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Abstract

This thesis investigates the principles and methods for achieving high temporal resolution

in odour sampling and processing for machine perception. Initially, a comprehensive review

of fast olfaction mechanisms in insects and mammals is provided, highlighting the necessity

of rapid sensing when exposed to the dynamics of turbulent odour plumes. The discussion

extends to artificial olfaction technologies, emphasising current advancements in electronic

nose (e-nose) systems and their applications. Initial evaluations of existing datasets and al-

gorithms revealed significant limitations in a widely used gas sensor dataset, particularly due

to a non-randomised measurement protocol and severe sensor drift. These issues rendered

the dataset unusable for classification benchmarks. Multiple studies that are impacted by

this were identified, where the example of a prominent neuromorphic few-shot odour-learning

algorithm study was investigated further. In response, a set of best practices for future gas

sensor data collection campaigns was established to ensure data reliability and reproducibil-

ity. Several data collection campaigns were conducted using a custom-built e-nose system,

which was based on MOx gas sensors and fast peripheral electronic devices. A novel approach

to data feature acquisition for odour classification was proposed, involving rapid tempera-

ture cycling of the gas sensors. This method enabled the recording of two datasets capturing

diverse indoor and outdoor olfactory scenes, which were effectively distinguished using the

acquired features. An extensive laboratory campaign followed, in which the e-nose system

was evaluated against a benchmark previously used to explore the temporal odour discrimi-

nation capabilities of mammals. The results demonstrated that the e-nose could distinguish

correlated odour pulse trains from anti-correlated ones at modulation frequencies up to 40 Hz

and determine frequencies up to 60 Hz, surpassing mammalian capabilities. Additionally, the
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Abstract

system achieved odour classification at pulse widths as short as 10 milliseconds when employ-

ing 50 millisecond duty cycles for sensor temperature modulation, setting a new precedent

in artificial olfaction. Further, for efficient processing of olfactory signals, neuromorphic

computing principles were explored. The potential advantages of asynchronous sampling

and data processing methods were discussed in the context of the physical characteristics of

turbulent odour plumes. Various event generation and processing algorithms were critically

reviewed, and discussed in the context of olfactory signals. An example study is provided,

in which asynchronous event sampling is applied to heater-cycled MOx sensor e-nose data,

and the effectiveness of different event encoding schemes was assessed. Finally, the thesis

discusses the results by putting them in perspective with future research directions.
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Chapter 1

Introduction

“Anything worth doing, is worth doing right.”

– Hunter S. Thompson

The olfactory world offers a complex landscape of a wide range of odours. They are rarely

encountered in isolation, but vary in composition and concentration. The rich array of

olfactory stimuli offers a nuanced depiction of the environment, which influences a wide

spectrum of animal behaviours. Natural odourants are typically carried as dynamic plumes

by airflow patterns that are governed by environmental factors. Turbulences in the airflow

disrupt concentration gradients that were formed through diffusion, resulting in the plume

being structured in discrete odour packages of varying concentrations. This creates an odour

signal that is dynamic both spatially and temporally [FR82a; MM91; MEC92; SS00; MC04;

CVV14; MSA21]. See Fig. 1.1a for an illustrative depiction of an odour plume.

In the following, I will explore the complex and turbulent physical environment that leads

to intermittent and rapidly changing odour stimuli. I will then discuss various adaptations

observed in the animal kingdom, highlighting how various insect and mammalian species have

evolved sophisticated mechanisms to rapidly identify and react to olfactory cues. Further, I

will examine how contemporary artificial systems achieve efficient and fast odour processing

capabilities, and elaborate on applications. Finally, I will summarise this thesis’ contributions

to the field of machine olfaction in challenging the temporal limits of sensing and processing.
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Chapter 1. Introduction

1.1 Fast odour signals in a turbulent physical environment

Detailed examinations of spatiotemporal odour plume structures have been conducted in

aquatic and aerial/gaseous environments [MM91; MEC92; MC04; CVV14; RMV22]. In

particular, it has been shown that different spatial scales are dominated by different physical

phenomena. Molecular diffusion, for example, is a slow and small-scale process [MEC92],

while turbulent diffusion exhibits vigorous characteristics and spans a broad spectrum of

temporal and spatial dimensions [MEC92]. Odour plumes are shown to be of intermittent

nature [VI99; CVV14], characterised by single odour packets (also "whiffs" or "bouts") or

clusters of odour packets (also "clumps"), separated by periods of no signal (also "blanks")

(see Fig. 1.1c).

The timescales of bout durations and inter-bout intervals, as well as bout amplitude (or

odour concentration) and bout-per-clump counts, depend on many environmental factors,

such as the wind’s velocity field and the vector between the encounter point and the odour

source [CVV14]. In particular, the odour concentration of bouts in turbulent plumes is

distributed as a power law [MM91; CVV14; RAH08], see Fig. 1.1b. Odour concentration

fluctuations for a stationary observer can exceed 100 Hz [Yee+95b], while individual odour

encounters can last a few milliseconds or less [CVV14]. Consequently, by considering the

statistics of those odour encounters, one can extract spatial information of the odour source

and its surroundings [FR82b; MA91; Hop91; MEC92; Vic+01; Wei+02; MC04; SBH16]. In

particular, measured bout concentration variations as well as intermittency are indicators of

the plume dimensions [FR82b]. The degree of temporal correlation between two encountered

odours at a single point can indicate their separating distance [Hop91]. Conversely, analysing

the correlation between same-odour encounters at multiple points in space indicates the rel-
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Chapter 1. Introduction

Figure 1.1: Odour plume dynamics are complex and require fast sensing. a, Meandering odour
plume, visualised with TiCl4 smoke. b, Energy spectra of wind velocities in two dimensions. Large
eddies progressively cascade into smaller and smaller eddies until the turbulent kinetic energy is
dissipated. c, Typical odourant concentration time series at a particular point in space, demon-
strating different plume features (odour packets, blanks, clumps). d, Odour frequency (top) and
intermittency (bottom) with increasing distance from the odour source (here, a flower). Panels a,
b, c, d were adapted with permission from [SEE23], [RAH08], [SEE23] and [Rif+14] respectively.

ative position of the source [Wei+02]. Additionally, several plume features have been shown

to reproducibly vary with distance and direction between the sensor and the odour source,

such as the average bout count [SBH16], the concentration amplitude and first derivative of

a bout [MC04], and the degree of intermittency [Rif+14] (see Fig. 1.1d). All those features

can only be captured reliably if the plume is sensed and processed fast enough.
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Chapter 1. Introduction

1.2 Fast olfaction in biology

Olfaction plays a vital role in various aspects of survival and behaviour, such as food localisa-

tion, predator-prey dynamics, mate selection and localisation, and other social interactions

[CW08; Kad+22; Bla; Amo+08; HPB10; JDM14; Kha+21; Sul+15; BK04]. The ability

to track the dynamics of fast odour signals is essential for success in these tasks. In the

following, I elaborate on fast odour sensing in insects and in mammals. In particular, I will

focus on mechanisms, temporal capabilities, and the ecological niche thereof.

Insect olfaction

The insect olfactory system (see Fig. 1.2a) starts at their antennae, which are covered with

microscopic hair-like structures called sensilla, with pores that allow odourants to enter.

Within each sensillum, there are one or multiple olfactory receptor neurons (ORNs), which

are nerve cells specialised in detecting specific odour molecules [Kan+00]. Each olfactory

receptor neuron (ORN) typically expresses one or multiple types of ORs on their cell mem-

branes, allowing the insect to detect a broad range of odours through a combinatorial recep-

tor code [VS07]. Once an odour molecule has bound to its corresponding receptor, a signal

transduction cascade is initiated. This leads to changes in the intracellular levels of cyclic nu-

cleotides and the opening of heterometric ligand-gated ion channels, ultimately generating a

neuronal response that is transmitted to the antennal lobes for further processing [Suh+04].

There, the input from ORNs is organised into spatially separated glomeruli (see Fig. 1.2b),

each receiving input from ORNs expressing the same OR type. Projection neurons (PNs)

then relay the processed signals to higher brain centres, such as the mushroom bodies and

the lateral horn, where the information is further integrated and associated with appropriate

behavioural responses [Wil13b].
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Figure 1.2: Fast odour sensing in insects. a, An overview of the insect olfactory system, showing
stereotypic connections between olfactory receptor neurons, antennal lobes, mushroom bodies and
lateral horns. b, Left: Olfactory receptor neurons that express the same olfactory receptor gene
converge on the same glomerulus in the antennal lobe. Middle and right: Different odourants elicit
different responses from a subset of the glomeruli. c, Olfactory transduction onset can occur in less
than 2 ms. Shown here are TiCl4 smoke signals (red) and electroantennogram (EAG) responses of
different species to 2-heptanone (black). d, Antennal responses can track odour pulses at 125 Hz.
Shown here are periodograms of the EAG responses for the three highest resolved pulse frequencies
for different odours and species. e, Top: Example trajectories of three different walking Drosophila
melanogaster before (black), during (magenta), and after (cyan) a 10 s odour pulse. Bottom:
Calculated parameters of fly movement averaged across flies, showing behaviour that rapidly reacts
to the presence and absence of odour stimuli. Panels a, b, c, d, e were adapted with permission
from [CR16], [Kan+00], [Szy+14], [Szy+14], and [Álv+18] (CC-BY 4.0) respectively.

Insects exhibit remarkable abilities in rapidly detecting and processing odour stimuli, which

enables them to track the dynamics of fast odour signals [Cri+22; SEE23]. Their ol-

factory receptor neurons’ (ORNs) response latency is less than 2 ms [Szy+14; Ege+18]

(Fig. 1.2c), and odour stimuli fluctuations can be resolved at frequencies of over 100 Hz
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[Szy+14] (Fig. 1.2d), allowing for following fast concentration dynamics [BJS05; Gef+09;

KLS11; Sch+08]. Evidence for odour identity inference at just tens of milliseconds exists in

honeybees [Kro08], where Drosophila identify and react to particular odours within 85 ms

[Bha+10], and mosquitoes can identify CO2 packets of just 30 ms [DC11]. Distinguished

responses — electrophysiologically and behaviourally — have been observed to be driven by

odour onset asynchronies as short as 6 ms [SGS13], with evidence that complex odour dy-

namics are encoded by projection neurons in the insect brain [KLS15]. Further, adaptation

mechanisms in the receptor neurons aid with resolving precise odour packet timing across

background odour concentrations spanning at least four orders of magnitude [Gor+17].

For odour source localisation in turbulent environments, insects rely on a combination of

odour and wind detection, employing strategies such as surging upwind when encountering

odour and casting crosswind when losing the plume [BD14; Car21; SEE23]. The frequency

and intermittency of odour packets play a crucial role in guiding motion, with agents bias-

ing their movement upwind in response to these temporal features [KM74; MC94; BFC98;

Álv+18; Dem+20]. Flies exhibit both temporal novelty detection and offset responses, ad-

justing their behavioural responses according to the temporal statistics of odour packets to

extract spatial information for source localisation [Álv+18; Jay+23] (Fig. 1.2e). Addition-

ally, insects can detect spatiotemporal odour concentration gradients using bilateral olfactory

sensing, enabling them to navigate towards the centreline of the plume independent of wind

direction [BH82; Tai+23; Kad+22]. Gradients in signal statistics can lead to the odour source

[MA91], however integrating odour encounters over time requires retaining information in

memory, posing challenges at greater distances from the source where odour packets are

infrequent [VVS07; Rig+22b]. In such cases, "infotaxis" strategies (balancing random explo-
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ration and exploitation of accumulated knowledge) can be more effective [VVS07; Rig+22b].

However, recent studies with fruit flies and mosquitoes have revealed a history dependence

in flight decisions during odour tracking, suggesting that insects can hold information about

odour plumes in memory and modulate navigation over longer timescales [Pan+18].

Insects can further exploit temporal cues to perceptually segregate mixed odours from dif-

ferent sources [Hop91; SEE23]. Various studies on mate choice [BFC98; NL02], host plant

selection [And+11], and foraging [Szy+12; Seh+19; Sah+13] indicate that insects perceive

two odourants as separate sources when their onsets are asynchronous and as one source

when their onsets are synchronous. For example, when a male corn earworm moth detects

its own species’ female sex pheromone mixed with another species’, it initiates a search flight;

however, if both pheromones originate from the same source (indicating synchrony) it does

not initiate [BFC98]. Similarly, honey bees and fruit flies prefer a mixture of an aversive and

attractive odourant when the odourants arrive with a few-millisecond difference [Szy+12;

Seh+19], suggesting spatial separation of sources. Animals may use other cues like recog-

nising the target odourant during periods of its pure presence [Tai+23] or spatial sampling

across antennae [BH82]. Fruit fly studies suggest they use temporal odour patterns to segre-

gate odour sources [Seh+19], preferring asynchronous mixtures over synchronous ones. The

neural mechanisms by which insects use those temporal cues for decoding spatial informa-

tion about the odour sources remain largely unknown, posing questions and challenges to

the field [SEE23].
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Mammalian olfaction

For mammals, the process of olfactory sensing is similar to that in insects; however, it begins

in the nasal cavity and in particular in the olfactory epithelium, where olfactory receptor

neurons (ORNs) are located (Fig. 1.3a). Each ORN expresses only one type of olfactory

receptor (OR) from a large gene family, enabling the detection of a wide range of odourants

through combinatorial coding mechanisms [Mal+99]. Upon binding of an odourant molecule

to its corresponding OR, a G-protein-coupled receptor (GPCR) signal pathway is activated,

leading to an increase in intracellular cyclic adenosine monophosphate (cAMP) or inositol

triphosphate (IP3), which then opens ion channels, resulting in neuronal depolarisation and

the initiation of an action potential [BA91]. The olfactory signals are transmitted to and

further processed in the olfactory bulb. ORNs project to mitral and tufted cells in glomeruli

structures, where each glomerulus receives input from ORNs expressing the same OR type,

thus maintaining the specificity of odourant detection. The mitral and tufted cells then relay

the processed information to higher brain regions, including the olfactory cortex, where fur-

ther processing and integration with other sensory inputs occur, leading to odour perception

and the initiation of appropriate behavioural responses [She04]. Recent research has empha-

sised the importance of feedback mechanisms and neuromodulation in the olfactory system

[LC16]. The findings suggest that the mammalian olfactory system is not only capable of

detecting and discriminating a vast array of odourants, but also exhibits remarkable plas-

ticity and adaptability, allowing for modulation of olfactory perceptions based on internal

states and prior experiences.
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Figure 1.3: Fast odour sensing in mammals. a, Overview of the mammalian olfactory system,
showing olfactory sensory neurons embedded in the olfactory epithelium, olfactory bulb with tufted
cells and mitral cells, and the olfactory cortex. b, Automated olfactory stimulus delivery system,
releasing odour pulses of short duration. c, In dual odour presentations, mice olfactory bulb output
differs in their response kinetics between correlated (black) and anti-correlated odour pulse trains.
d, In behavioural tasks, mice can accurately differentiate between correlated and anti-correlated
odour pulse trains (left), as well as distinguish between two presented frequencies (right). e, Left:
Example trajectories of mice in an odour navigation task. Right: Nose movement velocity is phase-
locked and synchronised with inhalation and exhalation cycles. Panels a and e were adapted with
permission from [Kan+00] and [Fin+21] (CC-BY 4.0) respectively, whereas b-d were adapted with
permission from [Ack+21].

For a long time, demonstration of rapid olfaction in mammals was missing, and even thought

absent. A possible underlying assumption could have been the fundamentally different—and

substantially harder to study—odour sampling mechanism: while olfactory sensory neurons

in insects are accessible and directly exposed to the odour stimulus, in mammals the odours

usually need to be actively "sniffed" through the nasal cavity and pass a mucus layer to
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reach the olfactory receptor neurons [Cri+22; MSA21], making it impossible to observe

receptor-level stimulus dynamics without disturbing it. More fundamentally, multiple (but

older) studies suggest that the odour pathway acts as a cascade of low-pass filters and that

individual sniffs are the unit of information [DCD99; KUM06]. Therefore, the mainstream

view has been that mammalian olfaction is slow and does not have access to rapid (sub-sniff)

changes in odour concentration.

However, it has been shown early on that odour detection and discrimination can occur

within a few hundred milliseconds [UM03; Abr+04]. Further evidence in awake rats and

mice indicated that odours can evoke precisely sniff-locked activity in mitral/tufted cells of

the olfactory bulb and odour-specific temporal spike patterns [CU10; Shu+11]. Optogenetic

studies further suggested that information about evoked odour stimuli in the early olfactory

system can be relayed with approximately 10 ms precision [Sme+11; Li+14; Reb+14]. In

a recent landmark study, it has been shown that mice can decode and behaviourally dif-

ferentiate odour stimuli at frequencies up to 40 Hz [Ack+21] (Fig. 1.3b-d), most likely by

spatio-temporally averaging the neural activity across a large ensemble of olfactory receptor

neurons [Abe04]. Experimentally, this was achieved through delivering temporally com-

plex (but known) odour stimuli using high-speed odour delivery devices [RGS17; Ers+19a;

Ack+21; Das+22] (Fig. 1.3b). Further, mitral cells and tufted cells of the mouse olfactory

bulb can encode the dominant temporal frequencies present in odour stimuli up to at least

20 Hz [Das+22].

14



Chapter 1. Introduction

Mammals regularly overcome key behavioural challenges that require sampling olfactory

stimuli efficiently, such as odour source separation [Ers+19a], odour-background segregation

[Rok+14; Li+23], and odour localisation [Cat13; KSB12; Jac+15; Gir+16; Liu+20]. Recent

studies reveal that mammals do indeed leverage the temporal dynamics of the odour stimuli

for navigation tasks [Ack+21; Fin+21]. In particular, it has been shown that mice discrim-

inate between stimuli derived from a single source or separated sources [Ack+21]. Further,

navigation in noisy odour concentration gradients is possible with single sensors (without

relying on stereo olfaction), where mice are observed to synchronise respiration and nose

movement with tens of millisecond precision [Fin+21] (Fig. 1.3e).

1.3 Fast olfaction in machines

The physical landscape of the odour plume is complex, yet highly informative. The vast

evidence that many animals efficiently decode and leverage this information for survival

brings up the natural question of how machines perform in such tasks. Artificial odour and

gas sensing have been an active field of research for over 40 years [Liu+12], both in academia

and industry. Unsurprisingly, there are several parallels between biological and machine

olfaction [Pea97a; Pea97b]. In the following, I will first elaborate on sensing mechanisms

and then discuss different applications and their respective needs in terms of sensor response

time and temporal precision.
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Figure 1.4: Different sensor modalities for artificial olfaction. a, Photoionization spectroscopy
(PID), Aurora MiniPID device (left) and working principle illustration (right). b, Metal Oxide
(MOx) gas sensors, devices (left) and working principles (right). c, Different instances of electronic
noses, all based on MOx gas sensors. Panel a adapted with permission from [24a] and [24b], b
from [24c] and [FKS06], and c i-iii from [Ver+14] (CC-BY NC), [Bur+21a] (CC-BY NC-ND), and
[DS21] (CC-BY 4.0) respectively.

Sensor Modalities

Over the past decades, a broad variety of gas and odour sensor modalities have been devel-

oped, each with specific characteristics and ideal use cases. While these have been reviewed

extensively [Pea+02; Liu+12; GGU23], I will mention only the ones relevant to this thesis.

First, I will introduce Photoionization detectors (PIDs), an optical gas sensing technology

that is often the choice for ground truth measurements. Then, I will elaborate more on Metal

oxide (MOx) gas sensors, the preferred sensing modality for many applications. Finally, I

will introduce the concept of the electronic nose.
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Photoionisation detectors (PIDs)

Photoionisation detectors (PIDs) (Fig. 1.4a) are efficient gas detectors, which can measure

volatile organic compounds (VOCs) and other gases in concentrations ranging from sub-

parts per billion to 10000 parts per million (ppm). PIDs offer a very sensitive instrument

for determining if and how much of a VOC is present, but in most cases, they are not very

selective. Their attributes make them a preferred choice for ground truth gas concentration

measurements; however, they are too bulky and expensive for most robotic applications.

For the analysis of a gas sample, the PID uses short-wavelength ultraviolet (UV) light to

photo-ionise trace organic compounds in the sample, which is successful for any compound

with an ionisation energy (EI) lower than that of the UV lamp [Sta14]. The ionisation

process results in in an electrophoretic motion of positively and negatively charged particles

to the electrodes; the resulting net current is proportional to the concentration of ionisable

compounds in the gas. Figure 1.4a illustrates the working principle of the sensor.

While the ionisation processes are very fast (femtoseconds to milliseconds), the response time

of a PID is determined through the purge-and-flush rate of the gas in the detection chamber

and is typically much slower (milliseconds to seconds). A typical PID houses a UV lamp

with a single dominant photon energy Eν = hν. In this way, the sensor acts as a binary

filter: every compound with EI < Eν is ionised and triggers a response, while everything

with EI > Eν is ignored [Sta14]. There are different design choices for PIDs, which offer

various trade-offs between bias voltage, sensitivity, and low-concentration response linearity.
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Further, combining two PIDs with different ionisation energy [Ack+21], or using a device with

two detecting units [SH04], has been shown to be effective. With such, one can distinguish

between two compounds in a mixture. In both cases, it is crucial that Eν is below the

ionisation energies of any ambient air compound, which, fortunately, are quite high [Sta14].

Metal oxide gas sensors

Metal oxide semiconductor gas sensors (Fig. 1.4b) have established themselves as a common

choice for many gas sensing applications, due to their tunable sensitivity, their space effi-

ciency, and their low price. They consist of materials combining a metal and an oxide layer,

such as SnO2 and ZnO [Dey18], and most often a hotplate to bring the sensor to its working

temperature regime of several hundred degrees.

The sensing principle can be understood as the combination of a receptor function (its

ability to interact with a target gas) and a transducer function (its efficiency to convert

the chemical interaction into an electrical signal). The receptor function is defined through

the chemical properties of the oxide layer, while material morphology and crystallographic

structure determine the transducer function [Wan+10]. In clean air, the surface layer adsorbs

the oxygen from the air and thus traps negative charges. This bends both the valence band

Ev and the conduction band Ec upwards, thus creating an electron-depleted region. When

the target gas reacts with the oxide layer, the electrons are removed, reversing the process

of band bending, which consequently causes the conductivity to increase. An illustration of

the sensing principle is shown in Fig. 1.4b.
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Historically, one challenge of using MOx sensors has been their relatively long impulse re-

sponse duration, which can be on the order of tens to hundreds of seconds [PLT12a; DS21].

A large part of the impulse response is caused by the slow recovery phase, which can be

orders of magnitude larger than the sensor response latency. There are different ways to

partially overcome this drawback. Hardware solutions suggest, for example, purging of the

sensor site [Gon+11a], active sniffing [Web+18], reducing size and micro-fabricating the sen-

sors [Gar+10; Liu+18; GGU23], and de-capping the sensors [BVM19]. Another hardware

approach is to modulate the temperature of the sensor hotplate. Traditionally, MOx gas

sensors use a fixed temperature for their heating element, thus the reaction on the sensor

site is isothermal. However, it has been shown that the rapid variation of the hotplate can

decrease the response time of the sensor to a target gas dramatically [Ver+14]. The authors

used oscillations with sub-second duty cycles, and achieved response times of 9 s compared to

the 300 s resulting from constant temperature. Further studies examined this phenomenon

by choosing different temperature profiles, such as temperature steps [Bau+18] and pulses

[Xin+19]. Another promising approach is to modulate the temperature in-the-loop using

the sensor output in a self-adapting way, which is described in [HT19] and more recently in

[Di +21].

Software or post-measurement signal processing solutions can aid in further reducing the

sensor response time. Many approaches rely on constant-temperature sensing mode and

process the recordings using filters or filter banks. Cascaded filtering [Di +95; Mue+09;

SBH16] can enhance fast transitions of the signal, giving rise to "bouts" (as defined earlier)

[SBH16]. Similar but refined approaches have been suggested [BM19; BVM19], reducing

response time and recovery time. Further, it has been shown that the slow response of

MOx sensors can be mitigated by signal deconvolution, given the availability of an adequate
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sensor model [MBM19]. By using multiple sensor instances with slight variations in response

dynamics, similar results can be achieved without such a model, a process called “blind

deconvolution” [MBM19]. Another proposed approach was to acquire the data at high

resolution, then use Kalman filtering and absolute-deadband sampling [DS21]. This allowed

for extracting fast onset events that may be used for informative stereo sensing. Using

the described approaches — stand-alone or combined — has led to a decrease of reported

response times down to seconds or even below [Xin+19; BVM19; MBM19; DDS22]. However,

given the challenges in both delivering odours at high fidelity and in acquiring ground-truth

measurements, it is difficult to define meaningful metrics or benchmarks that would allow

adequate comparisons between the approaches.

Further challenges to using MOx sensors are the severe susceptibility of the sensor site to

changes in temperature and humidity [Wan+10] and sensor drift. The latter describes the

gradual and unpredictable variation of signal response over time when exposed to identical

analytes under the same conditions [Ziy+10; Ver+13]. Drift is mainly caused by chemical and

physical interactions on the sensor site, such as sensor ageing (re-organisation of the sensor

surface over time) and sensor poisoning (irreversible or slowly reversible binding of previously

measured gases or other contamination). Drift can partially be overcome by carefully crafting

the experimental procedure when performing recordings, e.g., by randomising the order of

analytes presented to avoid any correlation between gas identity and sensor drift, or by

regularly measuring a reference gas and re-calibrating the system.
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Electronic nose

An electronic nose, or e-nose, describes a device consisting of an array of multiple gas sensors,

the necessary signal readout electronics, and a computing device [PD82]. Ideally, the selec-

tivity of the gas sensors is broad and partially overlapping while maintaining high mutual

information across the set, such that a large odour space can be measured. This strategy

is particularly feasible for MOx sensors, as they offer a space- and cost-sensitive footprint

while providing the ability to sense broadly. This makes them the preferred choice for many

e-nose designs. However, other sensor modalities can be used too, such as conducting poly-

mers [FL95], quartz crystal microbalances (QCM) [Sar+13], surface acoustic wave (SAW)

sensors [Mat+19], micromechanical cantilever elements [Lan+99], biofunctionalised Mach-

Zehnder interferometers [Lap+22], and more. Beyond the type of sensing element, there

are different choices to make when designing an e-nose from scratch, such as the dimen-

sionality of the sensor array (the number of different sensors), the performance of the used

electric components (bandwidth, resolution, sampling rate, etc.), the computing device (mi-

crocontroller, FPGA, neuromorphic processor, etc.), and the way of processing the signals

(sampling schemes, on-board algorithms, etc.). Different instances of electronic nose designs

are shown in Fig. 1.4c.

Applications

Slow and static

Some common applications of artificial olfaction lie in the areas of industrial production and

automotive technology; e.g., the detection of hazardous gases in mines [Kul+05; Sha+19] or

polluting gases from vehicles [FT06]; medical applications, e.g., sensing volatile metabolic

compounds for non-invasive screenings and diagnostics [Cha+97; DAm+10; Cha+18b; Wil18;
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Zul+20]; food science, e.g., the discrimination of different edible compounds [Pea+93; Gar+94;

ISY16; Van+22] or the identification of food spoilage [Jun+23]; domestic monitoring, e.g.,

the detection of fires [SPP06; FSM18] or formaldehyde gas traces [Gao+11]; as well as

environmental, ecological, and agricultural studies [Fin+10; Wil13a; Ter+24], e.g., the mon-

itoring of greenhouse gases [Dom+24], plant disease diagnostics [Cel+17], and agricultural

odour measurements [MHP97].

Fast and dynamic

While the above-listed examples are often satisfied by static and relatively slow-responding

gas sensing systems, more recent applications involve the sensing platform being mobile,

which requires faster sensors. Both ground-based and aerial robotic olfactory navigation

and mapping have been studied extensively, where many challenges have been identified and

addressed.

Early on, indoor tests with odour sensors mounted on unmanned ground vehicles (UGVs)

revealed that airflow disturbance by the vehicle adds turbulences to the environment; how-

ever, constant displacement velocity can help with stabilising the airflow, leading to new

gas source localisation strategies [Lil+01]. Further studies on plume tracking and navigation

strategies using UGVs have been performed [LD04; PGC07; HTK08; Loc+08a; Loc+08b;

Ram+11; Lu13; Mam+13; Tak+14; ZLC15; HLC19], yielding valuable insights, e.g., that

simple surge anemotaxis strategies result in efficient but less bio-plausible plume tracking

[HTK08], that there are no obvious advantageous initial vehicle orientations and positions

if there is no prior knowledge about the environment or source location [Lu13], or that

plume tracking can be improved by swarms of identical vehicles compared to single entities

[Mam+13]. Applications for gas sensing UGVs have been explored, such as gas leakage de-
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tection and localisation [Wan+01; Ben+12], gas pipeline examinations [KBP09], methane

distribution mapping on landfill sites [Her+12], gas discrimination and mapping in emer-

gency response scenarios [Fan+19], hazardous gas detection in mines [KC21], and industrial

plant inspection and supervision [Fis+24].

The use of unmanned aerial vehicles (UAVs) with olfactory sensing capabilities, particularly

small drones, has gained traction in recent years. They come in different sizes, ranging from

several kilograms down to a few grams [Dui+21]. Several navigation and mapping approaches

have been tested using UAVs. In particular, adaptive odour sampling strategies using MOx

gas sensors were shown to be advantageous when compared with predefined trajectories for

the task of gas distribution mapping [Neu+12]. Several bio-inspired navigation algorithms

were deployed onto micro-drones and compared in outdoor source localisation experiments

[Neu+13b]. Nano-drone swarm strategies have been explored for efficient CO2 mapping

[NHB19]. Deep reinforcement learning is suggested for UAV path finding [Wu+19]; how-

ever, gas sensors have not yet been implemented in the design. Bio-hybrid systems have been

suggested that combine moth antennae electroantennogram interfaces with MOx sensors, en-

abling small UAVs to perform odour source localisation [And+20]. Three-dimensional odour

source localisation algorithms are suggested and deployed onto micro-drones, while carefully

evaluating the effects of propeller-induced disturbances, sensor location, and environmental

scenarios [EM20; EJM23]. For overcoming the difficulty of odour source localisation in large

search spaces, an algorithm based on simulated annealing is suggested [YJM20]. It has been

shown that the basic infotaxis algorithm can be improved by combining it with Gaussian

Mixture Models [Par+21], demonstrating impressive mean search times. Physical advection-

diffusion models can be combined with binary gas detection measurements (in contrast to

measuring precise gas concentration), allowing for efficient gas source identification [Wie+22].
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Similarly, considering physical models can improve UAV swarm coordination in dynamic en-

vironments, such as when exposed to rapid wind direction fluctuations [Hin+23]. Other

studies explore probabilistic measures for gas source localisation, such as probabilistic gas-

hit maps [OMG23], or the combination of Voronoi tessellation, particle swarm optimisation,

and Bayesian inference [Pra+23]. While UAV-based gas sensing poses different challenges in

terms of propeller-induced airflow disturbances, payload restrictions, and ideal sensor place-

ment [Fra+22], they have been used successfully for many applications. Examples include

monitoring carbon capture and storage sites [Neu+13a], near-field characterisation of indus-

trial methane emissions [Nat+15], volcanic plume recordings [Are+19], source localisation of

hazardous airborne chemicals [HLC19], swarm-based indoor air quality monitoring [NHB19],

UAV monitoring in mining areas [Ren+19], disaster scene management [Wu+19], the mon-

itoring of wastewater treatment plants [Bur+21b; Bur+21a], and gas source localisation in

multi-building scenarios [YJM20] and cluttered environments [Dui+21].

Much of the reviewed literature indicates that — if dealing with sufficiently realistic envi-

ronments — merely following concentration gradients is not effective or efficient enough in

locating an odour source [Her+12; Neu+13b; ZZ23]. Instead, it is necessary to consider

the much more complex plume dynamics, which can be estimated using situation-specific

physical models [Hin+23], be sampled by using swarms of entities scattered across multiple

locations in space [EJM23], and/or be measured by using fast enough sensors [GFS24].
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1.4 Research objectives

In summary, adequately responding to the challenges posed by a dynamic and rapidly chang-

ing odour landscape is crucial for success in many robotic tasks and applications. For such,

the requirement for high temporal resolution odour sampling and processing is evident,

which is reflected in the remarkable timescales at which animals have evolved to process and

respond to odours. During the scope of this thesis, different research objectives have been

formulated, aiming to reduce latency and increase the speed of an artificial agent for sensing,

processing, and responding to olfactory stimuli.

1. Identify and Mitigate Dataset Bias in Gas Sensing

Investigate potential biases in widely used MOx gas sensor datasets, with a focus on

dataset design and validation, to improve the reliability and accuracy of gas classifica-

tion algorithms.

2. Enhance Model Validation in Neuromorphic Odour Learning

Replicate and critically evaluate neuromorphic odour-learning algorithms and valida-

tion protocols. Emphasise the need for rigorous validation to ensure the applicability

of these models to real-world odour identification tasks.

3. Optimise Sensor Modulation for Urban Olfactory Scene Recognition

Explore the potential of rapid temperature modulation and multi-modal sensor data

to improve recognition accuracy in urban olfactory environments.
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4. Develop a High-Speed, Miniaturised Electronic Nose

Design and validate a compact electronic nose capable of processing millisecond-scale

odour pulses and encoding stimuli at frequencies comparable to biological olfaction,

for applications in environmental monitoring and beyond.

5. Investigate Neuromorphic Principles for Olfactory Processing

Analyse the potential of neuromorphic approaches to address the challenges of spa-

tial and temporal sparsity in odour plumes, focusing on asynchronous acquisition and

processing techniques.

6. Evaluate Encoding Schemes for High-Resolution Odour Data

Compare different spike-based encoding schemes derived from asynchronous sampling

techniques, identifying processing methods that leverage complex temporal patterns in

sensor responses.

1.5 Contributions of this work

Addressing these research objectives has led to multiple scientific contributions and publica-

tions, which are elaborated on in the following:

1. I identified a previously unnoticed limitation in a widely used MOx gas sensor dataset,

allowing a trained classifier to infer the analyte gas of a trial before gas deployment. I

revealed that gases were recorded in temporally clustered batches, where the drifting sensor

response baseline correlates with batches, inadvertently facilitating gas identification. I

found numerous studies that used this dataset without addressing this issue, potentially
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leading to overestimated accuracies in reported gas classification algorithms. I underscore

the importance of careful dataset examination to avoid misleading results and discuss best

practices for future data collection protocols. The findings are described in Section 2.1, and

have led to the following journal publication:

Nik Dennler, Shavika Rastogi, Jordi Fonollosa, André van Schaik, and Michael Schmuker.
“Drift in a popular metal oxide sensor dataset reveals limitations for gas classification bench-
marks.” In: Sensors and Actuators B: Chemical 361 (2022), p. 131668. doi: 10.1016/j.snb.
2022.131668

2. I replicated a study on a neuromorphic odour-learning algorithm, which uses the men-

tioned dataset for evaluation. I provide evidence that dataset limitations significantly impact

the evaluation. Further, I exposed the model’s insufficient generalisation capabilities, and

proposed a much simpler method that achieves comparable or superior performance on the

task. This highlights the need for further validation of the model’s applicability to real-world

odour identification tasks. Chapter 2.2 describes this in detail and is currently under review

at Nature Machine Intelligence:

Nik Dennler, André van Schaik, and Michael Schmuker. “Limitations in odour recognition
and generalization in a neuromorphic olfactory circuit.” In: Nature Machine Intelligence 6
(2024), pp. 1451–1453. doi: 10.1038/s42256-024-00952-1
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3. I evaluated a MOx electronic nose dataset consisting of urban olfactory scene recordings,

and showed the efficacy of modulating the sensor operating temperature at cycle periods

much shorter than the literature suggestions. Further, I investigated using different sensor

modalities for the task and concluded that a classifier with access to gas sensor responses may

yield higher recognition accuracies compared to using humidity, temperature, and pressure.

The findings are described in Section 3.1, and have led to a conference talk and the following

conference proceedings:

Damien Drix†, Nik Dennler†, and Michael Schmuker († denotes equal contribution). “Rapid
Recognition of Olfactory Scenes with a Portable MOx Sensor System using Hotplate Mod-
ulation.” en. In: 2022 IEEE International Symposium on Olfaction and Electronic Nose
(ISOEN). Aveiro, Portugal: IEEE, 2022, pp. 1–4. doi: 10.1109/ISOEN54820.2022.9789654

4. I introduced a miniaturised electronic nose with high-bandwidth sensor readouts and

advanced algorithms, which used the principle of short heater cycles introduced above. I

demonstrated its capabilities in classifying brief, millisecond-scale odour pulses and encoding

stimuli at frequencies up to 60 Hz, which is well beyond what has been achieved previously

using MOx sensors. I showed that the system matches the rapid detection and recognition

capabilities of animal olfaction, offering potential applications in environmental monitoring

and other fields. A detailed elaboration on this study is provided in Section 3.2, which is

currently under review at Science Advances:

Nik Dennler, Damien Drix, Tom PA Warner, Shavika Rastogi, Cecilia Della Casa, Tobias
Ackels, Andreas T Schaefer, André van Schaik, and Michael Schmuker. “High-speed odor
sensing using miniaturized electronic nose.” In: Science Advances 10.45 (2024), eadp1764.
doi: 10.1126/sciadv.adp1764
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5. I discussed how Neuromorphic principles may suit the demands of processing the com-

plex dynamics inherent to olfaction. Investigating the challenges posed by the spatial and

temporal sparsity inherent to odour plumes, and the resulting intermittency in encounters,

I suggest that the asynchronous acquisition and processing of change-event samples may

be advantageous when compared to regularly sampled data. I review and critically discuss

the literature on Neuromorphic olfaction, and suggest which mechanism may be particularly

suited for the inherent properties of the turbulent odour space. The discussion is found in

Section 4.1, and will serve as the basis of an upcoming publication.

6. Finally, I compared different encoding schemes that are based on asynchronous send-on-

delta sampling, using MOx e-nose sensor responses that are phase-locked to short tempera-

ture modulation cycles. The tested encoding schemes—namely rate code, latency code, and

rank code—yielded significantly worse performance results compared to event reconstruc-

tion or the raw signal. I discussed that this may indicate dependencies on temporally more

complex patterns in the sampled curves, suggesting processing schemes that leverage precise

spike-timings. The study is described in Section 4.2, and has led to a conference talk and

the following conference proceedings:

Nik Dennler†, Damien Drix†, Shavika Rastogi, André van Schaik, and Michael Schmuker (†

denotes equal contribution). “Rapid Inference of Geographical Location with an Event-based
Electronic Nose.” In: The 9th Annual Neuro-Inspired Computational Elements (NICE),
2022, UTSA, USA Issue: 1. Vol. 1. Association for Computing Machinery, 2022
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Limitations in Data and Algorithms

“Le doute n’est pas une état bien agréable,

mais l’assurance est un état ridicule.”
– Voltaire

In this chapter, I explore a journey familiar to many doctoral candidates in the computational

sciences. It begins with the development and evaluation of novel algorithms, often carried

out with a blend of optimism and rigorous scientific inquiry, using publicly available datasets

as benchmarks. Early results frequently suggest promising avenues for practical application

and innovation; however, the optimism may be tempered by the realities encountered beyond

the controlled environments of these datasets. When the algorithms are finally applied to

real-world scenarios, the complexities and unpredictabilities of practical contexts can present

challenges that are starkly different from those foreseen during the algorithm’s developmental

phase.

In the first part, I introduce an electronic nose dataset [Ver+13], which has facilitated a

wide range of studies in the field. It is esteemed for its comprehensive data space, meticu-

lously detailed documentation, and its accessibility. Then, I reveal its limitations, which—

unfortunately—constrain the dataset’s use in gas classification benchmarks. Finally, I discuss

a set of guidelines and best practices for data collection and processing protocols.
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The second part discusses how the discovered limitations affect a study of particular interest

[IC20] for fast machine olfaction. The referred work introduced and evaluated a bio-inspired

algorithm for artificial olfaction and implemented it on a neuromorphic platform. It has since

received broad exposure and has brought traction to the field of neuromorphic olfaction. Be-

sides its dependency on the dataset in question, I reveal multiple drawbacks and limitations

of the performance evaluation, leading to the question of the potential applicability of the

proposed algorithm to real-world scenarios.

2.1 Limitations in MOx sensor dataset for gas classification bench-

marks

During the early stages of my studies, I was exploring different gas identification algorithms,

with my particular interest being in finding methods that can classify a gas in a very short

time. For this objective, it is paramount to have a well-parameterised dataset at hand on

which the algorithms can be evaluated. I believed to have found such a dataset in the

work by Vergara et al. [Ver+13], which consists of thousands of MOx sensor electronic nose

measurements, recording different analyte gases under varying environmental conditions.

The surprising discovery occurred when it was noted that the first tested classification

method (a linear Support Vector Machine) could learn and infer the analyte class from

short data windows that were sampled before the sensors were physically exposed to the gas.

A detailed analysis followed, tracking down the reason for this unexpected behaviour. The

answer was found in the metadata, particularly the recording timestamps embedded in the

filenames, revealing that the space of free parameters (gas identity, wind speed, etc.) had

not been sampled at random—as indicated in the publication—but in gas-specific batches.
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This led to a coupling between the recording time and the class analyte. As described ear-

lier, MOx sensors are most often affected by sensor drift, resulting fluctuations in the sensor

baseline response as well as in its responsiveness that are not directly caused by the analyte,

but by either environmental factors (e.g. temperature, humidity, pressure) or sensor condi-

tion (e.g. age and poisoning). This sensor drift, together with the non-random recording

protocol, renders the dataset useless for gas classification evaluations.

The remainder of this section is adapted from the peer-reviewed publication, which is acces-

sible under the CC-BY license:

Nik Dennler, Shavika Rastogi, Jordi Fonollosa, André van Schaik, and Michael Schmuker.
“Drift in a popular metal oxide sensor dataset reveals limitations for gas classification bench-
marks.” In: Sensors and Actuators B: Chemical 361 (2022), p. 131668. doi: 10.1016/j.snb.
2022.131668

The co-authors—in the following abbreviated as "we"—contributed as follows to this work:

S.R. aided in an exhaustive literature scan across the studies that have cited and/or used

the dataset in question. J.F. provided us with insights on how the dataset was collected

and added valuable points to the discussion. A.v.S. co-supervised the project. M.S. added

valuable points to the discussion and co-supervised the project. All co-authors assisted in

editing the final manuscript. My contributions were the following: Performing the initial

analysis and finding the limiting factors in the dataset. Performing a thorough analysis of

the dataset. Scanning the literature. Drafting and editing the manuscript. Editing and

revising the manuscript during peer-review.
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Abstract

Metal oxide (MOx) gas sensors are a popular choice for many applications, due to their

tunable sensitivity, space efficiency and low cost. Publicly available sensor datasets are

particularly valuable for the research community as they accelerate the development and

evaluation of novel algorithms for gas sensor data analysis. A dataset published in 2013 by

Vergara and colleagues contains recordings from MOx gas sensor arrays in a wind tunnel.

It has since become a standard benchmark in the field. Here we report a latent property of

this dataset that limits its suitability for gas classification studies. Measurement timestamps

show that gases were recorded in separate, temporally clustered batches. Sensor baseline

response before gas exposure were strongly correlated with the recording batch, to the extent

that baseline response was largely sufficient to infer the gas used in a given trial. Zero-

offset baseline compensation did not resolve the issue, since residual short-term drift still

contained enough information for gas/trial identification using a machine learning classifier.

A subset of the data recorded within a short period of time was minimally affected by drift

and suitable for gas classification benchmarking after offset-compensation, but with much

reduced classification performance compared to the full dataset. We found 18 publications

where this dataset was used without precautions against the circumstances we describe, thus

potentially overestimating the accuracy of gas classification algorithms. These observations

highlight potential pitfalls in using previously recorded gas sensor data, which may have

distorted widely reported results.
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Introduction

Over the last 50 years, artificial olfaction has evolved from an almost niche field of study into

a thriving interdisciplinary research area. Many use cases have been addressed, for example

the detection of hazardous gases or pollutants [SJR86], spoilage localization [Mai+06], mobile

olfactory robotics [LLD06], health monitoring [AJT20] and medical screening [Loi+13]; and

artificial olfaction is expected to address many more use cases in the future [Cov+21]. A key

challenge in artificial olfaction is to identify a range of odorants at high specificity. One way

to achieve this is to use an array of multiple gas sensors, each with a rather large selectivity

and low specificity, and extract the identity of the presented odor using pattern recognition.

Metal oxide (MOx) gas sensors are widely used for such sensor arrays. Their sensing layer

can be tuned to different analyte classes and they require little electronic periphery, which

simplifies sensor design, reduces cost and saves space. One big drawback of MOx sensors is

their susceptibility to sensor drift—the gradual and unpredictable variation of signal response

over time when exposed to identical analytes under the same conditions [Ziy+10]. Drift is

mostly due to chemical and physical interactions on the sensor site, such as sensor ageing

(reorganization of the sensor surface over time) and sensor poisoning (irreversible or slowly

reversible binding of previously measured gases or other contamination). Environmental

effects such as changes in humidity, temperature or pressure also affect the sensor response.

The impact of sensor drift can be reduced by careful experimental design that avoids any

correlation between gas identity and drift, for example by randomizing the order of analytes

presented. Where this is not possible or not desired, it is essential to be aware of the presence

of drift and design analysis algorithms accordingly.
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Setting up an electronic olfaction system still requires custom design of electronics and data

analysis procedures. These designs and algorithms must be based on reliable data. There are

many parameters that can affect MOx sensor recordings; e.g. environmental conditions like

temperature and humidity, technical constraints like wind tunnel design/construction, flow

control of analytes, turbulent dispersal, gas availability and associated safety requirements,

among others. Previously recorded datasets from reputable sources are therefore popular

in the Artificial Olfaction / Mobile Robot Olfaction (AO/MRO) community, since they

reduce the need for recording data in the initial design stages. A number of datasets are

publicly available, covering a range of tasks and use cases [RDR10; Ver+13; Ver+12; Fon+14;

Fon+15; Ziy+15; Fon+16; BJM18; Gam+19].

One of the most popular datasets contains MOx sensor data sampled in a wind tunnel, for

different gases and different experimental parameters, over a time of 16 months [Ver+13]

(downloadable at [Ver+]). This publication has been cited more than 100 times1. The

dataset has been used as a benchmark for gas classification algorithms in at least 18 publica-

tions [BBK18; VL16; IC20; CL19; Zho+19b; Mon+16; Fan+18; Gam+21; Zho+19a; KH20;

MRS18; AGS19; Ver18; MG15; GSD16; CCP20; Wan+21a; Li+21]. It has also been used

for gas source location estimation [SBH16; Bur19; BM19; BM20b] and other applications

[Lee+17; Mon+17; SHS18; MYS20; CLG19; GB21].

Here, we reveal a fundamental limitation of the dataset published in [Ver+13]. First, we

observed that gases were not presented in random order, but in distinct batches, sometimes

recorded weeks or months apart. In consequence, the sensor recordings were contaminated

by slow baseline drift effects that are characteristic for the time of recording. We show that

1According to Google Scholar as of December 2021
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Col. no. Sensor model Col. no. Sensor model

1 TGS 2611 5 TGS 2600

2 TGS 2612 6 TGS 2600

3 TGS 2610 7 TGS 2620

4 TGS 2602 8 TGS 2620

Table 2.1: Metal Oxide (MOx) sensors included in each 8-sensor array. All sensors were manu-
factured by Figaro USA, Inc[Fig].

since both gas identity and sensor baseline correlate with time, it is possible to identify

trials using a specific gas only by looking at the baseline response, before any gas has been

released. In addition, we show that even after correcting for slow drift by subtracting the

average of the first few sensor readings of each experimental trial, residual short-term drift

effects are characteristic enough to identify trials where specific gases have been used, using

the baseline alone. Moreover, when further minimizing the impact of drift by selecting the

least-affected subset of recordings and compensating for drift as much as possible, the gas

classification performance is far inferior to the numbers we obtained when using the full

dataset. Therefore we conclude that this dataset is only of limited use for gas classification

benchmarking, and that previously reported classification results based on this dataset are

likely overestimating the true accuracy of gas recognition. Finally, we give a perspective on

how the measurement protocol could be improved to mitigate this problem, and elaborate

on what tasks the dataset can be appropriately used for, i.e., tasks that are not affected by

the drift contamination.
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Dataset

The dataset in question [Ver+13] consists of 18000 time-series measurements recorded over

a period of 16 months from a 72 MOx gas sensor array-based chemical detection platform

exposed to 10 different analyte gases (Acetone, Acetaldehyde, Ammonia, Butanol, Ethy-

lene, Methane, Methanol, Carbon monoxide, Benzene, and Toluene). The sensor platform

consisted of nine modules, each equipped with eight MOx sensors (see Table 2.1 for sensor

types). It was placed in a 2.5 m×1.2 m×0.4 m flat-bed wind tunnel, at six different distances

from the gas inlet, perpendicular to the wind direction (see Figure 2.1a for a schematic).

Each sensor module was integrated with a sensor controller, which enabled data collection

at 12-bit resolution and a sampling rate of 100 Hz. Gas flow was adjusted by computer-

supervised mass flow controllers. A multiple-step motor-driven exhaust fan controlled the

wind speed.

Different experimental conditions were tested, namely three different wind speeds set by

the fan (0.1 m s−1, 0.21 m s−1, 0.34 m s−1) and five different sensor operating voltages (4.0 V,

4.5 V, 5.0 V, 5.5 V, 6.0 V). Before each measurement, a combination of the experimental

parameters gas, location, wind speed, operating voltage was selected, until each combination

was repeated 20 times. Each measurement lasted for 260 s, where gas was released between

t = 20 s and t = 200 s. Before and after each experiment, the wind tunnel was ventilated

at the maximum speed (0.34 m s−1) for two minutes to assert the reestablishment of sensor

response baseline.
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The data is deposited as raw sensor data with one file per trial and parameter combination.

The time of recording of individual measurements was encoded as part of the name of the

file containing the time-series, alongside the parameters used in that recording and the trial

sequence.

For our analysis, we interpolated and re-sampled the data for dealing with missing data

points, and further converted the sensor voltage readings Vsensor given in the dataset to

sensor resistance values Rsensor, according to Eq. 2.1,

Rsensor = 10 kΩ × 3.11 V − Vsensor

Vsensor

. (2.1)

The readings of sensor 1 for all boards were discarded due to excessive sensor noise. Figure

2.1b shows the responses of a sensor board to one gas in a typical trial. Unless stated

otherwise, we used the wind tunnel location P4 B5 (wind-downstream from the gas source,

see Figure 2.1a for wind tunnel schematics), as we expected a high gas exposure at that

location.

Results

Non-random order of gas measurements

We extracted the times of recording from the filenames to analyse the temporal order of

measurements. Figure 2.1c shows when each the 18000 measurements have been made, ar-

ranged by gas identity and sensor position. It is evident that gases have not been measured

in random order, but in separate batches that cluster in time. Only rarely do measurements

of different gases overlap in time (as for Ammonia, CO and Toluene); more often, measure-
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Figure 2.1: Experimental procedure of Vergara et al. [Ver+13] a) Sensor boards with 8 MOx
sensors each are placed at different locations in a wind tunnel. Air gets sucked in by a fan, and a
gas source can be opened or closed. Adapted from [Ver+13]. b) Measured sensor resistance for all
sensors on one sensor board (location P4, module 5, Acetaldehyde, 0.21 m s−1 airflow velocity, 6 V
operating voltage, trial 1). The shaded portion denotes the period during which the analyte was
injected into the wind tunnel. c) Event-plot of timestamps for all gas trials contained in the dataset.
Each vertical line represents 300 trials, which were performed too close to each other for them to
be visually distinguishable in this representation. The row name indicates the measured gas and
its concentration in parts-per-million (ppm). The blank spaces indicate periods where there have
been no data collected. CO at 1000 ppm was removed from further analysis since significantly fewer
trials were performed than for the other analytes.

ment batches are several weeks apart (e.g., Toluene and Methane). In no case have gases

been alternated on a per-trial basis. In addition, we observed that also other experimen-

tal parameters like distance-to-source, wind speed, sensor temperature were selected in a

sequential fashion rather than in random order (not shown).
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The batched arrangement of gas identity and parameter settings is not evident from the

description of the dataset provided by the authors, neither in the original paper, nor in

the documentation contained in the UCI repository [Ver+]. Describing the experimental

protocol, it was stated that (quote) "This measurement procedure was reproduced exactly for

each gas category exposure, landmark location in the wind tunnel, operating temperature, and

airflow velocity in a random order and up until all pairs were covered."[Ver+13]. This could

be read as to imply that all experimental parameters that define an experiment were selected

randomly before each trial, including which gas to release—which would mitigate, to a large

extent, the detrimental effect of baseline drift on gas identification benchmarks—which is

not the case, as we show here.

Drift in baseline over time

We investigated the sensor baseline across trials, where here we defined baseline as the

sensor readings measured before gas is released into the wind tunnel. Figure 2.2a shows the

trial-wise average of sensor baseline values at times t < trelease = 20 s, for a fixed sensor

board location, operating temperature and airflow velocity, versus the date of recording. We

observed that baseline varies significantly over time. Long-term drift can be observed as

significant discontinuities between recording sessions. Since gas presentations were batched,

the baseline pattern often correlated with gas identity. In addition, substantial baseline drift

could be observed within some recording sessions.

Spatial distribution of baseline variations

By design, the gas plume does not distribute homogeneously across the wind tunnel, but

disperses in a turbulent manner.
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Figure 2.2: Drift analysis of Vergara et al. dataset [Ver+13]. a) Baseline for each sensor and
experimental trial. Dots represent the mean sensor resistance during the time before gas release
(20 s). Top row indicates the gas and its concentration (in ppm) used in the corresponding sessions.
b)-e) Local baseline variation analysis using the coefficient of variation, for spatial wind tunnel
location (b)&c)) and sensor board (d)&e)). b)&d) display the long-term baseline variation across
the whole experimental duration (16 months), where c)&e) display the averaged within-trial, short-
term baseline variation. Data shown here was obtained with wind flow speed 0.21 m s−1 and hotplate
voltage 6 V. All ten gases and sensors 2 - 8 were considered. For a), only location 4 and board 5
were considered (see Figure 2.1a for wind tunnel schematics).

Consequently, the total gas exposure at different sensor sites could vary, which may alter each

sensor’s response differently. Here we investigated how variations in the baseline response

were distributed across the wind tunnel and the sensor board, as a proxy for sensor drift

effects.
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To quantify these variations, we calculated the coefficient of variation (cv) of the baseline,

for each sensor and each board location. The coefficient of variation is also known as nor-

malized root-mean-square deviation, or relative standard deviation, and should allow for a

comparison of the variation that is agnostic to the absolute sensor values.

Generally, cv is given by the fraction between the standard deviation σ and the mean µ (Eq.

2.2),

cv = σ

µ
. (2.2)

We discriminated between long-term baseline variations over the whole duration of the ex-

periment, and short-term drift within single trials. To quantify long-term variations, σ and

µ were computed from the distribution of trial-wise averages of sensor baseline values, thus

cv described the variation of the baseline across the duration of the whole data collection

period. For short-term variations, cv was taken as the average of the σ-to-µ ratios of the

single-trial baseline values.

We observed a distinct spatial pattern in the distribution of long-term baseline variations

across the wind tunnel (Figure 2.2b). The long-term drift effects were strongest in sensor

boards close to the center line of the wind tunnel, where gas concentration was expected to

be highest. This observation suggests that long-term drift could be caused by exposure to

the sample gas. Long-term drift affected all sensors, although sensor 4 was affected most

strongly (Figure 2.2c. This sensor is a Figaro TGS 2602, which is targeted towards “Air

pollutants (VOCs, ammonia, H2S)” according to Figaro’s website.

42



Chapter 2. Limitations in Data and Algorithms

The values for within-trial short-term coefficients of variation were naturally lower in magni-

tude but exhibited a similar pattern as observed for long-term variations, both spatially and

per-sensor (Figures 2.2d and 2.2e). This indicates that also within-trial drift was highest for

those sensors that were exposed to the highest gas concentrations.

Gas Clustering and Classification

Since both the baseline drift and the identity of the gas used in a trial correlate with time,

we tested how much information about the gas could be obtained from the baseline signal

alone.

Figure 2.3a shows a Principal Components Analysis (PCA) plot of the raw baseline values

for each gas, at a range of times after the start of trials. Each plot presents a snapshot

of a 100 ms time window, within which the time-series data of the sensor responses was

averaged and used for the PCA. The PCA was computed using all trials in all windows, thus

each snapshot is a projection of the data into this shared PC space. Distinct gas-specific

clusters could be observed already at t = 0 s, before any gas was released into the tunnel at

trelease = 20 s. The clusters change slightly between 30 and 40 seconds, which we assume is

when the gas had reached the sensors.

Next, we attempted to compensate for long-term drift effects by subtracting the average of

the first 100 ms window, i.e. for t ∈ [0.0 s, 0.1 s). The data then only contains the difference of

the sensor response relative to the start of a trial. This is a standard procedure when dealing

with MOx-sensor data. For Figure 2.3b we computed a PCA on the data compensated for

long-term drift and used the same windows as before to visualize the evolution of sensor

responses. By design, at t = 0 s there are no visible clusters. Interestingly, although the
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Figure 2.3: PCA analysis and SVM gas classification of Vergara et al. dataset [Ver+13]. a)&b)
Principal Component Analysis (PCA) of samples within a 100 ms time window, at different starting
times. Each color and shape corresponds to a different gas. For a), the raw resistance signal was
considered, where for b), the zero-offset was removed by subtracting the mean resistance in the
first 100 ms for each sensor. c)&d) Classification results using a Linear Support Vector Machine
classifier. The trials for each gas were randomly split in training and validation datasets with a
ratio of 80 − 20. Black corresponds to the raw resistance signal, whereas green corresponds to the
zero-offset subtracted signal. For all experiments shown here, the wind flow speed was fixed at
0.21 m s−1, and the hotplate voltage was set to 6 V. For a)-c), all ten gases and sensors 2 - 8 have
been considered, at location 4 and board 5 (see Figure 2.1a for wind tunnel schematics). For d),
the gases Methanol, Ethylene and Butanol have been considered, measured with sensors 2-3 and
5-8, at location 4 and board 3.

zero-baseline has been subtracted, we still observe the formation of clusters before the release

of the gas. We interpret this observation as the manifestation of short-term drift within trials

(cf. Figures 2.2d and 2.2e). It indicates that short-term drift also changed over time, in a

way that correlated with gas identity.
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These observations were confirmed using a time-windowed supervised classification approach

with a soft-margin Support Vector Machine (SVM) classifier. We used a linear kernel with

regularization parameter C = 1.0. The classifier was trained and tested separately for

each time window, using the same features as for the PCA (time-series data of the sensor

responses). We used a 4-to-1 random training to test split, i.e. training on 80% of the trials

in each window and testing using the remaining 20%, repeated 10 times with different 4-to-

1 random splits. Figure 2.3c shows the classifier performance. As expected, the classifier

yielded near-perfect gas recognition performance on the raw data (i.e., without compensation

for long-term drift), with an average accuracy of 94.3% already on the first time window of

a trial, for t ∈ [0.0 s, 0.1 s). Test accuracy increased slightly for later time windows. From

t = 40 s on it converged at 100%. We assume that this is when the sensor board was

maximally exposed to the gas.

Compensating for baseline offset did not rectify these classification artefacts. While test

accuracy was random for the time window at t = 0 s, it was clearly above random already

at t = 5 s (Figure 2.3c, green line). It increased further to around 80% at t = 35 s, before

making a step to near 100% at t = 40 s.

Taken together, we observed that the time window before gas exposure contained enough

information to identify the gas used in a particular trial, even before the gas has been released

into the wind tunnel. Baseline compensation for long-term drift reduced the extent of the

problem, but there was still sufficient information contained in the short-term drift dynamics

that allowed identification of the gas used in a given trial far above chance level. Noteworthy
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here is that even gases that are measured in close temporal proximity (such as CO at 4000

ppm and Ammonia) separated well in PC space. We suspect that not only time-related

sensor ageing, but also the slow recovery phase after gas exposure and permanent sensor

poisoning could play a role in causing the baseline drift effects we observed here.

Restricted data subset

Based on our findings in Section 2.1.1 - 2.1.4, we selected a subset of the data that would be

least affected by the drift effects we observed. We selected this subset by three constraints.

First, only Methanol, Ethylene and Butanol were considered, since they have been measured

within close temporal proximity (see Figures 2.1c and 2.2a). Second, we removed Sensor 4

from the analysis, as it appears to be particularly affected by drift (see Figures 2.2c & 2.2e).

Third, we used data from sensor board 3 rather than sensor board 5, since our analysis

suggested that it was, on average, less affected by drift (see Figures 2.2b & 2.2d).

We repeated the SVM classification task in this, according to our analysis, less compromised

subset. The results are displayed in Figure 2.3d. The classification accuracy for the raw

signal is initially still well above chance level at around 75%, without changing significantly

after gas release. This indicates that long-term drift effects are pronounced enough to enable

trial identification even in the restricted dataset. Moreover, classification accuracy increased

only very slightly after gas onset. This indicates, paradoxically, that actual gas exposure

made little difference for “gas” recognition in the restricted dataset.
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The picture changed after compensating for long-term drift by subtracting the baseline offset

at t = 0 s. Classification accuracy was only slightly above the chance level of 33.3% until

gas release. After gas release, accuracy slowly increased to slightly above 60%. Therefore,

we conclude that the restricted dataset is suitable as a gas classification benchmark when

compensating for baseline offset. It should be noted though that a gas recognition accuracy

of 60% is much lower than what we and others have reported for the original dataset. On the

other hand, the sensor board we selected was located slightly lateral to the downwind axis

from the source, therefore likely not as strongly exposed to the gas plume, which potentially

affects classification performance negatively (but also apparently reduces sensor drift). A

fair comparison between the results from subset and full-set is therefore non-trivial.

Discussion and Conclusion

In our analysis, we have shown that the different gases have been measured in time-separated

batches and not in random order, which makes the data susceptible to sensor drift effects.

We have shown that the sensor response baseline correlates with the time and order of

measurement, consistent with long-term drift behaviour. We have also shown that the sensor

response baseline alone is enough for ‘accurate’ gas classification, even after compensating

for long-term drift by removing the offset at t = 0 s. This means that the dataset cannot be

used for gas classification benchmarks without further precautions.

In an attempt to alleviate this limitation, we identified a subset of the dataset, which, under

certain conditions, could be used for gas classification benchmarking. The subset contains

three gases that have been measured in close temporal proximity, at a location that appears

to be less affected by drift, while disregarding one most affected sensor. After applying long-

term drift compensation to this subset, we observed what would be expected from a clean
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experiment: Gas identification accuracy was near chance level at the beginning of a trial and

rose only after the gas has reached the sensor. However, gas classification performance under

those conditions was much lower than when using the full dataset, in spire of the reduced

complexity of the task due to the smaller number of gases.

We therefore conclude that there is substantial information about the gas identity in the

baseline. It must be assumed that this information will also interfere with actual gas sensor

response. Therefore, the classification accuracy of a benchmark will overestimate the accu-

racy that could be obtained without the drift effect. These findings suggest that many, if

not all, of the previous studies using this dataset overestimated the performance of their gas

recognition algorithms. In fact, previous studies have acknowledged the exceptionally high

classification accuracy obtained on this dataset, compared to others [Mon+16; Gam+21].

We identified 18 publications that are potentially affected [BBK18; VL16; IC20; CL19;

Zho+19b; Mon+16; Fan+18; Gam+21; Zho+19a; KH20; MRS18; AGS19; Ver18; MG15;

GSD16; CCP20; Wan+21a; Li+21]. At least one study reported a classification accuracy

of 100% [AGS19]. None of those 18 studies described subtracting the baseline or other

attempts that could address the detrimental effects of drift. Only four studies described

data normalisation efforts [VL16; Ver18; BBK18; MRS18] that would remove the absolute

scaling of the data, which should be a standard procedure when dealing with MOx sensor

data. Since the different studies use different subsets of the dataset, and only a small fraction

of the teams provided their analysis code [Gam+21; IC20], a thorough numerical comparison

of their algorithmic performance is beyond the scope of this work.
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Due to the popularity of this dataset as a benchmarks for electronic olfaction, the overes-

timation of accuracy that could be obtained may have distorted the state-of-the-art in gas

recognition. The uncritical use of this dataset may have impeded progress in the field to a

considerable extent, for example by casting unjustified doubt on other datasets where classi-

fication scores were lower (but possibly more relevant). We hope that the analysis presented

here may enable a more realistic assessment of gas classification algorithms, and further

encourage the collection and sharing of novel gas sensor datasets.

It should be noted that this dataset, despite its limitations, is an excellent example of how

datasets should be shared. It contains the raw measurement data and all timestamps of

the recordings. This is unfortunately not common practice in the field—often, only derived

features are shared. We expressly acknowledge the effort Vergara et al. have made to share

the data as accurately as possible. Only through their diligence and attention to detail was

it possible to identify the underlying limitations.

The dataset still has unique features which make it a tremendous resource for machine

olfaction research. It is one of the very few available datasets which have been recorded

with a very high temporal resolution in a wind tunnel. Therefore, it includes temporal

dynamics of odor concentration which are due to turbulent dispersal. This feature of the

dataset has given rise to a study demonstrating that information about source proximity can

reliably be extracted from turbulent plumes using metal oxide sensors [SBH16], which has

been replicated independently [BM20b] and confirmed using newly recorded data [BM19].

Such studies are not affected by the adverse effects discussed in the present study, since they

do not attempt to identify odorants, but focus only on the temporal dynamics of odorant

concentration induced by turbulence, which is largely independent of odorant identity.
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Our study highlights that it is still difficult to obtain clean and reliable data for gas recogni-

tion benchmarks. Besides the challenges in designing and manufacturing a gas sensor setup,

planning a recording campaign robust against drift could hold its own pitfalls that may

not be evident from the outset, and even go undetected for years after publication, even

for highly cited datasets. Our findings highlight once more the importance of thoroughly

checking the validity of third-party datasets before using it as a basis to develop algorithms

for gas sensing.

A few recommendations emerge from our analysis towards best practices for designing MOx

gas sensor datasets and sharing them. First and foremost, it is imperative to use a reference

gas at short time intervals that will allow the identification and quantification of deviations

in sensor response. Second, individual gases or mixtures should ideally be presented in a

pseudo-randomized order, as should any varied parameter (e.g. wind speed, hotplate voltage).

If a randomized presentation order is not feasible, one should record multiple batches for the

same set of parameters at separate points in time. Training and testing data splits should

then be selected from batches that were time-separated (as in [Asa+17]), which would allow

for a more realistic performance evaluation. Finally, external parameters that could affect

sensor behavior should be measured and reported, e.g. ambient temperature and humidity,

and the exact time of the recording. Some MOx gas sensor datasets that implemented such

principles are openly available [Fon+15; Ziy+15; BJM18].
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Reliable data is the foundation for progress in the development of algorithms for gas sens-

ing. The large number of citations of the original publication of the dataset analyzed here

indicates that such data is much sought after and of high value for the community. It un-

derlines the requirement for future efforts to record and publicly share gas sensing data for

the progress of the field as a whole.
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2.2 Limitations in neuromorphic algorithm for robust odour recog-

nition

The groundbreaking study published by Imam & Cleland [IC20] introduces a bio-inspired

and event-based algorithm for machine olfaction and proposes an implementation on the

neuromorphic Loihi chip by Intel [Dav+18]. It distinguishes itself from other studies by

promising one-shot odour learning and robust recall within milliseconds, which makes it most

relevant to the topic of fast machine olfaction. In fact, it was this particular study that caught

my personal interest in artificial olfaction in the first place, and therefore led me to start my

doctorate researching the subject. After revealing the limitations of the dataset described

earlier, it was a logical consequence to examine if and how strongly the proposed algorithm is

affected by such limitations. After all, if demonstrated to be unaffected, the method would

not only surpass similar approaches in accuracy, speed, and power consumption but also

solve the long-standing problem of sensor drift.

However, the subsequent analysis revealed that the algorithm is indeed quite strongly affected

by sensor drift. A deep dive into the methodology and existing codebase further revealed

limitations in the evaluation protocol. In particular, it appears that the denoising-and-

classification algorithm has been trained and tested on the same data instances. When

tested on previously unseen data, the classification performance dropped drastically.
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Summary of the original paper

The authors [IC20] introduce a novel algorithm that is inspired by the mammalian main

olfactory bulb (MOB), particularly by the external plexiform layer (EPL). The method

targets the problem of few-shot online learning and identification of odour samples under

noise, uses gas sensor response traces as input data, and is implemented on the neuromorphic

platform Loihi [Dav+18]. In the following, I will elaborate on the network architecture and

plasticity rules, on the evaluation protocols, as well as on the reported results.

Network architecture and plasticity rules

The suggested network architecture is an elegant abstraction of the EPL, displayed in

Fig. 2.4a. Some core principles of MOB computation are incorporated, which is i) the specific

lateral-inhibitory topology of the EPL that includes columnar mitral cell (MC) and granule

cells (GCs), ii) the discretised spike timing-based computation that resembles gamma-band

oscillations in the EPL, iii) the global GC excitation and local MC inhibition, iv) the time-

scale of the inhibition-induced MC spike delays that approximate these of gamma-band os-

cillations, v) continuous learning abilities, and vi) neuromodulation embedded in a dynamic

optimisation framework.

The presented instance of the model is composed of 72 columns, each comprising a single

two-compartment MC principal neuron and up to 50 inhibitory GC interneurons. MCs

connect sparsely and globally/intercolumnar to GCs via excitatory synapses, while GCs

connect densely and locally/intracolumnar to MCs via inhibitory synapses.
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Figure 2.4: Overview of the methods and results demonstrated in Imam et al. [IC20]. a)
Neuromorphic circuit architecture, consisting of Mitral Cells (MCs) and Granule Cells (GCs).
b) During training, coincident MC spikes activate GCs, strengthening their synaptic weights while
weakening and eliminating other inputs. c) During training, the duration of GC-mediated inhibition
of co-columnar MCs (red bar) extends until its release (green) aligns with spike initiation in the MC
apical dendrite. The learned inhibitory weights induce a blocking period ∆B, suppressing spike
propagation in the MC soma. d) Illustration of iterative denoising for an occluded test sample.
Partially correct MC representations activate some correct GCs, whose inhibition iteratively refines
MC activity towards the learned representation. e) The Jaccard similarity to toluene, evoked by the
occluded-toluene stimulus, increased over five gamma cycles, leading to its classification as toluene.
For clarity, only five odourants are shown. f The number of toluene-tuned GCs activated by the
occluded-toluene stimulus increased progressively over five gamma cycles as MC spiking patterns
converged toward the learned toluene representation, with minimal recruitment of GCs tuned to
the other nine odourants. Figure and caption adapted, with permission, from Imam et al. [IC20]

.

The model expresses oscillations to constrain MC spike timings, reflecting the cyclic inhi-

bition seen in biological olfactory bulbs, e.g. the gamma-band (30 Hz - 80 Hz) oscillations

found in the EPL layer. This oscillatory constraint enables sensory integration within per-

missive and inhibitory epochs, allowing the network to iteratively process sensory inputs

over successive cycles.
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During odour learning, spike-timing-dependent plasticity shapes GC-MC synapses, allowing

GCs to become selective for specific MC spike patterns that represent higher-order stimu-

lus features. In turn, GCs inhibit their respective MCs, adjusting MC spike times based on

stimulus-specific patterns. Through this mechanism, the network learns to encode odour sig-

natures as spatiotemporal patterns, which are refined across gamma cycles (see Fig. 2.4b&c).

During recall, plasticity is disabled and occluded inputs fed into the network. These activated

a fraction of the GCs, which in turn modified the corresponding postsynaptic MC spike times.

The networks topology allows for an iterative (across gamma cycles) minimisation of the

distance between the inputs’ network representation and the learned odour by progressively

increasing the fraction of activated GCs (see Fig. 2.4d). With this, an occluded (or noisy)

input can be restored if previously learned.

Evaluation protocol

The network was tuned to the particular gas sensor dataset [Ver+13] described earlier (see

Section 2.1). The 72-columns match the number of gas sensors across all eight arrays dis-

tributed in the wind tunnel.

From the 20 repetitions per analyte gas and experimental parameters (here vwind = 0.21 m s−1,

Vheater = 500 V, d = 1.18 m, location L4, constant odour concentration), one such repetition

was selected and sampled at a single time point at t = 90 s. Each sensor response was

discretized into 16 levels of activation, normalised by the full range across all stimuli. The

discrete 72-element sensor vector was further sparsened by setting the smallest 50% of the

values to zero. Collectively, the training set consists of 10 samples of a 72 times 4 bit data

feature.
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For most of the demonstrated evaluations, the testing set was created by altering samples

from the training set. In particular, 60% of the values in each samples were replaced with

impulse noise, i.e. uniformly distributed 4 bit values. This procedure was repeated 100 times

for each instance of the training set, resulting in a total test set of 1000 samples.

After training, the networks’ plasticity was disabled and the testing data was used to activate

the MCs. The resulting representation of the network was observed across multiple gamma

cycles. Ideally, the similarity between the networks’ response to a noisy stimulus and the

corresponding noise-free stimulus should increase progressively as the number of activated

GC increases. This is evaluated by tracking the Jaccard similarity index [LW71] across

gamma cycles (see Fig. 2.4e&f).

Generally, the Jaccard similarity index, J , between two sets A and B is defined as:

J(A, B) = |A ∩ B|
|A ∪ B|

(2.3)

where |A∩B| is the size of the intersection of A and B, and |A∪B| is the size of their union.

Here, it is defined as the number of spikes in the intersection of two odour representations,

divided by the number of spikes in their union. Where applicable, test samples were classified

as a known odourants if the Jaccard similarity exceeded a threshold of 0.75 in the fifth gamma

cycle.
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Results

Given the described evaluation protocols, the authors report on reliable odour identification

despite strong destructive interference. Remarkably, this is shown in a one-shot scenario,

with only one training sample per class. These one-shot classification results were favourably

benchmarked against various machine learning methods; among these Principal Component

Analysis (PCA) and a seven-layer dee[ autoencoder. Further, the authors reported on suc-

cessfully overcoming catastrophic forgetting, which is achieved by continuously adding new

GCs and thus emulating neurogenesis mechanisms known in mammals [Mor+09]. Finally,

the proposed network was implemented and evaluated on Intels’ neuromorphic platform

Loihi [Dav+21]. The authors demonstrate that processing a single sniff requires around

2 ms, which is five times faster than the sensors’ sampling rate and thus would allow for

continuous and online operation.
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The remainder of this section is adapted from the peer-reviewed publication, with permission

from Springer :

Nik Dennler, André van Schaik, and Michael Schmuker. “Limitations in odour recognition
and generalization in a neuromorphic olfactory circuit.” In: Nature Machine Intelligence 6
(2024), pp. 1451–1453. doi: 10.1038/s42256-024-00952-1

The co-authors—in the following abbreviated as "we"—contributed as follows to this work:

A.v.S. co-supervised the project. M.S. co-supervised the project, and co-edited the draft of

the manuscript. All co-authors assisted in editing of the final manuscript. My contribu-

tions were the following: Replicating the original analysis and modifying it to shed light on

potential limitations. Identifying the limitations in the algorithm. Performing a through-

out analysis, including proposing a new algorithm that challenges the suggested evaluation

metrics. Drafting and editing the manuscript. Editing and re-vising the manuscript during

peer-review.

Abstract

Neuromorphic computing is one of the few current approaches that have the potential to

significantly reduce power consumption in Machine Learning and Artificial Intelligence, and

has drawn vast inspiration from considerations of biological systems and circuits. In their

work, Imam & Cleland presented a neuromorphic odour-learning algorithm that is inspired

by mammalian olfactory bulb circuitry, which they assessed by considering its performance

in “rapid online learning and identification” of gaseous odorants and odorless gases (short

“gases”) using a set of gas sensor recordings of different odour presentations and corrupting

them by impulse noise. We replicated parts of the study and discovered limitations thereof,

which are 1) that the dataset used suffers from sensor drift and a non-randomised measure-
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ment protocol that render it of limited use for odour identification benchmarks, and 2) that

the model is restricted in its ability to generalise over repeated presentations of the same gas.

Therefore, a validation of the model that goes beyond restoring a previously learned data

sample remains to be shown, in particular its coherence with the attributed capabilities of

robustness and broad generalisation beyond experience, as well as its suitability to realistic

odour identification tasks.

Introduction

Imam & Cleland’s [IC20] algorithm takes inspiration from the neural pathways of the exter-

nal plexiform layer of the mammalian olfactory bulb. Gas representations are built by an

iterative approach of applying spike-time dependent plasticity rules to sequential gamma-

frequency spike packages, on the basis of a dataset consisting of recordings from 72 Metal

Oxide (MOx) gas sensors mounted in a wind tunnel [Ver+13] (Fig. 2.5a). They validate the

model’s capability to learn and robustly identify gases by computing and thresholding the

Jaccard similarity coefficient between gas sensor recordings and representations arising from

artificially occluded sensor recordings. Further aspects such as neuromodulation, contextual

priming and neurogenesis are explored. The implementation and operation of the algorithm

on Intel’s Loihi neuromorphic platform [Dav+18] presents a major milestone in neuromor-

phic computing due to the high complexity and biological realism of the underlying network

model. The authors claim to describe a gas identification framework that is superior to

other models in terms of common classification metrics, that generalises “broadly” beyond

experience and that can be deployed into environments containing unknown contaminants
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Figure 2.5: Overview of the data collection protocol. a) Example sensor resistance measurement
for all sensors on one sensor board (location P4, module 4, Toluene, 0.21 m s−1 airflow velocity, 5 V
operating voltage, trial 2). The shaded area denotes the period during which the gas is injected into
the wind tunnel, the red dotted lines indicate where the data is sampled in [IC20] (t = 90 s) and in
this work (t = 15 s and t = 90 s). b) Timestamps of the gas sensor recordings from which, in [IC20],
one trial per gas was sampled. Each vertical line represents multiple trials (up to 20), which were
performed too close to each other for them to be visually distinguishable in this representation.
Adapted from [Den+22b].

.

and other sources of interference [IC20]. In addition, the study has been referred to as a

demonstration on how a neuromorphic network can learn and discriminate odours [Dav+21;

Chr+22; Dav21; Inta; Intb; Lef20]. Below we demonstrate limitations of the study that call

these statements into question.

Results

Drift contamination of data set

The first limitation of the study relates to restrictions in the dataset used to validate the

olfactory bulb network. The issue with the dataset [Ver+13] (Fig. 2.5a) has been described

in detail in the previous section. In short: Recordings were acquired in gas-specific batches

over the course of nine months (Fig. 2.5b), and not in a randomised order. The non-
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Figure 2.6: a) Jaccard similarity coefficient of the networks response to occluded Toluene and
the learned odour representations, after five successive gamma cycles. Replicated from [IC20]. b)
Spurious recognition in absence of gas in the wind tunnel. c,d,e) Recognition failure on different
repetitions, c) without and d) with baseline subtraction, and e) without sample occlusion. Median
and interquartile range across 10 Toluene representations are displayed, and only five out of 10
gases are depicted for clarity.

randomness, together with the dominating presence of sensor drift contaminations, allows

for successful gas classification before the gas is presented, which renders this dataset largely

unsuitable for classification tasks [Den+22b]. Drift contaminations could be partly mitigated

by subtracting the baseline, i.e., the sensor response right before gas exposure, which is a

widely used procedure when using MOx sensor data [HLG99]. No baseline subtraction was

performed in the discussed study, suggesting that the reported findings about odour learning

and recognition may be skewed, and potentially invalid, due to the limitations of the dataset.

We repeated the simulations for a range of conditions, using the publicly available code by

the authors. As in the original work, the model was trained on 10 gases, and tested on 10

occlusions for each gas, i.e., 100 samples total. If not otherwise stated, 60% of the data was

occluded by impulse noise when testing. We successfully replicated the authors’ Jaccard

similarity coefficient plot ([IC20], Fig. 4b), using the same raw data points for composing

training and test sets, and sampling the recordings at t = 90s (Fig. 2.5a, 2.6a). The result
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appears to demonstrate robust recognition of the Toluene gas instance. Paradoxically, the

same level of “recognition” of Toluene can be obtained in the absence of gas, using samples

obtained at t = 15s, before the release of odour into the wind tunnel at t = 20s (Fig. 2.5a,

2.6b). Therefore, the high Jaccard score for Toluene should be considered an artefact of

sensor drift, and is unsuitable to substantiate a capability of the model to recognise odours

[Den+22b].

Restrictions in capability to generalise beyond training data

In addition to the dataset’s limitations, we found restrictions in the model’s capability to

generalise over different recordings of the same stimulus. In machine learning, generalisation

refers to a model’s ability to accurately make predictions on new, unseen data that is drawn

from the same distribution as the training set. It is the capacity of a trained model to adapt

and perform well on previously unseen examples, rather than simply memorizing the training

data [Gar+13]. Generalisation is an important property of any pattern recognition system.

The authors convincingly show that the model can restore input patterns corrupted by

impulse noise. However, in most instances the authors tested recognition on the same sample

that was used for training, occluding 60% of the sample with noise. 40% of each training

sample were present unchanged in the corresponding testing sample. By using overlapping

portions of data for both training and testing, the statistical independence required for a

robust assessment of generalisation is not maintained. A real odorant recognition and signal

restoration system would rarely encounter the exact same stimulus twice, once in a clean

and once in a corrupted version. Therefore, assessing the model’s capability to recognise and

restore patterns from separate recordings is essential to judge its relevance.
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For most gas and parameter combinations, the dataset contains 20 repetitions. We repeated

the experiment using separate repetitions for training and testing and found that gas identity

could not be recognised in occluded samples (Fig. 2.6c). Recognition scores were further

reduced when subtracting the baseline from training and testing data (Fig. 2.6d). In this

configuration, aimed at mitigating sensor drift, recognition across repetitions failed even for

samples without any noise occlusion (Fig. 2.6e).

Conclusion

We conclude that the capability of the proposed model to identify learned odourants appears

to be limited to corrupted versions of the training data. It failed to generalise to data

outside the training set: Repetitions of learned gases were not recognised if these repetitions

were not part of the training data. Imam & Cleland’s model is an elegant example for an

implementation of a biologically plausible model on neuromorphic hardware that can restore

learned signals corrupted by noise. However, due to the restricted generalisation capability

of the model, and to the limitations of the data used, it cannot be claimed that it solves the

problem of odour learning and identification under a realistic scenario. We hope that raising

awareness about these limitations paves the way towards improved neuromorphic models for

robust gas recognition that can solve real-world odour recognition tasks.
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2.3 Conclusion

In the first part of this chapter, I found that a widely used MOx electronic nose dataset

has been recorded in temporally clustered and gas-specific batches, rather than by using an

analyte-agnostic and randomised measurement protocol. As the drifting gas sensor response

baseline correlated with those batches, it was possible to infer the analyte gas seconds before

the sensors were physically exposed to the gas, thus artificially inflating any classification

metrics. An exhaustive literature review of studies that used this dataset for benchmarking

novel gas classification algorithms led us to conclude that the reported accuracies may not be

reflective of the actual performance of the tested algorithms, likely skewing the state-of-the-

art in gas classification. I compiled a set of best practices and and constructive suggestions

to consider when performing data campaigns with MOx gas sensors.

In the second part, I examined one prominent algorithm study in neuromorphic olfaction

that used the discussed dataset, and proposed to solve complex olfactory tasks at very short

timescales. I demonstrated that the evaluation of the proposed algorithm is, in fact, affected

by the limitations in the data and does not deliver positive results when tested on less affected

data. Furthermore, I discovered issues in the evaluation itself: Testing was performed on a

rendered subset of the training set, a practice that is known to artificially inflate performance

metrics. I showed that the algorithm fails to generalise to data outside the training set, and

discuss the implications thereof.
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Fast Odour Sensing with Electronic Nose

“Fasten your seatbelts; it’s going to be a bumpy night.”

– Bette Davis

While the limiting factors in both existing datasets and algorithms have temporarily stalled

the progress in developing algorithms that rapidly recognise odours and gases, they inspired

and motivated us to acquire our own datasets.

In this chapter, I will elaborate on two electronic nose data collection campaigns, which

allowed for detailed analysis, brought many unexpected insights, and are anticipated to

open new pathways in artificial olfaction. Both were based on electronic nose devices de-

signed and constructed by Damien Drix (D.D.). In the first study, we explored how sub-

second sensor heater cycles can be leveraged for recognising urban olfactory scenes. In the

second—much more extensive—study, I collaborated with sensory neuroscience researchers

from the Crick Institute in London, and collected electronic nose data using an olfactometer

that was most recently used to reveal the temporal capabilities of the mammalian olfactory

system [Ack+21]. The analysis and evaluation shed light on the fast nature of the electronic

nose, which in certain cases even exceeds the temporal capabilities of the mammalian system.
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3.1 Rapid odour classification using MOx sensor hotplate modu-

lation

During his research, D.D. designed an electronic nose prototype based on MOx sensors, which

can set heater temperature and read out sensor response values at one kilohertz. With this,

he collected multiple datasets of different urban olfactory scenes. During the scope of this

thesis, I have analysed two of them. The first was used to compare different asynchronous

sampling strategies, which I will discuss in Section 4.2. The second was used to explore the

viability of using sensor response windows, phase-locked with short (150 ms) heater cycles,

for the discrimination of olfactory scenes, which is elaborated on in the following.

The remainder of this section is adapted from the peer-reviewed conference proceedings (©

2022 IEEE):

Damien Drix†, Nik Dennler†, and Michael Schmuker († denotes equal contribution). “Rapid
Recognition of Olfactory Scenes with a Portable MOx Sensor System using Hotplate Mod-
ulation.” en. In: 2022 IEEE International Symposium on Olfaction and Electronic Nose
(ISOEN). Aveiro, Portugal: IEEE, 2022, pp. 1–4. doi: 10.1109/ISOEN54820.2022.9789654

The co-authors—in the following abbreviated as "we"—contributed as follows to this work:

D.D. designed the electronic nose, wrote the acquisition software, collected the data, and

drafted the the manuscript sections on e-nose design and data collection. M.S. supervised the

project. All co-authors conceptualised the study and assisted in editing the final manuscript.

My contributions were the following: Suggesting the use of short heater cycles for the analysis

of the olfactory scenes, performing the formal analysis, including proposing novel feature

extraction methods, algorithms, and evaluation methods, and drafting the manuscript.
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Abstract

A café, the metro, a supermarket, a book store — many locations of everyday life have

a specific smell. Recognising such olfactory scenes could inform personal activity tracking,

environmental monitoring, and assist robotic navigation. Yet it is unclear if current Metal-

oxide (MOx) sensor technology is sensitive and specific enough to achieve this. Factors like

sensor drift, and sensitivity to ambient humidity and temperature further complicate the

recognition of olfactory scenes. Hotplate temperature modulation has been suggested as a

method to counter these drawbacks. We present an electronic nose based on MEMS-MOx

sensors that support rapid hotplate temperature modulation with a 150 ms period. We

recorded different natural olfactory scenes in an urban context. A linear SVM was able to

recognise four olfactory scenes in single hotplate cycles with near-perfect performance when

trained and tested on the same day, and 73% accuracy when tested in the same locations

on the next day. Gas sensor responses yielded higher recognition accuracy than humidity,

temperature, and pressure, which were also partly-location specific. Our results indicate

that hotplate modulation enables recognition of natural odour scenes across extended times-

pans. These findings encourage the use of MOx-sensors as rapid sensing devices in natural,

uncontrolled environments.

Introduction

The use of electronic noses (e-noses) has become popular in many areas, such as indus-

trial and environmental monitoring [BCR00], hazard control [Sol+22], mobile olfactory

robotics [LLD06], and medical screening [Loi+13]. Despite shortcomings like drift and cross-

sensitivity to humidity, MOx sensors are an attractive choice for electronic noses due to their
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low cost and availability. The current generation of sensors are made using MEMS techniques

which enable faster modification of the sensing site temperature, and these fast modulation

cycles have been shown to decrease the integration time and improve the specificity of the

responses to different analytes [Ver+14].

The recognition of olfactory scenes is an interesting but challenging problem, as it requires a

portable e-nose [Che+21] that can operate in uncontrolled natural environments susceptible

to changes in temperature, humidity and pressure.

Electronic nose design

Figure 3.1: Overview of the electronic nose system, showing the sensor board, microcontroller
board and power source.
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We designed an electronic nose with three goals in mind: (1) to investigate heater modulation

techniques, (2) to take advantage of MEMS gas sensors and their faster response times,

and (3) to enable field recordings untethered to a computer. Our design uses off-the-shelf

components and consists of two main parts: a microcontroller board based on a Teensy 4.1

microcontroller (PJRC.com) for data processing and storage, and a sensor board hosting the

sensors, associated analogue circuitry, and data converters, in a portable unit (Fig. 3.1).

We use four metal-oxide sensors grouped in three MEMS packages: MiCS 4514 and MiCS

5914 (SGX Sensortech) and CCS801 (AMS/ScioScience). These can sense various kinds of

reducing and oxidising gases including various volatile odor compounds (VOCs), hydrocar-

bons, carbon monoxide, hydrogen, nitrogen oxides and ammonia.

Heater modulation requires a way to measure the hot plate temperature, and a way to

regulate the power delivered to the resistive heating element. In metal-oxide gas sensors with

resistive hotplates, the heater resistance increases quasi-linearly with temperature. Absolute

hotplate temperature can be estimated by continuously measuring the heater resistance,

combined with calibration information obtained from the manufacturer’s datasheet. We use

a DAC (DAC7554, Texas Instruments) and an amplifier (TS924, STMicroelectronics) to

set the voltage, and a sense resistor of known fixed value to measure the resulting current

(Fig. 3.2). This enables control of the heater resistance, temperature, and power.
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The gas sensor response fluctuates rapidly with the hot plate temperature, independently

from the speed at which chemical reactions occur on the sensor surface (Fig. 3.3b). We there-

fore sample the hotplates and sensors synchronously, using two simultaneously-sampling, 8-

channel ADCs (ADS131M08, Texas Instruments). These form a closed control loop with the

DAC, running at 1 kHz. The high sampling rate is is required to support accurate control

of the heating elements, which have thermal time constants on the order of 20 ms.

A GPS module provided position and time. One environmental sensor measured the tem-

perature and humidity in close thermal proximity to the sensors (MS8607 from TE Con-

nectivity, also providing barometric pressure). Another sensor measured the temperature

and humidity of the surrounding air, uninfluenced by the heaters (SHT31 from Sensirion).

The microcontroller recorded the data on-the-fly to an SD card at a data rate of 150 kB/s,

enabling multiple-hour recordings.

Data collection

We acquired a dataset of natural olfactory scenes recorded in different urban indoor locations:

’Café’, ’Metro’, ’Bookstore’ and ’Supermarket’. Each location was visited once per day, on

two consecutive days. We recorded the four gas channels, ambient temperature, relative

humidity, and pressure. Heater power was modulated with a period of 150 ms as described

in Fig. 3.3.
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Figure 3.2: Simplified schematic of the sensor board showing one out of four sensor channels.
Each channel contains its own heater circuit (in red) and gas sensor circuit (in blue). The heater
amplifier tracks the DAC voltage (gain=1) and supplies the required heater current (up to 35 mA).
Crosstalk was minimized by spatially separating the electrical components, by avoiding parallel
PCB traces, and by implementing two separate ground connections.
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The data was divided into training and testing sets with a four-fold cross-validation pro-

cedure. For each day and location, we selected a contiguous block containing 25% of the

data and randomly picked 400 heater cycles from this block for testing. We then drew 1200

training cycles from the remaining 75% of the data. The whole procedure was repeated four

times with non-overlapping test blocks, to allow the models to be validated on the entire

dataset. This yielded a total of 12800 cycles divided in four sets: training (day 1), testing

(day 1), training (day 2) and testing (day 2).

Inference of olfactory scenes from baseline-normalised sensor cycles

We then investigated whether one can recover the label of the olfactory scene from the time

course of a single 150 ms heater cycle, either from the gas sensor conductance or from the

environmental sensors.

First, the gas signal was normalised to the same minimum and maximum values over each

heater cycle (Fig. 3.4a). This mitigates the baseline drift often seen in gas sensor datasets

[Ver+], which is problematic for classification tasks [Den+22b]. While this normalisation step

yields curves that, at first sight, look very similar across locations, they differ substantially

and reproducibly if one compares them closely (see insets in Fig. 3.4a). Observing the 2D

projections in the space of principal components (Fig. 3.4b), separable and class-aligning

clusters emerge not only for for single day recordings, but also for the entire data spanning

two days.
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a)

b)

Figure 3.3: Overview of the gas sensor data. a) Gas sensor response at the hottest part of
each heater cycle, across four locations visited on two different days. b) Schematic of the heater
modulation cycle. Each cycle steps between two fixed power levels (different for each channel)
with a 150 ms period. Hot plate temperature is inferred from heater resistance. Volatiles and
environmental factors affects the shape of the temperature-induced response of the gas sensors.
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If one considers the environmental sensor responses (Fig. 3.4c), it is evident that at each

location there is a drift in temperature and humidity, causing a strong overlap of the responses

across the classes, making a separation challenging. While pressure is more stable for each

class at a given day, there appears to be an offset when comparing different days.

Figure 3.4: Analysis results. a) Normalised gas sensor cycles in four locations. b) PCA projection
of sensor responses. Left: separate days, right: both days in joint PC space. c) Environmental
variables of one cross-validation train-test split overlap for the different classes (one value per
cycle). d) Validation accuracies for an SVM classifier, for different sensor modalities and their
combinations.

Those qualitative observations were confirmed by evaluating a linear classifier trained on

a subset of the data. For the different sensors (temperature, humidity, pressure, gas), all

possible combinations were formed and the respective day-1 training set was used to train

a soft-margin, linear-kernel Support-Vector-Machine (SVM) [CV95]. Each model was then

validated via the classification accuracy achieved on the day-1 testing set and on the day-2
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testing set (Fig. 3.4d). When training and testing on data from the same day (day 1), the

model trained on the gas sensor responses achieves the highest accuracy scores by a large

margin (97.2% validation accuracy vs. 49.6%, 31.2% and 85.6% for temperature, humidity

and pressure respectively). When training on day 1, and testing on day 2, again the gas

sensor results surpass the ones achieved by having the environmental sensors only (72.8%

validation accuracy vs. 52.3%, 31.3% and 25.0%). In both cases, there seems to be no

obvious advantage in combining the gas sensors with any of the environmental sensors.

Conclusion

In this work, we presented a novel design for a portable e-nose, which takes advantage of

the properties of state-of-the-art MEMS gas sensors, allowing high-frequency heater control

and sensor readout. We demonstrate that the phase-locked sensor response relative to heater

cycles constitutes a promising feature for classifying natural olfactory scenes from sub-second

samples. Further, we showed that the information present in the gas sensor signal does not

appear to be fully explained by cross-sensitivities to the ambient air temperature, humidity

and pressure: each location’s unique olfactory signature seems to play a role as well. Future

work should focus on evaluating the reproducibility of olfactory scene recognition across a

wider range of conditions, and over longer intervals of time.
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3.2 High-speed odour sensing using miniaturised electronic nose

The impressive efficacy of using sub-second heater cycles motivated a comprehensive follow-

up study, characterised by enhanced control over experimental parameters—requiring levels

of precision attainable solely within a laboratory setting. To achieve this required to estab-

lish a collaboration with researchers from the Crick Institute in London, which most recently

published an influential study on evaluating the temporal resolution of the mammalian ol-

factory system [Ack+21]. An essential part of this was a customised odour delivery device

with particularly high temporal signal fidelity.

An optimised and more compact successor of the previously demonstrated electronic nose was

designed by D.D. While it consists of identical or similar sensing elements and periphery,

a different microcontroller allowed for better control of the recording protocols. In the

experiments, sensor heater modulations of either short cycles (50 ms) or a constant high

temperature were deployed, then a set of odours at different temporal patterns was analysed.

The outcomes of the study were equally exciting and surprising: We demonstrated that—for

the first time—it was possible to match the temporal resolution of mammalian olfaction in

robotic systems.

The remainder of this section is adapted from the following peer-reviewed publication:

Nik Dennler, Damien Drix, Tom PA Warner, Shavika Rastogi, Cecilia Della Casa, Tobias
Ackels, Andreas T Schaefer, André van Schaik, and Michael Schmuker. “High-speed odor
sensing using miniaturized electronic nose.” In: Science Advances 10.45 (2024), eadp1764.
doi: 10.1126/sciadv.adp1764
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The co-authors—in the following abbreviated as "we"—contributed as follows to this work:

D.D. designed the electronic nose, wrote the acquisition software, co-conceptualised the

experiments, aided in collecting and analysing the data, and drafter parts of the methodology.

T.W. assembled and prepared the odour delivery device, provided codes for deploying odour

stimuli, and drafted parts of the methodology. S.R. and C.D.C. aided in collecting the

data. T.A. drafted parts of the methodology. A.S., A.v.S., and M.S. acquired funding

and supervised the project. All co-authors assisted in editing of the final manuscript. My

contributions were the following: Co-conceptualising the experiments, leading the collection

of the data, performing formal analysis of the data, creating visualisation, drafting the

manuscript, as well as editing and revising during submission and peer-review.

Abstract

Animals have evolved to rapidly detect and recognise brief and intermittent encounters with

odour packages, exhibiting recognition capabilities within milliseconds. Artificial olfaction

has faced challenges in achieving comparable results — existing solutions are either slow;

or bulky, expensive, and power-intensive — limiting applicability in real-world scenarios

for mobile olfactory robotics. Here we introduce a miniaturised high-speed electronic nose;

characterised by high-bandwidth sensor readouts, tightly controlled sensing parameters and

powerful algorithms. The system is evaluated on a high-fidelity odour delivery benchmark.

We showcase successful classification of tens-of-millisecond odour pulses, and demonstrate

temporal pattern encoding of stimuli switching with up to 60 Hz. Those timescales are

unprecedented in miniaturised low-power settings, and demonstrably exceed the performance

observed in mice. For the first time, it is possible to match the temporal resolution of animal

olfaction in robotic systems. This will allow for addressing challenges in environmental and

industrial monitoring, security, neuroscience, and beyond.
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Introduction

The sense of olfaction is found all across the animal kingdom, and is crucial for survival and

guiding behaviors such as navigation, food detection, predator avoidance, and mate selection

[BK04; Ste+05; HDC06; CW08; KSB12; Sul+15; Kha+21]. Success in these tasks often

hinges on the ability to swiftly and accurately detect and recognise scents [RAH08; BD14;

Van+15; Dem+20], particularly when dealing with odour plumes characterised by brief

and intermittent encounters[MC94; Vic+01] generated by turbulent dispersion processes

[MM91; JMJ02; CMC18]. Concentration fluctuations in odour plumes can exceed 100 Hz

[Yee+95b], while individual odour encounters can last single milliseconds or less [CVV14] (see

Fig. 3.8a). Many environmental cues are embedded in the fine structure of the odour plume

[Hop91; MC94; SBH16], which various organisms have evolved to use for their advantage.

For instance, Drosophila olfactory receptor neurons can transduce odours in less than two

milliseconds and resolve odour stimuli fluctuations at frequencies exceeding 100 Hz [Szy+14].

Similarly, honeybee projection neurons decode odour identity in tens of milliseconds after

stimulus onset [Kro08], while mosquitoes can identify CO2 packets of just 30 ms [DC11].

A recent landmark study in mice has revealed their ability to discriminate rapid odour

fluctuations, enabling them to distinguish temporally correlated from anti-correlated odours

at up to 40 Hz, which facilitates source separation in complex environments [Ack+21].

Research on mobile olfactory robotics [LLD06] has flourished over the last decade; driven

by promising applications and solutions across various domains [Fra+22], and bootstrapping

on the well established field of artificial olfaction[Cov+21]. The latter has demonstrated

its effectiveness in domains where static and slow measurements are sufficient, such as the

detection of hazardous gases or pollutants [SJR86], spoilage alert systems [Mai+06], health
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monitoring [Far+19], and food sciences [Jun+23]. However, many recent applications call

for unmanned ground or aerial vehicles (UGV / UAV) to perform odour source localisation

and navigation tasks [KR08; Bur+19; JMI21; Fra+22], which rely heavily on sensing the

environment fast and efficiently, considering plume dynamics [Kad+22].

Typically, mobile olfactory robots incorporate electronic noses; devices that are characterised

by arrays of multiple gas sensors and associated peripheral electronics [PD82]. They offer

distinct advantages over conventional analytical methods such as Photoionization Detectors

(PID) and mass spectrometers (MS), notably in terms of portability, power efficiency, cost-

effectiveness, and sensitivity to a wide range of odours and volatile compounds. The most

widely employed sensing components are Metal-oxide (MOx) gas sensors [RBW08], which

offer the significant advantage of a sensing layer that can be tuned through 1., modifica-

tions to its chemical structure, and 2., variations in operating temperature achieved by local

heating, allowing for effectively detecting a diverse range of analyte classes. Their minimal

requirements for electronic peripheral components streamline sensor design, lower costs, and

conserve valuable space. Further reductions in latency, form factor and power consump-

tion were enabled through latest MEMS-based MOx sensors [Liu+18; GGU23], facilitating

seamless integration into electronic circuits [RHB18].

However, the relatively slow response and recovery times of MOx sensor electronic noses pose

challenges for widespread adoption, and are prohibitive for many potential robotic applica-

tions [Wan+22a]. For this reason, various studies have investigated sensor response times and

tried to improve them. Recent advancements in both hardware [Ver+14; Mar+14b] and soft-

ware [MGB12; Di +14; SBH16; MBM19; BM19; BVM19; Xin+19; DS21] have significantly

reduced response and recovery times from the orders of hours or minutes [PLT12a] down to
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tens-of-seconds or seconds [BVM19; DS21]. Nevertheless, those timescales remain orders-of-

magnitudes slower than what’s observed for olfactory sensing in animals, potentially stalling

progress on critical challenges in tracking of greenhouse gas emissions [Dom+24], ecological

and environmental monitoring [BM20a; Ter+24], aerial-based wild fire detection [Wan+23]

disaster management [Fan+19], and more.

In this work, we are pushing the limits of artificial olfaction with a high-speed, miniaturised

electronic nose that can resolve odour pulses in the millisecond range. We propose an

integrated e-nose design of MEMS-based MOx sensors and fast sampling periphery, as well

as a set of powerful algorithms for control, sensing, and signal processing. We demonstrate

the systems ability to operate at unprecedented temporal timescales when classifying short

odour pulses, as well as when discriminating temporal characteristics of rapidly switching

odour pairs. The challenge of deploying rapid and complex odour stimuli in a controlled

and precise fashion [MSA21] is overcome by using a high temporal-precision olfactometer

setup, which most recently has been used for showcasing the temporal odour recognition

capabilities in mice [Ack+21; Das+22].

In the first part, we elaborate on the material and methods used. In particular, we discuss

the electronic nose design including sensor heater modulation heuristics and responses to

ambient air, the odour delivery setup including a description of the olfactometer and its

calibration, the experimental protocol, and the analysis methods.

Afterwards we discuss the results, where we initially elaborate on the proposed design of the

electronic nose and the feedback control methods, with which we achieve thermal response

times that allow for ultra-fast heater cycles — orders-of-magnitudes faster than what is

suggested in the literature. Later, we show that the electronic nose can successfully classify
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the odour of short pulses, with durations down to tens of milliseconds. This is achieved by

rapidly switching the sensor heater temperature, then extracting phase-locked data features

to train machine learning classifiers. Further, we demonstrate the system’s ability encode and

infer temporal features in a task involving rapidly switching odour pairs, up to modulation

frequencies of 60 Hz, which we show to match and even exceed the demonstrated capabilities

of mice on equivalent tasks [Ack+21]. This is achieved by controlling the heater temperature

to be constant, permitting for sensor response feature extraction from the frequency domain.

Finally, we discuss the results and its implications, and identify some example use cases that

may benefit highly from using fast sensing modalities.

Methods

Electronic nose

Circuit board design: The electronic nose uses readily available components and is il-

lustrated in Figure 3.5a. It features a Raspberry Pi Pico microcontroller and incorporates

eight MEMS-fabricated MOx gas sensors of four different types, grouped into four packages.

The sensor packages comprise two SGX Sensortech MiCs-6814 sensors (sensors 1 and 5) and

two ScioSense CCS801 sensors (sensors 2,3,4 and 6,7,8) , capable of detecting a wide range

of reducing and oxidising gases, including volatile odour compounds (VOCs), hydrocarbons,

carbon monoxide, hydrogen, nitrogen oxides, and ammonia. Figure 3.8c displays an optical

microscopy image of the sensor structure. For sensing, the DC resistance across the sensing

element is measured. The integrated micro-hotplates allow for operation at temperatures of

up to 500 ◦C.
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Figure 3.5: Supplementary figure for experimental setup. a, Electronic nose design, dis-
playing how the microcontroller unit (MCU) sets and reads out the sensor heaters in a closed loop,
while reading out the analyte dependent sensor resistances. Further, the MCU connects to an
environmental sensor (PHT) and a micro SD card. b, R-T curve of a 50 ms temperature cycle
between 150 ◦C and 400 ◦C without external stimulus, displaying how the sensor response closely
follows the hotplate temperature. c, Different sensor hotplate settings over time. For each experi-
ments, all the stimuli were presented in randomised order. d, Heatmap depicting the distribution
of odour presentations over a set of 1 hour time intervals. A χ2 test was performed to assess the
randomness of class distribution over time intervals, with the computed p-value indicated as ’p’.
e, PID response to a 1 s isoamyl acetate pulse. Grey-dotted and red dotted lines denote mean of
pre-stimulus baseline and 4 standard deviations threshold respectively. Where the response crosses
the threshold upwards (downwards), the odour onset (offset) is registered. f, Extracted odour on-
sets (w.r.t. t = 0 ms) and offsets (w.r.t. t = 1000 ms) for 1000 ms pulses of different odours. For
all experiments, the odourants are abbreviated as follows. IA: isoamyl acetate; EB: ethyl butyrate;
Eu: cineol; 2H: 2-heptanone; blank: odourless control.

For controlling the micro-hotplates, eight operational amplifiers (2x STMicroelectronics TS924)

are employed, and the sensor heater voltage is configured using two Digital-to-Analogue Con-

verters (DACs), specifically the Texas Instrument DAC60004, which offer four channels each

at 12 bits and 1 kHz. Additionally, two Analogue-to-Digital Converters (ADCs), the Texas
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Instrument ADS131M08, are used to read sensor and heater resistances. These are differ-

ential, simultaneous-sampling ADCs which read out the eight gas channels and the eight

temperature channels in lockstep at 24 bits and 1 kHz (the two ADCs share the same clock).

To monitor environmental conditions, a digital pressure-humidity-temperature sensor, the

TE Connectivity MS8607, is included, which samples data at 24/16/24 bits and 50 Hz.

Real-time data logging is facilitated through the inclusion of a microSD card. The device’s

power needs, ranging from 1.2 W to 1.5 W, allow for multiple days of continuous operation

on a pocket-sized battery pack, making it suitable for extended field recordings or robotic

environments.

Sensor heater modulation: To implement controlled heater modulation, continuous

measurement of the hotplate temperature and regulation of power delivered to the resis-

tive heating element are essential. Each heater voltage Vheat was adjusted using a DAC and

an associated amplifier, while the resulting current Iheat was monitored using an ADC in con-

junction with a fixed-value sense resistor Rsense. From these two quantities one can compute

the heater resistance Rheat = Vheat/Iheat and dissipated power Pheat = VheatIheat. Because the

device did not directly measure Vheat, the resistance calculated by substituting the known

control and sense voltages Vdac −Vsense ≈ Vheat was subject to errors, of which transient errors

caused by lag and settling time in the DAC and amplifier were deemed the most significant.

These affected the sample acquired immediately after a change in control voltage; therefore

we used a Kalman filter [WB+95] to estimate Rheat, setting the measurement uncertainty

proportionally to the rate of change of the control voltage Vdac.
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The kind of resistive heating element present in our design exhibits a quasi-linear relationship

between hotplate resistance and temperature [Ras+10], so we used a linear model to map the

heater resistance to a calculated hotplate temperature. The parameters of that linear model

were set before recording the data by measuring the heater response to a series of power

steps, and matching it with calibration data from the manufacturer’s datasheet, namely

the nominal hotplate temperature delta above ambient air temperature at nominal heating

power. This calibration procedure was repeated on an approximately weekly basis to account

for the possible ageing of the sensors.

Achieving short temperature steps of a duration not much greater than the thermal time con-

stant of the hotplate presented a number of challenges. Because the shortest steps consisted

of only 25 samples (25 ms at 1 kHz), we employed a combination of open-loop and closed-loop

control. In that scheme, we operated the heater at a constant voltage for the duration of each

step. That voltage was selected based on a learned mapping between a desired temperature

change, and the control voltage required to achieve it. We adjusted the mapping after every

step to compensate for the effects of airflow and ambient temperature fluctuations, using a

proportional controller with a relatively slow adaptation rate (0.1 V ◦C−1 s−1). With this,

fast and repeatable temperature modulation patterns can be obtained without introducing

artefacts due to e.g. control loop oscillations.

For experiments with a constant heater temperature, achieving fast temperature changes

was not an issue, but care was taken to avoid the artefacts caused by the DAC’s 12-bit

quantisation of applied heater voltage. These quantisation steps of about 0.7 mV led to

small but measurable transients in the recorded sensor signal. Since these transients were in
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the same frequency band as the signals of interest, we decided to also keep the heater voltage

constant during each stimulus. We adjusted it to eliminate the temperature error after each

stimulus, which was sufficient since the thermal environment of the sensors changed only

slowly.

Sensor responses to ambient air: The resistance of MOx sensors depends not only

on the presence of gases, but also on the operating temperature. In heater cycle mode

and odourless air (see Fig. 3.9b, left), the sensors exhibited nearly-exponential relationships

between the recorded sensor resistances and the hotplate temperatures in the range of 200 ◦C

and 400 ◦C, with deviations at lower temperatures (see Fig. 3.5c). A small deviation can be

observed between the trajectories corresponding to heating and cooling, however this may

be attributed to uncertainties in estimating the temperature of the sensor, which is close to

but not necessarily equal to that of the hotplate. The resistances returned to their initial

values after a completed cycle, without significant hysteresis.

Odour delivery setup

Reagents: All odourants were obtained in their pure liquid form from Sigma-Aldrich,

and contained in 15-ml glass vials (27160-U, Sigma-Aldrich). The odorants ethyl butyrate,

isoamyl acetate and cineol were diluted 1:5 with mineral oil, while 2-heptanone was diluted

1:20 with mineral oil. 2-heptanone was diluted to a lower concentration as a 1:5 dilution

saturated some of the gas sensors.
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Olfactometer: Odours were presented using a custom made olfactometer capable of con-

structing temporally complex stimuli with temporal bandwidths of up to 500 Hz (Fig. 3.8d).

This temporal olfactory delivery device (TODD) has been outlined previously[Ack+21;

Das+22]. The device consisted of 8 independent channels which contained either odour

(diluted with mineral oil) or pure mineral oil. These 8 channels were grouped into two sets

of 4. Each set of four consisted of an odour manifold, which contained odours or pure mineral

oil in glass vials which were fed by a common air flow. Each channel in this odour manifold

was fed into its own high speed valve on a separate valve manifold. Each high speed valve

could be opened and closed at frequencies of up to 500 Hz. On each valve manifold, one of

the channels containing pure mineral oil was set to remain open indefinitely, acting as a ’car-

rier’ valve (grey valves in Fig. 3.8d). When a trial was triggered, this carrier valve flow was

reduced in accordance with the amount of additional airflow generated by the other valves

on the manifold, therefore maintaining a continuous rate of air flow through the system.

In some cases, the carrier valve was not simply reduced, but was used to generate tempo-

rally complex airflow to compensate for the temporal patterns generated using the other

valves in the system. Signals to the valves were convolved with a high frequency 500 Hz

continuous signal, referred to as ’shattering’. This shattering was included as it has been

previously found to improve the temporal fidelity of the resultant odour signal. The airflow

to the TODD was maintained at a rate of 1 L/min using a custom closed loop-feedback flow

controller.

Calibration: To ensure a continuous total airflow whilst maintaining a high signal fidelity,

prior to the electronic nose recording session, the output of the olfactometer was measured

with both a PID (200B miniPID, Aurora Scientific) and flowmeter (AWM5101VN, Honey-

well). The PID was positioned a short distance away from the output of the olfactometer (>
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2cm) and calibration trials were presented. These were selected in a way to making sure to

cover all the different valve combinations of the experiment. The PID response to presented

odours was measured and the fidelity estimated. If the fidelity was found to be too low,

the rate of flow into each channel was tuned to increase the fidelity. Next, the PID was

replaced with the flowmeter, and the same selected calibration trials were presented. If the

rate of flow varied during the trial presentation, the compensatory flow or carrier flow was

modulated to return the net flow back to pre-trial levels. The flow through the odour valve

was kept constant so as to not alter the odour signal fidelity. Airflow was modulated by

altering the duty-cycle of the valve shattering. Once there was no visual change in the rate

of flow between the trial and pre-trial levels the flowmeter was removed and the olfactometer

was deemed to be calibrated.

Fidelity Calculations: For quantifying the olfactometers’ temporal fidelity after calibra-

tion, we deployed single-odour pulse trains of different frequencies and obtained simultaneous

PID and flow meter recordings. Here, the odourant Ethyl Butyrate was used, as its ionisation

energy is well-suited for the used PID. In particular, at t = 0 s the carrier flow valves opened

while odour valves remained closed, for a duration of 10 s. At t = 10 s the odour valve and

odourless compensation valve deployed anti-correlated pulse trains of various frequencies,

for 2 s (see Fig. 3.5a (left) for the 10 Hz example). The fidelity for each square pulse was

calculated as the value of peak to trough, normalised to the peak to the baseline value.

The fidelities shown in Fig. 3.5a (right) were computed as the mean and standard-deviation

across all square pulses fidelities of a particular modulation frequency.
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Experimental protocol

Electronic nose placement: The electronic nose was attached to a movable arm and

fixed in place downstream of the olfactometer outlet, with a distance of approximately 3 cm

from outlet nozzle to the gas sensors. To ensure that the gas flow reached all the sensors on

the board, we fine-tuned the alignment of the electronic nose with respect to the nozzle by

trial-and-error until a strong response was obtained on all channels.

Heater modulation and odour delivery protocol: Three experiments with different

sensor heater conditions were performed (see 3.5d for the conditions over time):

1. Sensor 1-8: 50 ms cycles between 150 ◦C and 400 ◦C.

2. Sensor 1-4: constant temperature of 400 ◦C, Sensor 5-8: 50 ms cycles between 150 ◦C

and 400 ◦C.

3. Sensor 1-4: constant temperature of 400 ◦C, Sensor 5-8: 200 ms cycles between 150 ◦C

and 400 ◦C (not used).

For each heater condition, odour stimuli of different pulse widths and concentrations (con-

trolled by adjusting the shattering duty cycle of odour and mineral oil valves) were presented.

After each odour stimulus, there was a 30 s recovery phase before the next stimulus onset.

The set of different stimuli included:

• 4 odours + two control (’blank’) vials, 50 repetitions 1 s odour pulses, at 100% con-

centration.

• 4 odours, 20 x 1 s odour pulses, at concentrations of 20%, 40%, 60%, and 80%.
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• 4 odours, 5 repetitions of shorter odour pulses in the range [10, 20, 50, 100, 200, 500]

ms, at 100% concentration.

• 2x6 odour pairs, 5 repetitions of 1 s anti-correlated pulse trains, at frequencies in the

range [1, 2, 5, 10, 20, 40, 60] Hz, at 100% concentration.

• 6 odour pairs, 5 repetitions of 1 s correlated pulse trains, at frequencies in the range

[1, 2, 5, 10, 20, 40, 60] Hz, at 100% concentration.

Within each experimental run, all the stimuli were presented in a fully randomised order.

Fig. 3.5e shows the distribution of odours over time, binned in 1 h time intervals. A statistical

χ2 test was performed, confirming that the null hypothesis can’t be rejected (p = 0.364),

i.e. that the trials are in fact randomised. Importantly, the odour delivery protocol has not

been synchronised with the sensor heater modulation phase.

PID recordings and odour onset/offset determination: A shortened version of the

odour delivery protocol was deployed and recorded with the PID. Fig. 3.5e (left) displays

a PID response to a 1 s isoamyl acetate pulse. For all the odours, the mean and standard

deviation of the pre-stimuls baseline were computed, and a threshold of 4 times the stan-

dard deviation (4σ) defined. This was used to estimate an upper bound for the time from

theoretical stimulus onset to odour exposure at the sensing site, and a lower bound from

theoretical stimulus offset to the purging of the sensor site. Fig. 3.5e (right) displays all the

extracted onset and offset values, indicating that the odour may reach the sensor as rapidly

as in 10 ms, while the purging may take several hundreds of milliseconds. While PIDs are

extremely fast, they too have a finite and odour dependent response time, thus the actual

times may be shorter than this.
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Pulse classification analysis

Feature extraction and validation: For evaluating what data features may be most

suitable for the rapid classification of short odour pulses, we used experiment B, where

sensor 1-4 were operated at a constant temperature of 400 ◦C, and sensor 5-8 employed

heater cycles of 50 ms in the range of 150 ◦C and 400 ◦C.

Different sensor data features were used and evaluated: Data windows of 50 ms starting

at a given time t relative to the simulus onset at tonset = 0 s were used to extract 1. raw

data from constant heater sensors, 2. pre-stimulus (tpre = −5 s) baseline subtracted data

from constant heater sensors, 3. raw data from cycled heater sensors, and 4. pre-stimulus

(tpre = −5 s) baseline normalised data from cycled heater sensors. For the normalisation

in the latter, the procedure is illustrated in Fig. 3.6c and described in the following. The

extraction of the feature G(Ds, t) can be summarised as applying a chain of a sensor-wise

logarithmic transformation and a maximum scaling, to both a 50 ms baseline data snippet

before stimulus onset (here, tpre = −5 s) and to a snippet at time t, and then computing

their vector difference:

G(Ds, t) = log(H(Ds, t))
max(log(H(Ds, t))) − log(H(Ds, tpre))

max(log(H(Ds, tpre)))
(3.1)

Here, Hcycle(Ds, t) describes a kernel extracting data from the sensor recordings Ds, using a

window that begins at time t and ends after one full heater cycle (e.g. 50 measurements).

The sensor index is denoted as s. The pre-stimulus normalisation is a necessary and com-

monly used step that eliminates the first-order sensor baseline (i.e. here the data 5 seconds

before the stimulus), which is known to often be contaminated the effects of sensor drift and

fluctuations in environmental conditions [Den+22b].
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Figure 3.6: Supplementary figure for fast odour classification. a, Data splitting for
robustness analysis of the rapid heater modulation data features (see Fig. 3.9e). b, Data splitting for
evaluating the dynamic classification of millisecond odour pulses (see Fig. 3.10). c, Normalisation
procedure for the heater modulation data feature. Time shifted by cycle phase ρ w.r.t. odour
onset, for visual guidance only. d, Accuracy scores for a k-nearest neighbours (k-NN) classifier
trained on 50 ms data features from 1000 ms odour pulses at full concentration, and tested on
50 ms features from 1000 ms odour pulses at different concentration levels (tuned by adjusting the
duty cycle of the micro-valves). Features are compared for constant heater sensor readings (raw
and baseline-normalised) and cycled heater sensor readings (raw and normalised, as described in
c)) e, Odour stimulus classification for anti-correlated odour patterns over time. An RBF-kernel
SVM classifier was trained on 50 ms features from 1000 ms odour pulses, and tested on odour anti-
correlated odour patterns of various frequencies. Shown here is is a 2 Hz pattern. f, Classification
correctness over time (evaluated via the true odour presence), for anti-correlated odour patterns of
different switching frequencies.
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The data was split into one set for training & validation, and one set for testing — with

a ratio of 60% to 40% (see Fig. 3.6a). The former was used to train and validate a k-NN

classifier using different features via cross-validation. The latter was used to evaluate the

performance with the different features used.

Classifier training was performed on data features from sensor responses between 500 ms and

1000 ms after stimulus onset, where the stimuli were 1000 ms odour pulses of the gases 2H,

EB, IA, Eu and blank, at 100% concentration. Testing was performed on equivalent data

features, however now the stimuli concentration was sampled in the range [20, 40, 60, 80,

100]%, and the blank class was omitted. Fig. 3.6d displays the achieved performance using

the different data features. The normalised cycled-heater data feature G(Ds, t) outperforms

the other tested features, both in accuracy at 100% concentration, as well as for the reduced

concentrations. For clarity, Fig. 3.9e shows a subset of Fig. 3.6d.

Dynamic pulse classification: For the dynamic classification of short odour pulses, ex-

periment A was used with all 8 sensors modulated on a 50 ms period betweeen 150 ◦C and

400 ◦C. Again, a 60% vs. 40% split for training & validation vs. testing was performed,

where the former was used to determine a suitable classifier and its hyper-parameters via

cross-validation, while the latter served to evaluate the performance of the classifier (see

Fig. 3.6b). Data features were extracted as described in Eq. 3.1. For training, the underly-

ing data for the features are the sensor responses for the subsequent 2000 ms after the onset

of 1000 ms odour stimuli, for concentrations in the range [20, 40, 60, 80, 100]%. The data

features were labelled according to their time t as follows:
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Procedure 1: Training data labelling procedure
Input: Parameters tonset, toffset, τ , d, and Ostimulus

Output: Label y for the feature

1 if tonset ≤ t < toffset − τ + d then

2 Feature is fully within measurable odour pulse.

3 if Ostimulus is not ’blank’ then

4 y = Ostimulus

5 else

6 y = ’blank’

7 else if toffset + d ≤ t then

8 Feature is fully after measurable odour pulse.

9 y = ’blank’

10 else

11 Feature timing is ambiguous; exclude data feature from training set.

12 y = ’rejected’

Here, tonset = 0 ms and toffset = 1000 ms are the stimulus onset and offset respectively,

τ = 50 ms is the feature duration, d = 10 ms is the upper bound stimulus delay as computed

earlier, Ostimulus is the stimulus odour of the corresponding trial, and y is the prescribed

label of the data feature in question. This procedure is illustrated in Fig. 3.10a.
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Figure 3.7: Supplementary figure for temporal pattern discrimination. a, Data splitting
for evaluating the temporal pattern discrimination performance (see Fig. 3.11). b-d, Validation
accuracy plots for different extracted DFT-spectrogram peak features using the MOx gas sensor
resistances. b, Modulation frequency classification, c, pairwise modulation frequency classification,
and d, correlated vs anti-correlated modulation discrimination. e, MOx heater temperature values
for different odour modulations. Here shown are data for the odour pair IA (isoamyl acetate)- EB
(ethyl butyrate), 5 trials each for 5 Hz correlated, 5 Hz anti-correlated, 20 Hz correlated and 20 Hz
anti-correlated respectively. f-h, Test accuracy plots for different odour pair modulations, using the
MOx heater temperature values. i, Photoionisation Detector (PID) responses for different odour
modulations (odour stimuli as in e). j-l,, Test accuracy plots for different odour pair modulations,
using the Photoionisation Detector (PID) responses. For all the classification tasks, an ensemble of
Random Forest Classifiers was used. The mean and error estimations arise from repeating training
and testing with different random seeds.
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For the normalised data features, several classification algorithms were trained and validated

via five-fold stratified cross-validation. The best performing algorithm with corresponding

hyper-parameters was selected, which here was a Support Vector Machine (SVM) classifier

with radial basis function kernel [VTS04] (C = 1e3, γ = 1e − 4, balanced class weight).

Ultimately, an ensemble classifier was composed from the five SVMs trained on each split.

For testing how well the trained classifier performs on shorter odour pulses, the features were

extracted from sensor response data for the subsequent 2000 ms after the onset of odour

stimuli of different durations, at 100% concentration. The stimulus durations fall within

the set {10, 20, 50, 100, 200, 500, 1000}ms. For each data feature, the classifier predicted

the odour, which is illustrated as a raster plot in Fig. 3.10b. The predicted odours y were

compared against the actual stimulus odour Ostimulus and divided in predicting ’correct

odour’, ’wrong odour’ and ’no odour’, resulting in Fig. 3.10c. To extract the accuracy for

each pulse duration, a confusion matrix was composed by — for each trial — comparing the

most predicted non-blank class against Ostimulus, across multiple trials. The on- and offset

times correspond to the elapsed time from odour onset to first non-blank prediction, and

from odour offset to first ’blank’ prediction, respectively.

An analogous procedure was followed for testing the trained classifier on anti-correlated

patterns of odour pairs, resulting in predictions over time, as shown in Fig. 3.6e & 3.6f.

95



Chapter 3. Fast Odour Sensing with Electronic Nose

Temporal structure analysis

For the temporal structure analysis, i.e. the determination of the frequency and the phase-

shift of the two-odour pulse trains, the constant heater sensor data (i.e. sensors 1-4) of

experiment B and C were used. In particular, experiment B was used for training and

validation (i.e. finding and evaluating a suitable data feature and classification algorithm),

where experiment C was used for testing, see Fig. 3.7a for an illustration.

Feature extraction: For each data trial, we extracted sensor data Ds from t = tonset to

t = toffset + b, where b = 100 ms to account for the stimulus delay and potential sensor

lag. The data was then log-transformed and differentiated before applying a discrete Fourier

transformation F(.), using the fast Fourier Transformation algorithm [CT65]:

L(Ds) = F
(︄

d

dt
log(Ds)

)︄
(3.2)

All triplets [frequency, magnitude, phase] were extracted, and sorted according to the mag-

nitude. For each of the four sensors, the triplet with the highest magnitude was selected,

collectively composing a 12-dimensional data feature.

Temporal structure classification: The data features and potential classifiers were eval-

uated on a 10-fold cross-validation using the training & validation data (i.e. experiment B)

and the three different tasks described earlier. We decided on utilising a Random Decision

Forest (RDF) classifier [Ho95] (balanced class weight, Ntree = 100), and on using the same

12-dimensional data feature for all tasks. See Fig. 3.7b-d for an evaluation of the data fea-
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tures. For each cross-validation training split we trained a RDF classifier, then combined

them to form an ensemble classifier for each task, which was finally evaluated on the testing

data (i.e. experiment C). For the validation using hotplate temperature and PID data, the

analogous pipeline was used, except that we omitted the log-transformation.

Comparing electronic nose performance with mouse performance

Performance analysis of the electronic nose to discriminate odour correlation structure was

carried out in the style of a previously published experimental dataset (See Ackels et al. 2021

[Ack+21]). This allowed for a direct comparison of the electronic nose performance with that

of mice during an operant conditioning task. A complete description of the experimental

conditions and data analysis can be found in the original paper. In brief, two cohorts of

up to 25 mice were housed in a common home cage system [Ers+19b] that is used as an

automated operant conditioning setup. Mice were trained to discriminate perfectly correlated

from perfectly anti-correlated odour stimuli switching at frequencies ranging from 2 Hz to

81 Hz. Task frequency was randomized from trial to trial. Odours were presented with a

multi-channel high-speed odour delivery device similar to the one used in this thesis. During

a go/no-go task animal performance was rated based on their lick responses to S+ (rewarded)

and S− (unrewarded) stimuli. For roughly half of all mice, the correlated pattern was S+

and the anti-correlated pattern was S− . In the other half of the group this reward valence

was reversed. All stimuli were 2 s long. A water reward could be gained by licking so that

licking was detected for at least 10% of the stimulus time during an S+ presentation (a

‘Hit’). Licking for the same amount of time during S− presentation resulted in a timeout

interval of 7 s. In all other response cases, the inter-trial interval was 3 s and no water reward

was delivered. All behavioural performance within a specified trial bin was calculated as a
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weighted average of S+ versus S− performance:

Performance = (Hit/S+) + (CR/S−)
2 (3.3)

in which S+ is the total number of rewarded trials, S− is the total number of unrewarded

trials, Hit is the total number of rewarded trials in which a lick response was detected, and

CR (correct rejection) is the total number of unrewarded trials in which no lick response

was detected.

Results

High-speed electronic nose and odour delivery system

We constructed a portable high-speed and high bandwidth electronic nose, which leverages

the advantage of MEMS-based gas sensors and their rapid response times. We emphasised

form factor and power consumption considerations that allow for sophisticated field mea-

surements under space and power constraints, such as mobile robotic platforms[JMI21]. Our

design (Fig. 3.8c & 3.5a) consisted of the following elements: a microcontroller for data pro-

cessing and storage, eight analogue metal-oxide MEMS gas sensors (Fig. 3.8d), associated

analogue circuitry and data converters, and a combined pressure, humidity and temperature

sensor.

Ideal MOx sensor operation requires the sensing site to be heated to several hundred degrees.

The sensor response is highly dependent on the temperature and its variation over time. Pre-

vious studies have shown that a modulation of the sensor’s operating temperature often leads

to better and faster gas discrimination performances [Ver+14], however the suggested sensor

heater cycle durations were on the orders of seconds to minutes [Ver+14; Xin+19; NT20; Di
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Figure 3.8: Electronic nose and odour delivery system. a, Decoding temporal information
of odour plumes requires fast sensing. Top: Two sequential TiCl4 smoke plume photographies,
shifted and superimposed, kindly provided by Dr. Paul Szyszka. Bottom: Dual-PID recordings of
source-separated odour plumes, from Ackels et al. [Ack+21]. Plume and sensor location (red) for
illustrative purposes only. b, Experimental setup with odour delivery device and electronic nose.
Adapted from Ackels et al. [Ack+21]. c, Electronic nose circuitry. d, Microscopy image of the
MiCS-6814 NH3 sensor with its housing removed. e, Heater modulation cycle in ambient air. f, PID
and flow meter traces for a 20 Hz stimulus. Solid / faded (occluded) traces for mean / std. of five
trials. g, Resulting olfactometer temporal fidelity, for various frequencies. Odourants abbreviations:
IA: isoamyl acetate; EB: ethyl butyrate; Eu: cineol; 2H: 2-heptanone; blank: odourless control.
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+21; NT22; Men+23]. Aiming to achieve ultra-fast heater cycles, our design couples each

sensor with a separate temperature control loop, which samples the temperature and adjusts

the hotplate current at high frequency. Fig. 3.8d shows a typical heater modulation cycle

in ambient air, where the sensor resistance follows the hotplate temperature in a low-pass

fashion. In our experiments, we used two different heater temperature control schemes: one

that cycled between low and high temperature values (150 ◦C and 400 ◦C), and one at a

constant high temperature (400 ◦C).

To provide odour stimuli to the e-nose, we used an odour delivery system that can reliably

present gaseous odour samples with a bandwidth beyond 60 Hz, described earlier [Ack+21;

Das+22] and depicted in Fig. 3.8b. The system was based on high-speed micro-valves and in-

corporated a flow compensation mechanism [Ack+21], ensuring exceptionally high temporal

signal fidelity, and constant flow across the stimuli (Fig. 3.8f & 3.8g and Methods). As proto-

typical, simplistic high-frequency odour stimuli, we used square pulses of different duration

and separation times. A set of odourants that resembles smells encountered in nature was

considered: Ethyl butyrate (pineapple), isoamyl acetate (banana), cineol (eucalyptus) and

2-heptanone (cheese). The odourants were diluted in odourless mineral oil solvent. Addi-

tionally, we used two (identical) pure solvent samples as controls. The odours were presented

as singular pulses with varying durations (10 ms - 1 s) and concentrations (20%-100%), and

as correlated and anti-correlated odour pulse trains (1 s) at different modulation frequencies

(2Hz - 60Hz).
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Figure 3.9: Rapid heater modulation enables robust data features. a, Sensor resistance
of four MOx sensors with 20 Hz hotplate temperature modulation, responding to a 1 s odour
pulse of isoamyl acetate (green background). b, 50 ms data feature for different gases, selected
between 500 ms and 550 ms after odour pulse onset. Raw sensor response (upper) and normalised
sensor response (lower, see Methods for normalisation procedure). Time shifted by cycle phase ρ
w.r.t. odour onset, for visual guidance only. c, Principal component analysis (PCA), explained
variance (most left) and projections, and d, t-distributed stochastic neighbour embedding (t-SNE)
visualisation, for the set of normalised data features extracted between 500 ms and 1000 ms after
odour onset. e, Accuracy scores for a k-nearest neighbours (k-NN) classifier trained on 50 ms
data features from 1000 ms odour pulses at full concentration, and tested on 50 ms features from
1000 ms odour pulses at different concentration levels (tuned by adjusting the duty cycle of the
micro-valves).

Rapid heater modulation enables robust data features

While cycling the sensor heater temperature can yield better odour classification results,

the cycle duration may be restricting the temporal bandwidth at which a stimulus can be

resolved. In recent studies, we tested the effect of 150 ms duty cycles and found evidence

for robust data features [Den+22a; DDS22]. In the current work, we leveraged our system’s101



Chapter 3. Fast Odour Sensing with Electronic Nose

ability to rapidly modulate the sensor temperature, and cycled the heater temperature be-

tween a low step at 150 ◦C and a high step at 400 ◦C with a period of 50 ms. Notably, this is

orders-of-magnitudes shorter than what had been suggested in previous studies [Men+23].

The resistance of the gas sensing elements closely tracks these changes in operating tem-

perature (Fig. 3.8e & 3.9a), enabling us to extract gas features that are phase-locked with

the heater cycles for subsequent analysis and classification. For this purpose, we divided

the continuous stream of gas sensor samples into 50 ms chunks aligned with the tempera-

ture cycles (Fig. 3.9b, upper row). The 50 ms data features further underwent pre-stimulus

baseline normalisation and scaling (Fig. 3.9b, lower; from now on referred to as "normalised

data feature"); for details see Methods).

For testing class discriminability and robustness to concentration fluctuations, data fea-

tures were extracted by sampling four sensors between 500 ms and 1000 ms after the onset

of a 1000 ms odour stimulus. Principal Component projections (Fig. 3.9c) and t-distributed

stochastic neighbour embeddings (t-SNE) ( and 3.9d) show distinct clustering that coincided

with odour classes. Further, a k-nearest neighbours (k-NN) classifier was trained on data fea-

tures of one second long odour pulses at full concentration (100%), and tested on features of

one second long odour pulses at various concentrations (20% - 100%). The classification per-

formance results are shown in Fig. 3.9e. Notably, for the normalised data feature, the model

provided 100% classification accuracy at the trained concentration level, which remained at

(88.7 ± 0.5)% and (81.2 ± 0.6)% when tested on 80% and 60% of the trained concentration

level. Accuracy at lower concentration levels dropped significantly but remained well above

chance. This is significantly better than what is achieved with the raw data feature (see

Fig. 3.9e).
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Figure 3.10: Electronic nose can classify short odour pulses based on 50 ms data
features. a, Feature labels for the training set were phase aligned in relation to odour on- and
offset. Features that overlapped with transition periods were not considered for training ("rejected",
see Methods for parameters). b, Odour stimulus classification over time for odour pulses of various
lengths (10 ms - 1000 ms, as predicted by a RBF-kernel SVM classifier trained on 50 ms features from
1000 ms second odour pulses. Shown here are 1000 ms pulses. For visual clarity only, the trials are
sorted by odour, and within each odour are sorted by phase w.r.t. stimulus onset. c, Classification
correctness over time (evaluated via the true odour presence), for different pulse durations. d, Test
accuracy, onset time and offset time for the prediction over time described in b & c. Onset and
offset were extracted using time-to-first non-’blank’ and ’blank’ prediction respectively, and shown
here with respect to theoretical odour onset and offset.

Time-resolved classification of millisecond odour pulses

In natural settings, odour bouts can be as brief as only milliseconds long. For an agent’s

successful interaction with the environment, this requires the ability to classify odours fast

and robustly. We evaluated the ability of the electronic nose to classify odour pulses of various

durations. A Support vector machine (SVM) with Gaussian radial basis function was trained
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on 50 ms data features, which were acquired from eight gas sensors throughout a 1000 ms

odour stimulus at five concentration levels. Control trials (’blank’) were included, obtained

during a 1000 ms odourless mineral oil stimulation or immediately after odour pulses. See

Fig. 3.10a for a depiction of the labelled features. The trained model was deployed to predict

the odour presence over time during exposure to odour stimulations of various durations,

ranging from 10 ms to 1000 ms. Fig. 3.10b displays the predicted classes over time on the

example of an 1000 ms odour pulse, where Fig. 3.10c summarises the predictions over time

for all pulse durations.

From these predictions, the corresponding accuracy, onset times, and offset times were de-

rived and shown in Fig. 3.10d. The classifier attained a 100% accuracy in predicting the

correct class for odour pulse durations ranging from 1000 ms down to 50 ms, despite not

having been trained on pulses shorter than 1000 ms. Accuracy dropped for 20 ms and 10 ms

pulses but remained above chance level. Notably, the classifier accurately and rapidly pre-

dicted the recovery of the sensor site, indicating ’no odour’ when no odour was present. The

time required for the classifier to correctly identify the odour remained relatively consistent

across odour pulse durations, with an average value of (87 ms ± 20 ms). Following odour

offset, the classifier robustly predicted ’no odour’ within (106 ms ± 24 ms) for 1000 ms odour

pulses. For shorter durations, this time increased inversely proportional to the pulse dura-

tion, which can presumably be attributed to the sensor’s integration time that may approach

or exceed the duration of the short odour pulses.
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Figure 3.11: Decoding temporal structure of rapidly switching odours. a, Odour valve
commands. b, PID response. c, Electronic nose response. d, Discrete Fourier Transformation
(DFT) of first derivative of the sensor log-resistance. Crosses denote highest-magnitude peaks.
DFT bin frequencies were rounded to nearest integers, for visual clarity only. e, Feature visuali-
sation frequency, magnitude and phase of the dominant DFT peaks. Thick lines; means of corre-
sponding trials, thinner lines; single trials. f, Class-balanced accuracies for modulation frequency
classification. g, Accuracies for binary modulation frequency classification. h, Class-balanced ac-
curacies for binary modulation mode classification (corr. vs. anti-corr.). i, Subset of g for IA-EB,
for mouse performance comparison (described in detail in Ackels et al.[Ack+21]). j, Subset of h
for IA-EB, for mouse performance comparison. Panels a-e show representative trials only. For f -j,
electronic nose accuracy mean and SD (clipped at 1.0) arise from repeated training and testing
with different random seeds.
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Decoding temporal structure of rapidly switching odours

In the presence of multiple odours, detecting whether the odour encounters are correlated

or not can help to infer whether they come from the same source or from separate locations

[Hop91]. Further, information about the encounter frequency can give rise to spatial source

information [SBH16]. It has been shown that mice can distinguish between correlated and

anti-correlated odour pairs reliably up to correlation frequencies of 40 Hz [Ack+21]; a feat

that has not yet been matched in robotic systems. Considering performance metrics based on

similar tasks, here we explored the ability of the electronic nose to resolve temporal structure

of odour stimuli. Rapidly alternating odour pairs were presented at frequencies between 2 Hz

and 60 Hz for a duration of one second. We discriminated between two odour pulse trains

being either in phase (correlated) or shifted by half a cycle (anti-correlated) (Fig. 3.11a).

The resulting odour patterns follow the pulses rapidly (PID recordings in Fig. 3.11b).

While heater modulations lend themselves for extracting phase-locked data features and thus

allowing for efficient odour classification, maintaining the sensor heater temperature constant

instead allows for analysing the data in continuous time. Particularly when observing re-

peating patterns or complex temporal dynamics of a stimulus this may be advantageous,

as the sensor response can be regarded in its frequency domain. Thus, for the following

experiments, we operated four MOx sensors of the electronic nose under a constant hotplate

temperature of 400 ◦C. The sensors responded to the stimuli by dropping their resistance

at the pulse-train onset, with the stimulus modulation visually embedded in the response

(Fig. 3.11c). We extracted data features by differentiating and logarithmically scaling the

raw sensor response, followed by a discrete Fourier transform (DFT) (Fig. 3.11d). For each
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sensor, where the maximal magnitude is found, the frequency, the magnitude and the phase

were extracted. This yielded a 12-dimensional data feature (Fig. 3.11e). A visual comparison

of the features reveals distinct differences between correlated and anti-correlated pulse trains

(top vs. middle), as well as between different frequencies (middle vs. bottom).

On those features, ensembles of Random Forest classifiers were trained for three tasks: 1.

Decoding the modulation frequency of two odour pulse trains from a set of frequencies, 2.

predicting the modulation frequency of two odour pulse trains from pairs of frequencies, and

3. decoding if two odours pulse trains are either correlated or anti-correlated. For the latter

two tasks and a subset of the odours, a comparison with the mouse performance as detailed

in Ackels et al. [Ack+21] is provided.

The test accuracies for the three tasks and all gas combinations are shown in Fig. 3.11f-

h. For task 1, the data recorded with the electronic nose enables nearly perfect frequency

classification (Fig. 3.11f) for modulation frequencies up to 5 Hz, then on average decreasing

to (0.91 ± 0.20) and (0.90 ± 0.15) for 10 Hz and 20 Hz respectively, and finally dropping

to (0.61 ± 0.26) and (0.72 ± 0.25) for 40 Hz and 60 Hz respectively. For the pair-wise fre-

quency classification (task 2, Fig. 3.11g), classification performance is perfect for modulation

frequency pairs 2 Hz vs 20 Hz and 4 Hz vs 20 Hz, decreasing to accuracies of (0.97 ± 0.07),

(0.90 ± 0.13) and (0.90 ± 0.13) for the pairs 10 Hz vs 20 Hz, 40 Hz vs 20 Hz and 60 Hz vs

20 Hz, respectively. For discriminating correlated vs. anti-correlated pulse trains (task 3,

Fig. 3.11h), it appears that the electronic nose, on average, enables high prediction scores

of (0.95 ± 0.08), (0.79 ± 0.20), (0.72 ± 0.19) and (0.70 ± 0.14) for modulation frequencies of

2 Hz, 5 Hz, 10 Hz and 20 Hz, respectively. This drops to (0.54 ± 0.06) for 40 Hz and finally

to (0.47 ± 0.05) for 60 Hz.
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In Ackels et al. [Ack+21], the odour pair isoamyl acetate — ethyl butyrate (IA-EB) has

been used to test the discrimination power of fast odour dynamics in mice. In the following,

we consider the corresponding subset of the electronic nose recordings and compare them to

the named study. For the pair-wise frequency classification (task 2, Fig. 3.11i), the electronic

nose classification performance is perfect for all the tested modulation frequency pairs, from

2 Hz vs 20 Hz up to 60 Hz vs 20 Hz. Here, the mouse performed significantly worse — for

the pair 2 Hz vs 20 Hz, the mouse accuracy score was (0.83 ± 0.05) and then progressively

dropped down to (0.53 ± 0.03) for 10 Hz vs 20 Hz. Finally, considering the results from the

phase prediction task (task 3, Fig. 3.11j), it appears that the electronic nose enables perfect

prediction scores up to modulation frequencies of 10 Hz, which then steeply drops to an

accuracy of (0.76 ± 0.05) for 20 Hz, (0.60 ± 0.00) for 40 Hz, and finally to chance level for

60 Hz. In comparison, the mouse scores (0.78 ± 0.11) at a modulation frequency of 2 Hz,

linearly decaying in accuracy down to chance level at around 80 Hz.

In order to validate if the observed performance can be attributed to the odour signal, and

not to potential artefacts caused by potential hotplate temperature variations (which may

be caused by unnoticed flow fluctuations), we repeated the experiment using the hotplate

temperature signal (see Fig. 3.7i), as well as the PID responses (see Fig. 3.7m). In both

cases, the analogous feature extraction and classification pipeline was performed, resulting

in classification performances as displayed in Fig. 3.7j-l for the hotplate temperature, and

Fig. 3.7n-p for the PID responses. The analysis confirmed that there was not enough in-

formation in the hotplate temperature response alone to classify the odourants with above

chance performance. Further, using the PID response, which should be unaffected by poten-

tial flow fluctuations and is commonly used as a ground-truth measurement, nearly perfect

accuracy scores were achieved for most gas combinations across the tested tasks.
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Discussion

For many tasks and applications in robotics, natural and turbulent environments pose the

challenge of highly dynamic and rapidly changing odour concentrations, which demands high

temporal resolution odour sampling and processing. Intrigued by the exceptional speed at

which animals process and respond to odours, we challenged the limits of artificial olfaction

by introducing and evaluating a portable and low-power high-speed electronic nose. For this,

we coupled an integrated design of MEMS-based MOx sensors and fast sampling periphery

with a set of highly optimised algorithms for control, sensing, and signal processing. To

assess its capabilities, the electronic nose was subjected to odour stimuli delivered through

a high-bandwidth system. Odours were presented in the form of square pulses with varying

durations and concentrations, or as pairs of pulse trains at varying frequencies and phase.

We demonstrated that the electronic nose can successfully infer the odour identity of single-

odour pulses down to durations of 10 ms, albeit being trained on 1 s odour pulses only. This

was achieved through modulating the sensor temperature with cycle periods of 50 ms, ex-

tracting and pre-processing the corresponding sensor response, then training and evaluating

a classifier. Further, we demonstrate the electronic nose’s ability to predict whether two-

odour pulse trains were correlated or anti-correlated up to switching frequencies of 40 Hz;

matching or exceeding mice on the equivalent task. For tasks involving determining the

odour switching frequency (multi-class and binary), we demonstrate a high performance up

to 60 Hz, outperforming mice on equivalent tasks. For this, the sensor heaters were set

to provide a constant temperature, which allowed an analysis of the data in the frequency

domain.
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An interesting discussion arises on why fast heater modulations lend themselves so well

for fast odour pulse classification. We see two main reasons: 1. Heater modulations gen-

erally result in much faster sensor responses compared to isothermal operation [Ver+14].

This is because the sensors’ conductive behaviour, influenced by adsorption, desorption, dif-

fusion, and reaction processes, varies substantially with temperature [BW01]. By cycling

the sensor through a range of temperatures, transient processes within these phenomena

are driven, producing responses that are highly characteristic of a given gas. This creates

a more nuanced mapping of the sensor response, capturing a wide range of temperature-

dependent behaviours specific to each odour in a short time. 2. From a signal processing

perspective, coupling sample windows to the phase of heater modulations creates natural,

multi-dimensional units of computation. Each data window begins at the same temperature

and follows the same temperature range, akin to active sensing. This approach results in

consistent data features, which improves machine learning classifier performance by allowing

for a well-separable feature space and thus for robust odour classification.

Further insights on task-specific sensing modes and sampling can be gained from those re-

sults. First, data windows that are phase-locked with ultra-short sensor temperature cycles

appear to be a sensible choice when given the task of odour classification. The high sam-

pling rate allows for a multi-dimensional data feature (here, 8 sensors times 50 samples per

feature), which — together with the pre-stimulus normalisation procedure — successfully

captures the odour-specific sensor response. In mammalian sensory neuroscience, the analogy

would be the phase-coupling of spike-trains to the inhalation cycle, allowing the spike-timings

to encode information about the odour identity, thus suggesting one "sniff" as the unit of

olfactory processing [KUM06]. Conversely, if the task is not classification but decoding tem-

poral information about the odour stimuli, such as frequency or correlations, integrating
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the information across an artificial time window would limit the temporal resolution, hence

recording continuously and without heat modulation might be the better choice. The ability

of mammals to access temporal stimulus information at sub-sniff resolution has been demon-

strated [Ack+21; Das+22], and shown to be relevant for behavioural tasks [Ack+21]. Those

findings may suggest future experiments in which both modes are active simultaneously on

separate sensor instances — continuously-sampled constant-temperature and time-integrated

temperature-modulated — which could allow for extracting information about the temporal

profile and the identity in parallel. Research on insect have suggested dual-pathway olfac-

tory systems [GR10], which may facilitate the simultaneous extraction of odour identity and

concentration information [Sch+11]. Such an approach might suggest elegant solutions to

the olfactory cocktail party problem [Rok+14].

The proposed experimental approach appears to be well-suited to verify and characterise the

temporal capabilities, and in particular the high-frequency properties of the device. Yet—it

presents limitations when considering its evaluation with respect to more natural environ-

ments. The current setup, characterised by high concentration stimuli (not measured, but

likely tens to hundreds of ppms), fast valves, short odour delivery lines and precise flow

compensation, does not necessarily replicate the turbulent and intermittent nature of odour

plumes encountered in typical environments, where odour packets are less sharp and po-

tentially of lower concentration. This should motivate further experiments that take into

account scenarios that resemble natural environments more realistically. When designing

such, it will crucial to ensure that the setup allows for both accurately replicating the tur-

bulent and variable nature of odour plumes, and carefully controlling or monitoring the

ground-truth odour concentrations. In such, it will be important to use methods that do not

interfere with the natural flow characteristics, which e.g. for PID concentration monitoring
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is a known challenge [TC22b], and which e.g. Planar-laser-induced-fluorescence (PLIF) mon-

itoring [Cri08] would allow for under certain constraints. Ensuring that these conditions are

met will help validating the robustness and adaptability of the electronic nose in real-world

environments, thus providing a more comprehensive assessment of its performance. Further,

for the odour classification data features to be fully applicable to dense odour stimuli, it

may require altering the pre-baseline normalisation, i.e. replacing the fixed pre-stimulus dis-

tance with e.g. a moving average. This would also alleviate the short-term drift that can be

observed in the high- and low step values of the temperature cycle responses, see e.g. 3.9a.

The proposed technology and its evaluation hold promise for tackling many real-world chal-

lenges that require rapid odour sensing. In particular, any instance of olfactory robotic

solutions might currently be cut short in terms of performance; as for both UGVs and UAVs,

the sensor response time dictates the maximum speed at which the agent can move while still

obtaining spatially resolved measurements [BM20a]. Thus, such applications may directly

benefit from using the proposed sensor modalities, allowing for faster identification and local-

isation of odour sources. For instance, a recent work proposed swarms of nano quadcopters

performing gas source localisation in indoor environments [Dui+21], and evaluated different

search strategies. A decreased latency in detection and classification may not only assist

in more efficient source localisation, but also in expanding the use case to multiple odours

and more complex outdoor environments. Another recent study proposes odour sensing on

drones for wildfire monitoring [Wan+23]. For detecting smoke; vision and gas sensors are

fused, however the gas sensor update frequency is just 1 Hz. Given the intermittent and

fine-structured nature of odour plumes, an improvement on sensing timescales could reduce

false-negatives and aid in gaining critical time in localising the fire.
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Beyond robotics, most applications in security still use static and relatively slow sensing

platforms, for e.g. the odour-based detection of explosives [TGK20] at airports. At check-

points, fast and portable electronic noses could replace random spot checks with exhaus-

tive controls, and thus minimise risk further. Further, recent investigations on mammalian

olfactory-guided behaviour use head-mounted MOx sensors as control recordings [Tar+21].

Using a high-resolution data acquisition system — particularly one that matches the tempo-

ral capabilities of the subject — would allow for better data quality and hence could improve

the resulting models.

In a related vein, neuromorphic information processing [Mea90; Ind+11] has seen much

traction in recent years, where in particular the reduced latency, power consumption and data

bandwidth have enabled highly optimised vision and auditory sensors [LPD08; LD10]. We

suggest that the information embedded in millisecond odour packets, together with the sparse

and intermittent nature of odour plume encounters, makes the sense of olfaction an ideal

candidate for neuromorphic sensing. We foresee that revealing the rapid nature of the sensors

will further stimulate this field of research, motivating event-driven and asynchronous odour

sampling [PMG13], for MOx sensors [CSN14; Ras+23] and beyond [Lap+22; Wan+24].

In conclusion, our study marks a groundbreaking advancement in electronic olfaction sys-

tems, demonstrating the ability to discern odours and decode odour patterns with unprece-

dented temporal precision in miniaturised low-power settings. Our findings unlock new

possibilities for developing robotic systems capable of rapidly and precisely tracking odour

plumes in compact and low-power environments, with the potential to transform electronic

nose designs and their applications across various domains.
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3.3 Conclusion

In Section 3.1, I introduced a novel design for a portable and high-bandwidth electronic

nose prototype, which allows for tight control of the MOx sensor operating temperature. I

demonstrated that modulating the sensor heaters at a high frequency can lead to robust data

features, which in our case were used to train and evaluate a classifier on different natural

olfactory scenes.

Building on those results, Section 3.2 describes the introduction and evaluation of a similar

but more compact electronic nose. In an extensive data campaign, I used an odour delivery

device with exceptionally high signal fidelity for deploying single odour pulses of various

durations, as well as dual-odour pulse trains of various frequencies, to the electronic nose.

At pulse durations of 10 ms to 1 s, I tested the efficacy of short (50 ms) heater cycles for

performing odour classification. I were able to successfully retain the odour identity with

above-chance accuracies down to 10 ms (the shortest tested pulse). For the dual-odour pulse

trains, I demonstrated the successful encoding of the modulation frequency up to 60 Hz, as

well as the phase (0◦ vs. 180◦ shift) up to 40 Hz. I compared the electronic nose’s performance

with that of mice on similar tasks (see [Ack+21]), and demonstrated that the electronic nose

matched or surpassed the mice in every instance.

I argued that the two modes, i.e., constant temperature and short heater cycles, could work

well in parallel. While the sensors operating at a constant temperature may be leveraged for

encoding the temporal profile of an odour stimulus with high temporal precision, the sensors

that operate under temperature cycles may provide data features for odour inference. This

dual-pathway finds analogies in biology, where the insect olfactory system is thought to

simultaneously extract odour identity and concentration information [GR10; Sch+11].
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The proposed fast electronic nose technology shows promise for various real-world applica-

tions requiring rapid odour sensing. In robotics, particularly for unmanned ground vehicles

(UGVs) and unmanned aerial vehicles (UAVs), faster sensor response times enable higher

movement speeds while maintaining spatial resolution. This is crucial for tasks like odour

source localisation using small drones, which would highly benefit from reduced detection

latency. I identified and discussed potential applications, such as gas source detection or wild-

fire monitoring, in which rapidly sensing and processing odour information could improve

detection accuracy and response times. In security, faster electronic noses could enhance

explosive detection at airports by enabling more thorough and efficient screening processes.

Furthermore, high-resolution odour sensing systems could improve research on mammalian

olfactory behaviour by providing better data quality.
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Towards Neuromorphic Olfaction

“Erlaubt ist, was gelingt.”

– Max Frisch

In the previous chapter, we have seen that it is possible to reach animal-like temporal ca-

pabilities in odour sensing using portable and low-power sensing devices. The notorious

limitations of metal oxide gas sensors, namely their slow response and recovery times, were

mitigated by using a) MEMS-based sensors with a small form factor, b) fast peripheral com-

ponents that allow for tight heater temperature control and rapid sensor readout, and c)

novel algorithms for control and signal conditioning. It is expected that this line of work will

drive further advances in gas sensor technology and odour-guided robotics that emphasise

speed, potentially leading to even shorter sensing timescales.

In robotics, both aerial and ground-based platforms typically operate under highly restricted

power budgets and computing resources. Sampling and processing data at high rates is ex-

pensive, especially considering that capturing the vast olfactory space occurring in nature

would require scaling up the number of sensors tremendously. Building a robotic equiva-

lent of a pollinating honeybee, for instance—an agent that performs highly complex odour

navigation tasks on single milliwatts—is currently unimaginable.
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In this chapter, I explore how olfactory signals may be sampled and processed more efficiently.

In particular, I investigate the applicability of neuromorphic computing, a field of research

that emulates structures and processing methods found in biological neural systems and

promises to be power-efficient by processing data only when necessary.

In the first part, I will elaborate in general terms on the notion of "neuromorphic olfaction,"

build arguments based on the physical characteristics of odour plumes on why event-driven

data processing may benefit artificial olfaction, and critically review the available literature.

In the second part, I will demonstrate different approaches for encoding olfactory information

using binary events, based on MOx electronic nose responses.

4.1 Neuromorphic principles for machine olfaction

Given the current availability of computational tools, it is relatively straightforward to ap-

ply neuromorphic algorithms—such as the send-on-delta event generation or even artificial

spiking neural networks—to a dataset of interest. However, whether those principles are

applicable and potentially beneficial will strongly depend on the sensor modality and the

observable itself. In this section, I explore why machine olfaction may be particularly well-

suited for neuromorphic principles, explore the advantages and limitations of previously

proposed approaches, and discuss the potential implications thereof.

The remainder of this section is adapted from the following in-review manuscript:

Nik Dennler, Aaron True, André van Schaik, and Michael Schmuker. “Neuromorphic Prin-

ciples for Machine Olfaction”, 2024
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The co-authors—in the following abbreviated as "we"—contributed as follows to this work:

A.T. helped drafting parts of the manuscript by providing insights into fluid dynamics of

odour plumes. M.S. drafted parts of the manuscript. All co-authors were involved in dis-

cussions during different stages of the manuscript draft, and assisted in editing of the final

manuscript. My contributions were the following: Proposing initial argument on applying

bandlimitation to machine olfaction, literature review, analysis of different data sets, creat-

ing visualisation, drafting the manuscript, as well as editing and revising during submission

and peer-review.

Abstract

Neuromorphic computing, exemplified by breakthroughs in machine vision through concepts

like address-event representation (AER) and send-on-delta sampling, has revolutionised sen-

sor technology, enabling low-latency and high dynamic range sensing with minimal band-

width. While these advancements are prominent in vision and auditory perception, their

potential in machine olfaction remains under-explored. Here, we outline the perspectives

for neuromorphic principles in machine olfaction. Considering the physical characteristics of

turbulent odour environments, we argue that event-driven signal processing is particularly

suited to the inherent properties of olfactory signals. We highlight the lack of bandwidth

limitation due to turbulent odorant dispersal, as well as the characteristic temporal and

chemical sparsity. Further, we critically review and discuss the available literature on neuro-

morphic olfaction, particularly event generation and information encoding mechanisms, and

event processing schemes like spiking neural networks (SNNs). The application of neuro-
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morphic principles may significantly enhance response time and task performance in robotic

olfaction, enabling autonomous systems to perform complex tasks in turbulent environments

— such as environmental monitoring, odour guided search and rescue operations, and hazard

detection.

Introduction

The sensory capabilities of animals still surpass the limits of technology in many domains.

It is therefore not surprising that the underlying principles have long inspired devices and

algorithms for sensing in machines. Neuromorphic computing is a prime example of this

approach [Ind+11; Sch+22]. In machine vision, bio-inspiration and neuromorphic principles

have enabled breakthroughs in sensor technology. In particular, the send-on-delta sampling

scheme [Mis06a] and the address-event representation (AER) concept [Boa00] have enabled

low-latency and high dynamic range sensing, requiring little bandwidth to represent sparse

signals [LPD08; PMW11]. Today, the groundbreaking developments in neuromorphic tech-

nology have culminated in commercially available products and various applications where

event-based vision solves problems that are difficult to tackle with conventional frame-based

image sensors [Gal+20; GS24]. The principle of dynamic sampling has since been extended to

other sensing paradigms, most prominently auditory perception [Liu+10]. Here, we explore

what benefits and opportunities event-based processing may deliver in machine olfaction —

the artificial sense of smell.
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Why neuromorphic olfaction?

To determine whether neuromorphic computing may benefit machine olfaction, we shall

examine the conditions under which such mechanisms have proven effective. A compelling

argument by Liu et al. [Liu+10] suggests attributing to a signal its degree of bandlimitation.

This may indicate the presence of a stable mapping function between the signal and uniformly

spaced samples, or alternatively suggest that dynamically acquired samples could be superior

in representing the signal. In vision, for instance, natural scenes contain motions at varying

velocities, and choosing a constant camera frame rate that matches the fastest observed

motion is inefficient [Liu+10]. More fundamentally, high-contrast (Dirac- or step-function-

like) scenes are not bandlimited in space, while any moving object is not bandlimited in time.

Here, nonuniform and data-driven/dynamic sampling may be favourable. Contrary, audio

signals (such as speech) are inherently bandlimited, irrespective of the recording device. The

bandwidth of the signal of interest may be determined in advance, thus allowing the selection

of a periodic sampling rate that captures the relevant signal with minimal aliasing.

Temporal and spatial sparsity of signals also suggest event-based processing [OF04; Del+10].

When imaging natural scenes, most regions do not change significantly over short periods

of time (temporal sparsity) and contain large areas of similar intensity or colour (spatial

sparsity). Both biological and neuromorphic vision systems tend to encode information

efficiently by emphasising changes and discontinuities rather than uniform areas, which is

aligned with the efficient coding hypothesis [Bar61; SO01]. Thus, signal sparsity aids in

explaining the effectiveness of event-based processing for visual stimuli, and may indicate

applicable regimes for other sensing modalities [Maa15].

What is the situation in olfaction?
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Olfaction is not bandlimited

Under almost all relevant natural conditions, odorants are transported by turbulent dispersal.

Turbulent flows are characterised by eddies, i.e., vortices of variable size. Large eddies

dissipate their power into smaller eddies [Kol41; Obu41], cascading down to the molecular

level, where energy is dissipated into heat through friction [Ors73]. This process creates

odour structures spanning a range of length scales, producing characteristic temporal odour

fluctuations as they are transported across a sensor.

The statistics of these odour fluctuations depend on a) environmental flow conditions, and b)

the odour source configuration. Environmental flow conditions set the relative importance

of the physical processes acting on odour structures en route to the sensor. This includes

fluid dynamic strain, which locally enhances concentration gradients, and molecular diffu-

sion, which diminishes them. The source configuration includes factors like its dimensions,

mass flow rate, buoyancy, and proximity to boundaries. Collectively, these factors produce

variance in the odour concentration field, where the size L of an odour plume relative to the

eddies predicts what fluid dynamic processes drive local concentration fluctuations [Cas+20].

If eddies are larger than L — which is often the case very close to the odour source — they

contribute mostly to plume meandering, i.e. the irregular motion of the fluid volume’s cen-

tre of mass (see Fig. 4.1a). Conversely, if eddies are smaller than L — as encountered at a

greater distance from the source — they contribute to turbulent diffusion characterised by

shearing, distortion, and expansion of the plume.
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The odour concentration fluctuations in turbulent plumes are distributed as a power law

[HI89; MM91] and span several orders of magnitude. In particular, it has been postulated

and empirically shown [MM91] that for fully developed turbulence regimes (i.e., far away

from the source, where the Reynolds number Re is high), the frequency energy spectrum

nS(n) exhibits a log-log relationship with the frequency n as

nS(n) = aϵ2/3
(︃

n

U

)︃−2/3
, (4.1)

where a and ϵ are a universal constant and the rate of turbulent energy dissipation re-

spectively, and U is the mean wind speed. This implies that for fluctuations in odour

concentration, there is a non-vanishing energy contribution even at very high frequencies.

Fig. 4.1b displays a collection of power spectral densities, calculated from data of various

studies. All the considered datasets exhibit a pronounced log-log power law — collectively

covering frequencies that span five orders of magnitude — however, variations in turbulence

regime, sensor modality, and post-processing methods may cause deviations from the theo-

retical f−2/3 slope. Therefore, unlike other sensory modalities such as auditory perception,

signals derived from the odour space are not subject to narrow bandwidth limitations.

Olfaction is temporally sparse

Intermittency is a defining feature of turbulent odour plumes [MEC92; CVV14]. Single odour

packets (also "whiffs" or "bouts") or clusters of odour packets (also "clumps") are separated by

periods of no signal (also "blanks"). The timescales of bout durations and inter-bout intervals,

as well as bout amplitude (or odour concentration) and bout-per-clump counts, depend on

environmental flow conditions — most notably the structure of the mean and fluctuating

velocity fields — and the vector between the encounter point and odour source. Relevant
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statistical characterisations of whiffs, clumps, and blanks have been postulated and tested

[CVV14]. In particular, both the duration of a whiff tw (the time between the concentration

signal crossing a threshold cthr upwards and downwards) and the upcrossing duration tu (the

time between the upward crossings corresponding to two whiffs) are distributed according

to power laws:

p (tw) = 1
τ

(︃
tw

τ

)︃−3/2
gw (tw) , p (tu) = 1

τ

(︃
tu

τ

)︃−3/2
gu (tu) (4.2)

The functions gw and gu describe cut-offs that are exponential for large arguments, while τ is

a diffusion time constant. Fig. 4.1c displays field recordings by [Yee+95a], demonstrating the

t−3/2
x power law, spanning four orders of magnitude for both whiff duration and upcrossing

times. While short odour packages at milliseconds or less [CVV14] are possible and most

likely, the probability for extended periods of no incoming odour packages is non-vanishing.

In such terms, olfactory signals are sparse in time.

Olfaction is chemically sparse

Chemical space is vast. It has been estimated that the number of theoretically synthesisable

drug-like molecules, i.e. that obey certain rules regarding oral bioavailability, approaches

1060 [Lip+96; Rey15]. Projects like GDB [Rud+12] aim at enumerating as much as pos-

sible of this space, currently containing close to 165 billion small molecules. The subset

of molecules perceived as odorous is suggested to count around 40 billion [May+22]. To

successfully navigate and interact with this vast chemical space, evolution has equipped the

animal kingdom with a large number of olfactory receptor neurons. For instance, fruit flies

(Drosophila) express around 1500 receptors of 60 different types [Vos00], while honeybees

have around 60,000 receptors of 160 different types [PG21]. Those numbers pale in compar-
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Figure 4.1: a Planar-laser-induced fluorescence (PLIF) recording of a meandering odour plume in
a wind tunnel. Data from [CMC18]. b Energy spectra (variance-normalised) versus frequency, for
different studies. Sensor modality, measurement condition, source-to-sensor distance (d), data pro-
cessing and source as follows: + Photoionisation detector (PID), outdoor field recording, d=200m-
300m, filtered data, [MM91]; ▲ E-nose, wind tunnel (WT), d=1.18m, raw data, [Ver+13]; † PLIF,
WT, d=20cm, raw data, [CMC18]; * indoor field recording, d=40cm, raw data, [Ack+21]; ‡ E-nose,
WT, d=20cm, raw data, [Den+24]. For all raw data recordings, the highest frequency components
where strongly contaminated by instrument noise, and cropped out for visual clarity. Dashed line
indicates theoretical −2/3 slope. c Probability density functions of measured whiff duration and
upcrossing time, for different distances between source and sensor. Dashed lines indicate theoret-
ical −3/2 slopes. PID recordings by [Yee+95a], panel adapted from [CVV14] (CC-BY 3.0). d
Number of sensors on portable electronic noses of different sensor modalities, as reported in various
studies (non-exhaustive, see Table 4.1 for references). Sensor modalities are abbreviated as follows.
CPC: Conducting polymer compound; MOx: Metal-Oxide; EC: Electrochemical; CNT: Carbon
nanotube. Dashed lines represent total olfactory receptor counts for different animals.

ison to mammals; humans have around a million olfactory receptors of 300 types [Ken20]

(postulated to be aligned to key food odourants [Dun+14]), while certain dogs have up to
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300 million such receptors [Pho22]. A shared feature of the different olfactory systems is the

extreme sparseness in receptor space: Typically, an animal’s encounter with an odour evokes

only a small subset of the available receptors [Ito+08], often even limited to single receptor

types [Dew+18; Bur+22].

In machine olfaction, the term "electronic nose" refers to an array of individually addressable

gas or odour sensors. The activation across sensors is often interpreted as a combinatorial

code, or odour fingerprint, which correlates with odour identity and concentration [PD82].

Different sensing elements are used, such as electrochemical (EC) sensors, conducting poly-

mer compound (CPC) gas sensors, Metal-Oxide (MOx) gas sensors, optical gas sensors, and

carbon-nanotube (CNT) gas sensors. They differ in their capabilities (e.g. sensitivity and

response time), constraints (e.g. power consumption, form factor, and sensor drift), and

levels of maturity, and are typically selected according to their use cases. In theory, a larger

set of sensors with slightly different chemical selectivity would improve the capability of

an electronic nose device to discriminate different odorants and mixtures. In line with this

postulate, the reported numbers of individual sensing elements embedded on electronic nose

devices have been growing steadily (see Fig. 4.1d), most recently surpassing 10,000 sensors

[Wan+24]. Analogous to biological olfaction, it has been demonstrated that the activation

across large sensor arrays is non-uniform, and considering a spare subset of the available

sensors often sufficient [Lap+22; Wan+24].
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The odour space is informative, tangible, and suggests event-driven sensing

Intuitively, the notion of turbulence may suggest elusiveness, disorder or even chaos. How-

ever, the statistics of odour encounters in turbulent environments encode spatial information

of the odour source and its surroundings. In particular, measured bout concentration vari-

ations as well as intermittency are indicators of the plume dimensions [FR82b]. The degree

of temporal correlation between two encountered odours at a single point can indicate their

separating distance [Hop91]. Conversely, analysing the correlation between same-odour en-

counters at multiple points in space indicates the relative position of the source [Wei+02].

Additionally, several plume features have been shown to reproducibly vary with distance

and direction between the sensor and odour source, such as the concentration amplitude and

first derivative of a bout [MC04], the degree of intermittency [Rif+14], and the average bout

count [SBH16].

While olfaction is temporally sparse, it is not subject to bandlimitations, suggesting that

many plume features can be captured reliably only if the plume is sensed and processed

fast enough. In fact, stationary measurements of odour concentration fluctuations occur

at frequencies exceeding 100 Hz [Yee+95b], while individual odour encounters can last few

milliseconds or less [CVV14]. Many animals exhibit remarkable abilities in rapidly detecting

and processing short odour stimuli. For instance, insects olfactory receptor neurons’ (ORNs)

response latency is less than 2 ms [Szy+14; Ege+18], and odour stimuli fluctuations can be

resolved at frequencies of over 100 Hz [Szy+14]. This enables them to efficiently track dy-

namics of fast odour signals [Cri+22], eventually leading to solving complex tasks such as

odour source localisation in turbulent environments [BD14; SEE23], or perceptually segre-

gate mixed odours from different sources [Hop91; SEE23; Ack+21]. In machine olfaction,

the relatively slow sensor response and recovery times of electronic nose devices have been
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prohibitive for many applications. However, recent advances in sensors and processing al-

gorithms have brought their temporal capabilities closer those of animals. For instance, we

reported on a miniaturised electronic nose with an odour response time in the millisecond

regime [Den+24], outperforming mice in their temporal capabilities on equivalent tasks.

The observed power law in odour concentration extends to small spatial scales, which in

turn correspond to very high frequencies. Accurately extracting information requires high

temporal resolution, yet efficiency considerations must account for the signals’ sparsity in

time and sensor activation. We argue that event-driven processing schemes are optimal in

this regime. They allow for efficiently handling the observed scale-invariance and heavy-

tailed distributions of odour encounters, as they inherently represent information with high

temporal precision and the least possible temporal quantisation, while achieving minimal

activity in the frequent periods where no odour is present. For instance, a neuromorphic

sensor could generate events in response to the onset and offset of odour whiffs, accurately

capturing its concentration and duration. During periods of no signal, the system could

remain inactive, conserving energy and focusing computational resources on the next sig-

nificant event. Further efficiency increases could be achieved by processing data from the

growing number of sensors activation-driven and in parallel, which neuromorphic algorithms

and substrates inherently support.

Neuromorphic odour sampling and signal processing

In neuromorphic vision, a vast majority of studies and applications are based on events

that are generated by adaptive threshold crossing (send-on-delta) of a logarithmically scaled

brightness signal, and represented via their pixel address x and time t. Most prominently,

the dynamic vision sensor (DVS) [LPD08] integrates this in a circuit, and produces events
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ek of the shape

ek(xk, tk, pk), (4.3)

where pk represents the polarity of change, i.e. p ∈ [−1, 1]. For processing, the events are

then either represented as an accumulated image frame, or via particular encoding schemes

such as time surfaces or voxel grids [Gal+20], or as individual events to be directly pro-

cessed via spiking neural networks (SNN). Yet, there exists a multitude of other methods for

generating, representing and processing events. In the following, we introduce, review, and

critically discuss different principles regarding event-based sampling and signal processing

for neuromorphic olfaction.

Event generation and information encoding

Biological action potentials

In biological olfaction, similar principles across phyla are observed to generate odour response

spikes at the olfactory receptor level. Insects embed olfactory receptor neurons (ORN) in

hair-like structures on their antennae, while in mammals ORNs are located in the olfactory

epithelium that covers internal parts of the nasal cavity [Kan+00]. In both cases, once

an odour molecule has bound to its corresponding receptor [BA91], a signal transduction

cascade is initiated, leading to the opening of ion channels that ultimately cause the neuron

to depolarise and initiate an action potential (AP). The AP, which can be understood as

a binary event, is transmitted to and further processed in the antennal lobe and olfactory

bulb, respectively.

Artificial neurons and current injection
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Various methods for converting a continuous gas sensor response into binary events have been

introduced. One approach (see Fig. 4.2a) involves simulating or emulating the membrane

potential Vm of an artificial spiking neuron, and feeding the sensor response as an input

current I(t):
dVm(t)

dt
= −Vm(t) − Vrest

RmCm

+ I(t)
Cm

(4.4)

Here, Rm, Cm and Vrest are the membrane’s resistance, capacitance, and resting potential,

respectively. An event is generated whenever Vm crosses a fixed threshold, followed by

resetting Vm to its resting potential. Both early and more recent studies in neuromorphic

olfaction have leveraged this approach extensively [Pea+05; Koi+06; Koi+07; HK12; SPN14;

Dia+16; Jin+17; Han+22; Wan+22b; SMK23] using different neuron models, parameters,

and signal conditioning methods. The method is particularly applicable for hardware spiking

neural network implementations, as the computing substrate itself can be used to generate

the spikes. Conversely, the approach is less suitable for FPGA and digital implementations,

as the simulation of differential equations is computationally expensive. Similarly, events can

be generated via a biased Poisson process [Pea+01]. This has been utilised to emulate ORN

excitations [Jür+21] in neuromorphic olfactory models; however, it could also be used to

generate odour response events by biasing the Poisson process towards an average event rate

that is proportional to the odour-specific sensor response. All those approaches represent a

form of rate code, i.e. the event rate being proportional to the sensor response [Guo+21],

or — in the case of multiple sensors — a population code. While offering a noise-resilient

and robust encoding, information transmission relies on downstream event integration and

tends to be slow.

Latency-representation events
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Other information encoding schemes rely on the precise timing of events. For instance,

single events may be generated at latencies ∆tij that are proportional to the log-response of

sensor j to an odour i, i.e. ∆tij ∝ ln Sj(t), which allows considering the relative latency (i.e.

the rank) of the different sensors as a concentration-independent odour mapping [Ng+09;

NBB11; Che+11; Yam+12]. Similar methods that use transient features instead of the

raw signal have been proposed [Has+15; Huo+23]. Albeit being potentially fast and highly

sparse, this encoding breaks down at single noise events, and in the reported form is not

suited for dynamically changing signals due to the lack of a reset signal. Similar, yet more

sophisticated methods have been proposed, where transient features are converted into events

of different latencies [Van+20; Yan+23], to be further processed by an SNN.

Change detection events

Another approach — as prominently featured in event-based vision — is using the send-on-

delta principle [Mis06a] to generate events that correspond to positive or negative changes

in the sensor response [Pea+13; Van+19; Den+22a; Van+22]. In particular, if the signal

crosses a reference voltage plus or minus a set threshold, a positive or negative change event is

generated and the reference voltage shifted up- or downwards by the threshold. In vision, the

signal is typically preconditioned through logarithmic scaling, which increases the dynamical

range drastically [LPD08]. In olfaction, however, this may not be necessary, as the transfer

function of many gas sensors implicitly scales the encountered odour concentration range.

The send-on-delta method is fast, sparse, and robust, yet as it tracks changes only, it does

not provide the absolute signal intensity. In vision, intensity information is often not needed,

however is retained in the ATIS pixel design [PMW11]. Besides generating positive and neg-

ative change detection events, the mechanism employs an extra channel containing pairs
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of events, with a time difference inversely proportional to the absolute signal intensity (see

Fig. 4.2a). This concept loosely resembles the dual-pathway observed in the mammalian

olfactory bulb [Fuk+12], which has inspired at least one olfaction study [Ras+23] that

adapted the ATIS circuit for event-based gas concentration measurements. A sparser and

more straightforward event representation is achieved by providing separate event channels

for fixed amplitude levels, as demonstrated first for an event-based speech processing audio

front end [GS09]. Whenever an amplitude level is crossed upwards or downwards, an event

in the corresponding channel is generated (see Fig. 4.2a). This method may be particularly

effective whenever the amplitude range of the signal is known beforehand, which is often the

case for gas sensors.

Events encoding turbulent plume features

Given the intermittent nature of turbulent odour plumes (see Section 4.1), it may be rea-

sonable to encode temporal features of the plume, such as bouts and blanks, in the event

trains. Recent evidence from neuroscience suggests that animals apply similar principles.

For instance, large-scale temporal odour features — specifically plume onset, plume offset,

and whiff encounter — are encoded in the mammalian olfactory bulb spike output, both at

the single-cell and population levels [Lew+24]. These features are critical for odour-guided

navigation [Par+16; Kad+22] and source localisation tasks [Rig+22a]. Such an approach

has been demonstrated by isolating the bout onset from the sensor response through Kalman

filtering, and subsequently generating change events through send-on-delta sampling [DS21].

In a stereo sensing setup, this method allowed for estimating bout velocity by considering the
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Figure 4.2: a: Event generation mechanisms. From left to right: A spiking neuron, described
by differential equation for the membrane potential Vmem (red, see Eq. (4.4)), generating events
whenever Vmem crosses a thresholds. ATIS mechanism, producing positive (CDON ) and negative
(CDOF F ) change detection events whenever an adaptive threshold is crossed, and an exposure
measurement (EM) event pair that encodes the signals’ absolute intensity S(t) in its time difference
∆tEM . The algorithm can be reduced to the familiar send-on-delta mechanism by omitting the
EM events. Amplitude crossing mechanism, generating events whenever fixed amplitude levels
are crossed, in channel that are specific to those levels. b: Spiking neural network architectures.
Arrows and point-ends indicate excitatory and inhibitory connections respectively. From left to
bottom right: Olfactory bulb network, feed-forward network, reservoir network.

relative event latencies between sensors [DS21]. Other methods that approximate the plume

dynamics from the sensor response, such as cascaded filtering [SBH16] or blind deconvolu-

tion [MBM19], could be combined with send-on-delta or ATIS mechanisms for generating

informative and task-relevant event patterns.

Event-based signal processing algorithms

Biological neural networks

Evolution provides us with effective mechanisms for processing event trains generated by

thousands to millions of olfactory receptor neurons (ORN). ORNs that express the same

type of OR converge onto spatially separated structures called glomeruli, which are found in
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both the mammalian olfactory bulb (OB) and the insect antennal lobe (AL). Interneurons,

such as the mammalian granule cells and periglomerular cells, modulate glomerular activity

through inhibitory and excitatory interactions, which enhances odour separability and noise

resilience. Projection neurons, such as mitral cells, relay the glomerular activity to higher

brain centres, which is the olfactory cortex in mammals, and the mushroom bodies and

lateral horns in insects.

Spiking neural networks (SNNs)

In artificial olfaction, besides directly considering one of the discussed encoding schemes,

such as the average event rate or the order (rank) of incoming events, the typical approach

to processing asynchronous events is using spiking neural networks (SNNs). SNNs repre-

sent a class of artificial neural networks that mimic biological neural systems more closely

than traditional neural networks, such as multilayer perceptrons. The key difference is that

SNNs typically incorporate the precise timing of events in their operation and activate subse-

quent nodes only when a fixed activation threshold is crossed, allowing for asynchronous and

data-driven computing [Maa97]. SNNs build the foundation for (non-von-Neumann) neuro-

morphic computers, which are characterised by their highly parallel operation and collocated

processing and memory units [Sch+22].

Bio-inspired SNNs

Various studies have focused on implementing concepts from biological olfaction systems,

either in simulation or hardware. Most of these studies concentrate on the mammalian

olfactory bulb (OB) and glomeruli models, which perform a form of dimensionality reduc-

tion through excitatory and inhibitory dynamics. Early works implemented OB models on

hardware VLSI and trained them either via Hebbian learning [Pea+05] or Spike-Timing-
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Dependent Plasticity (STDP) [Koi+06; Koi+07], or self-organizing models [Ram+06]. The

STDP approach has since been integrated into low-power electronic nose systems [HK12;

Yan+23], demonstrating effectiveness in tackling sensor drift [BC19]. A noteworthy SNN

implementation of an STDP-based glomerulus model that couples its activity with gamma

oscillation promises to perform noise-robust learning from single data instances [IC20]; how-

ever, the reported evaluation protocols are not conclusive [DSS23]. Recent efforts focus on

few-shot class-incremental learning [Huo+23] or on fusing the olfactory bulb network with

an SNN that is driven by visual stimuli [Dai+23]. Other biology-inspired studies choose to

implement parts of the insect antennal lobe (AL). Early works implemented simplified AL

models on VLSI hardware [Bey+10] and on neuromorphic computing substrates [Pfe+13],

which have been extended to more complex models that focus on excitatory-inhibitory dy-

namics [Jür+21]. Further studies implemented AL models and included learning via STDP

[Pea+13], supervised soft-winner-take-all mechanisms [SPN14], and combinations of unsu-

pervised self-organisation processes and supervised synaptic plasticity rules [Dia+16]. A

noteworthy contribution has been made by further abstracting the biological networks; im-

plementing a two-layer SNN that performs concentration-invariant odour detection through

event synchrony [SMK23].

Feed-forward SNNs

Feed-forward SNNs are more commonly used for neuromorphic vision or auditory perception,

as they can simplify model implementation and training procedures by transmitting informa-

tion in just one direction, i.e. with no recurrent connections. See Fig. 4.2b for an illustration

of the concept. In neuromorphic olfaction, similar approaches have been demonstrated. For

instance, a two-layer SNN was implemented and trained via STDP on a neuromorphic chip

[Van+19], and then used to differentiate between roasted malt samples [Van+22]. Further, a
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four-layer SNN was trained from input neuron activation (offline, via backpropagation), then

demonstrated to be of practical use on a food science task [Han+22]. While feed-forward

SNNs offer simple training, they do not support the recurrent dynamics observed in bio-

logical olfactory circuits and hence might be limited in their ability to efficiently deal with

olfactory signals.

Reservoir SNNs

A reservoir network, or liquid state machine, is a computing concept that can be implemented

using SNNs: An input layer projects onto a reservoir of neurons, typically consisting of

sparse, recurrent, and excitatory-inhibitory interconnections using randomised and untrained

weights. A readout layer connects to a subset of these neurons, with weights that are trained

via supervised learning. See Fig. 4.2 for an illustration. This method allows for casting

the input to a spatially and temporally higher-dimensional space [Tan+19; Sch+22]. The

concept has inspired reservoir SNNs with cubic network connectivity used for event-based

odour data classification [Kas+16; Van+20], as well as implementations based on memristive

devices [Wan+21b]. A recent review argues that reservoir computing is particularly well

suited to match the physics in photoelectrochemical devices [Abd+23], which may make it

an intriguing candidate for emerging optical odour sensing technologies [Lap+22].

Discussion

Based on the physical characteristics of turbulent odour environments, we reason that event-

based signal processing appears highly beneficial for machine olfaction. While odour signals

are spanned by a space of billions of different odourants, they are presented at fluctuations

following power law distributions across multiple orders of magnitude. Event-driven pro-
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cessing schemes offer an optimal solution by capturing salient features at high temporal

precision, while energy consumption and data bandwidth can be preserved during idle peri-

ods or for inactive sensor nodes. This approach aligns well with biological systems’ efficiency

in handling sparse and dynamic signals.

Despite a key benefit of event-driven processing being the viability of exceptionally high

temporal resolution while retaining low data bandwidth, none of the reviewed studies in

neuromorphic olfaction have emphasised on speed. This comes at little surprise, as machine

olfaction has only recently seen timescales that approach the temporal capabilities of animals

[Den+24]. However, the presented methods for asynchronous sampling and processing main-

tain their demonstrated validity, and could be adapted with little effort to state-of-the-art

gas and odour sensors. In particular, the change-detection method and its variants may lend

themselves as ideal candidates for producing efficient encoding of rapidly changing sensor

dynamics. Alternatively, events that explicitly encode temporal odour plume features may

achieve high information density, as the encoding would be tailored to the underlying phys-

ical processes. For processing the generated events, asynchronously driven spiking neural

networks can be used. Networks with some degrees of recurrency, such as SNN implementa-

tions of the antennal lobe or the olfactory bulb, or the more abstract reservoir SNN, may be

particularly well suited. Asynchronously driven spiking neural networks can be used to pro-

cess those events, where networks with some degrees of recurrency, such as biology-inspired

networks or reservoir networks, may be particularly well suited.
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Neuromorphic olfaction holds promise for tackling many real-world challenges that require

rapid and efficient odour sensing. A set of particularly intriguing applications are found

in olfactory robotics [LLD06], where unmanned ground or aerial vehicles (UGV / UAV)

perform odour source localisation and navigation tasks [KR08; Fra+22]. Examples of such

are using smoke-sensing drones for wildfire monitoring [Wan+23], swarm-based gas source

localisation in indoor environments [Dui+21], as well as distributed gas discrimination and

mapping in emergency response scenarios [Fan+19]. Those tasks rely heavily on sensing the

environment fast and efficiently, under restrictive constraints in form factor and power bud-

get. Equipping robots with neuromorphic olfactory sensing and processing capabilities may

lead to significant improvements in response time and task performance metrics, enabling

operation in complex and turbulent environments, as well as allowing for highly optimised

power management strategies.

Supplementary Materials
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Year Count Sensing principle Authors

1994 24 Conducting polymer compound (CPC) Gardner et al. [Gar+94]

2011 32 Conducting polymer compound (CPC) Ryan et al. [Rya+04]

2013 4096 Conducting polymer compound (CPC) Marco et al. [Mar+14a]

2011 120 Conducting polymer carbon nanotube (CNT) Wang et al. [Wan+11]

2024 10000 Conducting polymer carbon nanotube (CNT) Wang et al. [Wan+24]

2007 600 Electrochemical (EC) Che Harun et al. [Che+07]

2009 900 Electrochemical (EC) Che Harun et al. [Che+09]

2012 1728 Electrochemical (EC) Che Harun et al. [CCG12]

2000 6 Metal Oxide (MOx) Hong et al. [Hon+00]

2001 11 Metal Oxide (MOx) O’Connell et al. [OCo+01]

2013 96 Metal Oxide (MOx) Marco et al. [Mar+14a]

2009 6 Optical Tang et al. [Tan+09]

2012 8 Optical Thepudom et al. [The+12]

2021 59 Optical Maho et al. [Mah+21]

2022 64 Optical Laplatine et al. [Lap+22]

Table 4.1: Non-exhaustive selection of reported electronic nose sensor count per dye, sorted by
sensing principle and year of publication.

138



Chapter 4. Towards Neuromorphic Olfaction

4.2 Event-encodings of MOx electronic nose responses

This section loops back to the data campaign described in Section 3.1, where different urban

olfactory scenes were measured using a MOx electronic nose prototype and sub-second heater

cycles. Here, the collected data was used to investigate the efficacy of different event-encoding

schemes. In particular, I generated events from heater cycle data via send-on-delta, then

compared the performance of a linear classifier using the rate, the time-to-first-event, the

event-rank, and the step-wise reconstructed signal.

The remainder of this section is adapted from the peer-reviewed conference proceedings,

with permission from ACM Digital Library:

Nik Dennler†, Damien Drix†, Shavika Rastogi, André van Schaik, and Michael Schmuker (†

denotes equal contribution). “Rapid Inference of Geographical Location with an Event-based
Electronic Nose.” In: The 9th Annual Neuro-Inspired Computational Elements (NICE),
2022, UTSA, USA Issue: 1. Vol. 1. Association for Computing Machinery, 2022

The co-authors—in the following abbreviated as "we"—contributed as follows to this work:

D.D. designed the electronic nose, wrote the acquisition software, collected the data, and

drafted the the manuscript methods sections on e-nose design and data collection. S.R.

provided feedback and discussion throughout the project. A.v.S. and M.S. supervised the

project. All co-authors conceptualised the study and assisted in editing the final manuscript.

My contributions were the following: Suggesting the use of short heater cycles for the analysis

of the olfactory scene locations, performing the formal analysis — including proposing novel

feature extraction methods, testing different event-generation methods, and designing the

evaluation pipeline — and drafting the manuscript.
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Abstract

Sensory information is crucial for the successful interaction of an agent with its outside

world, where its encoding remains an open research question. Particularly resolving rapid

fluctuations in odour plumes has received little attention and could benefit from biologi-

cally inspired coding schemes. State-of-the-art gas sensors actively modify the sensing site

using temperature modulation cycles, which decreases the integration time and increases

the discriminability. Yet it remains unclear how much information is present in one cycles’

sensor response and how to efficiently sample it. In this work, we propose a novel approach

for asynchronous event sampling for gas sensor data, and investigate the effectiveness of

different event encoding schemes for solving an inference problem. An multichannel heater-

modulated electronic nose is used to record field data at high frequency. Single-cycle sensor

conductance windows of 140ms are normalised and a model curve subtracted. Using send-

on-delta sampling, on- and off-events are generated and further encoded in either their rate,

time-to-first-spike, firing-order or in a reconstructed signal. The different representations are

compared by considering the geographical location classification results using linear SVM.

Given the small sampling time window, we report a surprisingly high classification accuracy,

both for the raw and the reconstructed signal. The high-compression encoding schemes can-

not match the reconstructed signal for most cases, hinting at the highly complex temporal

dynamics of odour signals. We conclude that heater-modulated gas sensors lend themselves

to cycle- and event-based processing, allowing for inference in the sub-second regime. If our

work can be extended from distinguishing broad olfactory scenes to recognising individual

odorants in turbulent plumes, this would open up a new range of potential use cases for gas

sensors, both for traditional gas sensing and for neuromorphic olfaction.
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Introduction

Sensory information is crucial for the successful interaction of an agent with its outside

world. How sensory stimuli are optimally encoded remains an open research question. Neuro-

inspired coding strategies have been successfully applied to many tasks dealing with vision,

auditory perception, touch and vibration sensing [LPD08; SL05; Bar+16; Den+21a]. For the

sense of olfaction, there still exists a large performance gap between artificial and biological

systems [Cov+21]. This is particularly evident if one considers the fast-changing odour

distribution caused by air turbulences. The fluctuation frequencies in an odour plume are

governed by a power law [MM91] and can carry essential information about the odour source

[SBH16].

While mammals can discriminate temporal correlations of rapidly fluctuating odours at

frequencies of up to 40 Hz [Ack+21], metal-oxide (MOx) gas sensor based olfactory systems

usually have response times that are several orders of magnitude slower [PLT12b]. Methods

for improving the response time have been investigated [Gon+11b; DS21].

Latest-generation MOx gas sensors actively modify the sensing site using temperature mod-

ulation cycles, which decreases the integration time and increases the class discriminability

[Ver+14]. Yet it remains unclear how much information is present in one cycle’s sensor

response and how to efficiently sample it. Here, contrary to a top-down approach from

biological olfaction to neuromorphics [IC20], we propose a data-driven asynchronous event-

sampling strategy for state-of-the-art gas sensors, and investigate the effectiveness of different

event encoding schemes for solving an inference problem.
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Figure 4.3: a) Portable multichannel e-nose. b) GPS track of the recording. c) MOx sensor
data, showing the sensor conductances at the end of the high-temperature step. d) Zooming in
reveals structure on a timescale of seconds to minutes. e) Cyclic heater power modulation (top)
drives sub-second oscillations in heater temperature (middle, shown as heater resistance) and sensor
conductance (bottom).
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Methods

We constructed a portable electronic nose equipped with four different MOx gas sensors

(SGX Sensortech MiCS5914 & MiCS4514 dual sensor, ScioSense CCS801) and recorded the

natural olfactory scenes encountered during a walk through the city of Lisbon, Portugal,

dividing the dataset into six geographical locations (hereafter labelled ’Taxi’, ’Supermarket’,

’Graça’, ’Baixa’, ’Seashore’, and ’Santos’). We sampled the conductance of the gas sensing

elements at 1 kHz while modulating the heater power with a period of 140 ms, each heater

cycle consisting of a high-power step followed by a low-power step. This causes the sensor

conductance to oscillate in a way that depends on the heater temperature, the environmental

conditions, and the gases present in the sensor cavity (fig. 4.3).

We then investigated whether we could recover the geographical label from the time course

of the sensor conductance during a single 140 ms heater cycle. Crucially, each cycle was

normalised to the same minimum and maximum values (fig. 4.4a), thus getting rid of the

baseline drift that often compromises gas sensor datasets [Ver+12; Den+21b], leaving only

the intra-cycle variations to distinguish between different locations. For each normalised

cycle, we construct a signal that highlights these intra-cycle variations by subtracting a

sensor-specific model curve, which, in our case, is the ensemble average of the normalised

cycles across a subset of the data (fig. 4.4b). We apply an algorithm based on send-on-

delta sampling [Mis06b; VK07] to generate up- and down-events when the signal changes,

exploring a range of spike (event) thresholds. These events are then used to compute four

different features: the channel-wise event rate (rate code), the channel-wise time-to-first-

spike (latency code, [VGT05]), the channel order of first spikes (rank code, [TDV01]), and

a signal reconstruction using the reverse send-on-delta sampling algorithm (fig. 4.4c). The

representations resulting from each of the four encoding strategies are divided into training
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and test sets with a ratio of 75% to 25%, by sampling a total of 2000 cycles per class from

time-separated bulks as described in [Asa+17]. For each spiking threshold and each encoding

strategy, a linear-kernel Support-Vector-Machine (SVM) [CV95] was fitted to the training

set and validated on the test set.

Results and Discussion

All four encoding strategies perform better than chance levels (fig. 4.4e). The signal recon-

structed from events performs as well as the original intra-cycle signal when the event count

is high (82.5±1.0% vs. 84.2±1.2%). Accuracy then decreases as the event threshold increases

(fewer events, see fig. 4.4d). While latency code, rank code and rate code representations

provide a high signal compression (one value per up- and down channel for each sensor),

they are outperformed by the reconstructed curve, until the number of events was reduced

to 1% of the original signal’s sample count.

Our findings indicate that various olfactory scenes can be distinguished based on the differen-

tial time course of sensor conductance during individual sub-second heater cycles, despite a

normalisation procedure that removes information about absolute sensor conductance. Fur-

thermore, the full temporal pattern of events within each cycle seems to matter for scene

recognition. This hints at a phasic component in the sensor response to a temperature step

that contributes to the classification accuracy. Whether this phasic component stems from

the temperature-specific reactivity of various gases or from other influences not excluded by

our normalisation procedure remains to be investigated.
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Conclusion

We propose an event-based sampling scheme to represent cyclic heater-modulated electronic

nose data. Asynchronous sampling captured the signal’s temporal dynamics better than

rate-, rank- or latency-codes, while recognition accuracy degraded gracefully for reduced

event counts. Our work paves the way for event-based recognition of natural odour scenes

in uncontrolled environments, breaking new ground in neuromorphic gas sensing.
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Figure 4.4: a) The normalised sensor conductance oscillates between fixed minima and maxima.
b) After subtracting the mean, intra-cycle variations reveal distinct patterns across geographical
locations. Solid lines and shading correspond to mean and one standard deviation. c) Example
event generation and reconstruction (Sensor 1, location: taxi) d) The average number of events per
cycle decreases with increasing spiking threshold, but varies across locations (data for Sensor 1).
e) Classification accuracy for different encoding schemes vs. spiking threshold (mean and standard
deviation for twelve train/test splits).
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4.3 Conclusion

In this chapter, I explored some of the opportunities and premises of applying principles of

neuromorphic computing to artificial olfaction, and particularly to fast odour sensing.

In Section 4.1, I initiated a discussion about how the physical characteristics of turbulent

odour plumes suggest event-driven sampling. In particular, I noted that olfactory signals

are not subject to narrow bandlimitations. This resembles the situation in vision and sets

olfaction apart from narrow-bandlimited senses like auditory perception. Further, I noted

that temporal signal sparsity is an inherent property of olfaction, with odour bout durations

and inter-bout intervals spanning from sub-milliseconds to minutes or above. Therefore, it is

either lossy (low rate) or inefficient (high rate) to extract information from the odour plume

at a fixed sampling rate. Finally, I observed that the reported number of sensors in electronic

nose studies has been growing steadily, most recently surpassing 10,000 sensors. While this

increase in dimensionality is reasonable in light of the vast complexity of the odour space, it

is expensive to sample a high number of instances at a high sample rate.

These points may be effectively addressed by different methods of event-driven and asyn-

chronous data processing. From such, I identified that variants of the change-detecting

send-on-delta algorithm may be particularly suited to generate binary events from the sen-

sor response. These events may be further processed, where spiking neural networks are

the obvious candidate whenever low latency is essential. This is the case in many robotic

applications, where the time for sampling and processing directly influences the response

time and task performance of artificial agents.
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In Section 4.2, change-events were generated from electronic nose sensor response curves that

are phase-locked to heater cycles. In particular, events were generated by applying a variant

of the sigma-delta algorithm to the sensor response. From these events, different event-

encodings were constructed— in particular, channel-wise event-rate, time-to-first-spike, first-

spike-order, and the step-wise reconstructed signal. The representations were evaluated on

an odour signature classification task, where it became evident that none of the signal-

compressing methods were able to outperform the reconstruction. This strengthens the

argument that directly processing the events, e.g., via a spiking neural network, may be

necessary and viable for capturing the temporal dynamics that are characteristic of a given

odour presence. However, further investigations will be necessary to elaborate in detail on

this.
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Discussion and Conclusion

“Alles Wissen

und alles Vermehren unseres Wissens

endet nicht mit einem Schlußpunkt,

sondern mit einem Fragezeichen.”

– Hermann Hesse

5.1 Summary

This thesis explored principles and concepts for achieving high temporal resolution in odour

sampling and processing. I began with a review on fast olfaction in both biological and

artificial contexts. I recognised that sampling the statistics of turbulent odour plumes re-

quires fast sensing, which is found in both insects and mammals. I discussed the temporal

capabilities of different animals, as well as their underlying mechanisms and roles for differ-

ent tasks. Further, I explored mechanisms of artificial olfaction, with an emphasis on the

state-of-the-art in electronic nose technology and its applications.

Initial studies on datasets and algorithms were meant to provide a foundation for our own

work on fast odour sensing. However, during this process, I identified—and meticulously

described—previously unnoticed limitations in a widely used gas sensor dataset [Ver+13].

Namely, the non-randomised measurement protocol coupled with severe sensor drift rendered

the data unusable for most classification benchmarks. Further, I described how a particu-
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larly prominent neuromorphic few-shot odour-learning algorithm study [IC20] is affected by

this and revealed further limitations thereof. I recognised the need for reliable data and re-

producible algorithm evaluations and established a set of best practices for future gas sensor

data campaigns.

While these limitations prohibited the usage of the discussed data and algorithms for this

thesis, they motivated our own data campaigns. These were performed using a custom-made

electronic nose system, which allowed to test different data acquisition and processing meth-

ods. In particular, I proposed a novel way of acquiring data features for odour classification,

which is based on rapid (50 ms - 150 ms) cycles of the temperature at which the gas sensors

are operated. With this, my colleague D.D. recorded two datasets that contain different

indoor and outdoor olfactory scenes, which could be robustly distinguished using these data

features. Further, I performed an extensive laboratory data campaign, in which I evaluated

the electronic nose on a benchmark that has previously been used to shed light on the tem-

poral odour discrimination capabilities of mammals [Ack+21; Das+22]. I showed that, if the

sensor temperatures are held constant, it is possible to distinguish correlated odour pulse

trains from anti-correlated ones up to modulation frequencies of 40 Hz and determine the

frequency up to 60 Hz. This matches and exceeds the capabilities demonstrated in mammals.

Further, I showed that, if the sensor temperature is modulated with 50 ms duty cycles, it is

possible to classify different odours at pulse widths as low as 10 ms. Both of these results

are unprecedented in artificial olfaction and will allow for novel use cases and applications.
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Finally, I investigated how to process olfactory signals fast and efficiently. I discussed how

principles from the field of neuromorphic computing may be particularly suited for machine

olfaction. In general terms, I argued that the physical characteristics of turbulent odour

plumes suggest asynchronous sampling and data processing. Further, I critically discussed

different methods and algorithms for generating events from gas sensor data, as well as for

processing such data. Subsequently, I described how the sensor response of a heater-cycled

MOx sensor e-nose may be sampled via asynchronous events, and investigated the efficacy

of different event encoding schemes for odour scene classification. Consistent with previous

discussions on event-based processing methods in olfaction, I demonstrated that the temporal

sensor dynamics may not be captured sufficiently well with a compressed code such as rate-

code, order-code, or time-to-first-event, suggesting the use of spiking neural networks for

analysing the event trains directly instead.

5.2 Future work

Cycled vs. constant operating temperature for MOx sensors

In Section 3.2, I described how I operated the MOx sensors either at a constant temperature

or using heater cycles. I demonstrated that short heater cycles may lend themselves to

phase-locked data features that are well suited for odour classification tasks. In contrast,

keeping the heater constant allowed for decoding the temporal characteristics of a stimulus,

such as pulse-train frequency or the phase between two stimuli. This leads to the hypothesis

that, given the MOx sensors I used, these two modes are optimal for the respective tasks;
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i.e., heater cycles for odour classification and constant heat for decoding temporal odour

structure. To test this, it may be necessary to perform a control experiment, e.g., attempting

to decode temporal characteristics using heater cycles, and using the constant heater mode

for odour characteristics.

If the hypothesis were supported by such evidence, it may be of interest to combine the two

modes on the same device. For instance, a set of sensors could be operated at a constant

temperature, thus continuously monitoring the temporal dynamics of the sensor response.

Another set of sensors could be operated using heater cycles. Processing the sensor responses

of the latter could be triggered by the constant temperature sensors reporting a significant

deflection from the baseline, which may correspond to an incoming odour bout. This would

preserve computing resources and additionally may reduce false-positive classifications. Go-

ing further, a similar protocol may foresee that the heater-cycled sensors are initially in a

stand-by mode or even completely turned off, and only turned to cycles whenever a bout

is registered. If successful, this may bring substantial power savings, as the classification

sensors would not have to be heated during idle times. These savings may allow for scaling

the dimensionality of an electronic nose more favourably, as heater-cycled sensors could be

added without linearly increasing the device’s power consumption. However, MOx sensors

are known to require a warm-up time to provide reliable sensor outputs, thus such a protocol

may demand further research on adequate feature extraction in the warm-up phase.

Further, to fully understand the potential of the fast electronic nose, extensive field testing

should be performed. While the experiments described in Section 3.2 provide detailed in-

sights about the electronic nose’s performance under laboratory conditions, it is important

to note that, in realistic scenarios, odours do not occur in square pulses and likely at much
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lower concentrations than the ones tested. Instead, a thorough evaluation of the measure-

ment protocols and processing algorithms on odour plumes may yield a better estimation of

potential task performances. As it is not feasible to control the stimulus directly, it would be

necessary to have control measurements in place, such as PID recordings co-located with the

electronic nose, or simultaneous Planar-Laser-Induced-Fluorescence (PLIF) concentration

mappings.

Towards applications in robotic olfaction

In Section 3.2, I discussed how fast artificial olfaction may allow for tackling many real-

world challenges, particularly in the field of mobile olfactory robotics. I noted that any

robotic system leveraging olfactory sensing for a given task may benefit from faster sensor

modalities, as the sensor response time dictates the maximum speed at which the agent can

move while still obtaining spatially resolved measurements. Therefore, future work should

focus on integrating the discussed high-speed electronic nose instances with autonomous

systems, such as ground robots and drones.

Before placing the electronic nose on a robotic platform, it would be appropriate to exper-

iment with odour exposures that resemble the natural environment more closely than the

sharp pulses and pulse trains used in Chapter 4b. Experiments based on a wind tunnel, or

an open system using odour sources and e.g. a fan may be considered. The major challenge

there would be obtaining either a reproducible and controlled stimulus, and / or verifying

the (ground-truth) stimulus without much interference. Further, decorrelating airflow from

odour occurence may be an issue. In the following, I briefly elaborate on two possibilities,

and their potential limitations:
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• Delivering turbulent odour stimuli via a wind tunnel or open setup, then monitoring

the concentration via miniPIDs in combination with the electronic nose would be a

possible solution. However, it is known that the sensing principle of PIDs is active,

i.e. they will disturb the flow [TC22a]. Hence, this approach might lead to unwanted

biases in the results, where this effect is stronger at close proximity between PID and

electronic nose.

• Another approach is using a passive odour monitoring technique,such as Planar-Laser-

Induced-Fluorescence (PLIF) [Cri08; CMC18]. A closed wind-tunnel may deliver tur-

bulent airflow, where fluorescent odours could either be injected or be released inside

the tunnel. A laser sheet would be spanned in a 2D plane, in which the passing odour

would be made visible. One drawback is that this would only work with the small

subset of odours that fluoresces under certain wavelengths, e.g. acetone, which would

limit the broad applicability of this approach.

Further, for both ground-based and aerial robotic agents, a key challenge will be overcom-

ing the strong coupling between sensor response and temperature fluctuations, which are

inevitably induced by the airflow from agent movement. It may be that the proposed sen-

sor heating and post-processing normalisation scheme, or variants thereof, might address

such environmental interferences. Additionally, exploring adaptive sensor placement and

protective enclosures could further help mitigate the issue. Yet, future investigations will be

necessary to explore such scenarios.
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Another promising direction may be to combine fast olfactory sensing with other sensory

modalities—such as vision, auditory and tactile systems, accelerometers or anemometers

(wind sensors)—on robotic platforms. Such efforts could result in more robust and versa-

tile robotic platforms. In particular, they may be useful for resolving the above-described

odour-flow coupling. For instance, the ego motion could be estimated using a vision system

or accelerometers, while an anemometer or a flow probe could provide information about

the external airflow. This could be used to decorrelate the odour-induced sensor response

from environmental effects. Finally, certain applications may directly benefit from multiple

sensors. For instance, wildfire monitoring in challenging environments could be performed

using olfaction and vision [Wan+23], as the two modalities provide complementary informa-

tion about a potential fire source, potentially yielding a faster and more robust detection

system.

Event-based sensing for MOx electronic nose

Section 4.1 argues that event-driven sensing may benefit machine olfaction, and discusses

various ways of generating events from gas sensor data and processing them. Section 4.2

implements a variant of the send-on-delta algorithm to generate events from heater-cycled

MOx sensor odour responses. To the best of our knowledge, the described study is the first

that addresses this, which indicates a noteworthy gap in the literature. In particular, it is not

obvious that send-on-delta is optimal in generating events from heater cycle data features. As

the amplitude range can be known beforehand through the feature normalisation procedure

used in Section 3.2, amplitude events as described in Section 4.1 may be better suited.

This may suggest further studies on the efficacy of different event generation schemes. In

particular, a set of different event generation mechanisms could be applied to the laboratory

dataset described in Section 3.2, which could then be used for odour classification using
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either standard machine learning algorithms (such as support vector machines), or spiking

neural networks. The mechanisms could be compared not only with respect to the achieved

performance metrics but also considering their compression factor or sampling density, e.g.,

how many events are required to achieve a desired accuracy.

Similar efforts could be undertaken for MOx sensors operated at a constant temperature.

While the literature suggests a wide range of algorithms for asynchronously sampling a

continuous odour sensor signal, only a subset may lend themselves to fast sensing. It is not

obvious that the ideal sampling algorithm for the constant temperature mode shall be ideal

for the cycled heater mode. Complex and multi-pathway event-based olfactory systems may

be the outcome of such investigations.

Finally, once a suitable pipeline for event generation and processing has been developed and

tested in simulation, further efforts could be undertaken to implement such in hardware. I’ve

contributed to a recent study led by my colleague S. Rastogi, which has investigated an event-

based front-end for MOx gas sensors operated at a constant temperature, suggesting a spike-

time representation of the gas concentration [Ras+23]. A combination with an analogous

hardware front-end for generating events from the heater-cycle MOx sensors, as well as with

a spiking neural network that combines the two pathways, could result in a fast and robust

neuromorphic olfactory system for the classification and quantisation of different odours.

156



Chapter 5. Discussion and Conclusion

Event-based sensing beyond MOx electronic nose

This thesis has focused on fast odour sensing with electronic nose technology that leverages

MOx gas sensors. While for machine olfaction, these sensors are the obvious candidate due

to their temporal characteristics, maturity, and availability, they do have limitations (see

Section 1.3 and Section 2.1) and are not the exclusive choice. The following describes the

applicability of event-based sensing to two other olfactory sensor modalities, which were

explored in the scope of this thesis yet have not been described earlier.

Photonic olfactory sensors

While a range of optical principles have been suggested for machine olfaction (see Fig. 4.1),

only recent suggestions promise the scalable integration of sensor arrays in smaller-scale

electronic nose technology. A particularly noteworthy candidate emerges from a sequence

of studies [Bre+18; Bre+20; Wee+20; Mah+20; Mah+21; Lap+22; Her+22], and has since

been commercialised by the company Aryballe1. The proposed approach [Lap+22] follows

the general principle of a Mach-Zehnder interferometer (MZI): A monochromatic light beam

is split into two beams. One beam passes through a phase-shift inducing medium, and the

other remains at its original phase. After recombination, the interference pattern provides

information about the phase shift. For sensing odours, the phase-shift inducing medium is

bio-functionalised using organic molecules and short peptides, which react, and change their

refractive index, when exposed to particular odours. For increasing sensitivity and reducing

signal ambiguity, the authors suggested using a hybrid 120◦ coherent MZI design, in which

the two beams are recombined into three phase-complementary optical outputs instead of

1https://aryballe.com/
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a single output. See Fig. 5.1a&b for an illustration thereof. The resulting electronic nose

combines 64 of such bio-functionalised Mach-Zehnder interferometers (bfMZI) on a silicon

nitride platform (see Fig. 5.1c). In their study, the authors report notably high classification

performances using seven different VOCs, and a response time in the sub-second range.

The scalability of this technology marks one clear advantage compared to MOx sensors: As

the optical outputs are sensed via CMOS camera arrays, increasing the number of single

sensor instances may not result in a linear increase in power consumption. This—together

with the rapid sensor response time and the arguments provided in Section 4.1—suggests

that photonic olfactory sensors may be a suitable candidate for event-based olfactory sensing.

Preliminary results, based on simulating the bfMZI response to an odour pulse, suggest the

applicability of event-based sensing. The simulation (see Fig. 5.1d) is based on the informa-

tion provided in the available literature [Hal+13; Lap+22; Her+22], and approximates the

response of the three optical output pathways (p1-p3) when encountering an odour-induced

phase shift θ. The phase shift may be recovered, up to 2π, as follows:

s = 1√
2

e−iθ = p2 − 0.5p1 − 0.5p3 + i

√
3

2 (p1 − p3) (5.1)

θrecovered = ℜ{i log(2is) + 2πn} (5.2)

From p1-p3, asynchronous events were generated using a variant of the send-on-delta sam-

pling algorithm [Mis06a]. Subsequently, the phase shift was recovered from both the regu-

larly sampled signal (here at 20 Hz) and asynchronously sampled events, where the selected

threshold ensures a similar number of samples in the considered example. The resulting root-

mean-squared-errors (RMSE) between the theoretical phase shift and the recovered signals
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were compared for regularly and asynchronously sampled signals. The comparison indicates

that, given the provided example, asynchronous samples provide an error that is smaller

by a factor of five or more. Unsurprisingly, the difference is significant whenever the signal

changes abruptly, with little to no improvements during idle periods, i.e., when fewer or no

events are generated. However, confirming whether this apparent advantage of event-based

sampling is applicable to real data will require further experiments and analysis, and may be

subject to future studies. Further, it is important to note that only a small subset of odours

are fluorescent, hence such experiments would be limited in their applicability.

Planar-laser-induced-fluorescence imaging

The introduced and discussed sensor modalities — namely MOx, Optical, EC, CPC and CNT

gas sensors, as well as PID — provide means for local, point-source measurements. Other

techniques allow for larger-scale odour monitoring. Examples of such are Light Detection and

Ranging (LiDAR), Differential Optical Absorption Spectroscopy (DOAS), Schlieren imaging,

and Planar Laser-Induced Fluorescence (PLIF). In a collaboration with Dr. Aaron True (AT)

and Prof. John Crimaldi (JC) from the University of Boulder Colorado (UCB), we initiated

the discussion regarding the applicability of event-based sensing for PLIF.

PLIF is a laser-based visualisation technique that images the distribution of a fluorescent

gas or liquid within a plane, thus allowing for non-intrusive measurements of scalar concen-

trations in fluid flows [Cri08]. The fluorescence illumination Ifluorescence is approximately pro-

portional to the laser power Plaser and the concentration of the fluorescent medium Cmedium:

Ifluorescence(t, x) ∝ Plaser(t) · Cmedium(t, x) (5.3)
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Since the fluorescent effect is induced quasi-instantaneously, the temporal resolution of the

technique is merely limited by the camera specification. The experimental setup at UCB

is designed for studying slowly moving (low Reynolds number) scalar fluids. However, as

discussed in Section 4.1, source-relevant information may be embedded at any spatial or

temporal scale, which suggests high sampling rates even for low flow rates. Further, the

covered regime is typical for what many aerial and terrestrial animals perform odour-guided

navigation tasks in. Recent studies in neuroscience [AH13; Cha+18a] suggest that a natural

mechanism for animals to estimate odour concentration ratios is the difference of logarithms:

∆ log C = log C2 − log C1 = log C2

C1
. (5.4)

If combined with Eq. (5.3), this suggests the difference of illumination logarithms as a nat-

ural quantity of interest when monitoring fluids in the regime of low Reynolds numbers.

Coincidentally, this difference of illumination logarithms is measured by the dynamic vision

sensor (DVS), i.e., the most common circuit for event cameras. In such, an event is generated

whenever the difference of pixel illumination crosses a fixed threshold. Together, this moti-

vated us to perform a series of experiments combining an event camera and a conventional

camera in a standard PLIF setting.

Fig. 5.2a provides an illustration of the experimental setup. A continuous wave (CW) laser

is expanded and shaped to a laser sheet of sub-millimetre height. The sheet illuminates

a plane in a fluid cell. A vortex field is induced via a magnetic stirrer, and the resulting

velocity flow field quantified using particle velocimetry (shown in Fig. 5.2b). A standard

frame-based camera (FBC) and an event-based camera (EBC) are equipped with band-pass

filters, spatially aligned—using a calibration grid—on the laser plane, and temporally aligned
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by tracking the camera shutter triggers. Various experiments have been performed, aiming

to characterise the event-camera in a PLIF setting, and extracting insights for future mea-

surement campaigns. As the analysis results are preliminary, they are not further described

here.

5.3 Conclusion

During the scope of this thesis, I demonstrated advancements in the field of artificial olfaction,

particularly for high temporal resolution odour sampling and processing. By reviewing both

biological and artificial olfactory systems, crucial principles for enabling fast and efficient

olfaction were identified. The exploration of turbulent odour plume statistics revealed the

necessity for rapid sensing mechanisms, which informed the development of electronic nose

technologies.

Initial works highlighted critical limitations in existing gas sensor datasets, prompting a set

of best practices for data collection and evaluation. Further, limitations in a prominent

odour learning algorithm were found and investigated.

These foundations enabled the implementation and evaluation of a custom electronic nose

system that leverages rapid temperature cycling of MOx sensors, achieving unprecedented

levels of temporal resolution and accuracy in odour classification tasks. In a set of experi-

ments, I have shown that the system can distinguish between odour pulses with modulation

frequencies up to 60 Hz and classify odours at pulse widths as short as 10 milliseconds. These

findings match or surpass the temporal capabilities demonstrated in mammalian olfaction

and will open new avenues for practical applications in various fields, including environmental

monitoring and robotic olfaction.
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Furthermore, our investigation into neuromorphic computing principles for processing olfac-

tory signals emphasised the advantages of asynchronous sampling and event-driven process-

ing. A demonstration followed for asynchronously sampling heater-cycled MOx sensor data,

which allowed for the comparison of different event encoding schemes.

In summary, this thesis has addressed the challenges of high-speed odour detection and

classification and further provides a comprehensive framework for future research and devel-

opment in the field. The methodologies and findings presented here may offer a foundation

for advancing the capabilities of artificial olfaction systems, with promising implications for

real-world applications and further scientific explorations.
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Figure 5.1: a) Bio-functionalised Mach-Zehnder interferometer (MZI). left: standard MZI, right:
hybrid 120◦ coherent MZI. b) Measurement principle of hybrid 120◦ coherent MZI design. c) Pic-
ture of the Aryballe photonic electronic nose die (top), zooming into the sensing arm of the MZI
array (bottom). d) Simulation study of event-based MZI odour sensor. From top to bottom: odour-
induced change in refractive index; resulting outputs of coherent MZI; channel-wise asynchronous
events generated via send-on-delta sampling; reconstructed phase-shift from regularly sampled sig-
nal (red) and events (green); reconstruction error between actual and reconstructed phase-shift,
for both sampling schemes; samples per time, for both sampling schemes. a) and c) adapted with
permission from [Lap+22] (© Optical Society of America), and b) adapted with permission from
[Hal+13] (© 2013 IEEE. Reprinted, with permission, from R. Halir, L. Vivien, X. Le Roux, D. X.
Xu, and P. Cheben. "Direct and sensitive phase readout for integrated waveguide sensors.", IEEE
Photonics Journal, 2013).
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Figure 5.2: a) Experimental setup for simultaneous recording of turbulent flow using frame-based
(FBC) and event-based (EBC) vision. b) Vortex flow characterisation using particle velocimetry.
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