluids  
 

Hou & Chen  Square  * * MM  Steel  W  CFD  China  Re-entrant cavity shapes  D 

Luo et al.  Rectangle  1 1 OF
M  

OMT  W  CFD  China  Annular flow boiling hydrodynamics  D 

Oudah et al.  Rectangle  0.83 0.2 MM  CU  W  NM  USA  Optimum IR dimensions  D 

Ye et al.  Rectangle  0.71 13.1
2 

LI  PDMS  DW, N2  CFD  China  Microchannel with gas cavities  D 

Kumar  Triangular  0.46 3.33 OF
M  

Si  DW  CFD  India  Trapezoidal MC with grooves  D 

 
Rectangle  0.35 0.32 

      
D 

Liao et al.  Circular  0.51 1.04 MM  TA  FC-72  NM  Taiwan  Inlet alignments  D 

Ma et al.  Rectangle  0.05 1 ETC  Si  Acetone  NM  China  Zigzag MC flow boiling  D 

Nadaraja et al.  Rectangle  0.15 10 MM  CU  W  NM  Malaysia  MLM arrangements  D 

Pan et al.  Circular  0.89 0.8 OF
M  

CU  DW  NM  China  FSC design  D 

Tiwari et al.  Elliptical  1 1 3D  CU  W  UA  USA  Novel 3D-printed MCHE  D 
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Wang et al.  Rectangle  0.5 0.7 MM  Si  DW  CFD  China  MC with bi-directional ribs   D 

Jia et al.  Rectangle  0.47 0.9 ETC Si OWF  NM  China  Porous wall MCHS D 

Wang et al.  Rectangle  0.35 7.5 ETC  Si  Novec  CFD  USA  Single-phase flow   D 

Duryodhan et al.  Spiral  0.09 3.33 Li  PDMS  W  CFD  India  Spiral MC mixing   D 
  

0.13 2 
       

  
0.2 1 

       

Li et al.  Rectangle  0.38 20.5 ETC  Si  Acetone  OAM  China  MC with triangular cavities   D 

Vinoth & Senthil  Square  0.85 1.13 MM  CU  HY  UA  India  Oblique-finned MCHS  D 
 

Circular  0.85 1.13 
       

 
Trapezoid  0.85 1.13 

       

Walunj & Satyabhama  Square  0.5 1 ETC  SI  DW  NM  India  Open microchannels  D 
 

Parabolic  0.57 1.3 
       

 
Parabolic  0.43 0.75 

       

 
Stepped  0.57 1.3 

       

 
Stepped  0.43 0.75 

       

Li et al Rectangle  0.4 2 MM  CU DW NM  China  Counter-flow stepped microchannels D 

Kumar and Singh Rectangle  1 3.33 MM  AL  W NM  India  Microchannel with microinserts D 

Zhang et al Rectangle  0.75 1.67 OF
M  

AL  W CFD  China  Analysis of optimised internal fins D 

Tang et al Rectangle  0.29 2.5 ETC Si DW NM  China  Expansion areas D 

Cheng et al Rectangle  0.08 4 MM  Si DW NM  China  Groove-wall microchannel D 
  

0.01
1 

2.4 
       

  
0.2 1 

       

Ge et al Rectangle  1 1 MM  PMMA  W, NaOH NM  China  Converging–diverging geometries D 

Cui and Lui Rectangle  0.38 1 MM  CU DW NM  China  Ultra AR MCHS flow boiling D 
 

0.38 5 
 

0.39 15 
 

0.38 25 

Han et al. Rectangle  0.40
5 

0.68 OF
M  

CU DW NM  China  Heat transfer in Saw Tooth MCHS D 
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Saw-tooth 0.31

5 
0.46 

Liu et al. T-shape  0.46
2 

1.33 OF
M  

CU DW NM  China  Open diverging MCHS D 

Marseglia et al Rectangle  0.4 1 3D  Steel  HFE-7100 NM  Italy Effect of channel geometry on HFE-
7100 boiling 

D 
 

0.66
7 

2 

 
0.85
7 

3 

 
0.4 4 

Memon et al Wavy 0.15 1 OF
M  

OMT  Water CFD  Korea Wavy microchannel with secondary 
flow passages 

D 

Vinoth et al Rectangle  0.9 1 MM  CU DW NM  India   Oblique finned curved microchannel D 
 

Curved 0.9 1 
  

HY 
    

Wang et al Hierarchica
l 

1.2 1 OF
M  

OMT  HY CFD  China  Hierarchical microchannels and 
nanofluids 

D 
 

0.9 1 
 

0.6 1 

Yin et al.  Rectangle  0.57 20 CM  CU  DW  NM  China  Large AR  D 

Li, et al.  Rectangle  0.38 0.04 ETC  SI  H2O2  MATLA
B  

China  H2O2 decomposition method  S 

Lin, et al.  Rectangle  0.91 10 OF
M  

SI  DW  NM  China  Heteregenous wetting surface  S 

Wang et al.  Triangular  *   *  CM  OMT  W  NM  China  DCHE-based dehumidification  S 

Bhattacharjee et al.  Circular  0.18 1 OF
M  

PDMS  Polymer  NM  UK  Strain sensor feedback control  S 

Kumar and 
Kumaraguruparan 

Rectangle  0.77
6 

1.12
5 

CM  CU R134a  NM  India  Miniature personal cooling system S 

  
 

1 1.11
1 

       

Ali et al Rectangle  0.85 0.89 MM  AL  HY  NM  Korea Dehydrogenation of perhydro-
dibenzyltoluene 

S 
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Appendix B: CNC Machine Specification 

Jingdiao Machine Tools: CTA series CNC Machining Center 

From: https://us.jingdiao.com 

Processing Quenching Material and Difficult-to-cut Material High rigidity because of the 

application of three rails heightened structure, cooling technology used on spindles, 

optimization of machining accuracy and motion accuracy by control system, CTA series is the 

one for hard material processing.  

CTA400: Meet the composite processing requirements of precision die mold parts, and stably 

achieve processing accuracy of 10~20μm. 

X/Y/Z Travel: 15.7/15.7/11.8 in. 

Worktable Size: 20.9×17.0 in. 

Max. Load: 661.4 lb. 

Tool Magazine Umbrella Type（16 Tools） 

Spindle Type 
High-Speed Precision Spindle 

JD150S-20-HA50/C（Standard） 

Spindle Specification 20000rpm/HSK-A50 

 

 

Information and Images provided by Dr. Jianfei Sun 
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Appendix C: Python Codes and Raw Data 

C1: Python Script for Sustainability and Cost Analysis 

The script generates a detailed comparison of production cost predictions using Linear 

Regression and Random Forest models for two production strategies: Full UK Production and 

Hybrid Production. First, synthetic data for 500 production instances is generated, 

incorporating features such as units produced, production type, material costs, machining 

times, labour costs, energy consumption, and shipping costs. The production type (0 for Full 

UK, 1 for Hybrid) determines the material costs and other parameters specific to each region 

(e.g., higher labour costs in the UK and lower energy consumption in China). The script then 

calculates the total production cost for each scenario, building a comprehensive dataset. This 

data is split into training and testing sets to train both models. The Linear Regression and 

Random Forest models are trained separately and used to predict production costs for the 

testing data. The script then evaluates both models using Root Mean Squared Error (RMSE) 

and R² (Coefficient of Determination), displaying the results visually through a scatter plot 

comparing Actual vs. Predicted Costs. Linear Regression predictions are shown using square 

markers, while Random Forest predictions use circular markers. A red dashed line indicates 

the perfect prediction line, and the scatter plot is colour-coded based on production type, with 

a colour bar for clarity. The plot is saved as a high-resolution 300 DPI PNG image, making it 

suitable for reporting and presentations. Finally, the script outputs the RMSE and R² values to 

highlight the Random Forest model's superior accuracy compared to Linear Regression. 
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C2: Python Script for Sample Bagging and Stacking Regression 
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C3: Python Script for Sample Principal Data Analysis (PCA) 
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C4: Python Script for Base CNN Architecture 
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Sample Raw Data Gaussian Model (Train 20 Epochs) 
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Sample Raw Data Flow Boiling Images (Validation Set) 

 

Sample Raw Data (Augmented Flow Boiling Images) 

 

  



255 
 

Appendix D: Published Research  

 



256 
 



257 
 



258 
 



259 
 

 

  



260 
 



261 
 

 



262 
 

Afterwords 
As I wrap up this adventure of a thesis on enhancing heat transfer in micro heat sinks, I can’t 

help but reflect on the whirlwind journey that has shaped both my research and personal 

growth. Starting my PhD during the chaos of the COVID-19 pandemic felt like diving into the 

deep end of a pool that I was not even sure existed. The challenges were plentiful—think 

navigating a maze with occasional pitfalls—but each turn taught me something invaluable. 

Navigating Mental Health Challenges: Let’s be honest: my mental health took a nosedive. 

juggling procurement, searching for elusive equipment, the university’s bureaucracy, and 

dealing with limited facilities was like solving a Rubik's Cube while blindfolded! The stress of 

it all was real, and some days, the weight of uncertainty felt heavy. Yet, these trials fuelled my 

determination to persevere and find creative solutions. 

Embracing the Unknown: Venturing into a field that was new to me was exhilarating. 

Equipped with curiosity and grit, I embraced every complex concept and methodology as a 

puzzle piece waiting to fit into a larger picture. With each breakthrough—be it a successful 

simulation or a promising design—I became more fascinated with micro-thermal management. 

A Testament to Resilience: This thesis isn’t just a collection of findings; it’s a testament 

to the resilience built through testing times. From developing innovative biomorphic pin-fin 

designs to harnessing machine learning, this work highlights the magic that happens when 

diverse disciplines collide. True innovation thrives on collaboration, weaving together threads 

from engineering, materials science, and sustainability. 

Looking Ahead: The implications of this research reach far beyond these pages. I hope to 

spark a conversation about improving energy efficiency and sustainability in thermal 

management solutions. Future researchers, I encourage you to embrace the challenges ahead. 

Innovation isn’t just about overcoming obstacles; it’s about weaving a tapestry of effective 

engineering solutions. 

Final Thoughts: As I close this academic chapter, I carry invaluable lessons and the joy of 

discovery. I urge future scholars to embrace their journeys, enthusiastically tackle their 

challenges, and pursue their passions with fervour and perseverance. The path may be bumpy, 

but the thrill of exploration makes it all worthwhile! And remember this final quote:  

"The end of one journey is the beginning of another." – Unknown 

(And… If you have made it this far, thank you for reading! – Harris)  


