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1. Introduction

In this paper we study the existence of solutions to the heterotic G2 system on certain 7-dimensional almost contact 
metric manifolds for which the characteristic holonomy is reduced to either SU(3) or Sp(1)Sp(1).

The heterotic G2 system [1--11] describes supersymmetric compactifications of heterotic supergravity—including first order 
α′ corrections—on a warped product of a compact 7-dimensional manifold and either 3-dimensional Minkowski or anti-de 
Sitter space. It can be regarded as the 7-dimensional analogue of the Hull–Strominger system [12,13] and it is sometimes 
referred to in the literature as the G2 Hull–Strominger system. Solutions of the heterotic G2 system have been constructed in 
[1,14--19].

Any manifold M with a G2-structure has an underlying almost contact metric structure as well as an almost 3-contact 
metric structure [20], which amount to a reduction of the structure group of M to SU(3) or SU(2), respectively. We use 
these additional structures to construct new solutions to the heterotic G2 system. In particular, we will repeatedly use a 
decomposition of the tangent bundle T M determined by the action of the structure groups.

These G-structures are particularly well-behaved when they admit a characteristic connection with parallel skew torsion 
and reduced holonomy. Thus, we focus on manifolds where the characteristic holonomy reduces to one of the subgroups of 
G2 depicted in Fig. 1. 

In our solutions, the compact manifold M can always be described as the total space of a Riemannian foliation. This is 
a common trait of all the existing solutions of the heterotic G2 system. In fact, although our solutions differ from those in 
[17--19] by our choice of G2 instantons, the manifolds underlying those constructions can be regarded as particular cases of 
the manifolds we consider.

Under our assumptions, the Riemannian submersion from M to the leaf space is compatible with the characteristic G2
connection. Solving the heterotic G2 system requires a detailed understanding of this connection as well as two different 
instanton connections on bundles over M . We show that the study of the heterotic G2 system is much simpler when all the 
connections can be projected to the base of the submersion. For that reason we will consider instanton connections on the 
tangent bundle that lie in a 1-parameter family ∇λ and satisfy this property.

We first study the case of characteristic holonomy Sp(1)Sp(1). A particularly nice class—and to the authors knowledge the 
only one known—of manifolds satisfying all these assumptions is the class of 3-(α, δ)-Sasaki manifolds. These were defined 
in [21] as generalizations of 3-Sasaki structures admitting well-behaved characteristic connections. We find approximate 
solutions as well as the following exact solutions in the degenerate case δ = 0:

Theorem 1.1. Let α′ > 0 and let (M, g, ξi, ηi, ϕi)i=1,2,3 be a degenerate 7-dimensional 3-(α, δ)-Sasaki manifold with its canonical 
G2-structure φ and canonical connection ∇ with torsion T . If α2 = 1 

12α′ , then

[(M,φ), (T M,∇−β), (T M,∇), T ] ,
where β = 2(δ − 2α), is a solution to the heterotic G2 system.

For the SU(3) case, the best analogue is given by η-Einstein α-Sasaki manifolds. When these manifolds admit a spin 
structure, they also depend on two parameters (α, δ) and we will call them (α, δ)-Sasaki manifolds. This is motivated by 
the fact that the dependence on the parameters (α, δ) is very similar to that of 3-(α, δ)-Sasaki manifolds. Unfortunately, 
this case is less well-behaved and we will only be able to obtain approximate solutions.

Both 3-(α, δ)-Sasaki and (α, δ)-Sasaki manifolds share an additional common feature: they are characterized by the 
existence of certain generalized Killing spinors. We will also present this formalism and use it to give a description of the 
different G2-structures from a spinorial point of view.

The paper is organized as follows. In Section 2 we introduce the heterotic G2 system and in Section 3 the geometries 
where we are going to study the system. In Section 4 we discuss solutions on 3-(α, δ)-Sasaki manifolds. In Section 5 we 
discuss the case of spin η-Einstein α-Sasaki manifolds and introduce our description as (α, δ)-Sasaki manifolds. Finally, in 

⊂ ⊂

⊂ ⊂

G2

Sp(1)Sp(1) SU(3)

SU(2)

⊂

U(3)

Fig. 1. Diagram of groups. 
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Section 6 we summarize our results and point out some future directions. Appendix A gives an overview of the spinorial 
perspective.

2. The heterotic G2 system

In this section we introduce the heterotic G2 system following [22]. The system describes 𝒩 = 1 supersymmetric vacuum 
solutions of heterotic supergravity on a warped product ℳ3 × M , where ℳ3 is a maximally symmetric 3-dimensional 
Lorentzian space (the spacetime) and M is a compact 7-dimensional Riemannian manifold.

Supersymmetry requires the compact manifold M to have a G2-structure and the gauge fields to be G2-instantons, so we 
begin with a brief review of G2-geometry to present the concepts that we will use and set our notation. For more detailed 
introductions to the topic, see for example [23--25].

Definition 2.1. Let M be a 7-dimensional manifold. A G2-structure on M is a nowhere-vanishing three-form φ on M which 
can be identified at every point p ∈ M with

φ0 = e123 − e145 − e167 − e246 + e257 − e347 − e356 ,

where {e1, . . . , e7} is a local basis of one-forms and we are writing ei j = ei ∧ e j . We call φ the associative form and we say 
that (M,φ) is a manifold with a G2-structure.

Remark 2.2. The existence of the associative three-form φ is equivalent to the usual notion of G2-structure as a reduction 
of the structure group to G2. Furthermore, φ determines a metric g and an orientation on M which can be used to define 
the coassociative four-form

ψ = ∗φ .

Tensors in (M,φ) decompose in terms of representations of the group G2. The following proposition shows the decom
position in the case of differential forms.

Proposition 2.3. Consider (M,φ) a manifold with a G2-structure. Let Λk = Λk(T ∗M) denote the bundle of k-forms on M and Λk
p =

Λk
p(T ∗M) denote the subbundle of Λk consisting of k-forms transforming in the p-dimensional irreducible representation of G2. Then, 

the following holds

Λ0 = Λ0
1 , Λ1 = Λ1

7 , Λ2 = Λ2
7 ⊕ Λ2

14 , Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27 ,

and the decomposition for higher degrees follows from Hodge duality.

Each Λk
p can be characterized in terms of the associative and coassociative forms. For example Λ2

14 , which corresponds 
to the two-forms contained in the Lie algebra 𝔤2 of G2, can be described as

Λ2
14 = {β ∈ Λ2 : β⌟ φ = 0} = {β ∈ Λ2 : β ∧ ψ = 0} . (2.1)

The decomposition of dφ and dψ in G2-representations characterizes the G2-structure.

Definition 2.4. Let (M,φ) be a manifold with a G2-structure. The torsion classes of the G2-structure are the forms τ0 ∈ Λ0, 
τ1 ∈ Λ1, τ2 ∈ Λ2

14 and τ3 ∈ Λ3
27 satisfying

dφ = τ0 ψ + 3 τ1 ∧ φ + ∗τ3 , dψ = 4 τ1 ∧ ψ + ∗τ2 .

When all the torsion classes vanish the G2-structure is torsion-free and the manifold M has G2 holonomy. We are inter
ested in more general types of G2-structures.

Definition 2.5. Let (M,φ) be a manifold with a G2-structure. We say the G2-structure is conformally coclosed if τ2 = 0, and 
we say that it is coclosed if τ1 = τ2 = 0.

Conformally coclosed G2-structures have the key property of admitting a characteristic G2-connection. We now recall the 
necessary notions: metric connections ∇ on T M are in bijective correspondence to torsion tensors

T (X, Y , Z) := g(X,∇Y Z − ∇Z Y − [Y , Z ]) .
3 
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Indeed, for a torsion tensor T the corresponding connection is given by g(X,∇Y Z) = g(X,∇ g
Y Z) + A(X, Y , Z), where A is 

the contorsion tensor defined as

A(X, Y , Z) := 1

2
(T (X, Y , Z) − T (Y , Z , X) + T (Z , X, Y )) .

Definition 2.6. A metric connection is said to have skew-symmetric torsion (or simply skew torsion) if T ∈ Λ3T ∗M .

In this case A = 1
2 T , so in short ∇ = ∇ g + 1

2 T . In [3] the authors prove

Proposition 2.7 ([3]). Let (M,φ) be a manifold with a conformally coclosed G2-structure. There exists a unique metric connection ∇c

that has totally skew-symmetric torsion and is compatible with the G2-structure. Its torsion tensor is given by

T c = 1

6
τ0 φ − τ1⌟ ψ − τ3 . (2.2)

We call this the characteristic G2-connection.

In addition, we will be interested in connections that are related to the G2-structure in a particular way:

Definition 2.8. Let A be a connection on a vector bundle V with curvature F A ∈ Λ2(End(V )). We say A is a G2-instanton if 
its curvature satisfies F A ∈ Λ2

14(End(V )). Using (2.1), this can be equivalently expressed as

F A ∧ ψ = 0 .

We are finally in a position to introduce our main object of study:

Definition 2.9. A quadruple [(M,φ), (V , A), (T M,Θ), H] constitutes a solution to the heterotic G2 system if the following holds:

• (M,φ) is a 7-dimensional compact manifold with a conformally coclosed G2-structure.
• H = T c is the torsion of the characteristic G2-connection.
• V is a vector bundle on M equipped with a G2-instanton connection A.
• The tangent bundle T M of M is equipped with a G2-instanton connection Θ.

In addition, the physical flux H and the instanton connections A, Θ must satisfy the heterotic Bianchi identity

dH = α′

4 
(tr F A ∧ F A − trℛΘ ∧ℛΘ) , (2.3)

where α′ > 0 is the string parameter, F A denotes the curvature of A and ℛΘ is the curvature of Θ.

Remark 2.10. A quadruple [(M,φ), (V , A), (T M,Θ), H] satisfying the first three bullet points in Definition 2.9 is, from 
the point of view of heterotic supergravity, a solution to the Killing spinor equations that any supersymmetric background 
requires. The heterotic Bianchi identity is imposed by the anomaly cancellation condition of heterotic string theory, and�-
provided that the fourth bullet point holds—this is sufficient to ensure that a solution to the Killing spinor equations is 
in fact a solution to the equations of motion of heterotic supergravity [8]. Thus, a solution to the heterotic G2 system 
constitutes a supersymmetric solution of heterotic supergravity.

Heterotic supergravity in this context should be understood as the theory obtained at first order via a perturbative 
expansion of heterotic string theory on the string parameter α′ [26,27]. As pointed out in [28], this means that it is enough 
for the equations to be satisfied only up to first order in α′ .

We can therefore consider a relaxed version of the heterotic G2 system. We still require the first three bullet points in 
Definition 2.9 and the Bianchi identity to hold exactly, but we impose the instanton condition on Θ only up to first order 
in α′ . Given a quadruple [(M,φ(α′)), (V , A(α′)), (T M,Θ(α′)), H(α′)] where both gauge fields and the G2-structure may 
depend on α′ , this condition can be phrased following [18] as

|ℛΘ ∧ ψ |g = 𝒪(α′)2 as α′ → 0 , (2.4)

where | · |g is the pointwise C0-norm with respect to the metric g induced by φ and ℛΘ is regarded as a section of 
Λ2 ⊗ End(T M).

Definition 2.11. We say that a solution to the heterotic G2 system is exact if Θ is an honest G2-instanton, and approximate 
if Θ instead satisfies (2.4).

4 
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Remark 2.12. The torsion classes of the G2-structure present in the heterotic G2 system encode some of the physical infor
mation of the compactification [29]. In particular, the dilaton field μ is encoded by τ1 = 1

2 dμ and the cosmological constant 
Λ of the 3-dimensional spacetime satisfies Λ ∼ − τ 2

0 .

In order to find solutions below we are particularly interested in connections with skew-torsion that satisfy ∇T = 0, 
where T is the torsion of ∇ . In this case we say ∇ has parallel skew-torsion. This assumption has important implications on 
the curvature

R(X, Y , Z , V ) := g(([∇X ,∇Y ] − ∇[X,Y ])Z , V ) .

Indeed, in this case we obtain a tangible first Bianchi identity

X,Y ,Z
𝔖 R(X, Y , Z , V ) = σT (X, Y , Z , V ) :=X,Y ,Z

𝔖 g(T (X, Y ), T (Z , V )) , (2.5)

where here and hereafter 
X,Y ,Z
𝔖 denotes the sum over all cyclic permutations of X, Y , Z . In particular, this yields pair 

symmetry

R(X, Y , Z , V ) = R(Z , V , X, Y ) .

Remark 2.13. Note that if the characteristic connection ∇c has parallel skew-torsion then pair-symmetry of R implies that 
∇c is a G2-instanton. This has been observed for example in [30].

We recommend [31] for a deeper introduction to connections with skew-torsion, particularly in relation to string theory.

3. Contact geometry

In this section we recall some standard definitions of contact geometry that will be used in the paper and we set our 
notations. A standard reference on the topic is [32].

Definition 3.1. An almost contact structure (ξ,η,ϕ) on a 2m + 1-dimensional smooth manifold M consists of a vector field ξ , 
a one-form η and a (1,1)-tensor field ϕ satisfying

ϕ2 = − Id +η ⊗ ξ , η(ξ) = 1 .

In this case, the tangent bundle of M splits as T M = ℋ⊕ ⟨ξ⟩, where ℋ = ker(η) is a 2m-dimensional distribution. We call 
ξ the Reeb vector field and we say that (M, ξ, η,ϕ) is an almost contact manifold.

Remark 3.2. Every almost contact manifold admits a Riemannian metric g which is compatible with the almost contact 
structure in the following sense:

g(ϕ X, ϕY ) = g(X, Y ) − η(X)η(Y ) .

In this situation, η = g(·, ξ) and ℋ = ⟨ξ⟩⊥ . We say that (ξ,η,ϕ, g) is an almost contact metric structure and that (M, ξ, η,ϕ, g)

is an almost contact metric manifold.

Remark 3.3. A choice of almost contact metric structure on a manifold M is equivalent to a choice of U(m)-structure on 
M�-that is, a reduction of the structure group to U(m) × 1.

In particular, note that ϕ|ℋ defines an almost complex structure on ℋ. Furthermore, the fundamental form Φ(X, Y ) =
g(X, ϕY ) defines a hermitian form on ℋ via Φ|ℋ .

Definition 3.4. An α-contact metric structure on a 2m + 1-dimensional smooth manifold M is an almost contact metric 
structure such that

dη = 2αΦ ,

where α ∈R\{0} and Φ(X, Y ) = g(X, ϕY ) is the fundamental form. Note this is a particular case of a contact structure since 
η ∧ (dη)m ≠ 0, and we call η the contact form. We say that M is an α-contact metric manifold.

Definition 3.5. An α-Sasaki structure on a 2m + 1-dimensional smooth manifold M is an α-contact metric structure which 
is normal, meaning that the following quantity vanishes for all vector fields X, Y :

Nϕ(X, Y ) = [ϕ X, ϕY ] + ϕ2[X, Y ] − ϕ[ϕ X, Y ] − ϕ[X, ϕY ] + dη(X, Y )ξ .

In this case we call M an α-Sasaki manifold.

5 
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The vanishing of Nϕ makes ϕ an integrable transverse structure on ℋ, see e.g. [32]. In other words

Theorem 3.6. An α-Sasaki structure admits a locally defined Riemannian submersion π : (M, g) → (N, gN) along 𝒱 := ⟨ξ⟩ such that 
ϕ projects under π and induces a Kähler structure on N.

We will be especially interested in α-Sasaki manifolds of a particular type:

Definition 3.7 ([33]). An α-Sasaki structure on a manifold M is η-Einstein if there are constants λ, ν such that Ricg =
λg + ν η ⊗ η. In this case we call M an η-Einstein α-Sasaki manifold.

Remark 3.8. As shown in [33], every simply connected η-Einstein α-Sasaki manifold M is spin. In Section 5, we will char
acterize these manifolds in terms of the existence of a particular SU(m)-structure that constitutes a reduction from the 
U(m)-structure associated to the metric almost contact structure.

Definition 3.9. An SU(m)-structure (ξ,η,ϕ, g,Φ,Ω) on a 2m + 1-dimensional manifold M is given by an almost contact 
metric structure (ξ,η,ϕ, g) with fundamental form Φ together with a nowhere-vanishing complex m-form Ω. The form Ω
is of type (m,0) with respect to the complex structure on ℋ induced by ϕ and satisfies

1 
m! Φm = (−1)m(m−1)/2 im

2m
Ω ∧ Ω̄ . (3.1)

Remark 3.10. This is in fact equivalent to the usual definition of an SU(m)-structure on M as a reduction of the structure 
group to SU(m) × 1. By [34], the intrinsic torsion of the structure is completely determined by the exterior derivatives of 
the forms Φ and Ω.

We will call a frame adapted to a G-structure if it is a section of the principal bundle associated to that G-structure. For 
SU(m)-structures an orthonormal frame {e1, . . . , e2m+1} is adapted if the dual coframe {eμ}2m+1

μ=1 satisfies

η = e1 , Φ = −
m ∑︂

a=1 
e2a ∧ e2a+1 , Ω = (e3 + i e2) ∧ · · · ∧ (e2m+1 + i e2m) . (3.2)

We will be particularly interested in the situation where we have three different almost contact structures interacting with 
each other. As it turns out these admit just the right amount of flexibility for finding solutions.

Definition 3.11. An almost 3-contact structure on a 4n + 3-dimensional smooth manifold M consists of three almost contact 
structures (ξi, ηi, ϕi)i=1,2,3 that satisfy the compatibility conditions

ϕi ◦ ϕ j = ϕk − η j ⊗ ξi , ηi ◦ ϕ j = ηk . (3.3)

Here and from hereon we employ the convention that (i jk) is an arbitrary even permutation of (123).

Definition 3.12. Every almost 3-contact structure admits a Riemannian metric g which is compatible with each of the three 
almost contact structures. We then call (ξi, ηi, ϕi, g)i=1,2,3 an almost 3-contact metric structure and (M, ξi, ηi, ϕi, g)i=1,2,3 an 
almost 3-contact metric manifold.

We denote the vertical and horizontal spaces of (M, ξi , ηi, ϕi, g)i=1,2,3 as 𝒱 := ⟨ξ1, ξ2, ξ3⟩ and ℋ := 𝒱⊥ =⋂︁3
i=1 kerηi .

Remark 3.13. A choice of almost 3-contact metric structure on a manifold M is equivalent to a choice of Sp(n)-structure on 
M�-that is, a reduction of the structure group to the group Sp(n) × 13.

In particular, we can interpret {ϕi}3
i=1 as an almost hyperhermitian structure on ℋ with fundamental forms Φℋ

i := Φi |ℋ .

We also have a notion of adapted frame for Sp(n)-structures: we say an orthonormal frame {e1, e2, . . . , e4m+3} is adapted 
if the dual coframe {eμ}4m+3

μ=1 satisfies

6 
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ηi = ei , for i ∈ {1,2,3} ,

Φ1 = −η23 −
n ∑︂

r=1 

(︂
e4r+4 ∧ e4r+5 + e4r+6 ∧ e4r+7

)︂
,

Φ2 = −η31 −
n ∑︂

r=1 

(︂
e4r+4 ∧ e4r+6 − e4r+5 ∧ e4r+7

)︂
,

Φ3 = −η12 −
n ∑︂

r=1 

(︂
e4r+4 ∧ e4r+7 + e4r+5 ∧ e4r+6

)︂
,

(3.4)

where ηi j = ηi ∧ η j . Such a frame can always be constructed using the properties (3.3).

4. Characteristic holonomy Sp(1)Sp(1)

In this section we study the heterotic G2 system on 3-(α, δ)-Sasaki manifolds. We begin with a description of these 
manifolds and their most relevant properties before discussing a 1-parameter family of connections ∇λ on the tangent 
bundle. We then specialize our results to dimension 7 and solve the heterotic G2 system using the family ∇λ .

4.1. 3-(α, δ)-Sasaki manifolds

We begin by introducing 3-(α, δ)-Sasaki manifolds and some of their main properties, we refer the reader to [21,35,36] 
for further details.

Definition 4.1. A 3-(α, δ)-Sasaki manifold is an almost 3-contact metric manifold satisfying the differential condition

dηi = 2αΦi + 2(α − δ)η jk = 2αΦℋ
i − 2δη jk , (4.1)

where α and δ are real constants with α ≠ 0.

The definition suggests that δ = 0 is a special case, and we will see this come into effect later on. In fact, we can classify 
3-(α, δ)-Sasaki manifolds in three different types as follows:

Definition 4.2. A 3-(α, δ)-Sasaki manifold is called

a) degenerate if δ = 0,
b) positive if αδ > 0,
c) negative if αδ < 0.

These definitions are motivated by the fact that each type of 3-(α, δ)-Sasaki manifold is invariant under a class of 
deformations called ℋ-homothetic deformations:

Proposition 4.3 ([21]). Let (M, g, ξi, ηi, ϕi)i=1,2,3 be a 3-(α, δ)-Sasaki manifold. Consider the deformed structure tensors

g̃ = c2 g|𝒱 + ag|ℋ , η̃i = c ηi , ξ̃i = 1

c
ξi , ϕ̃i = ϕi .

Then (M, g̃, ξ̃i, η̃i, ϕ̃i)i=1,2,3 is a 3-(α̃, δ̃)-Sasaki manifold with

α̃ = c

a
α , δ̃ = δ

c
.

In particular, the deformed structure is degenerate/positive/negative if and only if the initial structure was.

In addition, we will see in Theorem 4.6 that the parameter αδ is related to the curvature of the base space of a submer
sion, providing further motivation for the classification.

A key property of 3-(α, δ)-Sasaki manifolds is that they admit a particularly well-behaved connection:

Theorem 4.4 ([21]). A 3-(α, δ)-Sasaki manifold (M, g, ξi, ηi, ϕi) admits a unique connection ∇ with skew torsion such that

∇Xϕi = β(ηk(X)ϕ j − η j(X)ϕk) ,

for any even permutation (i jk) of (123) and β = 2(δ − 2α). Its torsion is given by

7 
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T = 2α

3 ∑︂
i=1 

ηi ∧ Φℋ
i + 2(δ − 4α)η123 , (4.2)

and satisfies ∇T = 0.

If β = 0, or equivalently δ = 2α, then ∇ϕi = 0 for all i ∈ {1,2,3} and we call the 3-(α, δ)-Sasaki manifold parallel.

Definition 4.5. The connection above is called the canonical connection.1 We refer to its torsion, curvature and other associ
ated tensors as canonical.

The canonical connection has holonomy Sp(n)Sp(1), whose representation in dimension 4n + 3 is reducible and gives rise 
to a locally defined submersion:

Theorem 4.6 ([35]). A 3-(α, δ)-Sasaki manifold admits a locally defined Riemannian submersion π : (M, g) → (N, gN) with totally 
geodesic fibres tangent to 𝒱 . The base space (N, gN) inherits a quaternionic Kähler structure that is locally given by the almost complex 
structures J i = π∗ ◦ ϕi ◦ s∗ where s is any local section of π .

Furthermore, the canonical connection projects to the Levi-Civita connection on the base in the sense that

∇ gN
X Y = π∗(∇X Y ) ,

where X and Y are the horizontal lifts of X, Y . The scalar curvature of the base space N takes the value scalgN = 16n(n + 2)αδ.

Remark 4.7. The Reeb vector fields satisfy [ξi, ξ j] = 2δξk , see [21]. Thus, if δ ≠ 0 the leaves of the canonical submersion 
defined above are orbits of an SU(2) action. As a result, the leaves are necessarily compact and the leaf space N obtains 
globally the structure of an orbifold.

In the degenerate case δ = 0 the situation is different: the leaves are orbits of the action of a 3-dimensional abelian group 
(e.g. R3 or T 3) and the leaves are not necessarily compact anymore. Furthermore, in this case the base has a hyperkähler 
structure. For a more detailed description of the different possibilities we refer the reader to [37].

As degenerate 3-(α, δ)-Sasaki manifolds are central to our solutions of the heterotic G2-system, we briefly review some 
explicit examples.

Example 4.8 ([21]). The quaternionic Heisenberg group Hn,H is the simply connected Lie group with Lie algebra

𝔥n,H =
⎧⎨
⎩
⎛
⎝0 X

t
Z

0 0 X
0 0 0

⎞
⎠ ∈ 𝔤𝔩(n + 2,H), X ∈Hn, Z ∈ ImH

⎫⎬
⎭ .

Consider Hn,H with its canonical left-invariant metric g induced by the standard scalar product on 𝔥n,H . Let {ξi}i=1,2,3

be an orthonormal basis of ImH ⊂ 𝔥n,H , {ηi}i=1,2,3 its dual and {φi}i=1,2,3 the endomorphisms acting as unit imaginary 
quaternions from the left on H and ImH. Then (M, g, ξi, ηi,φi)i=1,2,3 is a degenerate 3-(α, δ)-Sasaki manifold with α = 1.

This example is non-compact but admits a cocompact lattice.

More generally, degenerate 3-(α, δ)-Sasaki manifolds are obtained via the following construction:

Proposition 4.9 ([38]). Let (N, gN , J1, J2, J3) be a hyperkähler manifold with integer Kähler classes [ωi] ∈ H2(N,Z), i = 1,2,3. 
Let M be the T 3-bundle obtained as a fibre product of the three Boothby-Wang-bundles associated to [ωi]i=1,2,3 . Then M admits a 
degenerate 3-(α, δ)-Sasaki structure with Reeb vector fields tangent to the fibres of M.

The compact quotient of the quaternionic Heisenberg group can be understood as applying Proposition 4.9 to the flat 
hyperkähler torus. In addition, [39, Lemma 2.2] shows that there exists at least one K 3-surface satisfying the requirements 
of Proposition 4.9, providing an additional compact example.

It will be convenient in what follows to study 3-(α, δ)-Sasaki manifolds using a spinorial perspective. The right notion 
of generalized Killing spinor for 3-(α, δ)-Sasaki manifolds was introduced in [40]:

1 The reader should be aware that in other references, such as [19] or [24], the name canonical connection is used to denote different connections.
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Definition 4.10 ([40]). A spinor Ψ in a 3-(α, δ)-Sasaki manifold is said to be ℋ-Killing if it satisfies

∇ g
XΨ = α

2 
X · Ψ + α − δ

2 

3 ∑︂
ℓ=1 

ηℓ(X)Φℓ · Ψ for all X ∈ T M . (4.3)

As explained in Appendix A.3, an almost 3-contact metric manifold can be equivalently described in terms of six spinors 
{Ψi,±}i=1,2,3, where each pair of spinors Ψi,± spans the rank 2 bundle [41]

Ei = {Ψ ∈ Γ(Σ) | (−2 ϕi(X) + ξi · X − X · ξi) · Ψ = 0 for all vectors X} .
The six spinors span together the bundle E = E1 + E2 + E3, which might not be a direct sum. This means that the spinors 
might not be linearly independent, as can be seen from particular examples in [42,43]. We will later see that this is the 
situation in dimension 7.

It was shown in [40] that for every (simply connected) 3-(α, δ)-Sasaki manifold the spinors in the bundle E are ℋ
Killing. This actually characterizes 3-(α, δ)-Sasaki manifolds in the sense of the following proposition:

Proposition 4.11. Let M be an almost 3-contact metric manifold and suppose the spinors {Ψi,±}i=1,2,3 in the bundle E satisfy (4.3)
for some real constants α and δ with α ≠ 0. Then, M is 3-(α, δ)-Sasaki.

Proof. In order to show that (4.1) holds, we first need to compute ∇ g
X ξi . The fact that the spinors Ψi,± satisfy (A.13) will 

prove crucial for this. Taking the covariant derivative of the expression ξi · Ψi,+ = Ψi,− and using the Leibniz rule together 
with the assumption that the spinors satisfy (4.3), we obtain for any X ∈ T M

(︁∇ g
Xξi
)︁ · Ψi,+ = α

2 
(X · ξi − ξi · X) · Ψi,+ + α − δ

2 

3 ∑︂
ℓ=1 

ηℓ(X) (Φℓ · ξi − ξi · Φℓ) · Ψi,+ ,

where we have used (A.13) again to rewrite Ψi,− in terms of Ψi,+ . Using (A.14) and noting that Φ j ·ξi ·Ψ = (︁ξi · Φ j + 2 ξk
)︁ ·Ψ

for any spinor Ψ, we can compute

(︂
∇ g

j ξi

)︂
· Ψi,+ = −α ξi · ξ j · Ψi,+ + α − δ

2 
(︁
Φ j · ξi − ξi · Φ j

)︁ · Ψi,+

= −α ϕi(ξ j) · Ψi,+ + (α − δ) ξk · Ψi,+ = −δ ξk · Ψi,+ ,

and the non-degeneracy of the Clifford product implies that ∇ g
j ξi = −δ ξk . Analogously, one obtains

∇ g
i ξi = 0 , ∇ g

k ξi = δ ξ j , ∇ g
Xξi = −α ϕi(X) for X ∈ ℋ .

Since the connection is metric, we immediately obtain ∇ g
Xηi from these formulas. In particular, note that with our conven

tions for the fundamental form we have ∇ g
Xηi = α Φi(X, ·) for X ∈ℋ. We can then compute in an adapted frame:

dηi =
4n+3∑︂
μ=1 

eμ ∧ ∇ g
eμ

ηi = −δ η j ∧ ηk + δ ηk ∧ η j + α

4n+3∑︂
r=4 

er ∧ Φi(er, ·) = −2 δ η jk + 2 αΦℋ ,

which shows the result. □
This illustrates that the class of manifolds we are interested in can be equivalently described in terms of spinors. In the 

case of dimension 7, these spinors take a very particular form that we will describe in detail later.

4.2. The family of connections ∇λ

We want to introduce a more general family of connections. We define the three-form

φ = η123 +
3 ∑︂

i=1 
ηi ∧ Φℋ

i . (4.4)

This is well-defined in all dimensions, but it is especially important in dimension 7 as then φ constitutes a G2-structure, 
compare [21].
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Proposition 4.12. Let (M, g, ξi, ηi, ϕi)i=1,2,3 be a 3-(α, δ)-Sasaki manifold. Denote by ∇ its canonical connection with skew-torsion 
T and φ as above. Then, there exists a family of metric connections ∇λ, λ ∈ R, with parallel torsion T λ that preserve the splitting 
T M = 𝒱 ⊕ℋ, satisfy ∇φ = 0 and

∇λ
Y ϕi = (β + λ)(ηk(Y )ϕ j − η j(Y )ϕk) . (4.5)

The torsion T λ(X, Y , Z) := g(X, T λ(Y , Z)) has non-zero components

T λ(X, Y , Z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (X, Y , Z) + 2λφ(X, Y , Z) X, Y , Z ∈ 𝒱 ,
T (X, Y , Z) X ∈ 𝒱, Y , Z ∈ ℋ ,
T (X, Y , Z) − λ

2 φ(X, Y , Z) Y ∈ 𝒱, X, Z ∈ ℋ ,
T (X, Y , Z) − λ

2 φ(X, Y , Z) Z ∈ 𝒱, X, Y ∈ ℋ .

(4.6)

These connections are projectable under the canonical submersion π : (M, g) → (N, gN) in the sense that

∇ gN
X Y = π∗(∇λ

X
Y ) . (4.7)

Proof. We obtain ∇λ as the unique metric connection with torsion T λ or equivalently by setting ∇λ = ∇ + Δλ where

Δλ(X, Y , Z) = 1

2
(T λ(X, Y , Z) − T λ(Y , Z , X) + T λ(Z , X, Y ) − T (X, Y , Z))

=

⎧⎪⎨
⎪⎩

λφ(X, Y , Z) X, Y , Z ∈ 𝒱 ,
− λ

2 φ(X, Y , Z) Y ∈ 𝒱, X, Z ∈ ℋ ,
0 else .

(4.8)

We remark that g(X,∇λ
Y Z) = g(X,∇Y Z) when Y ∈ ℋ. This immediately proves (4.7) from the corresponding statement for 

∇ .
We now prove (4.5). If Y ∈ℋ then as above ∇λ

Y ϕi = ∇Y ϕi = 0 so (4.5) holds trivially. Now suppose Y ∈ 𝒱 :

g(X, (∇λ
Y ϕi)Z) = g(X,∇λ

Y (ϕi Z)) − g(X, ϕi∇λ
Y Z)

= g(X, (∇Y ϕi)Z) + Δλ(X, Y , ϕi Z) + Δλ(ϕi X, Y , Z)

= βg(X, (ηk(Y )ϕ j − η j(Y )ϕk)Z) + Δλ(X, Y , ϕi Z) + Δλ(ϕi X, Y , Z) .

When X, Z are of different type, Δλ(X, Y , Z) and Φi(Z , X) = g(Z , ϕi X) both vanish. Therefore, we only need to check for 
X, Z which are both in either 𝒱 or ℋ. If X, Z ∈ℋ

Δλ(X, Y , ϕi Z) + Δλ(ϕi X, Y , Z) = λ

2 

3 ∑︂
ℓ=1 

ηℓ(Y )(Φℓ(X, ϕi Z) + Φℓ(ϕi X, Z))

= −λ(η j(Y )g(X, ϕk Z) − ηk(Y )g(X, ϕ j Z)) ,

where we have used (3.3). If X, Z ∈ 𝒱 then

Δλ(X, Y , ϕi Z) + Δλ(ϕi X, Y , Z) = λ(η123(X, Y , ϕi Z) + η123(ϕi X, Y , Z))

= λ(ηk(Y )(ηk(Z)ηi(X) − ηi(Z)ηk(X)) − η j(Y )(ηi(Z)η j(X) − η j(Z)ηi(X)))

= λg(X, ηk(Y )ϕ j Z − η j(Y )ϕk Z) .

Thus, we have shown (4.5). We then have that ∇λ preserves 𝒱 , as ϕi(∇λξi) = −(∇λϕi)ξi ∈ 𝒱 , and consequently the orthog
onal splitting T M = 𝒱 ⊕ℋ.

To be more precise we have

∇λ
Xξi = −ϕ2

i (∇λ
Xξi) = ϕi(∇λ

Xϕi)ξi = (β + λ)(ηk(X)ξ j − η j(X)ξk) , (4.9)

where we have used that 0 = d(g(ξi, ξi)) = 2ηi(∇λξi).
It remains to show ∇T λ = ∇φ = 0. Observe that ∇λ preserves a given tensor if and only if it preserves its components 

with respect to the splitting T M = 𝒱 ⊕ ℋ. In particular, from (4.2), (4.4) and (4.6) we see that ∇λT λ = ∇λφ = ∇λT = 0 if 
and only if ∇λ

∑︁3
i=1 ηi ∧ Φℋ

i = ∇λη123 = 0. The latter is just the volume form in 𝒱 and thus parallel. Using (4.9) and (4.5)
we find

10 
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∇λ
X (ηi ∧ Φi) = (∇λ

Xηi) ∧ Φi + ηi ∧ (∇λ
XΦi)

= (β + λ)(ηk(X)η j ∧ Φi − η j(X)ηk ∧ Φi + ηk(X)ηi ∧ Φ j − η j(X)ηi ∧ Φk) .

If we sum over all i ∈ {1,2,3} we see that all terms cancel out, and ηi ∧ Φi = ηi ∧ Φℋ
i − η123 yields the result. □

In what follows, we will denote all tensors corresponding to ∇λ by a λ index, such as for example T λ and Rλ .

Remark 4.13. In dimension 7 the family agrees with two other constructions of G2-connections for certain values of the 
parameter λ: 
If λ < 4α then ∇λ is the canonical connection of the 3-(α, δ)-Sasaki structure obtained by the ℋ-homothetic deformation 
with parameters

a = 1 , c =
√︃

1 − λ 
4α

.

Since the deformation changes the metric, ∇λ will not have skew-torsion with respect to the original metric g . However, 
we still have ∇λ g = 0 and ∇λφ = 0. 
If δ ≠ 5α, then ∇λ is given as the 1-parameter family of connections compatible with the G2-structure (4.4), compare [24]. 
In this case λ = (1 + 2a)(5α − δ), where a is the parameter of the family as written in [19].

Lemma 4.14. If Z is a horizonal lift of a vector field on N, Y ∈ 𝒱 and X ∈ℋ then

g(X,∇λ
Y Z) =

(︃
2α − λ

2 

)︃ 3 ∑︂
i=1 

ηi(Y )Φi(Z , X) .

Proof. For a combination of vector fields X, Y , Z as above the canonical connection satisfies (∇Y Z)ℋ = −2α
∑︁3

i=1 ηi(Y )ϕi Z , 
compare [35, Lemma 2.2.1]. Using the notation in the proof of Proposition 4.12 we find

g(X,∇λ
Y Z) = g(X,∇Y Z) + Δλ(X, Y , Z) = 2α

3 ∑︂
i=1 

ηi(Y )Φi(Z , X) − λ

2 
φ(X, Y , Z)

=
(︃

2α − λ

2 

)︃ 3 ∑︂
i=1 

ηi(Y )Φi(Z , X) . □

Lemma 4.15. For tangent vectors X, Y , Z , V ∈ T N with horizontal lifts X, Y , Z , V we have

R gN (X, Y , Z , V ) = Rλ(X, Y , Z , V ) − α(4α − λ)

3 ∑︂
i=1 

Φi(X, Y )Φi(Z , V ) . (4.10)

In particular, Rλ|Λ2ℋ⊗Λ2ℋ is pairwise symmetric.

Proof. We recall from [35] that for X, Y ∈ℋ

[X, Y ]𝒱 = −2α

3 ∑︂
i=1 

Φi(X, Y )ξi .

Using this as well as the identities (4.7) and Lemma 4.14 we find

gN(∇ gN
X ∇ gN

Y Z , V ) = gN(∇ gN
X π∗(∇λ

Y
Z), V ) = g(∇λ

X
π∗(∇λ

Y
Z), V ) = g(∇λ

X
∇λ

Y
Z , V ) ,

gN(∇ gN
[X,Y ] Z , V ) = gN(π∗∇λ

[X,Y ] Z , V ) = g(∇λ

[X,Y ] Z , V ) − g(∇λ

[X,Y ]𝒱 Z , V )

= g(∇λ

[X,Y ] Z , V ) −
(︃

2α − λ

2 

)︃ 3 ∑︂
i=1 

ηi([X, Y ]𝒱 )Φi(Z , V )

= g(∇λ

[X,Y ] Z , V ) + α(4α − λ)

3 ∑︂
i=1 

Φi(X, Y )Φi(Z , V ) .

Combining both identities we obtain (4.10). □
11 
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Observe that α(4α − λ) = −α(β + λ) + 2αδ. As we will soon see these summands relate to the geometry of the fibres 
and base of the canonical submersion, respectively.

Lemma 4.16. We have for X, Y , Z ∈ T M

Rλ(X, Y )ϕi Z − ϕi Rλ(X, Y )Z = 2α(β + λ)(Φℋ
k (X, Y )ϕ j Z − Φℋ

j (X, Y )ϕk Z)

− (β + λ)(4α − λ)(ηi j(X, Y )ϕ j Z − ηki(X, Y )ϕk Z) ,
(4.11)

and for i ∈ {1,2,3}
Rλ(X, Y )ξi = 2α(β + λ)(Φℋ

k (X, Y )ξ j − Φℋ
j (X, Y )ξk)

− (β + λ)(4α − λ)(ηi j(X, Y )ξ j − ηki(X, Y )ξk) .
(4.12)

Consequently we obtain

Rλ(X, Y , Z , V ) = −(β + λ)

(︄
3 ∑︂

i=1 
Φi(X, Y )Φi(Z , V )

)︄⎧⎪⎨
⎪⎩

4α − λ X, Y , Z , V ∈ 𝒱 ,
2α X, Y ∈ ℋ, Z , V ∈ 𝒱 ,
2α − λ

2 X, Y ∈ 𝒱, Z , V ∈ ℋ .
(4.13)

In addition, Rλ(X, Y , Z , V ) vanishes if X, Y or Z , V are of mixed type. Finally, for X, Y , Z ∈ℋ and i ∈ {1,2,3}
Rλ(X, Y , Z , ϕi Z) + Rλ(X, Y , ϕ j Z , ϕk Z) = 2α(β + λ)Φi(X, Y )∥Z∥2 . (4.14)

Proof. We first show (4.11). We compute in analogy to [36]:

Rλ(X, Y )ϕi Z − ϕi Rλ(X, Y )Z = (∇λ
X (∇λ

Y ϕi))Z − (∇λ
Y (∇λ

Xϕi))Z − (∇λ[X,Y ]ϕi)Z

= (β + λ)(X(ηk(Y ))ϕ j + ηk(Y )(∇λ
Xϕ j) − X(η j(Y ))ϕk − η j(Y )(∇λ

Xϕk))Z

− (β + λ)(Y (ηk(X))ϕ j + ηk(X)(∇λ
Y ϕ j) − Y (η j(X))ϕk − η j(X)(∇λ

Y ϕk))Z

− (β + λ)(ηk([X, Y ])ϕ j − η j([X, Y ])ϕk)Z

= (β + λ)(X(ηk(Y )) − Y (ηk(X)) − ηk([X, Y ]))ϕ j Z

− (X(η j(Y )) − Y (η j(X)) − η j([X, Y ]))ϕk Z)

+ (β + λ)2((ηk(Y )ηi(X) − ηk(X)ηi(Y ))ϕk Z + (η j(Y )ηi(X) − η j(X)ηi(Y ))ϕ j Z)

= (β + λ)(dηk(X, Y )ϕ j Z − dη j(X, Y )ϕk Z) − (β + λ)2(ηki(X, Y )ϕk Z − ηi j(X, Y )ϕ j Z)

= (β + λ)
(︁
2α(Φℋ

k (X, Y )ϕ j Z − Φℋ
j (X, Y )ϕk Z)

+ (4α − λ)(ηki(X, Y )ϕk Z − ηi j(X, Y )ϕ j Z)
)︁
,

where in the last step we have used (4.1) and β + λ = 2δ − (4α − λ).
To obtain (4.12), we let (4.11) act on ξi and apply ϕi from the left. Analogously, to show (4.14) it is enough to consider 

(4.11) for the tensor field ϕ j and contract it with ϕk Z .
The first and second lines of (4.13) are immediate from (4.12). For the final line, we may extend Z as a horizontal lift and 

choose the vector fields X, Y in such a way that ηi(X), ηi(Y ) are constant for every i ∈ {1,2,3}. Then we use Lemma 4.14
to obtain

Rλ(X, Y ,Z , V ) = g((∇λ
X∇λ

Y − ∇λ
Y ∇λ

X − ∇λ[X,Y ])Z , V )

= −1

2
(4α − λ)

3 ∑︂
i=1 

g(ηi(Y )∇λ
X (ϕi Z) − ηi(X)∇λ

Y (ϕi Z) − ηi([X, Y ])ϕi Z , V ) .

Observe that while Z is projectable ϕi Z is not. Nevertheless, we have

∇λ
Y (ϕi Z) = (∇λ

Y ϕi)Z + ϕi(∇λ
Y Z)

= (β + λ)(ηk(Y )ϕ j(Z) − η j(Y )ϕk(Z)) − 4α − λ

2 

3 ∑︂
ℓ=1 

ηℓ(Y )ϕiϕℓ Z

= (β + 2α + λ − 1

2
λ)(ηk(Y )ϕ j Z − η j(Y )ϕk Z) + 1

2
(4α − λ)ηi(Y )Z ,

12 
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where we can rewrite β + 2α = 2δ − 2α. We can now insert this formula in the first two terms of the expression of 
Rλ(X, Y , Z , V ), and use that [ξi, ξ j] = 2δξk in the last one to obtain

Rλ(X, Y , Z , V ) = −1

2
(4α − λ)(4δ − 4α + λ)

i, j,k
𝔖 ηi j(X, Y )g(ϕk Z , V )

− δ(4α − λ)
i, j,k
𝔖 η jk(X, Y )Φi(Z , V )

= −1

2
(4α − λ)(4δ − 4α + λ)

3 ∑︂
i=1 

Φi(X, Y )Φi(Z , V )

+ δ(4α − λ)

3 ∑︂
i=1 

Φi(X, Y )Φi(Z , V )

= −1

2
(4α − λ)(β + λ)

3 ∑︂
i=1 

Φi(X, Y )Φi(Z , V ) .

The final statement we need to prove is that R(X, Y , Z , V ) vanishes if X, Y or Z , V are of different type. By (4.12), the 
statement is clear for Z , V . Again using (4.12), we may assume that X ∈ 𝒱 and Y , Z , V ∈ ℋ. Using that ∇λΔλ = 0 and the 
Bianchi identity for ∇ (2.5), we obtain the Bianchi identity for ∇λ

X,Y ,Z
𝔖 R(X, Y , Z , V ) = σT (X, Y , Z , V )+ X,Y ,Z

𝔖 Δλ(V , T λ(X, Y ), Z) ,

where σT (X, Y , Z , V ) is defined in (2.5). For X ∈ 𝒱 , Y , Z , V ∈ℋ we find

2R(X, Y , Z , V ) = 2R(X, Y , Z , V ) − 2R(Z , V , X, Y ) =X,Y ,Z ,V
𝔖

(︃
X,Y ,Z
𝔖 R(X, Y , Z , V )

)︃

=X,Y ,Z ,V
𝔖

(︃
X,Y ,Z
𝔖 Δλ(V , T λ(X, Y ), Z)

)︃
,

as the cyclic sum over all entries of a four-form vanishes. Then a case by case study of (4.8) and (4.6) shows that if exactly 
one of X, Y , Z , V is vertical while the others are horizontal, then Δλ(V , T λ(X, Y ), Z) = 0. □

We denote the curvature operator ℛλ ∈ Λ2T ∗M ⊗ End(T M) given by

g(ℛλ(X, Y )Z , V ) = Rλ(X, Y , Z , V ) .

Lemma 4.17. Let ℛλ
1 ∈ (Λ2𝒱 ⊕ Λ2ℋ) ⊗ (End(𝒱) ⊕ End(ℋ)) ⊂ Λ2T ∗M ⊗ End(T M) be given by

ℛλ
1 = −

[︃
4α − λ 2α

2α − λ
2 α

]︃ 3 ∑︂
i=1 

Φi ⊗ ϕi ,

where the matrix is understood with respect to Λ2𝒱 ⊕ Λ2ℋ → End(𝒱) ⊕ End(ℋ), that is: the entries of the matrix indicate the 
coefficients of the four different components of the operator Φi ⊗ ϕi . Then, the curvature operator ℛλ ∈ Λ2T ∗M ⊗ End(T M) is

ℛλ = (β + λ)ℛλ
1 +ℛ2 ,

where ℛ2 ∈ Λ2ℋ⊗ End(ℋ) is related to the Riemannian curvature operator ℛgN of the base by

ℛ2 = ℛgN + 2αδ

3 ∑︂
i=1 

Φℋ
i ⊗ ϕi|ℋ .

In particular, ℛ2 is independent of λ.

Proof. We observe that by (4.13) all but the Λ2ℋ → End(ℋ)-component of ℛλ are included in (β + λ)ℛλ
1. Then by defini

tion ℛ2 :=ℛλ − (β + λ)ℛλ
1 ∈ Λ2ℋ⊗ End(ℋ). From (4.10) we have for X, Y ∈ℋ

13 
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ℛ2(X, Y ) = ℛλ(X, Y )|ℋ + α(β + λ)

3 ∑︂
i=1 

Φi(X, Y )ϕi |ℋ

= ℛgN (X, Y ) + α((4α − λ) + (β + λ))

3 ∑︂
i=1 

Φi(X, Y )ϕi |ℋ

= ℛgN (X, Y ) + 2αδ

3 ∑︂
i=1 

Φi(X, Y )ϕi |ℋ . □

4.3. Solving the heterotic G2 system

Our discussion so far has been completely general, but we are particularly interested in the case n = 1 corresponding to 
7 dimensions. We therefore fix the dimension for the rest of the section.

The spinorial description of 3-(α, δ)-Sasaki manifolds in dimension 7 is well understood [21]. As shown in [40], in this 
case the bundle E has rank 3 and is spanned by the auxiliary spinors, see Appendix A.3 for a more explicit description. They 
are conventionally denoted as ψi , where one should note that ψi ∈ E j ∩ Ek , but ψi / ∈ Ei . They are ℋ-Killing spinors, and 
using (A.16) in (4.3) we see they satisfy:

∇ g
Xψi = α

2 
X · ψi for X ∈ ℋ , ∇ g

ξi
ψi = 2α − δ

2 
ξi · ψi , ∇ g

ξ j
ψi = 3δ − 2α

2 
ξ j · ψi , for j ≠ i .

In addition, 3-(α, δ)-Sasaki manifolds possess a fourth generalized Killing spinor determined by ψ0 = −ξi · ψi for any of the 
auxiliary spinors. This is known as the canonical spinor and from (A.15) applied to (4.3) it satisfies

∇ g
Xψ0 = −3α

2 
X · ψ0 for X ∈ ℋ , ∇ g

Y ψ0 = 2α − δ

2 
Y · ψ0 for Y ∈ 𝒱 .

The canonical spinor is essential to us since it generates via (A.7) the canonical G2-structure φ of a 7-dimensional 3-(α, δ)
Sasaki manifold. This is the G2-structure given precisely by the formula (4.4). Note that, with respect to the standard volume 
form e1···7 = − 1 

3!ηi ∧ Φ3
i , the coassociative four-form is given by

ψ =i, j,k
𝔖 Φℋ

i ∧ η jk + 1

6

3 ∑︂
ℓ=1 

Φℋ
ℓ ∧ Φℋ

ℓ . (4.15)

It was shown in [21] that the canonical G2-structure is coclosed and that its associated characteristic connection agrees with 
the canonical connection from Definition 4.5. As a result, the characteristic G2-connection has reducible holonomy inside 
Sp(1)Sp(1).

Proposition 4.18. The canonical G2-structure φ in (4.4) is coclosed with torsion classes

τ1 = τ2 = 0 , τ0 = 12

7 
(2α + δ) , τ3 = (10α − 2δ)

(︃
η123 − 1

7
φ

)︃
. (4.16)

Proof. Using (4.1) it is immediate to compute dφ and dψ and identify the torsion classes. Alternatively, one can obtain the 
torsion classes directly from the spinors using the formulas from [44]. □

We will later require the exterior derivative of the torsion (2.2):

Lemma 4.19 ([21]). The torsion of the characteristic G2-connection is

T c = 2(δ − 4α)η123 + 2α

3 ∑︂
ℓ=1 

ηℓ ∧ Φℋ
ℓ ,

and its exterior derivative is

dT c = 4αβ 
i, j,k
𝔖 Φℋ

i ∧ η jk + 4α2
3 ∑︂

ℓ=1 
Φℋ

ℓ ∧ Φℋ
ℓ . (4.17)

14 
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Remark 4.20. Each of the auxiliary spinors ψi gives rise to a different G2-structure φi := η123 + 2ηi ∧ Φℋ
i −∑︁3

ℓ=1 ηℓ ∧ Φℋ
ℓ

which can also be considered. Each φi becomes nearly parallel for the choice of parameters α = δ corresponding to a 
3-α-Sasaki manifold.

The canonical G2-structure, on the other hand, becomes nearly parallel if and only if δ = 5α. In the case of squashed 
3-Sasaki manifolds, this choice of parameters corresponds to a metric that, in the literature, is sometimes referred to as the 
“other'' Einstein metric.

In dimension 7 the dimension of ℋ�-or equivalently the dimension of the base N of the canonical submersion—is 4. 
Therefore, we may split the space of two-forms Λ2ℋ = Λ2N = Λ2+ ⊕ Λ2− into self-dual and anti-self-dual two-forms. Note 
that in this case Λ2+ ∧ Λ2− = 0. Furthermore, {Φℋ

i } is a basis of Λ2+ that satisfies Φℋ
i ∧ Φℋ

j = 0 for all i ≠ j.

Lemma 4.21. We have Λ2𝒱 ⊕ Λ2+ ⊂ kerℛ2 and Λ2− ⊂ kerℛλ
1 .

Proof. Since ℛ2 ∈ Λ2ℋ⊗ End(ℋ) we have Λ2𝒱 ∈ ker(ℛ2). Note that for any orthonormal coframe {eμ}4n+3
μ=1 the horizontal 

part of the fundamental form is given as Φℋ
i = − 1

4

∑︁4n+3
r=4

(︁
er ∧ ϕier + ϕ jer ∧ ϕker

)︁
. Additionally, we observed in Lemma 4.15

that Rλ|Λ2ℋ⊗Λ2ℋ has pair symmetry. Applying (4.14) and |Φℋ
i |2 = 2n we thus find

ℛλ(Φℋ
i )|ℋ = −1

4

4n+3∑︂
r=4 

(︁ℛλ(er ∧ ϕie
r)|ℋ +ℛλ(ϕ je

r ∧ ϕker)|ℋ
)︁

= 1

2
α(β + λ)4n ϕi |ℋ = (β + λ)ℛλ

1(Φℋ
i )|ℋ ,

and we find Φℋ
i ∈ kerℛ2. On the other hand, we have Φi(Λ

2−) = 0 proving the final claim. □
Proposition 4.22. Let (M, ξi, ηi, ϕi, g)i=1,2,3 be a 3-(α, δ)-Sasaki manifold. The family of connections ∇λ satisfies

ℛλ ∧ ψ = − (β + λ)
λ

2 

i, j,k
𝔖

(︃
Φℋ

i ∧ Φℋ
i ∧ η jk ⊗

(︃
ϕi|𝒱 + 1

2
ϕi|ℋ
)︃)︃

. (4.18)

Thus, ∇λ is a G2-instanton for the canonical G2-structure if and only if λ ∈ {0,−β}.

Proof. Note from (4.15) that ψ ∈ Λ2+ ∧ Λ2+ ⊕ Λ2+ ∧ Λ2𝒱 , so we immediately have ℛ2 ∧ ψ = 0. Observing that Φℋ
i ∧ Φℋ

i =
2dvolℋ for all i ∈ {1,2,3}, we find

ℛλ
1 ∧ ψ =i, j,k

𝔖

(︃
(4α − λ)η jk ∧ 1

2
Φℋ

i ∧ Φℋ
i − 2αΦℋ

i ∧ Φℋ
i ∧ η jk

)︃
⊗ ϕi|𝒱

+ i, j,k
𝔖

(︃(︃
2α − λ

2 

)︃
η jk ∧ 1

2
Φℋ

i ∧ Φℋ
i − αΦℋ

i ∧ Φℋ
i ∧ η jk

)︃
⊗ ϕi|ℋ

= − 
λ

2 

i, j,k
𝔖 Φℋ

i ∧ Φℋ
i ∧ η jk ⊗

(︃
ϕi|𝒱 + 1

2
ϕi|ℋ
)︃

.

The result follows as ℛλ = (β + λ)ℛλ
1 +ℛ2. □

Remark 4.23. The exact G2-instantons coincide if and only if β = 0, or equivalently δ = 2α. For λ = 0 the instanton is 
precisely the canonical connection ∇ of the given 3-(α, δ)-Sasaki manifold. For positive 3-(α, δ)-Sasaki manifolds the λ =
−β G2-instanton can be understood as the canonical connection of the ℋ-homothetic deformation into a parallel 3-(α, δ)
Sasaki manifold.

Lemma 4.24. 

tr(ℛλ ∧ℛλ) = 12α(β + λ)2
i, j,k
𝔖
(︂
(4α − λ)η jk ∧ Φℋ

i − αΦℋ
i ∧ Φℋ

i

)︂
+ tr(ℛ2 ∧ℛ2) . (4.19)

Proof. We identify Endskew(T M) with Λ2T ∗M via the metric. Then, the image of ℛλ
1 lies in Λ2+ ⊕ Λ2𝒱 whereas the im

age of ℛ2 lies in Λ2− . Since these spaces are orthogonal with respect to the metric in Λ2, so are their corresponding 
endomorphisms with respect to the trace metric. In particular, tr(ℛλ

1 ∧ℛ2) = 0. Thus,

tr(ℛλ ∧ℛλ) = (β + λ)2 tr(ℛλ
1 ∧ℛλ

1) + tr(ℛ2 ∧ℛ2) .

15 
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We compute

tr(ℛλ
1 ∧ℛλ

1|ℋ) =i, j,k
𝔖

(︃
α2Φℋ

i ∧ Φℋ
i − α 

1

2
(4α − λ)Φℋ

i ∧ η jk − 1

2
(4α − λ)α η jk ∧ Φℋ

i

)︃
tr(ϕ2

i |ℋ)

= −4α
i, j,k
𝔖
(︂
αΦℋ

i ∧ Φℋ
i − (4α − λ)Φℋ

i ∧ η jk

)︂
,

tr(ℛλ
1 ∧ℛλ

1|𝒱 ) =i, j,k
𝔖
(︂

4α2Φℋ
i ∧ Φℋ

i − 2α(4α − λ)Φℋ
i ∧ η jk − (4α − λ)2α η jk ∧ Φℋ

i

)︂
tr(ϕ2

i |𝒱 )

= −8α
i, j,k
𝔖
(︂
αΦℋ

i ∧ Φℋ
i − (4α − λ)Φℋ

i ∧ η jk

)︂
,

and adding them we obtain (4.19). □
Theorem 4.25. Let α′ > 0 and let (M, g, ξi, ηi, ϕi)i=1,2,3 be a degenerate 7-dimensional 3-(α, δ)-Sasaki manifold with its canonical 
G2-structure φ and canonical connection ∇ with torsion T . If α2 = 1 

12α′ , then

[(M,φ), (T M,∇−β), (T M,∇), T ] ,
where β = 2(δ − 2α), is a solution to the heterotic G2 system.

Proof. We have already seen that ∇ = ∇0 and ∇−β are G2-instantons. Hence, we only have to check the heterotic Bianchi 
identity. On the right hand side we have by (4.19)

α′

4 
(tr(ℛ−β ∧ℛ−β) − tr(ℛ0 ∧ℛ0))

= α′

4 
(tr(ℛ2 ∧ℛ2) − 12αβ2

i, j,k
𝔖 (4α η jk ∧ Φℋ

i − αΦℋ
i ∧ Φℋ

i ) − tr(ℛ2 ∧ℛ2))

= 3α2β2α′ i, j,k
𝔖
(︂
Φℋ

i ∧ Φℋ
i − 4η jk ∧ Φℋ

i

)︂
,

whereas the left-hand side is given by (4.17). Equating the coefficients of the forms we get two equations

4α2 = 3α2β2α′ , 4αβ = −12α2β2α′ ,
which have a real solution if and only if δ = 0. In this case, α2 = 1 

12α′ . □
Remarks 4.26. We obtain exact solutions for arbitrary parameter α′ . Using (4.16) we see that in our solutions τ 2

0 ∼ 1 
α′ , and 

by Remark 2.12 this means that the 3-dimensional cosmological constant is inversely proportional to the string parameter, 
Λ ∼ 1 

α′ . This means that in the α′ → 0 limit, the AdS3 radius goes to zero and the spacetime becomes singular. This feature 
is also present in other solutions to the heterotic system in the literature, see for example [19].

It is interesting to study the behaviour of the string parameter under the ℋ-homothetic deformations introduced in 
Proposition 4.3. With respect to global scaling, i.e. a = c2, taking c → 0 we have α → ∞, implying α′ → 0. Thus, a collapsing 
limit for M corresponds to a small string parameter. In addition, any ℋ-homothetic deformation with c

a → ∞ recovers the 
limit α′ → 0. This means that a small string parameter can also be obtained by sufficiently enlarging the fibres of the 
3-(α, δ)-Sasaki manifold relative to the base space.

Apart from exact solutions we can consider approximate solutions in the sense of Definition 2.11. We will be able to 
find these on both positive and negative 3-(α, δ)-Sasaki manifolds. We first study which pairs of connections (A,Θ)�-with 
A being one of the instantons in Proposition 4.22�-provide solutions to the heterotic Bianchi identity:

Proposition 4.27. Let α′ > 0 and let (M, g, ξi, ηi, ϕi)i=1,2,3 be a 7-dimensional 3-(α, δ)-Sasaki manifold. Then the following pairs of 
connections solve the heterotic Bianchi identity (2.3) with H = T :

i) (A,Θ) = (︁∇−β,∇λ
)︁

with λ = 2δ and the additional condition 1 
α′ = 12(δ − α)2 .

ii) (A,Θ) = (︁∇,∇λ
)︁

with λ = −β ±
√︂

β2 + 4 
3α′ , provided that α and δ can be chosen such that 4 

3α′ = −β2 + 2δ(δ + β) ±
2
√︁

δ3(δ + 2β) for some choice of sign.

Proof. In both cases the left-hand side of the Bianchi identity is given by (4.17), and using Lemma 4.24 we see that the 
ℛ2 terms on the right-hand side cancel out. Equating the coefficients of the forms, we obtain a system of two algebraic 
equations.
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For i), the equations are

4α2 = 3α′α2(β + λ)2 , 4αβ = 3α′α(β + λ)2(λ − 4α) ,

and these are easily solved to yield the result.
For ii), the equations are

4α2 = 3α′α2((β + λ)2 − β2) , 4αβ = −3α′α(λ(β + λ)2 − 4α((β + λ)2 − β2)) .

Solving the first equation provides the desired value of λ. Plugging this into the second equation gives, after some manipu
lation, a quadratic equation for 4 

3α′ whose solution is the constraint we wanted. □
Remark 4.28. The heterotic Bianchi identity can never be solved with our families of connections for the choice α = δ

corresponding to a 3-α-Sasaki manifold. Therefore, including deformations beyond global rescaling proves essential to obtain 
solutions.

We obtain approximate solutions for the first case in Proposition 4.27.

Theorem 4.29. Let α′ > 0 and let (M, g, ξi, ηi, ϕi)i=1,2,3 be a 7-dimensional 3-(α, δ)-Sasaki manifold with its canonical G2-structure 
φ and canonical connection ∇ with torsion T . Consider δ = δ(α′) such that δ = 𝒪(α′) 5

2 as α′ → 0, and take α = δ − 1 √
12α′ . Then, 

for the choice λ = 2δ the quadruple

[(M,φ), (T M,∇−β), (T M,∇λ), T ]
is an approximate solution to the heterotic G2 system.

Proof. By Proposition 4.27, the chosen connections satisfy the heterotic Bianchi identity. On the other hand, Proposition 4.22
shows that ∇−β is a G2-instanton and it only remains to verify that the instanton condition on the connection ∇λ is satisfied 
up to first order in α′ . From (4.18) we obtain

|ℛλ ∧ ψ |g = 8 | (δ − α)δ| 
⃓⃓⃓
⃓⃓dvolℋ ∧

3 ∑︂
i=1 

(︃
η jk ⊗ (Φi|𝒱 + 1

2
Φi|ℋ)

)︃⃓⃓⃓⃓⃓
g

= 48 |δ − α| |δ| .

As α′ → 0, we have that |δ − α| = 1 √
12α′ = 𝒪(α′)− 1

2 and |δ| = 𝒪(α′) 5
2 . This immediately ensures that (2.4) is satisfied and 

finishes the proof. □
Remarks 4.30. There are several possible choices of δ that yield valid approximate solutions as α′ → 0, the simplest one 
being δ = (︁α′)︁ 5

2 .
Note from (4.16) that for these solutions the torsion class τ0 blows up as α′ → 0. This is the same behaviour as the exact 

solution we obtained earlier.
Finding an approximate G2-instanton for the second case in Proposition 4.27 does not seem possible. The reason is that 

the term 
√︂

β2 + 4 
3α′ is always at least 𝒪(α′)− 1

2 as α′ → 0, so one would need λ =𝒪(α′) 5
2 as α′ → 0. However, this appears 

to be unfeasible since we must also impose the intricate relation between α′ , δ and β we found earlier.

5. Characteristic holonomy SU(3)

In this section we study the heterotic G2 system on spin η-Einstein α-Sasaki manifolds. To do so, we first describe these 
manifolds in terms of two constants (α, δ) in complete analogy with the 3-(α, δ)-Sasaki manifolds in the previous section. 
We then introduce once again a 1-parameter family of connections ∇λ on the tangent bundle, and after specializing to 
dimension 7 we find approximate solutions to the heterotic G2 system.

5.1. (α, δ)-Sasaki manifolds

We begin with the following definition:

Definition 5.1. A 2m + 1-dimensional manifold M is (α, δ)-Sasaki if it has an SU(m)-structure (ξ,η,ϕ, g,Φ,Ω) (see Defini
tion 3.9) satisfying

dη = 2α Φ , dΩ = (m + 1)iδ η ∧ Ω , (5.1)

where α and δ are real constants with α ≠ 0, and the structure corresponds to a generalized Killing spinor in the sense of 
Appendix A.2.
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Remark 5.2. In [45] the authors argue that the defining spinor of an SU(m)-structure with dΦ = 0 and d(η ∧ Ω) = 0 should 
be generalized Killing. However, the statement is proved only in the real analytic case and in dimension 5, see [46]. We 
expect the assumption on the spinor in the previous definition to be redundant.

Remark 5.3. It is essential to note that (α, δ)-Sasaki manifolds are precisely the spin η-Einstein α-Sasaki manifolds, so 
Definition 5.1 is equivalent to Definition 3.7 in this case. Indeed: as observed in [34] (see also [46] for the 5-dimensional 
case), the U(m)-structure associated to the α-Sasaki structure of a spin η-Einstein α-Sasaki manifold can be further reduced 
to an SU(m)-structure. In addition, [34] shows that the intrinsic torsion of the SU(m)-structure takes a very particular form 
and depends on two real parameters (λ,μ). Conversely, we will show that an (α, δ)-Sasaki manifold is η-Einstein α-Sasaki. 
One then can check that (λ,μ) = (2α,−(m + 1)δ). We will refer to spin η-Einstein α-Sasaki manifolds as (α, δ)-Sasaki 
manifolds to stress the dependence on the parameters (α, δ).

Remark 5.4. Decomposing the holomorphic volume form in its real and imaginary parts, Ω = Ω+ + i Ω− , the last equation 
in (5.1) reads

dΩ+ = −(m + 1)δ η ∧ Ω− , dΩ− = (m + 1)δ η ∧ Ω+ ,

By definition, an (α, δ)-Sasaki manifold is determined by a generalized Killing spinor Ψ. The following proposition ex
pands on the specific form of that Killing spinor.

Proposition 5.5. Let M be a 2m + 1-dimensional (α, δ)-Sasaki manifold. Then, M admits a generalized Killing spinor Ψ satisfying

∇ g
XΨ = (−1)m+1 α

2 
X · Ψ , ∇ g

ξ Ψ = (−1)m m α − (m + 1)δ

2 
ξ · Ψ , (5.2)

where X ∈ℋ = ker(η) and ξ is the Reeb vector field.
Conversely, if (M, g) is a 2m + 1-dimensional (oriented) Riemannian spin manifold with a nowhere-vanishing pure Dirac spinor Ψ

satisfying (5.2)�-where α and δ are real constants with α ≠ 0�-then M is an (α, δ)-Sasaki manifold.

Proof. We first prove the converse: assume that M has a nowhere-vanishing pure Dirac spinor Ψ satisfying (5.2), which 
means

S(ξ) = (−1)m (mα − (m + 1)δ) ξ , S(X) = (−1)m+1α X for all X ∈ ℋ ,

where S is the endomorphism introduced in Definition A.1. As explained in Appendix A.2, the spinor Ψ defines an SU(m)
structure on M whose intrinsic torsion is encoded by ∇ gΨ [45]. We can now use the formulas in Lemma A.8 to compute 
the exterior derivatives of η and Ω. For example, working in the adapted frame given in (3.2) we have

dη =
2m+1∑︂
μ=1 

eμ ∧ ∇ g
eμ

η =
2m+1∑︂
μ=1 

eμ ∧ (︁(−1)m+1 S(eμ)⌟Φ
)︁= 2m+1∑︂

a=2 
ea ∧ (α ea⌟Φ) = 2α Φ .

The computation of dΩ is analogous and we recover the expressions (5.1), showing that M is an (α, δ)-Sasaki manifold.
Assume now we have an (α, δ)-Sasaki manifold M . Its SU(m)-structure is equivalently described by a generalized Killing 

spinor Ψ whose derivative encodes the intrinsic torsion of the SU(m)-structure. Since the forms Φ and Ω satisfy (5.1), the 
computation above shows that ∇ gΨ must be of the form (5.2), finishing the proof. □
Corollary 5.6. An (α, δ)-Sasaki manifold is α-Sasaki, in particular the Nijenhuis-tensor N vanishes.

Proof. Using the specific form of the generalized Killing spinor and Lemma A.8 we have ∇ g
XΦ = α η ∧ X♭ . By the Chinea

Gonzalez classification [47], we have that (M, g, ξ, η,ϕ) is α-Sasaki. □
Remark 5.7. Every (α, δ)-Sasaki manifold admits a second generalized Killing spinor Ψ̄ satisfying

∇ g
X Ψ̄ = α

2 
X · Ψ̄ , ∇ g

ξ Ψ̄ = − 
m α − (m + 1)δ

2 
ξ · Ψ̄ , (5.3)

where X ∈ℋ = ker(η) and ξ is the Reeb vector field.
Both Ψ and Ψ̄ are Sasakian quasi-Killing spinors in the sense of [48] with (a,b) = ((−1)m+1 α

2 , (−1)m m+1
2 (α − δ)) for Ψ

and (a,b) = ( α
2 ,− m+1

2 (α − δ)) for Ψ̄. Some of the results in [48] follow as particular cases of our description. For example, 
[48, Theorem 6.14] corresponds to equations (5.2) and (5.3) for the choices α = 1/a and δ = 1 (note however that with our 
conventions the endomorphism S has an additional global minus sign compared to that of [48]).

In particular, the case α = δ = 1 corresponds to Sasaki–Einstein manifolds [49], which admit two Killing spinors with 
Killing constant of the same sign for odd m and of opposite sign for even m.
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Employing the techniques of [48], we can use the spinor Ψ to compute the Ricci tensor in terms of the parameters (α, δ). 
Our language simplifies the proof given in [48].

Proposition 5.8 ([48]). The Ricci curvature of an (α, δ)-Sasaki manifold is given by

Ricg(α, δ) = 2α((m + 1)δ − α)gℋ + 2mα2 g𝒱 . (5.4)

Proof. We use the 1/2-Ricci formula obtained in [48]:

1

2
Ricg(X) · Ψ = D

(︁∇ g
XΨ
)︁− ∇ g

X (DΨ) −
2m+1∑︂
μ=1 

eμ · ∇ g
∇ g

eμ X
Ψ ,

where here X ∈ Γ(T M). The proof follows the idea of [48, Lemma 6.4] and is most conveniently performed in an adapted 
frame. We first consider the case X = ξ . A direct computation using (5.2) and the Clifford relations (A.1) gives the action of 
the Dirac operator on Ψ

DΨ = ξ · ∇ g
ξ Ψ +

2m+1∑︂
a=2 

ea · ∇ g
eaΨ = (−1)m m α − (m + 1)δ

2 
ξ · ξ · Ψ − (−1)m α

2 

2m+1∑︂
a=2 

ea · ea · Ψ

= −(−1)m m α + (m + 1)δ

2 
Ψ ,

and using (5.2) again we find

∇ g
ξ (DΨ) =

(︃
m α − (m + 1)δ

2 

)︃(︃
m α + (m + 1)δ

2 

)︃
ξ · Ψ .

To compute the other terms in the formula, we need the covariant derivative of ξ , which can be obtained from the formulas 
in Lemma A.9 and it is simply the usual covariant derivative of the Reeb vector field of an α-Sasaki manifold

∇ g
Xξ = −α ϕ(X) ,

where X ∈ Γ(T M). The last term becomes

2m+1∑︂
μ=1 

eμ · ∇ g
∇ g

eμξ
Ψ = −α

2m+1∑︂
a=2 

ea · ∇ g
ϕ(ea)

Ψ = (−1)m α2

2 

2m+1∑︂
a=2 

ea · ϕ(ea) · Ψ = (−1)m+1α2 Φ · Ψ ,

and observing that

D (ξ · Ψ) =
2m+1∑︂
μ=1 

eμ · ∇ g
eμ

(ξ · Ψ) =
2m+1∑︂
a=2 

ea · (−α ϕ(ea)) · Ψ +
2m+1∑︂
μ=1 

eμ · ξ · ∇ g
eμ

(Ψ)

= 2α Φ · Ψ + (−1)m m α − (m + 1)δ

2 
ξ · ξ · ξ · Ψ + (−1)m+1 α

2 

2m+1∑︂
a=2 

ea · ξ · ea · Ψ

= 2α Φ · Ψ + (−1)m+1 m α − (m + 1)δ

2 
ξ · Ψ + (−1)m+1 α m ξ · Ψ

= 2α Φ · Ψ + (−1)m+1 3m α − (m + 1)δ

2 
ξ · Ψ ,

we obtain

D
(︂
∇ g

ξ Ψ
)︂

= (−1)m m α − (m + 1)δ

2 
D (ξ · Ψ)

= (−1)m (m α − (m + 1) δ)α Φ · Ψ −
(︃

m α − (m + 1)δ

2 

)︃(︃
3m α − (m + 1)δ

2 

)︃
ξ · Ψ .

Combining these formulas we find

1

2
Ricg(ξ) · Ψ = (−1)m(m + 1) (α − δ)α Φ · Ψ − (m α − (m + 1)δ)m α ξ · Ψ .

Recall that Ψ is a section of Σ0 in the language of [48], see Lemma A.4 for the characterization of Σ0. This means that

19 



M. Galdeano and L. Stecker Journal of Geometry and Physics 217 (2025) 105635 

Φ · Ψ = m(−1)m ξ · Ψ ,

and we can therefore rewrite

1

2
Ricg(ξ) · Ψ = m α2 ξ · Ψ .

We can then read the vertical component of the Ricci tensor. The computation for X ∈ ℋ is analogous but it requires some 
knowledge of the covariant derivatives of the other terms in the frame. From Lemma A.9 we can write

∇ g
X ea = −α g(X, ϕ(ea)) ξ +

2m+1∑︂
b=2 

g(∇ g
X ea, eb) eb ,

for X ∈ Γ(T M) and a ∈ {2, . . . ,2m + 1}. The terms in the 1/2-Ricci formula are

D
(︁∇ g

eaΨ
)︁= (−1)m α2

2 
ϕ(ea) · ξ · Ψ + (−1)m+1 α

2 

2m+1∑︂
μ=1 

2m+1∑︂
b=2 

g(∇ g
X ea, eb) eμ · eb · Ψ

+ α 
(m − 2)α + (m + 1)δ

4 
ea · Ψ ,

∇ g
a (DΨ) = −α 

m α + (m + 1)δ

4 
ea · Ψ ,

2m+1∑︂
μ=1 

eμ · ∇ g
∇ g

eμ ea
Ψ = (−1)m+1 α 

m α − (m + 1)δ

2 
ϕ(ea) · ξ · Ψ

+ (−1)m+1 α

2 

2m+1∑︂
μ=1 

2m+1∑︂
b=2 

g(∇ g
X ea, eb) eμ · eb · Ψ ,

and note that the terms including g(∇ g
X ea, eb) cancel out once these expressions are introduced in the 1/2-Ricci formula. 

We obtain

1

2
Ricg(ea) · Ψ = (−1)m m + 1

2 
α (α − δ) ϕ(ea) · ξ · Ψ + α 

(m − 1)α + (m + 1)δ

2 
ea · Ψ .

The characterization of Σ0 in Lemma A.4 implies that

ϕ(ea) · ξ · Ψ = (−1)m+1ea · Ψ ,

and using this property we can rewrite

1

2
Ricg(ea) · Ψ = ((m + 1)δ − α)α ea · Ψ ,

showing the result. □
Remark 5.9. Note the Ricci curvature is that of an η-Einstein α-Sasaki manifold with λ = 2α((m + 1)δ − α) and ν = 2(m +
1)α(δ − α).

At this stage it is illustrative to highlight the similarities between our treatment of (α, δ)-Sasaki manifolds and 3-(α, δ)
Sasaki manifolds. First of all, for an (α, δ)-Sasaki manifold the parameter αδ determines the transverse Kähler geometry in 
exactly the same way as for 3-(α, δ)-Sasaki manifold it determines the transverse quaternionic Kähler geometry.

Remark 5.10. From (5.4), using the O’Neill formulas one finds that the Ricci curvature of the Kähler base space is given by

RicgN (X, Y ) = 2α((m + 1)δ − α)gN(X, Y ) + 1

2
g(T (X, ξ), T (Y , ξ))

= 2α((m + 1)δ − α)gN(X, Y ) + 2α2 g(ϕ X, ϕY ) = 2(m + 1)αδ gℋ .

In particular, here the base is Kähler–Einstein. Furthermore, it shows the parameter αδ is directly related to the curvature 
of the base space and it motivates the distinction of three different cases in complete analogy with Definition 4.2:

a) If δ = 0, the manifold is null α-Sasaki.
b) If αδ > 0, the manifold is positive α-Sasaki.
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c) If αδ < 0, the manifold is negative α-Sasaki.

One can therefore regard δ = 0 as a ``degenerate'' case where M is a contact Calabi–Yau manifold [50] and the second 
equation in (5.1) simplifies to dΩ = 0. This is analogous to the role the parameter δ plays for 3-(α, δ)-Sasaki manifolds.

Contact Calabi–Yau manifolds have recently gathered some attention in relation to string theory models, see [18,51,52]. 
One of their main advantages is that in dimension 7 the associated G2-structure can be studied via techniques of Calabi–Yau 
geometry.

For (α, δ)-Sasaki manifolds we obtain an analogue of Proposition 4.3 for an appropriate definition of ℋ-homothetic 
deformations:

Proposition 5.11. Let (M, ξ, η,ϕ, g,Φ,Ω) be an (α, δ)-Sasaki manifold. Consider the deformed structure tensors

g̃ = c2 g|𝒱 + ag|ℋ, η̃ = c η, ξ̃ = 1

c
ξ, ϕ̃ = ϕ, Ω̃ = a

m
2 Ω .

Then (M, g̃, ξ̃ , η̃, ϕ̃, Φ̃, Ω̃) is an (α̃, δ̃)-Sasaki manifold with

α̃ = c

a
α, δ̃ = δ

c
.

In particular, the deformed structure is null/positive/negative if and only if the initial structure is.

Proof. Combining g̃ and ϕ̃ we find Φ̃ = a Φ, and from (3.1) we see that (g̃, ξ̃ , η̃, ϕ̃, Φ̃, Ω̃) defines an SU(m)-structure on M . 
Substituting the forms (η,Φ,Ω) in terms of (η̃, Φ̃, Ω̃) in (5.1), we find the stated values of α̃ and δ̃. □

Since (α, δ)-Sasaki manifolds are α-Sasaki, they admit a distinguished connection with skew torsion. This connection can 
be seen as the analogue of the canonical connection of 3-(α, δ)-Sasaki manifolds.

Theorem 5.12 ([3]). An α-Sasaki manifold (M, g, ξ, η,ϕ) admits a unique connection ∇ with skew torsion preserving the α-Sasaki 
structure, ∇ξ = 0, ∇η = 0, ∇ϕ = 0. The torsion tensor is parallel ∇T = 0 and is given by

T = η ∧ dη = 2α η ∧ Φ . (5.5)

Definition 5.13. We call the connection above the Sasaki connection and refer to its torsion, curvature and other associated 
tensors as Sasaki.

Note that this connection does not preserve in general the SU(m)-structure since it does not parallelize the associated 
spinor Ψ [3]. Indeed, using the formula for ∇ gΩ in Lemma A.8 and the explicit form of the torsion (5.5), we can compute 
the covariant derivative

∇ξΩ = −i (2m α − (m + 1)δ)Ω , ∇XΩ = 0 , for all X ∈ ℋ .

We find that the Sasaki connection preserves the underlying SU(m)-structure if and only if δ = 2m 
m+1 α. This subfamily of 

manifolds where the Sasaki connection parallelizes additional forms is the (α, δ)-Sasaki analogue of parallel 3-(α, δ)-Sasaki 
manifolds and it will play an important role later.

Remark 5.14. We summarize here some specific values of α and δ that correspond to distinguished types of (α, δ)-Sasaki 
manifolds.

• The case α = δ = 1 corresponds to Sasaki–Einstein manifolds [49]. Similarly, the case α = δ is just a global rescaling of 
a Sasaki–Einstein manifold.

• The degenerate case δ = 0 corresponds to (spin) null η-Einstein α-Sasaki manifolds. This is the case of contact Calabi--
Yau manifolds first introduced in [50].

• The case δ = 2m 
m+1 α corresponds to manifolds where the Sasaki connection preserves the underlying SU(m)-structure 

[3]. The case with m = 3 and α = 1 has been further considered in [53].

These cases are represented schematically in Fig. 2.

21 



M. Galdeano and L. Stecker Journal of Geometry and Physics 217 (2025) 105635 

δ

α

1

1

Sasaki–Einstein

δ
=

2m
 

m
+1

α

α
= δ

positive

null

negative

Fig. 2. Distinguished values of (α, δ) for an (α, δ)-Sasaki manifold. 

5.2. The family of connections ∇λ

In analogy to Proposition 4.12 we look at the following family of connections, which are well-defined not just for (α, δ)
Sasaki manifolds but for any α-Sasaki manifold in arbitrary dimension 2m + 1.

Lemma 5.15. Let (M, ξ, η,ϕ, g) be an α-Sasaki manifold. Then there exists a family of metric connections ∇λ with ∇λϕ = ∇λξ =
∇λη = 0 and parallel torsion given by

T λ(X, Y , Z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (X, Y , Z) X ∈ 𝒱, Y , Z ∈ ℋ ,
T (X, Y , Z) − λ

2 (η ∧ Φ)(X, Y , Z) Y ∈ 𝒱, X, Z ∈ ℋ ,
T (X, Y , Z) − λ

2 (η ∧ Φ)(X, Y , Z) Z ∈ 𝒱, X, Y ∈ ℋ ,
0 else .

These connections are projectable under the locally defined submersion π : (M, g) → (N, gN ) introduced in Theorem 3.6, satisfying

∇ gN
X Y = π∗(∇λ

X
Y ) . (5.6)

Proof. We find that the metric connection with torsion T λ is given by ∇λ = ∇ + Δλ , where

Δλ(X, Y , Z) =
{︄

− λ
2 (η ∧ Φ)(X, Y , Z) Y ∈ 𝒱, X, Z ∈ ℋ ,

0 else .

In particular ∇λ
Y = ∇Y for horizontal vectors Y ∈ ℋ and (5.6) follows from the same statement for ∇ , see [38]. We also 

immediately see that ∇λ
Y ϕ = ∇Y ϕ = 0 for all cases except Y ∈ 𝒱 , X, Z ∈ℋ, and in that case we have

g(X, (∇λ
Y ϕ)Z) = g(X, (∇Y ϕ)Z) + Δλ(X, Y , ϕ Z) + Δλ(ϕ X, Y , Z)

= λ

2 
η(Y )(Φ(X, ϕ Z) + Φ(ϕ X, Z)) = 0 .

Now ϕ(∇λξ) = −(∇λϕ)ξ = 0 and 0 = d|ξ |2 = 2η(∇λξ) prove that ∇λξ = ∇λη = 0. We then conclude that T λ is parallel. □
Remark 5.16. We have an (α, δ)-Sasaki version of Remark 4.13: if λ < 4α then ∇λ can be understood as the Sasaki con
nection of the (α, δ)-Sasaki structure obtained by ℋ-homothetic deformation—in the sense of Proposition 5.11�-with the 
parameter a arbitrary and

c =
√︃

1 − λ 
4α

.

Remark 5.17. These connections with the particular choice λ = 4α− m+1
2m δ were studied in [30] for Sasaki–Einstein manifolds 

and deformations of the form (α, δ) = (1, δ) with δ > 0. In [30], the authors find these connections to be SU(m)-instantons, 
and we will see below that for m = 3 these are the only G2-instantons in our family of connections.
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Lemma 5.18. Let Z be a horizontal lift of a vector field on N, Y ∈ 𝒱 and X ∈ℋ. We have

g(X,∇λ
Y Z) =

(︃
2α − λ

2 

)︃
η(Y )Φ(Z , X) . (5.7)

Proof. From [54, Lemma 2.4] we have that g(X,∇Y Z) = T (X, Y , Z) = 2α η(Y )Φ(Z , X) and thus

g(X,∇λ
Y Z) = g(X,∇Y Z) + Δλ(X, Y , Z) =

(︃
2α − λ

2 

)︃
η(Y )Φ(Z , X) . □

Proposition 5.19. The curvature Rλ(X, Y , Z , V ) vanishes whenever any vector is vertical and for horizontal vectors

R gN (X, Y , Z , V ) = Rλ(X, Y , Z , V ) − α(4α − λ)Φ(X, Y )Φ(Z , V ) . (5.8)

In particular, the curvature operator Rλ satisfies pair symmetry.

Proof. If either Z ∈ 𝒱 or V ∈ 𝒱 then by skew-symmetry in the last entries of Rλ and the invariance of 𝒱 we find 
Rλ(X, Y , Z , V ) = 0. Using skew-symmetry in the first entries, the same holds for X, Y ∈ 𝒱 . Suppose now that X ∈ 𝒱 and 
Y , Z , V ∈ℋ. Then using the Bianchi identity for ∇ we have

2R(X, Y , Z , V ) = 2R(X, Y , Z , V ) − 2R(Z , V , X, Y ) =X,Y ,Z ,V
𝔖 (

X,Y ,Z
𝔖 R(X, Y , Z , V ))

=X,Y ,Z ,V
𝔖 (σT (X, Y , Z , V )+ X,Y ,Z

𝔖 Δλ(V , T (X, Y ), Z))

=X,Y ,Z ,V
𝔖 (

X,Y ,Z
𝔖 Δλ(V , T (X, Y ), Z)) = 0 ,

where the last step follows since Δλ(V , T (X, Y ), Z) vanishes whenever exactly one of X, Y , Z , V is vertical and the others 
are horizontal.

We now prove (5.8). Let X, Y , Z , V ∈ℋ, we have ∇ gN
X ∇ gN

Y Z = π∗(∇λ

X
∇λ

Y
Z) and

gN(V ,∇ gN
[X,Y ] Z) = g(V ,∇λ

[X,Y ] Z) = g(V ,∇λ

[X,Y ] Z − ∇λ

[X,Y ]𝒱 Z)

= g(V ,∇λ

[X,Y ] Z) −
(︃

2α − λ

2 

)︃
η([X, Y ])Φ(Z , V )

= g(V ,∇λ

[X,Y ] Z) +
(︃

2α − λ

2 

)︃
dη(X, Y )Φ(Z , V )

= g(V ,∇λ

[X,Y ] Z) + α(4α − λ)Φ(X, Y )Φ(Z , V ) ,

and the statement follows. □
Proposition 5.20. Let (M, ξ,η,ϕ, g,Φ,Ω) be an (α, δ)-Sasaki manifold, then

ℛλ = α

(︃(︃
4α − m + 1

2m 
δ

)︃
− λ

)︃
Φ ⊗ ϕ +ℛ2 , (5.9)

where Φ ∈ kerℛ2 and ℛ2 is purely horizontal related to ℛgN via

ℛgN = ℛ2 − 2(m + 1)αδ

m 
Φ ⊗ ϕ .

Proof. By [55, Definition 11.2] for Kähler–Einstein manifolds Φ is an eigenvector of the Kähler curvature operator, with 
eigenvalue the negative of the Einstein constant, see Remark 5.10.2 Since |Φ|2 = m,

ℛgN = − 
2(m + 1)αδ

m 
Φ ⊗ ϕ +ℛ2 ,

for some ℛ2 with Φ ∈ kerℛ2. The statement follows from (5.8). □
2 Note the curvature in [55] is defined with an additional −1 compared to ours.
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5.3. Solving the heterotic G2 system

From this point onwards we focus on the case m = 3 corresponding to 7 dimensions. The SU(3)-structure gives rise to a 
U(1)-family of G2-structures with associative and coassociative forms given as follows

φ(θ) = −η ∧ Φ + sin(θ)Ω+ + cos(θ)Ω− ,

ψ(θ) = 1

2
Φ ∧ Φ + sin(θ)η ∧ Ω− − cos(θ)η ∧ Ω+ ,

(5.10)

where θ ∈ U(1) and we are using the standard volume form e1···7 = − 1 
3!η ∧ Φ3. See Appendix A.2 for a description of these 

G2-structures in terms of the SU(3) spinors.

Proposition 5.21. The G2-structures φ(θ) in (5.10) are all coclosed with torsion classes

τ1 = τ2 = 0 , τ0 = − 
4

7
(3α + 4δ) , τ3 = 4

7
(α − δ) (4η ∧ Φ − 3 (sin(θ)Ω+ + cos(θ)Ω−)) .

Proof. Using (5.1) it is immediate to compute dφ and dψ and identify the torsion classes. Alternatively, one can obtain the 
torsion classes directly from the spinors using the formulas from [44]. □

Using (2.2) we obtain

Corollary 5.22. The torsion of the characteristic G2-connection is

T c(θ) = −6α + 8δ

3 
η ∧ Φ + 6α − 4δ

3 
(sin(θ)Ω+ + cos(θ)Ω−) ,

and its exterior derivative is

dT c(θ) = 2α 
−6α + 8δ

3 
Φ ∧ Φ + 4δ 

6α − 4δ

3 
(− sin(θ)η ∧ Ω− + cos(θ)η ∧ Ω+) . (5.11)

Remark 5.23. Note that the Sasaki connection and the characteristic connection of an (α, δ)-Sasaki manifold do not generally 
agree. By uniqueness, they agree if they have holonomy in SU(3) = G2 ∩U(3) ⊂ SO(7) which corresponds to the parallel case 
δ = 3

2 α. As we already pointed out, this setting was found and investigated in [53].
This constitutes a key difference with the 3-(α, δ)-Sasaki case, for which the canonical connection is also the character

istic connection.

We can now investigate which connections in our family are G2-instantons

Theorem 5.24. Let (M, ξ,η,ϕ, g,Φ,Ω) be an (α, δ)-Sasaki manifold. The connection ∇λ satisfies

ℛλ ∧ ψ(θ) = 
α

2 

(︃
4

3
(3α − 2δ) − λ

)︃
Φ3 ⊗ ϕ , (5.12)

which means that ∇λ is a G2-instanton for the G2-structure φ(θ) if and only if

λ = 4

3
(3α − 2δ) .

In particular, ∇ is a G2-instanton if and only if δ = 3
2 α.

Proof. We decompose the curvature ℛλ as in Proposition 5.20 and begin showing that ℛ2 ∧ ψ(θ) = 0. Recall from (5.10)
that ψ(θ) has terms depending on Ω+ , Ω− and Φ ∧ Φ. With respect to the complex structure ϕ|ℋ we have Ω− ∈ Λ0,3, 
Ω+ ∈ Λ3,0 and Φ ∈ Λ1,1. Furthermore, since ℛgN : Λ1,1 → Λ1,1 for any Kähler manifold, so does ℛ2 and we immediately 
conclude ℛ2 ∧ Ω+ =ℛ2 ∧ Ω− = 0. In addition, ℛ2 ⊥ Φ so Φ ∧ Φ ∧ℛ2 = 0, proving the statement.

We are only left with the term proportional to Φ ⊗ ϕ in (5.9). Again Φ ∈ Λ1,1 implies that Φ ∧ Ω− = 0 and Φ ∧ Ω+ = 0, 
so a single term in ℛλ ∧ ψ(θ) survives. Note it does not vanish: since η is a contact form we have

8α3η ∧ Φ ∧ Φ ∧ Φ = η ∧ dη3 ≠ 0 ,

and a direct computation finishes the proof. □
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We are interested in solving the heterotic Bianchi identity using connections from the family ∇λ . To do so, we will see 
that dT c has to be proportional to Φ ∧ Φ. By (5.11) this implies

δ(3α − 2δ) = 0 . (5.13)

Observe that this is precisely satisfied if either Hol(∇) = SU(3) or M is a degenerate (α, δ)-Sasaki. We obtain the following 
theorem:

Theorem 5.25. Let (M, ξ, η,ϕ, g,Φ,Ω) be a 7-dimensional (α, δ)-Sasaki manifold with G2-structure φ(θ) as in (5.10). Consider 
connections (V , A) = (T M,∇λ1 ) and (T M,Θ) = (T M,∇λ2 ) from the family in Lemma 5.15. Then [(M,φ(θ)), (V , A), (T M,Θ), H =
T c] solves the heterotic Bianchi identity (2.3) if and only if

a) δ = 0 and λ2 = 4α ±
√︂

(4α − λ1)2 − 8 
3α′ ,

b) δ = 3
2 α and λ2 = ±

√︂
(λ1)2 + 8 

3α′ .

Proof. Since Φ ⊥ℛ2 we find from (5.9) that

tr(ℛλ ∧ℛλ) = α2

9 
(4(3α − 2δ) − 3λ)2tr(ϕ2)Φ ∧ Φ + tr(ℛ2 ∧ℛ2)

= −2α2

3 
(4(3α − 2δ) − 3λ)2Φ ∧ Φ + tr(ℛ2 ∧ℛ2) .

In the heterotic Bianchi identity, the curvature terms tr(ℛ2 ∧ℛ2) cancel out and the right hand side only has a Φ∧Φ term. 
From (5.11) we then see that solutions are only possible if (5.13) is satisfied. In this case, we have

dT c = ±4α2Φ ∧ Φ ,

where the + sign corresponds to δ = 3
2 α and the − sign corresponds to δ = 0. The heterotic Bianchi identity reduces to an 

algebraic equation for the coefficient of the Φ ∧ Φ term

−4α2 = α′

4 

(︂
−6α2(4α − λ1)

2 + 6α2(4α − λ2)
2
)︂

for δ = 0 ,

4α2 = α′

4 

(︂
−6α2(λ1)

2 + 6α2(λ2)
2
)︂

for δ = 3

2
α ,

and solving the second order equation for λ2 yields the result. □
Our procedure does not yield exact solutions to the heterotic G2 system:

Theorem 5.26. Let [(M,φ(θ)), (V , A), (T M,Θ), H] be as in Theorem 5.25. The quadruple is never an exact solution to the heterotic 
G2 system.

Proof. For an exact solution we need the connections A = ∇λ1 and Θ = ∇λ2 to be G2-instantons. By Theorem 5.24 this 
forces λ1 = λ2 = 4

3 (3α − 2δ) and from Theorem 5.25 we see the heterotic Bianchi identity can not be solved. □
Nevertheless, we do find approximate solutions as we now show.

Theorem 5.27. Let [(M,φ(θ)), (V , A), (T M,Θ), H] be as in Theorem 5.25. The quadruple is an approximate solution to the heterotic 
G2 system if and only if δ = 3

2 α, λ1 = 0, λ2 = ±
√︂

8 
3α′ and α =𝒪(α′) 5

2 when α′ → 0.

Proof. By Theorem 5.24, the connection A = ∇λ1 is a G2-instanton if and only if λ1 = 4α for δ = 0 or λ1 = 0 for δ = 3
2 α. 

From Theorem 5.25 we immediately see that the heterotic Bianchi identity can not be solved in the case δ = 0, whereas for 
δ = 3

2 α we must take

λ2 = ±
√︃

8 
3α′ .

In this case it only remains to impose the instanton condition on the connection Θ up to first order in α′. From (5.12) we 
have
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|ℛλ2 ∧ ψ(θ)|g = α

2 

√︃
8 

3α′ |Φ3 ⊗ Φ|g = 6α

√︃
6 
α′ ,

and we see the condition (2.4) is satisfied if α =𝒪(α′) 5
2 when α′ → 0. □

Remarks 5.28. There are several possible choices of α that provide valid approximate solutions as α′ → 0, the simplest one 
being α = (︁α′)︁ 5

2 .
In all these approximate solutions the geometry of the compact space is tied to the string constant α′ . In particular, note 

that as α′ → 0 we have α, δ → 0 which corresponds to a decompactification limit. Similarly, since Λ ∼ − τ 2
0 = −

(︂
35
7 α
)︂2

, 
the 3-dimensional spacetime is anti-de Sitter with cosmological constant Λ → 0 as α′ → 0. Therefore, it approaches flat 
Minkowski space as α′ → 0, analogously to the solutions of [18].

Finally, it was pointed out in [20] that when the holonomy of the characteristic connection is reduced to SU(3), solutions 
of the heterotic G2 system present enhanced 𝒩 = 2 supersymmetry. This is precisely the case for δ = 3

2 α, so Theorem 5.27
gives examples of 𝒩 = 2 vacuum solutions where the compact manifold is not a simple direct product of a 6-dimensional 
SU(3)-manifold and a circle.

6. Conclusion and outlook

In this paper we have studied the heterotic G2 system on 3-(α, δ)-Sasaki and (α, δ)-Sasaki manifolds. These are two 
different types of almost-contact manifolds with reduced structure group, and they admit coclosed G2-structures. In both 
cases, we have constructed a 1-parameter family of connections on the tangent bundle that we have later used to solve the 
heterotic Bianchi identity.

For 3-(α, δ)-Sasaki manifolds, the associated family of connections includes two different G2-instantons. We have shown 
that these provide an exact solution of the heterotic G2 system in the degenerate case δ = 0. On the other hand, for δ ≠ 0
we have only been able to obtain approximate solutions to the system.

We have also obtained approximate solutions using (α, δ)-Sasaki manifolds. Although these manifolds can be understood 
simply as spin η-Einstein α-Sasaki manifolds, our presentation highlights a similar behaviour to that of 3-(α, δ)-Sasaki 
manifolds. This provides a very useful guiding principle for the construction of approximate solutions.

There are several potential directions for future research. First of all, it would be interesting to obtain even more solutions 
to the heterotic G2 system. To this end, one could study families of connections in bundles other than the tangent bundle. 
Alternatively, one could try to exploit more general G2-structures, particularly in the 3-(α, δ)-Sasaki setting.

One of the key properties of the connections we use in our solutions is their projectability. Therefore, another natural 
way to look for new solutions of the system would be to consider deformations of the connections that preserve this 
property. This could potentially describe a particular direction within the moduli space of solutions.

In fact, the infinitesimal moduli space of the heterotic G2 system has received wide attention in the literature recently 
[17,22,56--59]. One could study the infinitesimal moduli space of the solutions we present here and analyze whether they 
are obstructed or they correspond to honest deformations.

Furthermore, since the spacetime associated to the solutions we present is Anti-de Sitter, a better understanding of the 
moduli space would be relevant to the Swampland program [60,61]. In particular, this would provide a new scenario to test 
the AdS distance conjecture [62] in the heterotic setting.

Although η-Einstein α-Sasaki manifolds have been extensively studied in the literature, our presentation as (α, δ)-Sasaki 
manifolds is new. Further exploration of this perspective could prove fruitful in a similar way to the case of 3-(α, δ)-Sasaki 
manifolds.

Finally, the manifolds we have considered admit a description in terms of spinors. A more detailed analysis of these 
spinors and their properties would provide further insight into the geometry of 3-(α, δ)-Sasaki and (α, δ)-Sasaki manifolds.
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Appendix A. Spinor conventions

The appendix expands on the spinor picture of the G-structures used in this work, namely G = G2, SU(m), and Sp(n)

in dimensions 7, 2m + 1, and 4n + 3, respectively. This picture is evident throughout the main text, yet does not have the 
spotlight we feel it deserves. We begin introducing our notation and conventions for spinors, that mostly follow [63]. We 
focus on the odd-dimensional case which is the one relevant to us.

Let {e1, . . . , e2m+1} be the canonical orthonormal basis of R2m+1. The Clifford algebra Cliff(R2m+1) is the multiplicative 
algebra generated by the vectors {e1, . . . , e2m+1} together with the relations

eμ · eν + eν · eμ = −2δμν for μ,ν ∈ {1, . . . ,2m + 1} . (A.1)

The group Spin(2m + 1) sits inside Cliff(R2m+1) as a subgroup

Spin(2m + 1) = {x1 · . . . · x2n | xμ ∈R2m+1, 
⃦⃦

xμ

⃦⃦= 1, n ∈N} .
We can use the complexification of the Clifford algebra CliffC(R2m+1) ≃ Mat(2m,C) ⊕ Mat(2m,C) to construct a complex 
2m-dimensional irreducible representation of Spin(2m + 1). To do so, we define the matrices

g1 =
(︃

i 0
0 −i

)︃
, g2 =

(︃
0 i
i 0

)︃
, E =

(︃
1 0
0 1

)︃
, T =

(︃
0 −i
i 0

)︃
, (A.2)

and we use them to construct an algebra morphism ρ : CliffC(R2m+1) −→ Mat(2m,C) as follows:

ρ(e1) = i T ⊗ (m)· · · ⊗ T ,

ρ(e2a) = E ⊗ (m−a)· · · ⊗ E ⊗ g1 ⊗ T ⊗ (a−1)· · · ⊗ T ,

ρ(e2a+1) = E ⊗ (m−a)· · · ⊗ E ⊗ g2 ⊗ T ⊗ (a−1)· · · ⊗ T ,

where a ∈ {1, . . . ,m} and ⊗ denotes the Kronecker product of matrices. Note that our choice of morphism is a reordering 
of the one described in [63]. Now, the restriction of ρ to the subgroup Spin(2m + 1) provides an irreducible representation 
of Spin(2m + 1) on C2m

that we call the spinor representation Δ2m+1. The elements of C2m
are called spinors.

The map ρ can be also used to define an action of vectors on spinors known as Clifford multiplication. Given a vector 
v = viei the Clifford multiplication of v with a spinor u is given by

v · u := viρ(ei)u .

When defining the spinor representation, there is a sign ambiguity in the choice of ρ(e1). Our choice is such that for any 
spinor u we have

e1 · . . . · e2m+1 · u = (−i)m+1u . (A.3)

There exists a basis of spinors that is particularly well adapted to our purposes. To construct it, define the following vectors 
in C2

u(1) = 1 √
2

(︃
1
−i

)︃
, u(−1) = 1 √

2

(︃
1
i

)︃
,

and use them to define the spinors

u(ε1, . . . , εm) = u(ε1) ⊗ · · · ⊗ u(εm) ,

where εa = ±1 for a ∈ {1, . . . ,m}. Then, a basis of the space of spinors is given by

{u(ε1, . . . , εm) | εa = ±1 , a ∈ {1, . . . ,m}} . (A.4)

This basis is orthonormal with respect to the standard hermitian product ⟨·, ·⟩ in C2m
, and the hermitian conjugate of 

u(ε1, . . . , εm) is given by u(−ε1, . . . ,−εm)T . The Clifford multiplication of the vector e1 on this basis is particularly simple

e1 · u(ε1, . . . , εm) = i

(︄
m ∏︂

a=1

εa

)︄
(−1)m u(ε1, . . . , εm) .

Now, let (M, g) be a 2m + 1-dimensional oriented Riemannian spin manifold with spin structure Q . We denote the associ
ated spinor bundle by

Σ := Q ×Spin(2m+1) Δ2m+1 .
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A section of Σ is called a Dirac spinor. We will typically work with an orthonormal frame {e1, . . . , e2m+1} of M and describe 
Dirac spinors in terms of the basis {u(ε1, . . . , εm)}.

The manifolds we want to study possess spinors that are particularly well-behaved with respect to covariant derivatives.

Definition A.1. A nowhere-vanishing spinor Ψ is a generalized Killing spinor if it satisfies

∇ g
XΨ = 1

2
S(X) · Ψ , (A.5)

where S is a symmetric endomorphism of T M .

Finally, we point out that Clifford multiplication can be used to define a C-linear map jΨ : TCM −→ Σ [64] (see also 
[65]) as follows

jΨ(v) := v · Ψ , (A.6)

for any v ∈ TCM . Furthermore, we can define an inner product on TCM by linearly extending the metric g . It turns out 
the subspace ker( jΨ) is isotropic with respect to this inner product, meaning that g(v, w) = 0 for any v, w ∈ ker( jΨ).

Definition A.2. We say that a spinor Ψ ∈ Γ(Σ) is pure if the subspace ker( jΨ) is maximally isotropic, for the 2m + 1
dimensional case this means dimC(ker( jΨ)) = m.

A.1. G2-structures in terms of spinors

We now focus on the case m = 3 corresponding to a 7-dimensional manifold M . In addition to the spinor bundle obtained 
via the spinor representation Δ7 on C8, we can also study spinors on a bundle obtained via a real representation, see for 
example [44,53] although our conventions are slightly different. To do so, consider the algebra morphism ρR : Cliff(R7) −→
Mat(8,R) defined as follows

ρR(e1) = E12 + E34 + E56 + E78 , ρR(e2) = E13 − E24 − E57 + E68 ,

ρR(e3) = E14 + E23 + E58 − E67 , ρR(e4) = E15 − E26 + E37 − E48 ,

ρR(e5) = E16 + E25 − E38 − E47 , ρR(e6) = E17 − E28 − E35 + E46 ,

ρR(e7) = E18 + E27 + E36 + E45 ,

where Eij denotes the matrix with the entry (i j) equal to −1, ( ji) equal to +1 and all other entries equal to 0. The 
restriction of ρR to the subgroup Spin(7) provides an irreducible representation of Spin(7) on R8 that we call the real 
spinor representation ΔR

7 . The standard basis of R8 constitutes an orthonormal basis of real spinors. Given (M, g) a 7
dimensional oriented Riemannian spin manifold, we can construct a real spinor bundle ΣR via this real representation

ΣR := Q ×Spin(7) ΔR
7 .

A section of ΣR is called a Majorana spinor. These spinors are important to us because they are associated to the existence 
of G2-structures on M .

Proposition A.3. Let M be a 7-dimensional (oriented) Riemannian spin manifold. A G2-structure on M is equivalent to the choice of a 
nowhere-vanishing Majorana spinor on the real spinor bundle of M up to scalar multiplication.

Indeed, given a nowhere-vanishing Majorana spinor Ψ ∈ Γ(ΣR) the subgroup of Spin(7) fixing the spinor is precisely 
G2, and the associative three-form as well as the coassociative four-form can be recovered by

φ = −
∑︂

μ,ν,ρ

1 
3! ⟨Ψ, eμ · eν · eρ · Ψ⟩ eμ ∧ eν ∧ eρ , (A.7)

ψ = −
∑︂

μ,ν,ρ,σ

1 
4! ⟨Ψ, eμ · eν · eρ · eσ · Ψ⟩ eμ ∧ eν ∧ eρ ∧ eσ , (A.8)

where ⟨·, ·⟩ denotes the scalar product in the real spinor bundle induced by the standard R8 product. On the other hand, if 
M has a G2-structure the real spinor representation splits into irreducible G2 representations as ΔR

8 = 1 ⊕ 7, where 1 is the 
trivial representation and 7 is the vector representation. We obtain a nowhere-vanishing Majorana spinor patching together 
the spinors in the 1 representation.
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It is also possible to understand ΔR
7 as a sub-representation of Δ7 and regard Majorana spinors as Dirac spinors satisfy

ing an additional reality condition [66]. To do so, we define the charge conjugation matrix C as

C = T ⊗ E ⊗ T ,

where T and E are defined in (A.2). Note C is a real symmetric matrix that squares to the identity and satisfies C · ρ(eμ) =
−ρ(eμ)T · C for all μ ∈ {1, . . . ,7}. We define the map J :C8 −→C8 as follows

J (u) := Cū .

The map J is invariant under the action of Spin(7). In addition, it defines a real structure on C8 in the sense that it is 
antilinear J (λΨ) = λ̄ J (Ψ) and squares to the identity. The spinors satisfying the reality condition J (u) = u give rise to a 
real subrepresentation of Δ7.

This is most easily seen in a basis. A basis for the real spinors is given by

v1 = 1 √
2
(u(1,1,1) + u(−1,−1,−1)) , v2 = −i

1 √
2
(u(1,1,1) − u(−1,−1,−1)) ,

v3 = 1 √
2
(u(−1,1,1) − u(1,−1,−1)) , v4 = i

1 √
2
(u(−1,1,1) + u(1,−1,−1)) ,

v5 = − 1 √
2
(u(1,−1,1) + u(−1,1,−1)) , v6 = −i

1 √
2
(u(1,−1,1) − u(−1,1,−1)) ,

v7 = 1 √
2
(u(1,1,−1) − u(−1,−1,1)) , v8 = i

1 √
2
(u(1,1,−1) + u(−1,−1,1)) ,

where we are using the basis of C8 introduced in (A.4). We then find that the representation Δ7 reduces precisely to the 
representation ΔR

7 on R8 = SpanR (v1, . . . , v8) that we introduced earlier.

A.2. SU(m)-structures in terms of spinors

We now discuss in detail how an SU(m)-structure on an odd-dimensional manifold M can be equivalently formulated in 
terms of the existence of nowhere-vanishing spinors.

Let M be a 2m + 1-dimensional manifold with an SU(m)-structure (ξ,η,ϕ, g,Φ,Ω) (see Definition 3.9). Then M must be 
a spin manifold and the inclusion SU(m) ⊂ SO(2m + 1) lifts to SU(m) ⊂ Spin(2m + 1). The group SU(m) acts on the spinor 
bundle Σ fixing a 2-dimensional space of Dirac spinors [30]. To see this explicitly, consider an adapted frame {e1, . . . , e2m+1}
of M as defined in (3.2). Note the frame satisfies e1 = ξ and e2a+1 = ϕ(e2a) for a ∈ {1, . . . ,m}. Since M is in particular an 
almost contact metric manifold, the spinor bundle Σ splits as follows:

Lemma A.4 ([48, Lemma 6.2]). Let (M, ξ, η,ϕ, g) be a 2m + 1-dimensional almost contact metric manifold which is spin and with 
fundamental form Φ. Then the spinor bundle Σ splits into the orthogonal direct sum Σ = Σ0 ⊕ Σ1 ⊕ · · · ⊕ Σm, where

Φ|Σr = −i (2r − m) Id , ξ |Σr = i (−1)r(−1)m Id , dim(Σr) =
(︃

m
r

)︃
.

Moreover, the bundles Σ0 and Σm can be defined by

Σ0 = {Ψ ∈ Γ(Σ) | − ϕ(X) · Ψ + i X · Ψ + (−1)mη(X)Ψ = 0 for all vectors X} ,
Σm = {Ψ ∈ Γ(Σ) | − ϕ(X) · Ψ − i X · Ψ − η(X)Ψ = 0 for all vectors X} .

A basis of Σr is given by the spinors u(ε1, . . . , εm) (as introduced in (A.4)) for which exactly r elements of {ε1, . . . , εm}
are equal to −1. Note as well that with our conventions some additional minus signs appear in Lemma A.4 when compared 
with the lemma as stated in [48].

Considering the subgroup SU(m) ⊂ SO(2m + 1) that leaves the forms η,Φ,Ω invariant, it can be checked that this group 
precisely fixes the spinors in the 2-dimensional bundle Σ0 ⊕Σm . This implies that both Σ0 and Σm have nowhere-vanishing 
sections, as the local descriptions can be patched together consistently. We can now compute how the holomorphic volume 
form acts on these sections

Lemma A.5. Let M be a 2m + 1-dimensional manifold equipped with an SU(m)-structure (ξ,η,ϕ, g,Φ,Ω). Given the splitting of the 
spinor bundle Σ = Σ0 ⊕ Σ1 ⊕ · · · ⊕ Σm according to the almost contact metric structure and writing Ω = Ω+ + i Ω− , we have

Ω+|Σr = 0 , Ω−|Σr = 0 , for r ∈ {1, . . . ,m − 1} .
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Let Ψ ∈ Γ(Σ0) nowhere-vanishing, we have that Ψ̄ ∈ Γ(Σm) is also nowhere-vanishing and the following formulas hold:

Ω+ · Ψ = im 2m−1 Ψ̄ , Ω− · Ψ = −im+1 2m−1 Ψ̄ ,

Ω+ · Ψ̄ = (−1)
m(m−1)

2 im 2m−1 Ψ , Ω− · Ψ̄ = (−1)
m(m−1)

2 im+1 2m−1 Ψ .

Proof. The lemma can be shown by direct computation using the explicit form of Ω in (3.2) together with Clifford multi
plication. The fact that Ψ̄ ∈ Γ(Σm) is immediate looking at the spinors in a local frame. □

The forms associated to the SU(m)-structure can be recovered from Σ0 ⊕ Σm as bilinears in the spinors. Given a 
nowhere-vanishing Dirac spinor Ψ ∈ Γ(Σ0), using the Clifford product formulas in Lemma A.4 we find that the almost 
contact structure is recovered by

η = i (−1)m+1
∑︂
μ 

⟨Ψ, eμ · Ψ⟩ eμ , Φ = −i 
∑︂
μ,ν 

1 
2! ⟨Ψ, eμ · eν · Ψ⟩ eμ ∧ eν , (A.9)

whereas the formulas in Lemma A.5 show that the holomorphic volume form is given by

Ω = (−1)
m(m+1)

2 im
∑︂

μ1,...,μm

1 
m! ⟨Ψ, eμ1 · . . . · eμm · Ψ̄⟩ eμ1 ∧ · · · ∧ eμm , (A.10)

where ⟨·, ·⟩ is the hermitian product on the spinor bundle induced by the hermitian product on the fibres.
Note that nowhere-vanishing sections Ψ ∈ Γ(Σ0) and Ψ̄ ∈ Γ(Σm) are pure in the sense of Definition A.2. Indeed, using 

the characterization given in Lemma A.4 we see that {e2a + i e2a+1} with a ∈ {1, . . . ,m} is a basis for ker( jΨ), whereas 
{e2a − i e2a+1} with a ∈ {1, . . . ,m} is a basis for ker( jΨ̄). This is the key property of the spinors in Σ0 and Σm that guarantees 
that they define an SU(m)-structure, as we now illustrate.

Suppose (M, g) is a 2m + 1-dimensional oriented Riemannian spin manifold with a nowhere-vanishing pure Dirac spinor 
Ψ ∈ Γ(Σ). Note that g being a positive metric implies that every element v ∈ ker( jΨ) must be of the form v1 + i v2 for 
some non-zero v1, v2 ∈ T M with g(v1, v1) = g(v2, v2). This means we can construct an orthonormal frame {e1, . . . , e2m+1}
of M such that {e2a + i e2a+1} with a ∈ {1, . . . ,m} is a basis for ker( jΨ). We can then define a (1,1)-tensor field ϕ by

ϕ(e1) = 0 , ϕ(e2a) = e2a+1 , ϕ(e2a+1) = −e2a , for a ∈ {1, . . . ,m} .
Define ξ = e1 and η = e1. Note that ϕ2 = − Id +η ⊗ ξ , so (ξ,η,ϕ) defines an almost contact structure on M . Furthermore, 
using that e2a · Ψ = −i e2a+1 · Ψ, the Clifford relations (A.1) and the equation (A.3) we deduce that

ξ · Ψ = (−1)m i Ψ ,

which by the characterization of Lemma A.4 implies that Ψ ∈ Γ(Σ0), where we are decomposing Σ with respect to the 
almost contact structure (ξ,η,ϕ). Now, we obtain an additional nowhere-vanishing spinor Ψ̄ ∈ Γ(Σm) and we construct the 
differential forms of the SU(m)-structure via (A.9) and (A.10). Therefore, a nowhere-vanishing pure Dirac spinor determines 
an SU(m)-structure on M .

The discussion of this appendix can be summarized in the following proposition

Proposition A.6. Let (M, g) be a 2m + 1-dimensional (oriented) Riemannian spin manifold. An SU(m)-structure on M is equivalent 
to the existence of a nowhere-vanishing pure Dirac spinor on the spinor bundle of M.

We are specially interested in the case where the spinor associated to the SU(m)-structure is generalized Killing. This 
should be indicated in the torsion classes, although proofs only exist under additional assumptions. In [45] the authors show 
the following for real analytic manifolds.

Proposition A.7 ([45]). Suppose that M is real analytic. The spinor associated to an SU(m)-structure (ξ,η,ϕ, g,Φ,Ω) on M is gen
eralized Killing if and only if

dΦ = 0 and d(η ∧ Ω) = 0 .

The authors in [45] argue that real analyticity should not be required for the above statement. However, to our knowledge 
a proof without real analyticity exists only in dimension 2m + 1 = 5, see [34]. If the structure gives rise to a generalized 
Killing spinor then the torsion of the SU(m)-structure is encoded by the symmetric endomorphism S .
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Lemma A.8 ([45, Lemma 1]). Let (M, g) be a 2m + 1-dimensional oriented Riemannian spin manifold with an SU(m)-structure 
(ξ,η,ϕ, g,Φ,Ω) determined by a generalized Killing spinor Ψ satisfying (A.5). Then, the following holds

∇ g
Xη = (−1)m+1 S(X)⌟Φ ,

∇ g
XΦ = (−1)m+1 η ∧ S(X)♭ ,

∇ g
XΩ = (−1)m+1 i (g(S(X), ξ) Ω − η ∧ (S(X)⌟Ω)) .

Note that with our choice of conventions these formulas include an additional global minus sign compared to the ones 
in [45]. The proof of Lemma A.8 in [45] relies on expressing the part of the connection one-form ω ∈ Λ1 ⊗ 𝔰𝔬(2m + 1)

that takes values in the complement of 𝔰𝔲(n) in terms of the endomorphism S . This information determines the covariant 
derivative of the Reeb vector field and provides some additional information about the covariant derivative of the other 
elements of an adapted basis:

Lemma A.9. Let (M, g) be a 2m + 1-dimensional oriented Riemannian spin manifold with an SU(m)-structure (ξ,η,ϕ, g,Φ,Ω)

determined by a generalized Killing spinor Ψ satisfying (A.5). The Reeb vector field satisfies

∇ g
Xξ = (−1)m ϕ(S(X)) .

Consider an adapted frame {e1, . . . , e2m+1} of M in the sense of (3.2). Then,

g(∇ g
X ea, ξ) = (−1)m g(S(X),ϕ(ea)) ,

where a ∈ {2, . . . ,2m + 1}.

Let us now focus on the case m = 3 corresponding to a 7-dimensional manifold. Since SU(3) ⊂ G2, the SU(3)-structure 
on M must give rise to a G2-structure. In fact, we have a U(1) family of G2-structures, as we now illustrate. From the spinor 
Ψ ∈ Γ(Σ) defining the SU(3)-structure, we construct

Ψ+ = 1 √
2
(Ψ + Ψ̄) , Ψ− = −i

1 √
2
(Ψ − Ψ̄) . (A.11)

These are Majorana spinors as introduced in Appendix A.1. To see this, it is enough to consider the adapted orthonormal 
frame {e1, . . . , e7} where Ψ is described by u(1,1,1) and observe that in this basis Ψ+ and Ψ− correspond to the Majorana 
spinors v1 and v2 in Appendix A.1. Combining them we obtain a U(1) family of Majorana spinors that we can parametrize 
by

Ψ(θ) = cos

(︃
θ

2 

)︃
Ψ+ + sin

(︃
θ

2 

)︃
Ψ− ,

and using (A.7) and (A.8) we find the associative and coassociative forms (5.10) that define the G2-structures induced by 
these spinors.

A.3. Sp(n)-structure in terms of spinors

We conclude by explaining how an Sp(n)-structure on a 4n + 3-dimensional manifold M can be described in terms of 
spinors. Some references discussing the topic from the perspective of 3-Sasaki geometry are [30,41--43].

Let M be a 4n + 3-dimensional manifold with an almost 3-contact metric structure as in Definition 3.11 and Defini
tion 3.12. This is equivalent by Remark 3.13 to a choice of Sp(n)-structure on M . This implies that M is spin [32], and in fact 
the group Sp(n) fixes a 2n + 2-dimensional space of Dirac spinors on Σ [30]. We will however focus in a particular subset 
of these spinors.

Recall that by Remark 3.3 an almost contact metric structure in a manifold of dimension 4n + 3 is equivalent to a 
U(2n + 1)-structure. Since Sp(n) ⊂ SU(2n + 1) ⊂ U(2n + 1), the spinors fixed by the Sp(n)-structure include the spinors 
defining the SU(2n + 1)-structures underlying each of the three almost contact metric structures.

Note that for us the dimension of M is 4n + 3 = 2m + 1 so m = 2n + 1 is odd. Therefore, we can describe each almost 
contact structure not in terms of (Ψ, Ψ̄) but in terms of their real and imaginary parts (Ψ+,Ψ−) defined as in (A.11). The 
almost contact forms can be obtained (for odd m) by

η =
∑︂
μ 

⟨Ψ−, eμ · Ψ+⟩ eμ , Φ = −
∑︂
μ,ν 

1 
2! ⟨Ψ−, eμ · eν · Ψ+⟩ eμ ∧ eν . (A.12)

Using Lemma A.4, we see that for odd m
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ξ · Ψ+ = Ψ− , X · Ψ+ = ϕ(X) · Ψ− for X ∈ ⟨ξ⟩⊥ . (A.13)

In particular, given the spinor Ψ+ we can obtain Ψ− by a Clifford product with the Reeb vector field ξ . Combining both 
formulas in (A.13), we have that

ξ · X · Ψ+ = ϕ(X) · Ψ+ for X ∈ ⟨ξ⟩⊥ . (A.14)

Therefore, each of the three almost contact metric structures (ξi, ηi, ϕi, g)i is determined by a pair of spinors (Ψi,+,Ψi,−)

that recover the associated forms as bilinears via (A.12).
Thus, the set of six spinors {Ψi,±}i=1,2,3 fully recovers the almost 3-contact metric structure. Using (A.13) it is easy to 

verify that the spinors Ψi,± are precisely the ones spanning the bundles Ei introduced in [41]:

Ei = {Ψ ∈ Γ(Σ) | (−2 ϕi(X) + ξi · X − X · ξi) · Ψ = 0 for all vectors X} .
As illustrated in specific examples in [42,43], the bundle E = E1 + E2 + E3 might not be a direct sum. This means the spinors 
{Ψi,±}i=1,2,3 might not all be linearly independent.

This is precisely the situation for the case n = 1 corresponding to a 7-dimensional manifold, in which we focus from 
now on. As explained in [30], Sp(1) fixes 4 spinors on Σ, and we will show that only 3 of them belong to E . We work in 
an adapted frame as defined in (3.4), and describe the spinors in terms of the decomposition of Lemma A.4 associated to 
the first almost contact structure.

The spinors Ψi,± can all be expressed in terms of the spinors Ψ1,± and the almost 3-contact forms. In fact, for the 
7-dimensional case it is easy to check directly from the Clifford algebra that

Ψ2,+ = Ψ1,− , Ψ2,− = ξ2 · Ψ1,− , Ψ3,+ = ξ2 · Ψ1,− , Ψ3,− = Ψ1,+ .

This prompts us to define the auxiliary spinors

ψ1 := ξ2 · Ψ1,− , ψ2 := Ψ1,+ , ψ3 := Ψ1,− ,

so that Ei is spanned by ψ j and ψk , and E is spanned by the three spinors {ψi}i=1,2,3. There is an additional spinor 
preserved by the Sp(1)-structure that we call the canonical spinor

ψ0 := −ξ2 · Ψ1,+ .

Using (A.13) and (A.14) one can show that the following formulas hold:

ξi · ψ0 = ψi Φi · ψ0 = ξi · ψ0 , (A.15)

ξi · ψ j = ψk , Φi · ψi = ξi · ψi , Φi · ψ j = −3 ξi · ψ j . (A.16)

Both the canonical and the auxiliary spinors are Majorana, and thus give rise to G2-structures on M via (A.7). In fact, by 
taking combinations of the auxiliary spinors we see that the spinors in the bundle E generate an SU(2) family of G2
structures. These are fundamentally different from the one generated by the canonical spinor, which is the one we are 
interested in. 

Data availability

No data was used for the research described in the article.

References

[1] M. Gunaydin, H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton, Phys. Lett. B 351 (1995) 
169, arXiv:hep-th/9502009.

[2] J.P. Gauntlett, N. Kim, D. Martelli, D. Waldram, Five-branes wrapped on SLAG three cycles and related geometry, J. High Energy Phys. 11 (2001) 018, 
arXiv:hep-th/0110034.

[3] T. Friedrich, S. Ivanov, Parallel spinors and connections with skew symmetric torsion in string theory, Asian J. Math. 6 (2002) 303, arXiv:math/0102142.
[4] T. Friedrich, S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrable G2 manifolds, J. Geom. Phys. 48 (2003) 1, arXiv:math/

0112201.
[5] J.P. Gauntlett, D. Martelli, S. Pakis, D. Waldram, G-structures and wrapped NS5-branes, Commun. Math. Phys. 247 (2004) 421, arXiv:hep-th/0205050.
[6] J.P. Gauntlett, D. Martelli, D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002, arXiv:hep-th/0302158.
[7] P. Ivanov, S. Ivanov, SU(3) instantons and G2, Spin(7) heterotic string solitons, Commun. Math. Phys. 259 (2005) 79, arXiv:math/0312094.
[8] S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett. B 685 (2010) 190, arXiv:0908.2927.
[9] H. Kunitomo, M. Ohta, Supersymmetric AdS(3) solutions in heterotic supergravity, Prog. Theor. Phys. 122 (2009) 631, arXiv:0902.0655.

[10] A. Lukas, C. Matti, G-structures and domain walls in heterotic theories, J. High Energy Phys. 01 (2011) 151, arXiv:1005.5302.
[11] J. Gray, M. Larfors, D. Lust, Heterotic domain wall solutions and SU(3) structure manifolds, J. High Energy Phys. 08 (2012) 099, arXiv:1205.6208.
[12] A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253.
[13] C.M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986) 357.

32 

http://refhub.elsevier.com/S0393-0440(25)00219-0/bibB914275D1F095F85BBFD93F131A9083Cs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibB914275D1F095F85BBFD93F131A9083Cs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibB3420D61EF287254EAC4A6B40C2C83D1s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibB3420D61EF287254EAC4A6B40C2C83D1s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib785917D48436523D522EDE65EAB38617s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibC4DB05B69D8F3651571A77DC4E743E8Bs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibC4DB05B69D8F3651571A77DC4E743E8Bs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib1D02FE66665E78DAB7ABD8B41D5FF632s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib6C2A3327C3E725F3FE3E5BBE2EBD16B1s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibF9F4479B359687571DB9461350D6A430s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib7B8C50E7FA2C64F9AF7A93B476BA95B6s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib5C2B6A07876BEFAA6080B21A0D5E7344s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib92181A5F1145DF0B453146A9FD764201s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib3774419F8B72D2DA7375B0A3323D1EBAs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibCACF9BF28C5E54CA87C5C30FB2B96408s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib0D61008E4B134760AFD6DB74D36B0109s1


M. Galdeano and L. Stecker Journal of Geometry and Physics 217 (2025) 105635 

[14] M. Fernandez, S. Ivanov, L. Ugarte, R. Villacampa, Compact supersymmetric solutions of the heterotic equations of motion in dimensions 7 and 8, Adv. 
Theor. Math. Phys. 15 (2011) 245, arXiv:0806.4356.

[15] C. Nolle, Homogeneous heterotic supergravity solutions with linear dilaton, J. Phys. A 45 (2012) 045402, arXiv:1011.2873.
[16] M. Fernandez, S. Ivanov, L. Ugarte, D. Vassilev, Quaternionic Heisenberg group and heterotic string solutions with non-constant dilaton in dimensions 

7 and 5, Commun. Math. Phys. 339 (2015) 199, arXiv:1410.4130.
[17] A. Clarke, M. Garcia-Fernandez, C. Tipler, T -dual solutions and infinitesimal moduli of the G2-Strominger system, Adv. Theor. Math. Phys. 26 (2022) 

1669, arXiv:2005.09977.
[18] J.D. Lotay, H.N.S. Earp, The heterotic G2 system on contact Calabi–Yau 7-manifolds, Trans. Am. Math. Soc. Ser. B 10 (2023) 907, arXiv:2101.06767.
[19] X. de la Ossa, M. Galdeano, Families of solutions of the heterotic G2 system, arXiv:2111.13221.
[20] X. de la Ossa, M. Larfors, M. Magill, Almost contact structures on manifolds with a G2 structure, Adv. Theor. Math. Phys. 26 (2022) 143, arXiv:

2101.12605.
[21] I. Agricola, G. Dileo, Generalizations of 3-Sasakian manifolds and skew torsion, Adv. Geom. 20 (2020) 331, arXiv:1804.06700.
[22] X. de la Ossa, M. Larfors, E.E. Svanes, The infinitesimal moduli space of heterotic G2 systems, Commun. Math. Phys. 360 (2018) 727, arXiv:1704.08717.
[23] D.D. Joyce, Compact Manifolds with Special Holonomy, Oxford University Press, Oxford, 2000.
[24] R.L. Bryant, Some remarks on G2-structures, in: Proceedings of Gökova Geometry-Topology Conference, 2005, pp. 75--109, arXiv:math/0305124.
[25] S. Karigiannis, Introduction to G2 geometry, in: S. Karigiannis, N.C. Leung, J.D. Lotay (Eds.), Lectures and Surveys on G2-Manifolds and Related Topics, 

Springer US, New York, NY, 2020, pp. 3--50, arXiv:1909.09717.
[26] E. Bergshoeff, M. de Roo, Supersymmetric Chern-Simons terms in ten-dimensions, Phys. Lett. B 218 (1989) 210.
[27] E.A. Bergshoeff, M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439.
[28] X. de la Ossa, E.E. Svanes, Connections, field redefinitions and heterotic supergravity, J. High Energy Phys. 12 (2014) 008, arXiv:1409.3347.
[29] X. de la Ossa, M. Larfors, M. Magill, E.E. Svanes, Superpotential of three dimensional 𝒩 = 1 heterotic supergravity, J. High Energy Phys. 01 (2020) 195, 

arXiv:1904.01027.
[30] D. Harland, C. Nolle, Instantons and Killing spinors, J. High Energy Phys. 03 (2012) 082, arXiv:1109.3552.
[31] I. Agricola, The Srní lectures on non-integrable geometries with torsion, Arch. Math. 42 (2006) 5, arXiv:math/0606705.
[32] C. Boyer, K. Galicki, Sasakian Geometry, Oxford University Press, 10, 2007.
[33] C.P. Boyer, K. Galicki, P. Matzeu, On eta-Einstein Sasakian geometry, Commun. Math. Phys. 262 (2006) 177, arXiv:math/0406627.
[34] D. Conti, Embedding into manifolds with torsion, Math. Z. 268 (2011) 725, arXiv:0812.4186.
[35] I. Agricola, G. Dileo, L. Stecker, Homogeneous non-degenerate 3 − (α, δ)-Sasaki manifolds and submersions over quaternionic Kähler spaces, Ann. Glob. 

Anal. Geom. 60 (2021) 111, arXiv:2011.13434.
[36] I. Agricola, G. Dileo, L. Stecker, Curvature properties of 3 − (α, δ)-Sasaki manifolds, Ann. Mat. (2023), arXiv:2206.05150.
[37] O. Goertsches, L. Roschig, L. Stecker, On degenerate 3-(α, δ)-Sasakian manifolds, Complex Manifolds 9 (2022) 337, arXiv:2206.04002.
[38] L. Stecker, On 3-(α, δ)-Sasaki manifolds and their canonical submersions, Ph.D. thesis, Philipps-Universität Marburg, Aug. 2021.
[39] V. Cortés, A note on quaternionic Kähler manifolds with ends of finite volume, Q. J. Math. 74 (2023) 1489.
[40] I. Agricola, J. Hofmann, ℋ-Killing spinors and spinorial duality for homogeneous 3-(α, δ)-Sasaki manifolds, arXiv:2309.16610.
[41] T. Friedrich, I. Kath, 7-dimensional compact Riemannian manifolds with Killing spinors, Commun. Math. Phys. 133 (1990) 543.
[42] I. Agricola, J. Hofmann, M.-A. Lawn, Invariant spinors on homogeneous spheres, Differ. Geom. Appl. 89 (2023) 102014, arXiv:2203.02961.
[43] J. Hofmann, Homogeneous Sasakian and 3-Sasakian structures from the spinorial viewpoint, Adv. Math. 439 (2024) 109493, arXiv:2208.09301.
[44] I. Agricola, S.G. Chiossi, T. Friedrich, J. Höll, Spinorial description of SU(3)- and G2-manifolds, J. Geom. Phys. 98 (2015) 535, arXiv:1411.5663.
[45] D. Conti, A. Fino, Calabi-Yau cones from contact reduction, Ann. Glob. Anal. Geom. 38 (2010) 93, arXiv:0710.4441.
[46] D. Conti, S. Salamon, Generalized Killing spinors in dimension 5, Trans. Am. Math. Soc. 359 (2007) 5319, arXiv:math/0508375.
[47] D. Chinea, C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1986) 15.
[48] E.C. Kim, T. Friedrich, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000) 128, arXiv:math/9905095.
[49] J. Sparks, Sasaki-Einstein manifolds, Surv. Differ. Geom. 16 (2011) 265, arXiv:1004.2461.
[50] A. Tomassini, L. Vezzoni, Contact Calabi-Yau manifolds and special Legendrian submanifolds, Osaka J. Math. 45 (2006) 127, arXiv:math/0612232.
[51] J. Figueroa-O’Farrill, A. Santi, Sasakian manifolds and M-theory, Class. Quantum Gravity 33 (2016) 095004, arXiv:1511.03460.
[52] D. Aggarwal, Y.-H. He, E. Heyes, E. Hirst, H.N.S. Earp, T.S.R. Silva, Machine learning Sasakian and G2 topology on contact Calabi-Yau 7-manifolds, Phys. 

Lett. B 850 (2024) 138517, arXiv:2310.03064.
[53] T. Friedrich, G2-manifolds with parallel characteristic torsion, Differ. Geom. Appl. 25 (2007) 632, arXiv:math/0604441.
[54] L. Stecker, Canoncial submersions in nearly Kähler geometry, arXiv:2211.14012.
[55] A.L. Besse, Einstein Manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
[56] X. de la Ossa, M. Larfors, E.E. Svanes, Infinitesimal moduli of G2 holonomy manifolds with instanton bundles, J. High Energy Phys. 11 (2016) 016, 

arXiv:1607.03473.
[57] A. Clarke, M. Garcia-Fernandez, C. Tipler, Moduli of G2 structures and the Strominger system in dimension 7, arXiv:1607.01219.
[58] X. de la Ossa, M. Larfors, E.E. Svanes, Restrictions of heterotic G2 structures and instanton connections, in: Proceedings, Nigel Hitchin’s 70th Birthday 

Conference: Geometry and Physics: A Festschrift in Honour of Nigel Hitchin: 2 Volumes, Aarhus, Denmark, Oxford, UK, Madrid, Spain, September 5-16, 
2016, 2017, arXiv:1709.06974.

[59] M.-A. Fiset, C. Quigley, E.E. Svanes, Marginal deformations of heterotic G2 sigma models, J. High Energy Phys. 02 (2018) 052, arXiv:1710.06865.
[60] E. Palti, The Swampland: introduction and review, Fortschr. Phys. 67 (2019) 1900037, arXiv:1903.06239.
[61] M. van Beest, J. Calderón-Infante, D. Mirfendereski, I. Valenzuela, Lectures on the Swampland program in string compactifications, Phys. Rep. 989 

(2022) 1, arXiv:2102.01111.
[62] D. Lüst, E. Palti, C. Vafa, AdS and the Swampland, Phys. Lett. B 797 (2019) 134867, arXiv:1906.05225.
[63] H. Baum, T. Friedrich, R. Grunewald, I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, vol. 124, B. G. Teubner Verlag, Stuttgart & Leipzig, 

1991.
[64] H.B. Lawson, M.-L. Michelsohn, Spin Geometry, Princeton University Press, 1989.
[65] W. Kopczynski, Pure spinors in odd dimensions, Class. Quantum Gravity 14 (1997) A227.
[66] J. Figueroa-O’Farrill, Majorana spinors, https://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/Majorana.pdf.

33 

http://refhub.elsevier.com/S0393-0440(25)00219-0/bib8AC542EC14D7288768E96463FA89E2FDs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib8AC542EC14D7288768E96463FA89E2FDs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib89E9FB2A4BBC297AC2BF0749CB36BF97s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib7FE60C6390D9FFB406332FA5F9677AECs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib7FE60C6390D9FFB406332FA5F9677AECs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib2D178DC13AE7BD330A47D9FE9955ECD0s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib2D178DC13AE7BD330A47D9FE9955ECD0s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibC701EF76761944C99AB406EF99825BABs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib6C54C5CF5E4B175CAB372CF7F2B1EE11s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibD9BCBF654512C538D1127D5D5491901Bs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibD9BCBF654512C538D1127D5D5491901Bs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib57547849E21DAD57458C3352735005ABs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib273802BCE53FAC8C65458EDEEF5CD2FCs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib4AE9C31294D5569300CAE9C13B96B591s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib58651344F20569E0BCC9633BCC9001AAs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib0165E3013F50832DC3B4DE4A9E8C8E6Fs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib0165E3013F50832DC3B4DE4A9E8C8E6Fs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib3E79B03DD063570F71BBDEF9C53E5D4Fs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib3E20D241021BC22D0E1D3A1D4B5869ABs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibD0CDD9303FE57C1DC9A34A39EF05BB69s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib40EE9F7C8CE49CDB045F7B98BB1E92EFs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib40EE9F7C8CE49CDB045F7B98BB1E92EFs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib1841FE31D8642063928E21873FDD8CACs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibEE4F47C0C78EABB1EE0C065966F70609s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibB03635D55B4B35CD5C7E8FCD03EFFE33s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibCBE6EBC89B41BA00D3E443FD5A50DECCs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib794DD246DED52D36E582A0989C8AAA6As1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib1225253706842E0305C58CF335E9E745s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib1225253706842E0305C58CF335E9E745s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibE3C44F80E2826E2BA9C8B446EE0265F5s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib0116C0B5D8F7DF8988F7E204D7B231D1s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibD5F8B05479B26565826B9B8CAFD9222Fs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibCCC42E08EB123336488B61CB821C5E05s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib22A894CD0820D683B716022F37D0C7C6s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibBBA25F7BEE895D760F4991EB19B92266s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibD5FE8876729B84B17EAB9F7D89F8FB81s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibF8B1A3A577212EE94616CCFDD557A639s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibA136D9810DA65CF8B102E1EBFD03388Ds1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibFA560EDC0C992BCB8474230D20E8F133s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib2F6BC6563C5FA58A8C160D67C586D291s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibB891AE09CB84098F88B673DF7DB5E992s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib294E6B49E4D518866C8B253FF90ECB4Es1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib9FFF4F0E3629A26DD3C1513963354FECs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib031D32238662617C8BCD7F176EBA61C2s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibAB3777FFCFFDB9E1BCD9C5C9E1B5DA39s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib382AB8DA397631DDE70312AC190EC8FCs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib382AB8DA397631DDE70312AC190EC8FCs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib0CB737C3CDA51B6D37500E5A59C56CA0s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib1F065D6F30967EEC05452A68546F61C6s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibEF89DB86EE14A550E0EB0071B84080B5s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib52BECEB77228FDBABB4A0504ED0A3DD5s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib52BECEB77228FDBABB4A0504ED0A3DD5s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib7E168EBE79270695FA26E2BABFCD1EA5s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibC32C7B135D1362030CDFD9ADE81E0364s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibC32C7B135D1362030CDFD9ADE81E0364s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibC32C7B135D1362030CDFD9ADE81E0364s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibF1839046A7C09ED735B2864D39CB1DE9s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib71847ECE5AACBF23E8EF499DC1846790s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibE6B8B78A86FC796517D7FCBCD1B84BFBs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibE6B8B78A86FC796517D7FCBCD1B84BFBs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib8F1F9547B6DB5CD9AC8A007B5494A5BAs1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib5B2B1FC3601958048D2237370793D121s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib5B2B1FC3601958048D2237370793D121s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bibDD79E23DB547D72B9FD6C2076C0BCD00s1
http://refhub.elsevier.com/S0393-0440(25)00219-0/bib7A0282AE0913F3851811D47D1AB1E07As1
https://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/Majorana.pdf

	The heterotic G2 system with reducible characteristic holonomy
	1 Introduction
	2 The heterotic G2 system
	3 Contact geometry
	4 Characteristic holonomy Sp(1)Sp(1)
	4.1 3-(α,δ)-Sasaki manifolds
	4.2 The family of connections ∇λ
	4.3 Solving the heterotic G2 system

	5 Characteristic holonomy SU(3)
	5.1 (α,δ)-Sasaki manifolds
	5.2 The family of connections ∇λ
	5.3 Solving the heterotic G2 system

	6 Conclusion and outlook
	Declaration of competing interest
	Acknowledgements
	Appendix A Spinor conventions
	A.1 G2-structures in terms of spinors
	A.2 SU(m)-structures in terms of spinors
	A.3 Sp(n)-structure in terms of spinors

	Data availability
	References


