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Abstract

This study presents an exact analytical investigation into the static response of helical sin-
gle-walled carbon nanotube (SWCNT) beams based on Eringen’s differential nonlocal
elasticity theory, which captures nanoscale effects arising from interatomic interactions.
A key contribution of this work is the derivation of the governing equations for helical
SWCNT beams, based on the nonlocal Euler-Bernoulli theory, followed by their exact an-
alytical solution using the initial value method. To the best of the authors” knowledge, this
represents the first closed-form formulation for such complex nanostructures using this
theoretical framework of nonlocal elasticity theory. The analysis considers both cantile-
vered and clamped-clamped boundary conditions, under various concentrated force and
moment loadings applied at the ends and midpoint of the helical beam. Displacements
and rotational components are expressed in the Frenet frame, enabling direction-specific
evaluation of the deformation behaviour. Parametric studies are conducted to investigate
the influence of geometric parameters—such as the winding angle (a) and aspect ratio
(R/d) and the nonlocal parameter (R/y). Results show that nonlocal elasticity theory con-
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vealing its importance for accurate modelling of nanoscale structures. The proposed ana-
lytical framework serves as a benchmark reference for the modelling and design of na-
noscale helical structures such as nano-springs, actuators, and flexible nanodevices.
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The relationship between statistical mechanics and nonlocal mechanics theories
shows the significance and need for a general theory of particle dynamics, which would
combine concepts and improve the understanding of nonlocal interactions [10,11]. The
discussion regarding the mechanical response of nanobeams remains ongoing, as research
indicates that nonlocal effects can result in either stiffening or softening behaviour, de-
pending on the specific loading conditions and structural configurations [12,13]. Scale ef-
fects on structural behaviour are demonstrated through exact solutions for bending de-
flections in nonlocal elasticity theory [14]. Studies of nonlocal scalar field theories inspired
by string theory have opened new perspectives on material behaviour [15].

Molecular dynamics simulations are evaluated in nano-scale structure problems.
With bridging gaps between simulations and continuum models, calibrating nonlocal
generalised helical beam models for free vibration analysis of coiled carbon nanotubes is
one of the examples in the literature [16].

Advanced nonlocal elasticity theories have also been developed to solve nanostruc-
ture problems. A review of nonlocal elasticity theories reveals the significance of these
theories in material science, highlighting the ongoing advancements and developments
[17]. The nonlocal strain gradient theory based on the Bishop rod model is one of the ex-
amples of applications that capture complex behaviours in nanostructures [18]. The strain-
driven nonlocal model has been employed to examine the static behaviour of nanobeams
with edge cracks. This approach has yielded insights into the impact of cracks on the me-
chanical properties of nanoscale structures [19]. The model has also been applied to bend-
ing and buckling analyses of curved nanobeams. These analyses utilise higher-order beam
theories, demonstrating the influence of nonlocal effects on stability and deformation [20-
22].

Advanced solution methods, such as the Laplace-Differential Transformation
Method, have been employed alongside nonlocal elasticity theory to investigate the large
bending behaviour of carbon nanotubes, providing precise solutions while significantly
improving computational efficiency [23]. To emphasise the importance of size effects in
design and analysis, the strain-driven nonlocal elasticity theory has been utilised in sev-
eral nanostructure problems [24]. With the modifications to the nonlocal strain gradient
model, the size-dependent bending behaviour of Timoshenko curved beams has been de-
veloped [25]. Eringen’s nonlocal elasticity theory is essential in analysing nanoscale struc-
tures. The methodology has been implemented in the context of dynamic analyses of
curved nanobeams, employing higher-order beam theories. This approach has been
shown to facilitate accounting for small-scale effects and complex geometries, thereby en-
suring a comprehensive and nuanced understanding of the subject matter [20].

Furthermore, Polizzotto et al. [26] examined absolute and relative size effects within
nonlocal strain-gradient elastic beams, while Giorgio [27] introduced a discrete formula-
tion of Kirchhoff rods in large-motion dynamics. These studies highlight the diversity of
available approaches, yet none provide an exact closed-form solution for helical nano-
tubes. The present work therefore fills this gap by developing a rigorous analytical frame-
work in Frenet coordinates, establishing a benchmark for future investigations.

A two-phase local/nonlocal elasticity theory has been developed for the purpose of
analysing the free transverse vibration of rotating nanobeams. This comprehensive mod-
elling approach can be used to study rotating nanostructures [28]. Nonlocal Timoshenko
beam theory has been employed to investigate layered and heterogeneous microstruc-
tures, thereby enhancing the modelling of composite nanostructures [29].

An investigation has been conducted into the vibrational behaviour of piezoelectric
nanobeams, taking into account the impact of surface effects and nonlocal elasticity [3,30].
A thorough analysis of clamped nanobeams as adsorption-induced sensors has been
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conducted, addressing both linear and nonlinear effects due to surface stresses generated
by particle adsorption and desorption [31].

The applications of this field extend to biological structures. Research on the mechan-
ical behaviour of protein microtubules using nonlocal elasticity theory has enriched the
cellular biomechanics field [32]. Highlighting the impact of curvature and nonlocal effects,
curved carbon nanotubes’ vibration and stability behaviours have been studied [33]. For
the purpose of conducting static and dynamic analysis of nanobeams under axial load, A
generalised formulation of Eringen’s nonlocal elasticity theory has been developed
[34,35].

The use of two-phase nonlocal integral models to conduct free vibration analysis of
curved Euler-Bernoulli beams has been demonstrated to enhance the accuracy of predic-
tions of dynamic behaviour [36]. Calibrating nonlocal elasticity models with experimental
data has a significant place. The stress-driven nonlocal elasticity model has been validated
using experimental data on the bending and free vibration of micro- and nanocantilevers
[2]. The free vibrations of stepped nanobeams with cracks have been studied using Er-
ingen’s nonlocal elasticity theory [37].

Curved beams are essential for designing compliant mechanisms. A six-degree-of-
freedom compliant mechanism based on curved beams has been proposed. It demon-
strates multi-degrees-of-freedom motion with simple structures using isogeometric anal-
ysis [38]. To address the problem of large deflections in beams, a comprehensive static
modelling methodology has been developed using beam theory for compliant mecha-
nisms [39]. Using variational principles and differential geometry, the vibration of thin
pre-twisted helical beams has been studied, and the governing equations have been es-
tablished [40]. The static behaviour of nanobeams under variable loads has been examined
using analytical solutions and nonlocal elasticity theory in Frenet coordinates, addressing
the constraints of conventional local elasticity theories in nanoscale systems [41,42]. An
analytical approach examines the bending behaviour of curved double-walled nanotubes
[9]. Similar methodologies are followed in the buckling prediction in single-walled nano-
tubes [43] and double-walled nanotubes [44].

The literature on helical carbon nanotubes is currently limited. However, they have
attracted considerable attention due to their unique structural and mechanical properties
[45]. In order to regulate their formation and improve their performance, several synthesis
techniques have been developed [46]. Their mechanical properties, such as tensile
strength and crack resistance, have been investigated through both experimental and
modelling techniques [47]. In addition, these nanotubes are being incorporated into en-
ergy storage devices and composite materials to enhance functionality [48,49].

This study formulates Eringen’s nonlocal elasticity theory within the framework of
Euler-Bernoulli beam theory expressed in Frenet coordinates to analyse the static behav-
iour of helical single-walled carbon nanotubes (SWCNTs) modelled as nanobeams [50,51].
The nonlocal framework introduces size-dependent effects absent in classical continuum
models, enabling the governing equations to capture interatomic interactions. The result-
ing system of differential equations is solved exactly using the initial value method, yield-
ing closed-form expressions for displacements and rotations under various loading con-
ditions. By comparing local and nonlocal predictions, the analysis provides deeper insight
into the influence of nanoscale interactions on the deformation of helical nanostructures.
The novelty of this work lies in presenting the first exact closed-form formulation for the
nonlocal static response of helical SWCNT beams, with the examples used to demonstrate
the analytical solutions presented as parametric studies covering different geometries and
length scales, thereby providing benchmark results for nanoscale device design.
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2. The Governing Differential Equations for Static Behaviour of
Helical SWCNTs

The helical SWCNT is described using beam theory together with expressions ob-
tained from nonlocal elasticity. Its centreline is assumed to trace a helical curve character-
ised by a constant radius and a fixed pitch angle, denoted by a. Hence the Frenet coordi-
nate system is employed. In the Frenet frame, the tangent (t), normal (n), and binormal
(b) directions provide a natural basis aligned with the helix geometry. Resolving displace-
ments and rotations along these directions allows the formulation to capture the intrinsic
coupling between axial elongation, bending, and torsion in a compact mathematical form.
This geometric description helps connect the forthcoming algebraic derivations to physi-
cal deformation modes of the helix. Furthermore, the cross-section is considered uniform
and doubly symmetric, without any initial twist. The corresponding parametric form of
the helix is well established in the literature and can be expressed as:

x =Rcosa (1)
y =Rsina (2)
z=ROtana 3)
¢=R/cosa (4)

Here, 6 denotes the helix angle, @ represents the pitch angle, and R is the helix ra-
dius. The parameter c is a scaling factor that links the arc length to the helix angle, facili-
tating the geometric description of the helix.

A schematic of a helical SWCNT with a uniform circular cross-section, constant ra-
dius, and fixed pitch angle is illustrated in Figure 1.

Figure 1. Representative models of a helical single-walled carbon nanotube (SWCNT): atomistic
configuration (left, middle), and continuum model (right).

According to Eringen’s formulation, the relationship between stresses in the classical
(local) and nonlocal elasticity theories is expressed as:

(1-y*v%)o™ =o' ®)
where V? denotes the Laplacian operator, y stands for the nonlocal parameter, o' and
o™ indicate the stress tensors in local (classical) and nonlocal elasticity theories, respec-
tively.

The correspondence between local and nonlocal force and moment resultants, as re-
ported in the literature [41,42,52-54], can be written as:
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(1 +£—z> F —g—zd;g: - F} @)
FM — I];—zd;g: l F} (8)
AL ©
p LMY - (10)
(1 N y_2> Myt — y_ZdZM;ll idMﬂl .\ ﬁ an
R? dB? 2R? d6 2R

RZ

where EM, F*, and F indicate the nonlocal force resultants, F!, F} and F} denote the

local force resultants, M2, M{,” and MM stand for the nonlocal moment resultants, M},

M! and M} are the local moment resultants. The subscripts n, b, and t correspond to

the normal, binormal, and tangential directions of the Frenet frame along the helix axis,

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

respectively.
The equilibrium equations for beams, as established in the literature [55,56], are ex-
pressed as:
amr R
y ~ = sina M* — cos a M}% +mFg”
My’ = —sina MM ———E™
do " cosa "
dMp .
0 - cosa My
anl
dg = sina F* — cos a F*
dFg*
5 =~ sin a EM
dF* .
19 cosa E}
Derivation of Equations (12)—(17) yields:
Myt dmp amMp N R dFM
a6z "% g T %48 T osa d6
Myt dMp' R dEM
a6z~ %74 T Cosa do
d*mp amyt

Jgz = cosa—g

dZanl anl d nl

(2D
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d*Ft dRM
Zb 22
102 sina a0 (22)
d?F dE"
462 =cosa 40 (23)

Inserting Equations (12)—(23) into Equations (6)-(11) leads to the expressions below,
which hold for helices of constant radius, uniform cross-section, and fixed pitch angle.

}/2

(1 + Rz)F”l E} (24)

2 }/2
1+ ﬁ [1+ (sina)?]|F} — ﬁsin acosa F* = F} (25)

y 2
[1+_(Cosa)]F?Z_FCOSQSIHQFZ”:FJ (26)
Y )/ 2Rsina
(1 " )Mm R? cosa Fit =My (27)
v y? y?sina

1+ﬁ(sina)2 Mgl_ﬁsinacosaM +2—Co Fpt =M} (28)

2 2
y cosa 4 1
(1 +ﬁ(1 + (cosa)? — 5 )) MM +Fsma(5—cos a) MP

; (29)
Y

+ J—
2R (cos a

- 1) Fjt = M{

From these relations, the governing differential equations for the static response of
helical SWCNTs subjected to concentrated forces are derived [57]:

du™(0) l R
LA — 30
40 = sinauM — cosa ul +cosa0b (30)
dup'(9) a RO
=— 31
a0 sina uj, cosaﬂn (31)
du™(0
% = cosau™ (32)
dor(e) nl n y? y? 2R%sina
—n _ —Mnl - -
40 sina 2" — cos a (2f 1+R2 cosaEL +R2EI cosa)? EM (33)
in(Q)
_ nl
a0 sina (2 ] 2
R v R .
+m[<1 +F(SIHQ)Z>M{; —FSIHQCOS(IM? (34)
2 .
y? sina
= RE}!
RZcosa P ]
dor(e cosa
%:cosa!)gl+ oS aG] R2 1+(cosoz)2 5 )]M{”

(35)

R y? 1 o Rp1 l
-I-cosaG]R2 [sma(z—cosa)Mb +E(cosa_1)Fb]
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dCI\l/Zlﬂ = sina M — cosa M{* + %Fg’l (36)
dgljl = —sina M} — coI: p EM (37)
d(]i\/legll = cosa M™ (38)

d;';{” = sina FJ* — cos a F* (39)

B —sinany (40)

d(f;”l = cosa F (41)

where u, u}, and u denote displacements, 2%, Q}', and Q" are rotations, A is the
cross-sectional area E and G are the Young’s and shear moduli, respectively; I,,, and I,
are the second moments of area with respect to n and b axes; J is the torsional constant
of the cross-section.

3. Exact Analytical Solution by Using the Initial Value Method

The solution procedure follows a structured sequence. First, the force resultants are
obtained from the equilibrium relations. These are then used to determine the internal
moments. Subsequently, the rotations are computed from the moment—curvature rela-
tions, and finally the displacements are recovered from the rotation-displacement kine-
matics. This stepwise progression ensures that the governing system can be solved ana-
lytically in a transparent and reproducible manner.

From this stage, the equations are presented in matrix form, where a linear first-order
constant coefficient ODE system is expressed as:

@) _ Ay(6) +£(0) (42)
do

Here, y(8) denotes the state vector of system variables, A is the constant coefficient
matrix arising from geometric uniformity (constant radius, pitch angle, and cross-section),
and f(8) represents the nonhomogeneous vector. The general solution of Equation (42)
is well known and can be written as:

]
y(6) = Y(6,60)yo +Y(6,8,) | Y1(& %) £(§)d¢ (43)
6o
The expression is valid provided that the initial state y, = y(6,) is known. The fun-
damental matrix. Y(6, 8,), defined relative to the reference coordinate 6y, is derived from
the homogeneous counterpart of Equation (42):

y(6) = Y(6,6,)y, (44)
The fundamental matrix Y(6,8,) satisfies the following relations:
dy(0,6,)
0/ _ 45
- AY(6,6,) (45)
Y(6,60) =1 (46)

Y-1(6,,6,) = Y(6,,6,) (47)
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Y(91‘ 92)Y(92; 93) = Y(91;93) (48)

Here, I denotes the identity matrix. Equations (30)—(41) form a linear first-order ho-
mogeneous system of ordinary differential equations, solved through the initial value
method. The reference coordinate is taken as 6, =0, so that y, = y(0).

As a first step, Equations (39)—(41) for the force resultants define a linear first-order
homogeneous system of differential equations:

Fnl sina —cosa anl
d9 =|—sina 0 0 F¥ (49)
Fnl

cosa 0 0 ¥

Equation (49) corresponds to the force-resultant subsystem of the helical beam. They
describe how the internal forces vary along the arc length of the helix under the imposed
loading and boundary conditions. Solving this subsystem provides the foundation for de-
termining the subsequent moment and rotation fields.

The expressions for E, Fi¥, and F/* are analytically obtained as:
! i
Fjt[=Y(6,0) [Fjg (50)
R i

Hence, the fundamental matrix Y(6,0) reads:

cos 6 sina sin 6 —cosasinf
Y(6,0) = [— sinasinf cos?a +sin?acosf sinacosa (1 — cosh) (51)
cosasinf sinacosa(l—cosf) sin?a+ cos?acosf

Next, considering the moment relations in Equations (36)—(38) reveals that they form
anon-homogeneous system. The coefficient matrix A associated with their homogeneous
component is the same as that defined in Equation (49):

v
d My 0 sina —cosa][Mi'] | cosan |
T MM =|-sina 0 0 MM+l R I (52)
M cosa 0 0 MM Il cosa Jl
0

The moment subsystem inherits the same coefficient matrix as the force subsystem,
meaning that the same fundamental matrix can be reused. This structural similarity re-
duces computational effort and highlights the close coupling between internal forces and
bending/torsional moments in the helical geometry.

Accordingly, the fundamental matrix is the same as in Equation (50). Advancing to
the particular solution requires determining the inverse Y~*(6,0), which is necessary for
computing the nonhomogeneous contribution in Equation (43).

cos @ —sinasinf cosasinf
Y~1(9,0) = | sinasing  cos’a +sin*acosf sinacosa(l—cosf)| (53)
—cosasin® sinacosa(l—cosf) sin?a+ cos?acosf

Afterwards, since F* and F}"' in the nonhomogeneous part of Equation (51) are
known, the solution of the system can be written as:

Mnl M"rll(l) g Ir cosa I;l -I
M| =Y(6,0) |ME|+Y(6,0) f Yol R ldg (54)
MM MY 0 l cosa Jl

0

Equations (33)—(35), which describe the cross-sectional rotation angles of the beam,
can be expressed in matrix form as:
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in
i Q:lll
ol
0f l
0 sina  —cosal[2n
=|[-sina 0 0 n
cosa 0 0 nm
i R i+ yz M ﬁ 2R%sina o 1 (55)
cosaEl, R? R2EL,(cosa)?™ ™
2 2 sina
+ cosaEl, <1+y—(sma) ) "l—%sinacosaM +2y_ RFg‘l]
R - y? 1 2 _COSAN) y? 1 ! y? 1) e
| cos a G R2( + (cosa)® 2 ) t +ﬁsma(§—cosa) ZR(cosa_ ) b ]

The rotation equations link the internal moments directly to the kinematic response
of the cross-section. Once the rotations are determined, the displacement field can be con-
structed, completing the chain from equilibrium to geometry.

Since the homogeneous portion of the equation shares the same coefficient matrix A
as Equations (49) and (52), the associated fundamental matrix Y(60,0) and its inverse
Y~1(6,0) coincide with those in Equations (51) and (53). Hence, the rotations relative to
the Frenet coordinate system are determined by:

o
ot
op
Qo
=Y(6,0) |}
oy
[ R - yz M y? 2R?sina i ] (56)
I cosaEI RZ +R2 El,(cosa)?™ ™ I
o [ R L it y? "y +2y Sm“Fnz |
+ Y(B’O)L Y S O)I cosa EI, R?2 (sm 2k gz Sinacosa Rcosa ° Id§
2 2 1 2
I[cosaG] (1 +%(1 + (cosa)? — COZS a)> MM +%sma(§— cos a)M{,” +;/_R(cosa - 1) F;”]Jl
Here, the internal moments M, M, and M}, and the forces E™, and F* are de-
fined in Equations (50) and (54).
nl
d |
— [un
de ut
0 sm a — cos a
=|—sina
cosa
]/2 - (57)
cosa a5 cos a GA R2
R kyR y? kyRy?
+|- n 1+ —[1+ (sina)?] | F* — ———sina F*
cosa cosaGA( RZ[ ( )] GA R?
2 2
14 14
m(l‘l‘ (COSO.’) > —EESII’IQF

Accordingly, the displacement components can be expressed as:
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u™
ult
u
)
=Y(6,0) [ul
ugy
2 58
R _{2“14_167‘—12 1+)’_ Enl (58)
0 cosa P ' cosaGA RZ)°"
R kbR yz kbR yz
Y(6,0) | Y-1(¢,0)de |- —— o 1+ 11 4 (sinay?l | gt — Ko R(YE o e
+¥( )f (¢, 0)d¢ cosa " +cosaGA< +R2[ T Gina) ) Fy ca \R2>M e
0 2 2
Y Y“ R |
m(l + =7 (cos a)2> M — ﬁﬂsmaﬂ?l

Here, E, F/*,and F* are given by Equation (38), while 2%, and 2} are obtained
from Equation (56).

The overall analytical solution can therefore be explained as a pipeline: Forces —
Moments — Rotations — Displacements. Each stage builds on the previous one, with the
fundamental matrix providing a unifying tool to solve the coupled ordinary differential
equations.

By solving the force, moment, rotation, and displacement equations sequentially
through the initial value method, the complete analytical solution of the static behaviour
of helical SWCNT is obtained. This yields closed-form relations for all quantities as func-
tions of the helix angle 8. Due to the algebraic complexity of the general solution, only a
representative case is provided here: the closed-coil SWCNT (tension spring) with a pitch
angle approaching zero (@ =~ 0), for which the analytical results are:

RZ
ut(8) = ulh cos @ — u sin @ + QPR sin 6 + Mz%ﬁ(l — cos )
b
| R 0 sin 6
+ Fy E_Ib<1 —cosf — > )
3

(59)

+ FY [ (6 cos @ — sin 0)]

2E1,
ult(0) = uly — Q¥ Rsin6 + QHR(1 — cos )

Ly R? 1+3y2 (1_ e_esinb")
no [\ " T 2R? cos 2

RZ y2
- 14— i
2E1n< +R2>Bsm9]

RZ VZ
1 . i —
25111( +R2> (sin@ — 6 cosB)

+ M
° [ (60)

R? 377\, .

+2_G]<1 +ﬁ> (sinf — HCOSB)]

3 VZ

(1 + ﬁ) (6 cos 8 —sinB)

nl R
+ oo 2EI
n

R (1422 20 + 6 cos 6 — 35in )
ZG] 2R2 COS Sin

RZ
u(8) = uy sin 6 + ul cos @ + QPSR(1 — cos 0) + MY i (6 —sinB)
b
3

| R 0 .
+ Fo E—Ib<c059—1+551n9)] (61)
+ Fiy i 6-2s f

0 E_Ib< —Esmf) +Ecosﬂ)]
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NH(B) = 0% cos — NM sin
+M’“R ! 1+y2 (6 cos B + sinB)
n7 |EL I cos sin
+ 2 (143 (0 cos — sing)
3] RZ cos sin
R 1 y? 1 3y? (62)
nl__ : o LA -r
+Mt02631n6[ E1n<1+R2> G]<1+2R2
R?[ 1 y?
l .
+F1?07|:E_1n<1 +ﬁ>6’51n9
1 3y?
——(1+=%)(2-6sin6 -2
G]( + 2R2>( fsin 0 cosH)]
1 1 | RO I R? l R? :
07(0) =0ps + Mg —— F5—— (1 —cos0) + Fly — (0 —sin9) (63)

bo g~ oy 0 g,

. . L 1 y? 1 3y2\|R6
0% (0) = 0fy cos 6 + N7 sin 6 + M [— 1+ﬁ +G_] 1+ —sin6

El, 2R?)| 2
+ MY L<1+ﬁ>+i<1+3—7/2>]5(9cose—sine) (64)
El, Rz GJ 2R2)|2

+ F E—11n<1 +1};—z> +Gi]<1 +;—I):>]R72(sin6 — 6 cosH)
MPH(0) = M cos§ — MY sin@ + FXRsin 8 (65)
MM(0) = MY + FI'R(1 — cos8) — F¥Rsin @ (66)
MM(9) = M} cos8 + M sin@ + F{4R(1 — cos 8) (67)
EM(6) = FM cos6 — Fit sin 6 (68)
F}(6) = Fys (69)
FM(6) = F} cos + Ftsin (70)

4. Numerical Examples

An analytical solution can be efficiently obtained, provided that the initial values are
known. These initial values can be determined by solving a system of linear equations
derived directly from the boundary conditions of the beam.

To demonstrate the application of the analytical solution procedure, two cases based
on two sets of boundary and loading conditions are examined.

1. Case 1: Clamped-Free Beam with a Concentrated Load at the Free End

A helical beam fixed at one end, A, and free at the other, B, is analysed. At the free
end, concentrated forces (F,,5, Fpp, and F.z) and moments (M5, Mpp, and M,g) are ap-
plied individually to study the response of the beam. The corresponding initial value vec-
torat 8 = 0, atend 4, is constructed by enforcing zero displacements and rotations at the
clamped end and assigning the appropriate force or moment at the free end 8 = 6.

The clamped boundary conditions are given for the end A of the beam:

Unpa = 0, Upp = 0, Upyg = 0, QTLA = 0, QbA = 0, ‘QtA =0 (71)

When the loads are applied to the free end B, the related equations must be equal to
the loads.
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Fug =0, Fop = FE,cosa, Fip = E;sina, My =0, Myp=0, Mp=0 (72)

Substituting these conditions into the governing Equations (50), (54), (56) and (58)
provides the distributions of resultants, displacements, and rotations along the beam.

2. Case 2: Clamped-Clamped Beam with a Concentrated Load at an Intermediate Point

The second configuration considers a beam clamped at both ends and subjected to
concentrated loads at a point 8 = 6. Each load case is again applied individually for F,,
Fyer Frer Mpc, Mpc, and M. The problem is divided into two subdomains (before and
after the loading point), with continuity of displacements, rotations and force and moment
resultants enforced at the load application point. The load introduces a discontinuity in
the internal force or moment vector, which is accounted for through the continuity condi-
tions. The clamped boundary conditions at end 4, § = 0 and atend B, 8 = 6y are im-
posed to determine the full initial value vector.

When a beam is subjected to point loads M,,¢, My, Myc, Fc, Fyoe, and Fye at a specific
coordinate 8 = 6, the domain is divided into two subregions, each governed by its cor-
responding analytical solution:

y1(61) = Y(61,0)y1, for 0<6, <6, (73)

¥2(682) = Y(8,,60)y2c for 6 <6; <6, (74)

Here, 6, is the total helix angle, y,¢ is the initial value at coordinate 8 = 6, for the
second region. To ensure continuity at this interface, the following condition is imposed:

Yoc = V1(8c) + K (75)
where K is the external loading vector, defined as:
K= [0' 0,0,0,0,0, My, Myc, Myc, Frc) Fpe, Ftc]T (76)

Substituting this into the governing expression yields:

¥2(02) = Y(8,,00)y1(0c) + Y(6,,00)K (77)
¥2(02) = Y(0,,0.)Y(0¢, 0)y1o + Y(6,00)K (78)
¥2(62) = Y(6,,0)y10 + Y(6,,0)Y (6., 0)K (79)

Once the initial state at 8 = 0 is known, the displacements and rotations at any loca-
tion along the helical beam subjected to a concentrated load can be determined by solving
the governing differential equations, such as Equations (49), (52), (55) and (57).

5. Results and Discussions of the Numerical Examples

In order to simplify and parameterise the problem, the formulation for helical beams
with different pitch angles, «, aspect ratio, R/d, and winding angle, 6 is nondimension-
alised. Therefore, the force to be applied is associated with beam geometry and the result-
ing displacement values become more consistent. The effects of the winding angle, 6,
pitch angle, a, and aspect ratio, R/d, on the displacement at the free end are investigated.
The aspect ratio is R/d = 2.5, and the nondimensional force is F = ¢2F/(EI,) = 1075.
Nondimensional displacements are defined as # = u/c, Poisson’s ratio v =0.3. This non-
dimensionalization allows the deformation behaviour to be expressed in terms of geomet-
ric ratios and intrinsic material properties, enabling more efficient parametric studies
across a wide design space.

Table 1 summarises the normalised displacement and rotation responses of cantile-
vered helical SWCNT beams subjected to end-applied axial loads, comparing local and
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nonlocal elasticity predictions for different winding angles (6 = 4w, 10m), pitch angles («
=5°,10°, 15°), and nonlocal parameters (R/y =1, 5, 10).

Table 1. Normalised displacement and rotation responses of cantilevered helical SWCNT beams
subjected to end-applied axial loads: comparison of local and nonlocal elasticity predictions for var-
ying nonlocal parameter R/y, winding angle 6, and pitch angle a.

0 a () g Up Uy Uy Dy on

1 -0.447169 -0.385396 -0.189402 0.185118 -0.364152
5 5 -0.277218 0.018847 0.028176 0.049663 —-0.005685

10 -0.271907 0.031479 0.034975 0.045430 0.005517

Local -0.270136 0.035690 0.037241 0.044019 0.009251
1 -0.717249 -0.143186 -0.714675 -0.412358 -0.017279

A 10 5 -0.083025 -0.022902 -0.053474 -0.026794 0.011575
10 -0.063205 -0.019143 -0.032811 -0.014745 0.012477

Local -0.056599 -0.017890 -0.025924 -0.010729 0.012778
1 1.141435 -0.002010 0.636183 0.464196 -0.029617

15 5 0.116157 -0.011459 0.054075 0.031576 0.010393

10 0.084117 -0.011754 0.035884 0.018057 0.011643

Local 0.073437 -0.011852 0.029821 0.013550 0.012060
1 -0.822377 -0.410876 -0.153064 0.334183 —0.648534
5 5 —-0.509823 0.024733 0.042914 0.098631 -0.035122
10 -0.500056 0.038346 0.049038 0.091270 -0.015953
Local -0.496800 0.042883 0.051080 0.088816 -0.009563

1 —0.424552 -0.083568 -0.745981 -0.402440 -0.112901
101 10 5 —-0.049144 -0.010252 -0.063326 -0.034860 —-0.005467
10 -0.037412 -0.007960 -0.041993 -0.023373 -0.002100
Local -0.033502 -0.007197 -0.034882 -0.019544 —-0.000990
1 0.965367 0.073051 0.867905 0.556787 -0.165598
15 5 0.098240 0.001411 0.074478 0.046980 —-0.008565
10 0.071142 -0.000828 0.049684 0.031049 —0.003658
Local 0.062110 -0.001574 0.041419 0.025739 -0.002022

The results confirm that the nonlocal parameter strongly influences the deformation.
Atsmall R/y (e.g., 1), nonlocal predictions deviate significantly from the local model. For
0 =4m and a =5° the normal displacement i, is -0.447169 compared to -0.270136 lo-
cally, an increase of about 65%. As R/y increases to 10, results approach the local solu-
tion, reflecting the diminishing role of nonlocal effects when the characteristic length scale
is small relative to beam dimensions.

The winding angle also affects stiffness: beams with larger 6 (10m) exhibit smaller
axial and tangential displacements than those with 8 = 4m, consistent with increased ef-
fective length and reinforcement from additional turns. The pitch angle modifies this
trend at @ =5° displacements along the normal axis are negative, whereas at & =15° they
become positive in several cases (e.g., U, = 1.141435 for 6 =4m, R/y = 1), showing that
pitch can redirect deformation and even lead to net elongation.

Tangential displacements #%, are particularly sensitive to both @ and R/y, with
some cases reversing sign relative to the local model, reflecting coupling between curva-
ture and torsion. The bending displacement #, also exhibits sign changes, indicating
complex geometric sensitivity.

Rotational responses amplify under nonlocal conditions. For instance, at 6 =10m, «
=15° and R/y =1, the bending rotation (2, reaches 0.556787 —over twenty times the lo-
cal prediction (0.025739). Torsional rotations 2, similarly show pronounced amplifica-
tion and geometry dependent sign changes.
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As shown in Figure 2, when a vertical axial force is applied at the free end of the
cantilevered helical SWCNT, both local and nonlocal elasticity models predict elongation
of the helix along the cylindrical axis, but with notable differences. The nonlocal solution
consistently yields larger axial displacements compared to the local model, reflecting the
characteristic softening effect introduced by nanoscale interactions.

00’ '
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Figure 2. A cantilevered helical SWCNT beam under a vertical axial force applied along the cylin-
drical axis. Blue denotes the undeformed axis, red indicates the displacement predicted by local

elasticity, and green shows the result of the nonlocal elasticity theory.

The discrepancy between local and nonlocal predictions is particularly significant
when the nonlocal parameter R/y is small, since the internal characteristic length is then
comparable to the beam’s geometry. As R/y increases, the two solutions converge, indi-
cating a reduced influence of nonlocality.

Geometric effects also play a role: the helical winding and pitch angles couple the
applied axial load into lateral displacements, leading to small deviations from the cylinder
axis. These deviations are more pronounced in the nonlocal predictions, showing that cur-
vature—torsion interactions are magnified when size effects are included.

In Figure 3, the response to a concentrated normal force reveals the strong influence
of nonlocal elasticity on bending behaviour. Both local and nonlocal elasticity models cap-
ture this bending trend, but the magnitude of the response differs significantly.

The nonlocal solution consistently predicts larger lateral displacements than the local
model. This amplification reflects the scale-dependent softening effect, where interatomic
interactions reduce the effective bending stiffness. The difference is particularly evident
for smaller values of the nonlocal parameter R/y, with convergence toward the local pre-
diction as R/y increases.

In addition to the increased lateral deflection, the helical geometry introduces cou-
pling between bending and torsion. This coupling causes secondary displacements along
the tangential and axial directions, visible in the green and red curves. The nonlocal pre-
dictions show more pronounced coupling effects, confirming that nanoscale interactions
enhance geometric sensitivity.
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Figure 3. Deformed configuration of a cantilevered helical SWCNT beam subjected to a force F,
applied at the free end along the normal axis. The blue line indicates the undeformed configuration,
the red curve represents the deformation predicted by classical (local) elasticity theory, and the

green curve illustrates the displacement response obtained using nonlocal elasticity theory.

Figure 4 illustrates the deformation of the cantilevered helical SWCNT beam under
a binormal force applied at the free end. The dominant response is lateral bending in the
binormal direction, with both local and nonlocal models capturing the overall shape of
the deformation. However, as in previous cases, the magnitude of displacement differs:
the nonlocal solution predicts noticeably larger deflections compared to the local elasticity
model.

Figure 4. A cantilevered helical SWCNT beam under a concentrated binormal force F;, applied at
the free end. Blue denotes the undeformed axis, red indicates the displacement predicted by local

elasticity, and green shows the result of the nonlocal elasticity theory.
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The discrepancy between the two theories is most evident at low R/y values, where
nonlocal effects are strongest. As R/y increases, the curves predicted by the two models
begin to converge, confirming that the influence of scale-dependent interactions dimin-
ishes when the internal length scale is small relative to the structural dimensions.

The helical geometry also leads to coupling between binormal bending and other
displacement components. The applied F, not only induces lateral deflection but also re-
sults in tangential shifts and small axial displacements. These coupled responses are more
pronounced in the nonlocal predictions, reflecting the enhanced sensitivity of nanoscale
helices to load transfer across curved geometries.

Figure 5 shows the deformation of the cantilevered helical SWCNT beam subjected
to a tangential force applied at the free end. Unlike axial or binormal loading, tangential
excitation directly drives torsional deformation, which is strongly coupled with bending
due to the helical geometry. Both the local and nonlocal predictions exhibit a pronounced
twisting response along the cylindrical axis, but the nonlocal theory predicts consistently
larger displacements and rotations.
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Figure 5. A cantilevered helical SWCNT beam under a concentrated tangential force F, applied at
the free end. Blue denotes the undeformed axis, red indicates the displacement predicted by local

elasticity, and green shows the result of the nonlocal elasticity theory.

The difference between local and nonlocal solutions is particularly evident in the lat-
eral spread of the helix. For small R/y, the green curve departs significantly from the red
curve, highlighting the scale-dependent reduction in torsional stiffness. As R/y in-
creases, the discrepancy decreases, with the two predictions converging towards each
other.

Coupling effects are especially important under tangential loading. The torsional ex-
citation induces not only twisting about the axis but also secondary normal and binormal
displacements, which are more pronounced in the nonlocal model. This reflects the fact
that nanoscale interactions amplify cross-coupling between torsion and bending in curved
structures.

Figure 6 illustrates the response of the cantilevered helical SWCNT beam subjected
to a normal moment at the free end. This loading primarily induces bending about the
normal axis, producing a rotational deformation that propagates along the helix. Both
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local and nonlocal theories predict similar qualitative behaviour, but the magnitude of
displacement and rotation is markedly higher in the nonlocal case.

-04

Figure 6. A cantilevered helical SWCNT beam under a concentrated normal moment M,, applied
at the free end. Blue denotes the undeformed axis, red indicates the displacement predicted by local
elasticity, and green shows the result of the nonlocal elasticity theory.

The difference between the two models reflects the reduced bending stiffness cap-
tured by nonlocal elasticity. For small values of the nonlocal parameter R/y, the green
curve departs significantly from the red, with amplified deflections and rotations. As R/y
increases, the predictions converge, showing that the impact of size effects diminishes
when the internal length scale is small relative to the helical geometry.

An important feature of this loading case is the coupling between bending and tor-
sional responses. The applied normal moment not only generates curvature in the normal
plane but also induces tangential and binormal displacements due to the inherent geom-
etry of the helix. These coupled effects are more evident in the nonlocal solution, which
captures the enhanced sensitivity of nanoscale structures to load transfer between bend-
ing and torsion.

Figure 7 shows the deformation of the cantilevered helical SWCNT beam subjected
to a binormal moment at the free end. This loading primarily induces bending about the
binormal axis, but due to the helical geometry, the response involves coupled displace-
ments and rotations in the normal and tangential directions as well.

The nonlocal prediction (green) exhibits significantly larger deflections and rotations
than the local solution (red). This reflects the reduction in effective bending stiffness when
nanoscale effects are included. At small values of R/y the discrepancy between the two
models is particularly pronounced, whereas at larger R/y the two solutions converge,
indicating reduced influence of nonlocality as the structural dimensions become much
larger than the material length scale.
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Figure 7. A cantilevered helical SWCNT beam under a concentrated binormal moment M, applied
at the free end. Blue denotes the undeformed axis, red indicates the displacement predicted by local

elasticity, and green shows the result of the nonlocal elasticity theory.

The geometry-driven coupling is evident in the deformation paths. The applied bi-
normal moment not only produces curvature in the binormal plane but also amplifies
twisting and secondary axial shifts, which are more strongly captured in the nonlocal so-
lution. This behaviour underlines the enhanced role of curvature—torsion interactions at
the nanoscale.

Figure 8 illustrates the response of the cantilevered helical SWCNT beam subjected
to a tangential (torsional) moment at the free end. This loading primarily excites twisting
deformation along the helical axis, but due to the intrinsic coupling of curvature and tor-
sion in the geometry, the resulting deformation also contains significant bending compo-
nents.

Figure 8. A cantilevered helical SWCNT beam under a concentrated tangential (torsional) moment
M, applied at the free end. Blue denotes the undeformed axis, red indicates the displacement pre-

dicted by local elasticity, and green shows the result of the nonlocal elasticity theory.
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The comparison between local and nonlocal predictions shows that the nonlocal for-
mulation produces markedly larger twisting displacements and rotations, especially for
small values of the nonlocal parameter R/y. This reflects the reduction in torsional stiff-
ness captured by nonlocal elasticity. As R/y increases, the predictions of the two models
converge, demonstrating the reduced influence of nanoscale effects when the characteris-
tic length scale becomes negligible relative to the helix dimensions.

Secondary deformation patterns are also apparent. The torsional moment induces
lateral shifts in both the normal and binormal directions, which are amplified in the non-
local solution. These additional displacement components highlight the strong geometric
coupling in helices, where torsion cannot occur independently of bending.

Figure 9 presents the deformation of a clamped-clamped helical SWCNT beam sub-
jected to a concentrated normal force applied at its midpoint. Because of the boundary
conditions, the deformation pattern is symmetric about the midspan, with deflections con-
strained at both ends. Both local and nonlocal elasticity theories predict the expected
bending response in the normal direction, but the amplitude of displacement is noticeably
higher for the nonlocal solution.

Figure 9. A clamped-clamped helical SWCNT beam (total arc length 207) subjected to a concen-
trated normal force F, applied at the midpoint (§ = 10m). Blue denotes the undeformed axis, red
indicates the displacement predicted by local elasticity, and green shows the result of the nonlocal

elasticity theory.

The difference between the two predictions reflects the reduced effective stiffness
captured by nonlocal elasticity. At small values of R/y, the nonlocal deformation is sig-
nificantly larger, while at higher values of R/y the results approach those of the local
model. This behaviour confirms that scale-dependent effects dominate when the struc-
tural dimensions are comparable to the characteristic material length.
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In addition to the dominant normal displacement, the helical geometry introduces
tangential and binormal coupling effects. These are more pronounced in the nonlocal re-
sults, where the lateral deviations from the cylindrical axis are magnified. The amplifica-
tion of coupled displacements highlights the sensitivity of helices to multiphysics interac-
tions at the nanoscale.

Figure 10 shows the deformation of a clamped—clamped helical SWCNT beam under
a binormal force applied at the midpoint. Owing to the boundary constraints at both ends,
the deformation is symmetric about the load application point, with lateral bending in the
binormal direction forming the dominant response.

-0.2

Figure 10. A clamped—clamped helical SWCNT beam (total arc length 20m) subjected to a concen-
trated binormal force F, applied at the midpoint (6 = 10m). Blue denotes the undeformed axis, red
indicates the displacement predicted by local elasticity, and green shows the result of the nonlocal

elasticity theory.

The comparison between local and nonlocal solutions reveals significant differences
in the predicted amplitudes of displacement. The nonlocal solution (green) consistently
produces larger lateral deflections than the local model (red), reflecting the reduction in
effective bending stiffness at the nanoscale. This discrepancy is most pronounced for small
values of the nonlocal parameter R/y, while convergence between the two models occurs
as R/y increases.
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In addition to the primary binormal deflection, the helical geometry introduces tan-
gential and normal displacement components. These coupled effects are amplified in the
nonlocal solution, where the twisting and lateral deviations become more pronounced.
This again highlights that nanoscale interactions strengthen curvature-torsion coupling
in helical structures.

Figure 11 depicts the deformation of a clamped—clamped helical SWCNT beam sub-
jected to a tangential force applied at its midpoint. The clamped supports enforce zero
displacements and rotations at both ends, resulting in a symmetric deformation pattern
about the load application point. The applied tangential force primarily excites torsional
motion, but the helical geometry ensures strong coupling with bending displacements in
both the normal and binormal directions.

Figure 11. A clamped—clamped helical SWCNT beam (total arc length 20m) subjected to a concen-
trated tangential force F; applied at the midpoint (6 = 10m). Blue denotes the undeformed axis, red
indicates the displacement predicted by local elasticity, and green shows the result of the nonlocal

elasticity theory.

The nonlocal model (green) predicts larger twisting and lateral deviations compared
to the local model (red), reflecting the reduction in torsional stiffness due to nanoscale
interactions. At small values of R/y, this amplification is particularly evident, while for
larger R/y the two predictions approach one another, demonstrating the diminishing im-
portance of nonlocality when the characteristic length scale is negligible compared to
beam dimensions.

The coupling effects induced by tangential loading are amplified in the nonlocal so-
lution. In addition to torsional deformation about the cylindrical axis, the structure
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experiences secondary lateral displacements, which are underestimated by the local
model. This underlines the necessity of accounting for size-dependent effects when mod-
elling nanoscale helices subjected to torsion-dominated loads.

Figure 12 shows the deformation of a clamped-clamped helical SWCNT beam under
anormal moment applied at its midpoint. The boundary conditions impose zero displace-
ments and rotations at both ends, producing a symmetric deformation pattern centred on
the load application point. The primary effect of the applied moment is bending about the
normal axis, although the helical geometry ensures additional coupled displacements in
the tangential and binormal directions.
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Figure 12. A clamped-clamped helical SWCNT beam (total arc length 20m) subjected to a concen-
trated normal moment M,, applied at the midpoint (6 = 10m). Blue denotes the undeformed axis,
red indicates the displacement predicted by local elasticity, and green shows the result of the non-
local elasticity theory.

The nonlocal solution (green) exhibits consistently larger rotations and displace-
ments than the local model (red). This difference is most evident when the nonlocal pa-
rameter R/y is small, reflecting the strong influence of size-dependent softening at the
nanoscale. As R/y increases, the two predictions converge, indicating that the role of
nonlocal effects diminishes when the structural dimensions become large relative to the
characteristic material length.

Coupling effects are also evident. In addition to the primary normal bending re-
sponse, the helix undergoes secondary twisting and lateral shifts that are more
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pronounced in the nonlocal solution. These effects highlight the importance of including
nonlocal elasticity in order to capture the full deformation complexity of nanoscale helical
beams under moment-driven loading.

Figure 13 presents the deformation of a clamped-clamped helical SWCNT beam un-
der a binormal moment applied at the midpoint. With both ends fully constrained, the
deformation pattern is symmetric about the load application point. The applied moment
primarily induces bending about the binormal axis, though the curved geometry of the
helix naturally introduces additional torsional and lateral coupling.
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Figure 13. A clamped—clamped helical SWCNT beam (total arc length 20m) subjected to a concen-
trated binormal moment M, applied at the midpoint (¢ = 10m). Blue denotes the undeformed axis,
red indicates the displacement predicted by local elasticity, and green shows the result of the non-
local elasticity theory.

The comparison of results shows that the nonlocal solution (green) predicts larger
deflections and rotations than the local model (red). This difference is especially pro-
nounced at smaller values of the nonlocal parameter R/y, where nanoscale effects
strongly reduce the effective bending stiffness. As R/y increases, the two predictions con-
verge, consistent with the diminishing role of nonlocal interactions at larger structural
scales.

Beyond the primary binormal bending response, secondary deformation effects are
also observed. The nonlocal model captures amplified twisting and lateral deviations,
which are largely underestimated by the local theory. This highlights how nanoscale ef-
fects enhance geometric coupling and increase the overall compliance of the helical struc-
ture.
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Figure 14 illustrates the deformation of a clamped-clamped helical SWCNT beam
under a tangential (torsional) moment applied at its midpoint. The clamped supports at
both ends enforce zero displacements and rotations, producing a symmetric twisting re-
sponse about the midpoint. The primary effect of the applied moment is torsion about the

helical axis, but the geometry couples this twisting with bending displacements in both
the normal and binormal directions.

Figure 14. A clamped-clamped helical SWCNT beam (total arc length 20m) subjected to a concen-
trated tangential (torsional) moment M, applied at the midpoint (6 = 10m). Blue denotes the unde-
formed axis, red indicates the displacement predicted by local elasticity, and green shows the result

of the nonlocal elasticity theory.

The comparison of local and nonlocal results again highlights the scale-dependent
effects. The nonlocal solution (green) predicts considerably larger torsional rotations and
lateral deviations compared to the local model (red). These differences are most pro-
nounced when the nonlocal parameter R/y is small, showing the reduced torsional stiff-
ness associated with nanoscale interactions. At larger R/y the two predictions converge,
reflecting the reduced influence of nonlocality at larger scales.

Coupling effects are clearly visible: while the applied moment is tangential, the helix
undergoes secondary bending displacements that are magnified in the nonlocal predic-
tions. These additional deformation components emphasise the importance of
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incorporating nonlocal elasticity to fully capture the multiphysics interactions in na-
noscale helical structures.

The deviations observed between local and nonlocal elasticity predictions are in line
with earlier findings on curved nanobeams, where nonlocality was shown to reduce ef-
fective stiffness and amplify displacements [20,21,42,54,58,59]. However, the present re-
sults extend these insights by demonstrating that helical geometries not only soften under
nonlocal effects but also exhibit strong torsion-bending coupling that is absent in simpler
beam models. For example, the amplification of the binormal rotation ¢, under nonlocal
assumptions highlights a cross-mode sensitivity that has not been emphasised in prior
straight or mildly curved nanobeam analyses. This comparison indicates that nanoscale
helices are more compliant and more strongly coupled in their deformation modes, which
is a critical physical implication for the design of nanosprings, sensors, and flexible nano-
actuators. While the present results establish a closed-form benchmark, full validation
against molecular dynamics (MD) simulations of helical SWCNTSs remains an important
next step. Conducting such simulations under the exact boundary and loading conditions
considered here is highly demanding in terms of computational cost and modelling setup,
and is therefore beyond the scope of this analytical study. By expressing the solutions in
nondimensional form, however, the framework is designed to facilitate direct comparison
with existing and future MD datasets. This ensures that the present results can be readily
used as a benchmark for multiscale validation in subsequent studies.

6. Conclusions

This study has presented exact analytical solutions for the static response of helical
single-walled carbon nanotube (SWCNT) beams within the framework of Eringen’s non-
local Euler-Bernoulli beam theory. By employing the Frenet frame to represent the helical
geometry and applying the initial value method, closed-form relations for displacements
and rotations were obtained under various concentrated loading conditions for both can-
tilevered and clamped—clamped boundary configurations.

The findings consistently demonstrate that nonlocal elasticity predicts larger dis-
placements and rotations than the classical local theory, highlighting the softening of ax-
ial, flexural, and torsional stiffness that emerges when nanoscale effects are taken into ac-
count. The influence of the nonlocal parameter R/y is strongest when the characteristic
length is comparable to the dimensions of the structure, with local and nonlocal predic-
tions converging as R/y increases. Geometric parameters also play a decisive role in
shaping the mechanical response: larger winding angles are associated with enhanced
stiffness, while variations in pitch angle alter the balance between axial elongation and
shortening. Tangential and torsional loadings revealed the greatest differences between
local and nonlocal elasticity, underlining the strong coupling between torsion and bend-
ing inherent to helical geometries.

The closed-form analytical solutions obtained here provide benchmark reference
data for the mechanics of nanoscale helical beams. They confirm the necessity of incorpo-
rating nonlocal elasticity into nanoscale modelling and offer a rigorous framework that
can be used for validation of multiscale simulations, design optimisation, and experi-
mental calibration in nanotechnology applications.

Looking ahead, this formulation can be extended to address dynamic behaviour, in-
cluding vibrations, wave propagation, and transient responses, as well as the influence of
temperature-dependent material properties and viscoelastic effects. Incorporating electro-
mechanical, piezoelectric, or magneto-mechanical coupling would further enable the de-
sign of multifunctional nanosprings, sensors, and actuators. The approach may also be
generalised to more complex architectures such as multi-walled CNTs, helical bundles, or
CNT-reinforced composites, where inter-wall or inter-phase interactions become
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significant. Finally, correlation with molecular dynamics simulations and experimental
studies will be essential to validate the predictions and calibrate the nonlocal length-scale
parameters.

It should be noted that the present formulation is based on the Euler-Bernoulli beam
assumption, which is most suitable for slender SWCNTs with high aspect ratios. For hel-
ices with larger pitch angles or lower aspect ratios, shear deformations and rotary inertia
effects may become more significant. In such cases, a Timoshenko-type nonlocal helical
beam model would provide a more accurate representation of the mechanics. Developing
this extended formulation represents a natural direction for future work, in line with ex-
isting nonlocal Timoshenko beam studies for curved nanostructures.

Also, the present study is formulated within the framework of linear elasticity. Or-
der-of-magnitude estimates of the Green-Lagrange strains under the largest load cases
indicate values well within the limits of linear elasticity demonstrating the validity of this
assumption. Nonetheless, for loading scenarios that produce larger strains, geometric
nonlinearity should be considered in future work.

Beyond these modelling assumptions, several additional limitations should be high-
lighted. The current formulation does not account for van der Waals interactions between
adjacent coils, which may influence the response in tightly wound helices. Thermal effects
are neglected, even though they can significantly alter the effective stiffness of CNTs at
the nanoscale. Finally, the study focuses exclusively on single-walled CNTs, and exten-
sions to multi-walled structures remain an open area for further investigation.

In conclusion, this work establishes the first exact closed-form static analysis of non-
local helical nanobeam:s. It provides a solid foundation for future investigations into their
dynamic, thermal, and multiphysics responses and emphasises the importance of size-
dependent mechanics for the accurate modelling and reliable design of nanoscale devices
based on helical SWCNTs.
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