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 A B S T R A C T

Depression is a prevalent and debilitating mental health disorder that often goes undiagnosed due to the lack 
of accessible, objective screening tools. This paper introduces EVAdaBoost, an Evolutionary AdaBoost ensemble 
framework designed for automated depression detection from voice signals. The method leverages a diverse set 
of signal processing techniques—including Fourier, Wavelet, Walsh, Hilbert–Huang, and OpenSmile, as well 
as time–frequency transformations for convolutional neural networks (CNNs). Each feature set is used to train 
a specialised AdaBoost ensemble, with Broad Learning Systems (BLS) serving as efficient weak learners. A 
key innovation of EVAdaBoost is its use of a quantum-inspired evolutionary algorithm to optimise the feature 
subsets assigned to each AdaBoost model. Instead of using all extracted features, which may include noise, 
redundancy, and irrelevant data, EVAdaBoost evolves to select diverse and high-performing subsets of features 
for each AdaBoost base learner, automatically discarding non-informative features. This evolutionary selection 
enhances both classification accuracy and computational efficiency. Additionally, an evolutionary pruning 
algorithm is employed to find the optimal subset of AdaBoost algorithms that offer the best performance 
at reduced computational cost. Experiments across nine feature types and multiple benchmark classifiers show 
that EVAdaBoost consistently outperforms state-of-the-art methods in accuracy, sensitivity (TPR), specificity 
(TNR), and precision (PPV). The results underscore the potential of hybrid evolutionary ensemble learning for 
non-invasive, speech-based mental health screening.
1. Introduction

Depression and other common mental health disorders, such as 
anxiety, affect millions of people across all age groups globally (Reece 
et al., 2017), posing severe risks not only to mental well-being but also 
to physical health, including increased susceptibility to cardiovascular 
diseases, diabetes, and even mortality due to suicide (Almas et al., 
2015). According to the World Health Organisation, over 280 million 
people suffer from depression worldwide, with nearly 800,000 suicide 
cases attributed to it annually (World Health Organization, 2023). De-
spite the significant burden, both personal and societal, mental health 
disorders often remain undiagnosed or untreated due to the stigma 
surrounding them, limited access to early diagnostic services, and 
the high cost and inefficiency of traditional diagnostic methods such 
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as clinical interviews and psychological assessments (Cacheda et al., 
2019). Individuals with depression exhibit diverse symptoms, includ-
ing sleep disturbances, mood fluctuations, reduced cognitive function, 
altered speech and facial patterns, and hormonal imbalances, which 
may vary by the type and severity of the disorder (Yates et al., 2017). 
These variations complicate the diagnosis process and hinder timely 
intervention. With the rapid advancement of artificial intelligence and 
machine learning, new possibilities are emerging for automatic, scal-
able, and non-invasive detection of depression through analysis of 
multimodal data such as facial expressions, voice signals, text, and 
physiological indicators like EEG (Yazdavar et al., 2017). Emotion 
recognition, especially when extended to digital behaviour such as 
social media text, can serve as a valuable tool in identifying emotional 
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imbalance, detecting suicidal ideation, and ultimately facilitating early 
intervention and destigmatisation (Hasin et al., 2018).

Given the increasing global concern about depression, researchers 
and developers are turning to machine learning (ML) as a powerful 
tool to enhance early detection and intervention strategies (Jiang et al., 
2017). ML have been used for analysing complex patterns in multi-
modal data, to detect depression (Guntuku et al., 2017). For instance, 
emotion recognition systems utilise facial micro-expressions captured 
via video to detect sadness, lethargy, or disengagement, hallmarks 
of depressive states (Deshpande & Rao, 2017). Similarly, sentiment 
analysis and natural language processing (NLP) techniques can mine 
textual responses from chatbots, interviews, or social media posts to 
identify linguistic markers of depression, such as negative sentiment, 
reduced affect, or cognitive distortions (Alghamdi et al., 2020). Deep 
learning models like CNNs and Bi-LSTMs have demonstrated strong 
performance in distinguishing depressed from non-depressed individ-
uals by analysing the syntax, semantics, and temporal patterns of 
user-generated content (Kour & Gupta, 2022). Some systems even inte-
grate these features with audio inputs, using prosodic cues like speech 
pauses, tone, and rhythm to detect vocal indicators of psychological 
distress (Low et al., 2020). Moreover, large-scale social media platforms 
like Twitter and Reddit offer rich, real-world behavioural data that, 
when processed through ML classifiers such as SVMs, Random Forests, 
and 1D-CNNs, allow for scalable depression screening (Tadesse et al., 
2019). However, despite promising results, with some models achieving 
over 90% accuracy, challenges remain in ensuring robustness, reducing 
false positives, and addressing ethical concerns related to privacy and 
misclassification (Islam et al., 2024). Nevertheless, the integration of 
ML into depression detection systems offers a transformative approach 
to bridging diagnostic gaps and personalising mental health care.

Depression and other common mental health disorders, such as 
anxiety, affect millions of people across all age groups globally (Reece 
et al., 2017), posing severe risks not only to mental well-being but 
also to physical health, including increased susceptibility to cardio-
vascular diseases, diabetes, and even mortality due to suicide (Almas 
et al., 2015). According to the World Health Organisation, over 280 
million people suffer from depression worldwide, with nearly 800,000 
suicide cases attributed to it annually (World Health Organization, 
2023). Despite the significant personal and societal burden, mental 
health disorders often remain undiagnosed or untreated due to stigma, 
limited access to early diagnostic services, and the inefficiency of 
traditional methods such as clinical interviews and psychological as-
sessments (Cacheda et al., 2019). Individuals with depression exhibit 
diverse symptoms, including sleep disturbances, mood fluctuations, 
reduced cognitive function, altered speech and facial patterns, and 
hormonal imbalances, which vary across types and severities of the 
disorder (Yates et al., 2017). These variations complicate diagnosis 
and delay timely intervention. With the rapid advancement of artifi-
cial intelligence (AI) and machine learning (ML), new opportunities 
have emerged for automatic, scalable, and non-invasive approaches to 
depression detection (Yazdavar et al., 2017).

Machine Learning algorithms have become powerful tools for
analysing complex behavioural and physiological patterns linked to de-
pression (Jiang et al., 2017). For instance, emotion recognition systems 
leverage facial micro-expressions captured via video to detect sadness, 
lethargy, or disengagement, which are representative of depressive 
states (Deshpande & Rao, 2017). Similarly, sentiment analysis and 
natural language processing (NLP) techniques can extract linguistic 
markers of depression from textual responses in chatbots, interviews, 
or social media posts, including negative sentiment, reduced affect, and 
cognitive distortions (Alghamdi et al., 2020). Deep learning models, 
such as CNNs and Bi-LSTMs, have demonstrated strong performance 
in detecting individuals with depression by analysing the syntax, se-
mantics, and temporal dynamics of user-generated content (Kour & 
Gupta, 2022). Other systems combine these with audio features, using 
prosodic cues like pauses, tone, and rhythm to detect vocal indicators 
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of psychological distress (Low et al., 2020). Large-scale platforms such 
as Twitter and Reddit also provide rich, real-world behavioural data, 
which can be processed through classifiers like SVMs, Random Forests, 
and 1D-CNNs to enable scalable depression screening (Tadesse et al., 
2019).

Despite encouraging results, challenges remain in improving robust-
ness, reducing false positives, and addressing ethical concerns such as 
privacy and misclassification (Islam et al., 2024). Most existing studies 
focus on single modalities or rely on standard feature extraction and 
classification methods, often neglecting the role of systematic feature 
selection and ensemble diversity. Research specifically targeting fea-
ture subset optimisation for depression detection remains very limited, 
with only a handful of studies exploring it in depth. This creates a 
critical gap for frameworks that can integrate heterogeneous feature 
types while dynamically selecting and optimising feature subsets to 
improve robustness, generalisability, and efficiency. The work in this 
paper addresses this gap by introducing an evolutionary ensemble 
framework that systematically combines diverse feature representations 
with optimised feature selection for speech-based depression detection.

1.1. Literature review

Recent advances in depression detection increasingly leverage mul-
timodal data and diverse machine learning (ML) techniques. Several 
studies have highlighted the effectiveness of audio, textual, and phys-
iological data in enhancing detection accuracy. For instance, Vandana 
et al. proposed a hybrid deep learning model that combines audio and 
textual features from the DAIC-WoZ dataset, finding that CNN models 
trained on audio achieved higher accuracy (98%) than those trained on 
text (92%), with Bi-LSTM models also yielding promising results (Van-
dana et al., 2023). Similarly, Philipthekkekara et al. introduced a CNN-
BiLSTM model with attention mechanisms and reported a remarkable 
96.71% accuracy using the CLEF2017 dataset (Philip Thekkekara et al., 
2024). These findings suggest that deep learning architectures, partic-
ularly those integrating multiple modalities and attention mechanisms, 
can provide high precision in depression classification.

Parallel to multimodal approaches, a large body of research has 
emerged on detecting depression via social media platforms. Helmy 
et al. demonstrated the utility of Twitter in early depression iden-
tification by deploying ML models across both Arabic and English 
datasets, achieving F1-scores up to 96.6% (Helmy et al., 2024). Ghosal 
et al. developed a framework to differentiate depression and suicidal 
ideation using Reddit data, combining fastText, TF-IDF, and XGBoost 
to yield strong classification metrics (Ghosal & Jain, 2023). This direc-
tion aligns with other studies that apply machine learning on Reddit 
posts and specialised subreddits like SuicideWatch to identify users 
at risk (Desu et al., 2022). In the Chinese context, researchers have 
created a depression lexicon to extract semantic features from Sina 
Weibo posts, showing improved classification performance with feature 
fusion and boosting techniques (Guo et al., 2023). Collectively, these 
works underscore the growing potential of social media text as a rich, 
non-invasive resource for large-scale mental health screening.

Physiological signals, particularly EEG, offer another frontier in de-
pression detection. EEG-based studies aim to overcome the limitations 
of self-reported symptoms and online behavioural cues by analysing 
brainwave patterns. For example, Khadidos et al. compared traditional 
ML and deep learning methods using band power features and found 
that CNN achieved the best results with 98.13% accuracy (Khadi-
dos et al., 2023). Similarly, Song et al. introduced LSDD-EEGNet, an 
end-to-end framework integrating CNN and LSTM with domain adap-
tation, which showed superior performance in subject-independent 
settings (Song et al., 2022). Mohammed et al. also explored EEG with 
advanced feature extraction techniques (e.g., Fourier-Bessel series) and 
domain adaptation, achieving improved accuracy through LS-SVM and 
ensemble models (Mohammed & Diykh, 2023). These findings highlight 
that EEG signals, when analysed with robust deep learning and signal 
processing techniques, hold substantial promise for early and objective 
detection of depression.
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2. Background

Detecting depression via audio signals is a challenging task, pri-
marily due to the subtle and often subjective nature of depressive 
symptoms in speech (Koops et al., 2023). Depression can manifest 
through changes in voice pitch, tone, speed, and rhythm, but these 
variations may be subtle and overlap with other conditions or emotions, 
making it difficult to distinguish (Darby et al., 1984). Additionally, 
audio features like speech patterns can be influenced by factors such as 
cultural background, individual speech traits, or environmental noise, 
which adds complexity to accurate detection (Long et al., 2017). More-
over, depression’s diverse symptoms and its potential to fluctuate over 
time further complicate the task of consistently identifying it through 
audio signals alone.

Ensemble learning algorithms outperform traditional machine learn-
ing models by combining multiple weak or base learners to create a 
stronger, more robust model, thereby improving generalisation and 
reducing overfitting (Dong et al., 2020). While individual models may 
perform poorly on specific data points, ensemble methods leverage 
the diversity of different models (or iterations) to minimise errors and 
enhance prediction accuracy. By aggregating the outputs of multiple 
classifiers, ensemble methods effectively capture complex patterns in 
the data, leading to better performance on unseen examples. This 
characteristic is particularly beneficial in detecting depression, where 
subtle variations in speech, text, or behavioural data may be hard 
to capture with a single model (Ansari et al., 2022). For instance, 
combining models that focus on different feature types (e.g., acoustic 
features, linguistic features, and non-verbal cues) can help detect 
depression more accurately, as each model contributes its specialised 
knowledge to the final prediction (Zhang et al., 2019). Additionally, 
ensemble methods like AdaBoost can handle imbalanced datasets, 
common in depression detection, by focusing on misclassified instances 
and iteratively improving the model’s ability to detect more nuanced 
depressive symptoms.

The AdaBoost (Adaptive Boosting) algorithm is an ensemble learn-
ing technique designed to improve the performance of weak classifiers 
by iteratively combining them to form a robust, strong classifier (Ying 
et al., 2013). Initially, AdaBoost assigns equal weights to all training 
samples. In each iteration, it trains a weak learner, and evaluates their 
performance by calculating the weighted classification error. The error 
rate is used to compute a weight, referred to as 𝛼𝑡, which reflects the 
model’s contribution to the final prediction. In this algorithm, misclas-
sified samples are given higher weights, ensuring that the subsequent 
weak learner focuses on these harder-to-classify instances. This process 
continues iteratively, and the final strong classifier is a weighted sum 
of the individual weak classifiers, where the weight of each classifier 
is determined by its error rate. The algorithm’s advantage lies in its 
ability to reduce bias by combining weak learners while simultaneously 
controlling variance using relatively simple models ultimately leading 
to improved generalisation, particularly effective in scenarios where the 
data is noisy or contains imbalanced classes.

The Broad Learning System (BLS) is a neural network framework 
based on the Random Vector Functional-Link Neural Network
(RVFLNN) (Pao & Takefuji, 1992), designed to enhance learning ef-
ficiency through a shallow but wide architecture. It consists of a 
single-layer neural network with two main components in its hidden 
layer: feature nodes and enhancement nodes. First, feature nodes are 
generated by applying a linear transformation 𝛷 to the input data, 
expanding the feature space. These feature nodes act as an inter-
mediate representation that preserves essential input characteristics. 
Next, enhancement nodes are created by further transforming fea-
ture nodes through a nonlinear activation function 𝜁 , which increases 
model expressiveness and nonlinearity without requiring deep lay-
ers. The final step involves computing the output weights 𝑊𝑚 using 
the Moore–Penrose pseudoinverse, efficiently finding a least-squares 
solution without iterative backpropagation. Unlike traditional deep 
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learning models that require layer-wise training, BLS can incrementally 
learn new data by adding additional nodes dynamically, making it 
highly scalable and computationally efficient. This architecture enables 
fast training (Gong et al., 2021), avoids vanishing gradient issues (Chen 
& Liu, 2017), and is well-suited for applications in classification, 
regression, and real-time learning tasks (Zhang et al., 2020).

The Universal Approximation Capability of the Broad Learning Sys-
tem (BLS) is a fundamental property allowing the system to approxi-
mate any continuous function on compact sets with sufficient feature 
and enhancement nodes (Chen et al., 2018). This capability is rooted 
in Random Vector Functional-Link Neural Networks (RVFLNN) prin-
ciples, which BLS is built upon. BLS leverages randomly generated 
feature nodes and enhancement nodes, with the latter transforming the 
input data through a nonlinear activation function, thereby expand-
ing the feature space (Chen & Liu, 2017). The theoretical foundation 
for BLS’s universal approximation ability has been rigorously estab-
lished, demonstrating that, even with randomly initialised weights and 
without the need for gradient descent or iterative training, BLS can 
probabilistically converge to the target function (Gong et al., 2021).

The Broad Learning System (BLS) is well-suited to serve as a weak 
learner in AdaBoost due to its inherent efficiency, flexibility, and 
scalability advantages (Chen et al., 2018). Unlike decision stumps or 
weak learners that may struggle with nonlinearity or limited feature 
representation, BLS utilises both linear and nonlinear transformations 
to expand the feature space, enhancing its ability to capture complex 
patterns while maintaining simplicity (Wu et al., 2022). Additionally, 
the use of the Moore–Penrose pseudoinverse for training ensures that 
BLS can be trained fast and efficiently, without requiring backpropaga-
tion or iterative optimisation, making it highly suitable for the iterative 
process of AdaBoost (Yang et al., 2021). Compared to weak learners 
like decision trees, BLS offers a more flexible and robust approach, as 
it can dynamically adapt by adding new nodes without retraining the 
entire model. This incremental learning ability makes BLS particularly 
effective in AdaBoost, as it allows for efficient updates and quick incor-
poration of misclassified samples, improving the overall performance 
with each boosting iteration. Thus, BLS not only complements the 
goals of AdaBoost by focusing on difficult-to-classify instances but also 
provides a more efficient and scalable solution than traditional weak 
learners.

Although feature selection is widely used in machine learning, 
research that has explicitly applied systematic feature selection to 
depression detection is limited. To the best of our knowledge, only 
two prior studies have directly targeted this challenge. In Chikersal 
et al. (2021), behavioural features are extracted and selected from 
smartphone and wearable data, and in Hassan and Kaabouch (2024), 
several classical feature selection methods on EEG-based depression 
detection are evaluated. These two works are restricted to single data 
modalities and rely on fixed selection techniques. The evolutionary 
method in this paper adaptively optimises diverse feature subsets across 
multiple heterogeneous speech feature families.

Numerous evolutionary and swarm-based algorithms have been pro-
posed for feature selection, which mainly focus on optimisation frame-
works for dimensionality reduction rather than on domain-specific 
applications like depression detection. For example, niching-based mul-
tiobjective FS methods (Wang et al., 2023), ant colony optimisation 
approaches for high-dimensional FS (Ma et al., 2021), weighted differ-
ential evolution for large-scale FS (Wang et al., 2022), multifactorial 
PSO for FS (Chen et al., 2022), coyote optimisation for binary FS (Thom 
de Souza et al., 2020), adaptive multi-objective GAs (Xue et al., 2021), 
dynamic sticky binary PSO (Nguyen et al., 2021), and BBPSO with 
mutual information (fang Song et al., 2021) have all been designed 
to evolve efficient and compact feature subsets. Other works, such 
as feature selection for scheduling heuristics (Zhang et al., 2021) or 
evolutionary ensembles for cross-subject emotion recognition (Zhang 
et al., 2024), address different problem domains. The work presented 



R. Sayeri et al. Machine Learning with Applications 22 (2025) 100748 
in this paper is the first to adopt an evolutionary mechanism di-
rectly into an AdaBoost ensemble tailored for speech-based depression 
detection, where the aim is not only to reduce dimensionality but 
also to maximise ensemble diversity across heterogeneous feature fam-
ilies (Fourier, Wavelet, Hilbert–Huang, OpenSmile, and CNN-based 
representations). Moreover, while prior algorithms generally evolve a 
single nondominated set of feature subsets, EVAdaBoost dynamically 
evolves multiple specialised feature subsets, each assigned to different 
AdaBoost models, thereby improving robustness and capturing com-
plementary depression-related cues that simpler feature selection or 
ensemble methods cannot. A comprehensive review on evolutionary 
approaches for feature selection can be found in Song et al. (2024).

3. The dataset

The Distress Analysis Interview Corpus (DAIC) (Gratch et al., 2014) 
is a collection of clinical interviews aimed at supporting the diagnosis 
of psychological distress conditions like anxiety, depression, and PTSD. 
The dataset is a multimodal corpus collected under multiple interaction 
settings, including face-to-face, teleconference, Wizard-of-Oz, and fully 
automated virtual agent interviews. Participants were recruited both 
online (via Craigslist) and in-person at a U.S. Vets facility in Southern 
California, ensuring diversity across civilian and veteran populations. 
All interviews were conducted in English with fluent speakers, and 
session durations ranged from 5 to 60 min. Recordings include high-
quality audio, video, and depth sensor (Microsoft Kinect) streams, with 
some sessions additionally capturing physiological measures such as 
galvanic skin response, ECG, and respiration. Interview protocols fol-
lowed a consistent semi-structured format covering neutral, symptom-
focused, and cool-down phases, designed to elicit naturalistic speech 
while safeguarding participant well-being. The dataset is enriched with 
metadata such as demographic information, standardised psycholog-
ical assessments (e.g., PHQ-9, PCL-C, STAI, PANAS), and subjective 
ratings of the interviewer or agent. The corpus provides extensive 
annotations of participant speech, including explicit mentions of mental 
health conditions, making it particularly well-suited for the study of 
depression detection. The combination of varied interaction modalities, 
multimodal recordings, and detailed psychological profiling offers a ro-
bust foundation for evaluating model performance and generalisability 
across populations, recording conditions, and affective states.

4. The proposed algorithm

This paper proposes an evolutionary AdaBoost ensemble learning to 
detect depression via audio signals. This section explains the algorithm.

4.1. Feature extraction

The proposed algorithm in this paper uses various feature extraction 
methods, as we believe that each type of feature captures certain char-
acteristics of the voice signal that can be representative of depression. 
To the best of our knowledge, there is no paper to study this wide 
range of features in the detection of depression (Bhadra & Kumar, 2022; 
Cellini et al., 2022; Joshi & Kanoongo, 2022; Squires et al., 2023).

• Time-Domain Features: Time-domain features are critical for cap-
turing the basic characteristics of speech signals. The mean of 
the signal represents the average amplitude, providing insights 
into the overall level of the voice, which can fluctuate due to 
emotional states such as depression. Entropy error and entropy 
estimation measure the predictability of the signal, with higher 
values indicating more complexity and unpredictability, which 
may be different among certain emotional states associated with 
depression. The histogram lower and histogram upper features 
represent the distribution of signal values, and extreme values 
in these features might suggest speech patterns with limited 
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variability or expressiveness. RMS (Root Mean Square) measures 
the energy or loudness of the signal, which may be different in 
depressed individuals. Kurtosis quantifies the ‘‘tailedness’’ of the 
signal’s distribution, with higher values indicating outliers, poten-
tially reflecting more erratic speech patterns. Skewness measures 
the asymmetry of the distribution, which may be representative of 
depressed speech. The peak-to-peak amplitude reflects the differ-
ence between the highest and lowest points of the signal and can 
indicate reduced expressiveness. The crest factor, the ratio of the 
peak value to the RMS, may be different in depressed speech due 
to less emotional intensity. Finally, features such as shape factor, 
impulse factor, margin factor, and add factors capture the overall 
shape and impulsivity of the signal. These factors can reflect the 
reduced energy and expressiveness seen in depressed speech. For 
a more detailed description and mathematical formula of these 
features see Ben Ali et al. (2015).

• Fourier Transform Features: The Fourier transform provides in-
sights into the frequency components of the signal. The frequency 
centre represents the central frequency of the signal, which may 
be different in depression as emotional states can alter vocal pitch 
and tone. RMS variance frequency measures the variance in the 
frequency domain, indicating the stability or fluctuation in the 
vocal frequencies. The variance in this feature may be different 
between depressed and non-depressed individuals. Similarly, the 
root variance frequency captures variations in the frequency that 
can be representative of depression. For a more detailed descrip-
tion of these features and the extraction process see Tran et al. 
(2013).

• Wavelet Transform Features: Wavelet transform allows for the ex-
traction of both time and frequency information from the speech 
signal, making it particularly useful for detecting transient or 
dynamic speech characteristics. Statistical features such as mean, 
entropy error, entropy estimation, RMS, kurtosis, and skewness 
are then calculated for the first six decomposition levels. These 
statistical measures capture both global and local properties of 
the signal, including the energy distribution and variability at 
different scales. The RMS reflects the overall energy of the speech 
signal, which is usually different between people. Kurtosis and 
skewness offer insights into the distribution of the signal, where 
depressed speech may exhibit different variance and symmetry. 
The other features, such as peak to peak, crest factor, and add 
factors, further provide detailed characterisations of the signal’s 
shape and behaviour, helping to distinguish speech characteristics 
associated with depression. For more information on how to 
extract these wavelet features from a signal see Hu et al. (2007).

• Walsh Transform: The Walsh transform is a non-sinusoidal, orthog-
onal transform that captures periodic components of the speech 
signal using square-wave basis functions rather than sinusoidal 
ones. This property makes it particularly effective at represent-
ing abrupt changes, block-like patterns, and energy distributions 
across time segments, which may not be as clearly captured 
by sinusoidal-based transforms such as the Fourier. The statisti-
cal features derived from Walsh coefficients (e.g., mean, RMS, 
kurtosis, entropy) can reveal subtle regularities and structural 
properties of speech. Depressed speech has been consistently 
associated with reduced prosodic variation, flatter intonation, 
and decreased spectral and temporal complexity (Garcia-Toro 
et al., 2000). The Walsh transform is well-suited to capture such 
reductions in variability, since its square-wave basis emphasises 
regions of stability or repetition in the signal. Furthermore, un-
like wavelet or Hilbert–Huang transforms, which focus on multi-
scale oscillatory patterns and intrinsic mode decomposition, the 
Walsh transform provides a complementary view by highlighting 
regularities and low-dynamic regions in the signal. This comple-
mentarity increases the diversity of representations within the 
ensemble framework and ensures that depression-related cues, 
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whether subtle prosodic flattening or more pronounced reduc-
tions in dynamic range, are captured. Prior studies have also 
noted that transforms sensitive to periodicity and regularity can 
be effective in detecting pathological changes in speech (Xiang 
et al., 2009).

• Hilbert–Huang Transform (HHT): The Hilbert–Huang Transform 
(HHT), which combines Empirical Mode Decomposition (EMD) 
with Hilbert spectral analysis, is specifically tailored for non-
linear, non-stationary signals, properties frequently exhibited by 
natural speech under emotional and cognitive modulation. Each 
speech signal is adaptively decomposed into Intrinsic Mode Func-
tions (IMFs), which are then converted into instantaneous am-
plitude and frequency trajectories over time, yielding a high-
resolution time-frequency-energy representation that captures
both transient fluctuations and long-term trends (Huang et al., 
2003). In the context of depression, speech often shows nonsta-
tionary characteristics such as slowed tempo, monotonic into-
nation, or reduced expressive modulation (König et al., 2022). 
The HHT is particularly well suited to detect these dynamics 
because its adaptive decomposition isolates evolving frequency 
components and amplitude modulations that static transforms 
may blur or miss. By capturing subtle shifts in instantaneous 
frequency, amplitude envelopes, and mode-specific behaviours 
over the utterance, HHT-based features can enrich the represen-
tation of depression-relevant vocal markers beyond what Fourier 
or wavelet-based features alone provide. For more information on 
this transform see Konar and Chattopadhyay (2015).

• OpenSmile: OpenSMILE (Eyben et al., 2010) extracts a diverse set 
of acoustic features from voice signals. Prosodic features, such as 
energy, pitch (F0), jitter, and shimmer, capture variations in loud-
ness and intonation. Spectral features, including Mel-Frequency 
Cepstral Coefficients (MFCCs), spectral centroid, and spectral flux, 
provide insights into speech timbre and articulation. Voice quality 
features, such as harmonics-to-noise ratio (HNR) and formants, 
help assess breathiness and resonance. Temporal features, like 
speech rate, pause duration, and voice activity detection (VAD), 
highlight psychomotor slowing. These extracted features serve as 
inputs for machine learning models, enabling the detection of 
subtle vocal markers of depression that may not be perceptible to 
human listeners, making them valuable for automated, objective, 
and non-invasive mental health assessments.

These features, when combined, offer a comprehensive approach 
to analysing speech for depression detection, allowing the model to 
capture both subtle and overt changes in vocal patterns that are in-
dicative of depressive states. Creating an ensemble learning algorithm 
that uses all these diverse features to train a separate base learner 
offers several benefits. By leveraging multiple types of features, each 
base learner can specialise in detecting specific patterns in the speech 
signal, such as energy fluctuations, frequency shifts, or temporal varia-
tions, which may be linked to depression. Combining these specialised 
learners allows the ensemble to capture a wider range of acoustic 
and vocal characteristics that any single feature set might miss. This 
approach increases the model’s robustness, as it can effectively handle 
the complex and multidimensional nature of speech data while address-
ing issues like feature redundancy and noise. Furthermore, ensemble 
methods enhance generalisation, improve classification accuracy, and 
help mitigate overfitting, making the system more reliable and effective 
in detecting depression through voice signals.

4.2. Convolutional Neural Networks

The Hilbert–Huang Transform (HHT), Short-Term Fourier Trans-
form (STFT), and Wavelet Transform (WT) are used in this paper to 
extract features and convert raw audio signals into time–frequency 
representations, effectively creating spectrogram-like images. Once the 
5 
audio is transformed into an image-like representation, CNNs can be 
employed to extract hierarchical features from these spectrograms. Un-
like manually engineered features, CNNs automatically learn complex 
and subtle patterns by capturing spatial correlations within the image. 
These networks excel at identifying hidden structures, such as subtle 
variations in frequency and time that may be imperceptible to the 
human ear but are indicative of depression-related speech alterations. 
The strength of CNNs in this application lies in their ability to detect 
deep, non-linear dependencies in speech patterns, offering superior 
generalisation compared to traditional handcrafted features.

Convolutional Neural Networks (CNNs) are a class of feed-forward 
artificial neural network algorithms widely used for pattern recognition 
tasks. As Fig.  1 illustrates, a CNN comprises multiple convolutional 
and pooling layers. The example in the figure features two convolu-
tional layers, two pooling layers, and a flattening layer, followed by 
four groups of feature maps and a fully connected layer at the end. 
The input to a CNN is typically a 2D image signal, which undergoes 
processing through various layers. Convolutional and pooling layers 
extract essential features from the input image, which are then passed 
to fully connected layers. A feature map is generated by applying a 
filter to the convolutional layers. This filter, represented as a matrix, 
moves across the image using a step size known as a stride, performing 
convolution operations. Each pixel in the feature map is computed as 
the dot product of corresponding pixels in the filter and the image. 
The key parameters of convolutional operations include connection 
weights, filter dimensions (width and height), the number of feature 
maps, and stride dimensions (width and height).

Like convolutional operators, pooling operators process an image by 
moving across it. These operators use a kernel matrix to compute and 
extract the maximum or average values from the previous layer. Pool-
ing is designed to optimise computations by reducing the size of feature 
representations, thereby lowering computational costs, the number of 
parameters, and memory requirements. It achieves this by merging the 
outputs of multiple neurons from one layer into a single neuron in 
the next. The key parameters of the pooling operator include stride 
height, stride width, kernel height, kernel width, and pooling type. At 
the end of a CNN, one or more fully connected layers perform high-level 
reasoning and classification. In a fully connected layer, each neuron 
is linked to every neuron in the preceding layer. The CNN shown 
in Fig.  1 follows a specific sequence of convolutional, pooling, and 
fully connected layers, referred to as its architecture. The structure of 
this architecture significantly impacts the performance of the network. 
Additionally, numerical parameters such as kernel size, filter size, and 
stride size play a crucial role in determining effectiveness. Therefore, 
choosing an architecture tailored to the specific problem is essential for 
optimal performance.

In this paper, we use the method presented in Najaran (2023) 
to optimise the architecture of the CNN. This algorithm employs a 
genetic programming approach to optimise the structure of CNNs for 
diagnosing COVID-19 cases using X-ray images. It utilises a graph-
based representation of CNN architecture, incorporating evolutionary 
operators such as crossover and mutation. The CNN architecture in this 
algorithm is defined by two sets of parameters: the skeleton, which 
specifies the arrangement and connections of convolutional and pool-
ing layers, and the numerical parameters, which determine properties 
such as filter size and kernel size. The optimisation process follows 
a co-evolutionary scheme, refining both the skeleton and numerical 
parameters to enhance the performance of the CNN.

Extracting features using a CNN from time-domain features requires 
the signal to be transformed into an image. Fig.  2 illustrates the process 
of converting one-dimensional signals into an image suitable for CNN 
processing. To ensure compatibility with CNN architectures, all input 
images must have the same dimensions. In this approach, the signal 
is divided into 𝑀 non-overlapping segments, each of size 𝑀 . These 
segments are then stacked vertically to construct an 𝑀 × 𝑀 image. 
Since the total length of the signal typically exceeds 𝑀2, the segments 
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Fig. 1. The architecture of CNNs consists of a combination of convolution and 
pooling operators.

Fig. 2. The architecture of CNNs consists of a combination of convolution and 
pooling operators.

are randomly selected from different parts of the signal. Additionally, 
because the signal is converted into an image format, its values must be 
normalised to the [0, 255] range to match standard image processing 
requirements.

Training a CNN involves optimising its weights, filters, and kernels 
to achieve the best performance. In the literature, gradient-based opti-
misation algorithms are commonly used to determine these parameters 
efficiently. Compared to exhaustive or evolutionary search methods, 
gradient descent (GD) algorithms offer a significant advantage in speed, 
particularly for CNNs, which contain many parameters that must be 
fine-tuned during the learning process.

4.3. Evolutionary AdaBoost algorithm (EVAdaBoost)

Fig.  3, shows the proposed ensemble learning algorithm. In this 
algorithm, the voice signals are first passed to several transform func-
tions. After applying the Fourier Transform, Walsh Transform, Hilbert–
Huang Transform (HHT), Short-Term Fourier Transform (STFT), and 
Wavelet Transform (WT) to voice signals, statistical and deep learning-
based features can be extracted for depression detection. Statistical 
feature extraction involves computing descriptive measures such as 
mean, variance, skewness, kurtosis, entropy, peak-to-peak amplitude, 
crest factor, and energy distribution from the transformed signals. 
These features capture irregularities, frequency shifts, and speech en-
ergy variations, which are crucial for identifying depression-related 
speech alterations, such as reduced articulation, monotonicity, and 
psychomotor slowing. Simultaneously, the outputs of these transforms 
can be visualised as spectrogram-like images, which are then fed into a 
6 
Fig. 3. The structure of the proposed ensemble learning algorithm.

Convolutional Neural Network (CNN) for automated feature extraction. 
CNNs excel at capturing hidden frequency-time relationships, texture 
patterns, and fine-grained spectral variations that may be imperceptible 
to traditional statistical methods. By leveraging hierarchical feature 
learning, CNNs can automatically identify depression-related spectral 
changes, such as flattened pitch, disrupted harmonic structures, and 
altered frequency energy distributions. Combining statistical and CNN-
extracted features enhances the robustness of machine learning models, 
enabling a more comprehensive, data-driven approach to automated 
depression detection.

The extracted features are fed to the proposed evolutionary Ad-
aBoost algorithm (EVAdaBoost) presented in algorithm 1. The EVAd-
aBoost algorithm receives as input the set of features extracted via 
each of the feature extraction algorithms, generating an ensemble of 
𝑛 AdaBoost algorithms, each trained on a specific subset of the fea-
tures. These subsets of features are optimised through the evolutionary 
processes to create the set of AdaBoost algorithms with maximum 
performance and diversity. Since feature extraction methods often gen-
erate a large number of raw features, directly using all of them may 
introduce redundancy, noise, and unnecessary complexity. This ap-
proach performs an automated feature selection mechanism, as features 
that do not contribute meaningfully to classification performance are 
automatically discarded. This approach selects only the most informa-
tive and relevant features, eliminating redundant or highly correlated 
ones, resulting in enhanced accuracy and computational complexity.

Another advantage of this method is that it recognises that there is 
not a single optimal subset of features, as different feature combinations 
may capture different aspects of the data. The evolutionary process 
explores multiple feature subsets, ensuring that each AdaBoost model 
is trained on a unique, specialised set of features. This specialisation 
allows each AdaBoost classifier to focus on different discriminative 
patterns, improving the overall robustness of the ensemble. Moreover, 
by optimising the composition of these feature subsets, the algorithm 
ensures that selected features within each subset are complementary, 
allowing individual models to learn distinct yet relevant aspects of the 
data.

The evolutionary optimisation process also maximises diversity 
among the AdaBoost algorithms, a fundamental principle in designing 
effective ensemble learning models. Diversity in an ensemble refers to 
the degree of disagreement or variation in decision boundaries among 
the base learners. When classifiers in an ensemble make independent or 
weakly correlated errors, the ensemble can correct individual mistakes. 
If all base learners rely on the same highly correlated features, they 
may exhibit similar weaknesses, reducing the benefits of ensemble 
learning. This diversity is particularly beneficial in handling complex 
data distributions, class imbalances, and overlapping class regions 
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(as observed in highly complex tasks like depression detection), as 
different models capture different decision boundaries. Diversity-driven 
optimisation in feature selection ensures that the selected subsets are 
individually strong and complementary. Additionally, since AdaBoost 
focuses on misclassified samples, the diverse feature subsets allow each 
model to specialise in handling different types of misclassifications.

Another benefit of this method is its ability to adapt dynamically to 
different feature extraction methods, so each ensemble of AdaBoost is 
tailored to the type of features for which it is optimised.

One novelty of the proposed algorithm is the evolutionary selection 
of feature subsets. Instead of training all AdaBoost models on the full 
set of extracted features, which may introduce redundancy, noise, and 
overfitting, the evolutionary process searches through all possible sub-
sets of selected features to find the optimised subsets tailored to each 
base learner. This ensures that non-informative or highly correlated fea-
tures are discarded, while complementary and discriminative features 
are retained. The proposed algorithm does not converge to a single 
‘‘optimal’’ subset, but rather evolves multiple diverse subsets, allowing 
each AdaBoost model to specialise in capturing different acoustic and 
temporal patterns in the speech signals. This diversity among feature 
subsets reduces correlated errors, increases robustness, and leads to 
consistently higher ensemble performance.

The AdaBoost algorithm presented in this paper adopts Broad Learn-
ing Systems (BLS) as its weak classifier. BLS is a strong choice as a 
weak classifier in the AdaBoost algorithm due to its efficient feature 
mapping, scalability, and adaptability to high-dimensional data. Unlike 
deep learning models, which require extensive training and parameter 
tuning, BLS incrementally expands its network structure, making it 
computationally efficient and well-suited for ensemble learning. Its 
ability to extract and transform features dynamically ensures that each 
weak classifier in AdaBoost can capture diverse aspects of the data, 
enhancing the ensemble’s overall performance. Additionally, BLS is 
highly adaptable to feature diversity and redundancy reduction, which 
aligns well with AdaBoost’s iterative weighting mechanism, allowing it 
to focus on harder-to-classify samples while maintaining generalisation. 
The combination of fast training, feature adaptability, and robustness 
makes BLS an excellent choice for weak learners in an AdaBoost ensem-
ble, particularly for tasks involving complex, high-dimensional feature 
sets like depression detection. A detailed explanation of how BLS can 
be used as weak learners in AdaBoost can be found in Yun et al. (2024).

Quantum Evolutionary Algorithm (QEA)
(Tayarani-N & Akbarzadeh-T, 2014) is specifically designed for the 
class of binary combinatorial optimisation problems (like satisfiability 
or knapsack problems), and because the feature selection problem in 
this paper is a binary combinatorial problem, this algorithm is well-
suited to the problem. Section 5 performs experiments and shows that 
QEA offers the best performance among the existing algorithms.

A detailed description of the algorithm is presented as follows.
QEA employs a probabilistic representation for individuals, where 

each individual is encoded using a quantum bit (q-bit). A q-bit defines 
the probability of each bit in the individual being either zero or one. 
Consequently, in this representation, solutions are expressed as strings 
of probability density functions capable of representing binary strings 
and are denoted as follows: 

𝑞 =
[

𝛼1 𝛼2 … 𝛼𝑗 … 𝛼𝑛
𝛽1 𝛽2 … 𝛽𝑗 … 𝛽𝑛

]

, (1)

where |𝛼𝑗 |2 + |𝛽𝑗 |
2 = 1, |𝛼𝑗 |2 is the probability of the 𝑗th q-bit being 

zero, |𝛽𝑗 |2 is the probability being one, and 𝑛 is the problem dimension. 
In QEA, the evolutionary process is carried out using the ‘‘update’’ 
operator, which iteratively adjusts the values of 𝛼 and 𝛽 at each step 
of the algorithm to increase the probability of representing better 
solutions. The update operator in step 11 is defined as, 
[

𝛼𝜏+1𝑗
𝜏+1

]

=
[

cos(𝛿𝜃) − sin(𝛿𝜃)
]

[

𝛼𝜏𝑗
𝜏

]

, (2)

𝛽𝑗 sin(𝛿𝜃) cos(𝛿𝜃) 𝛽𝑗
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Algorithm 1: The proposed Evolutionary AdaBoost Algorithm 
(EVAdaBoost).
1 Initialise the algorithm parameters;
2 𝜏 = 0;
3 Initialise the population 𝑄0 using Eq.  (10);
4 observe 𝑄0 to generate 𝑋0;
5 evaluate 𝑋0;
6 store 𝑋0 into 𝐵0;
7 while not termination condition do
8 observe 𝑄𝜏 to generate 𝑋𝜏 ;
9 evaluate 𝑋𝜏 ;
10 find the best neighbour of each q-individual and store in 𝑏𝑖

if it is better than 𝑏𝑖 ;
11 update 𝑄𝜏 using Q-gate;
12 𝜏 = 𝜏 + 1;
13 end 
14 return the best solution;

where 𝛿𝜃 is the rotation angle that controls the convergence speed 
of the algorithm and 𝜏 is the iteration of the algorithm. For a 
more detailed explanation of the QEA mechanism, see Tayarani-
N and Akbarzadeh-T (2014). This paper uses 𝛿𝜃 = 0.01 as studies 
show that this value offers the optimal results for most of the 
problems (Tayarani-N & Akbarzadeh-T, 2014).

In step 1, the algorithm’s parameters are initialised, including the 
population size and the number of AdaBoost learners in the ensemble, 
𝑛.

In step 3 the population is initialised randomly. This algorithm 
aims to generate 𝑛 different AdaBoost algorithms, each trained on a 
specific subset of features. Thus, the solutions in the population should 
represent the features used to train the AdaBoost algorithms. Each 
individual in this algorithm is represented by an 𝑛 × 𝑚 matrix 𝑥 (𝑚 is 
the number of features), where the entries define the feature selection 
for each AdaBoost classifier in the ensemble: 𝑥𝑖𝑗 = 1 if the 𝑗th feature 
is selected to train the 𝑖th AdaBoost in the ensemble, and 𝑥𝑖𝑗 = 0 if 
it is discarded. Note that 𝑚 differs for each feature type; for example, 
there are 384 OpenSmile features, and CNNs extract a specific number 
of features depending on their architecture.

In QEA, the initialisation is performed by setting the probability of 
the solutions being at zero or one state with the same probability as 
follows, 
[

𝛼𝑖0𝑙𝑓
𝛽𝑖0𝑙𝑓

]

=
⎡

⎢

⎢

⎣

1
√

2
1
√

2

⎤

⎥

⎥

⎦

. (3)

In step 5, the individuals are evaluated. To evaluate an individual, 
𝑥, an ensemble of AdaBoost algorithms is generated and trained on the 
features suggested by 𝑥. The AdaBoost algorithms are trained based on 
a 5-fold cross-validation scheme on the training data, that is, 80% of 
the training data is used to train the models and 20% (validation data) 
to evaluate the performance. This is performed five times so all the data 
records are used at least once in the evaluation process. Note that this 
is performed only on the training data, not the test data. Once the 𝑛
AdaBoost algorithms are trained, their diversity and performance on 
the validation data are calculated. The performance of the ensemble is 
measured as the average performance of the individual AdaBoosts, and 
the diversity among the AdaBoost algorithms in the ensemble (denoted 
by 𝐿) is measured as the sum of pairwise diversity among each pair of 
AdaBoost algorithms, as, 

(𝐿, 𝑥) = 1
𝑛
∑

𝑛
∑

𝐷(𝐿𝑙 , 𝐿ℎ, 𝑥) (4)

𝑛(𝑛 − 1) 𝑙=1 ℎ=1
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where the diversity between two AdaBoost algorithms 𝐿𝑙 and 𝐿ℎ is 
measured as, 

𝐷(𝐿𝑙 , 𝐿ℎ, 𝑥) =
1
𝑑

𝑑
∑

𝑘=1

(

𝐿𝑙(𝑦𝑘, 𝑥) − 𝐿ℎ(𝑦𝑘, 𝑥)
)2 (5)

where 𝐿 represented the AdaBoost ensemble, 𝐿𝑙 represents the 𝑙th 
AdaBoost in the ensemble, 𝑥 is the 𝑛 × 𝑚 matrix representing the 
selected features for the AdaBoosts in the ensemble, and 𝑑 is the 
number of data records and 𝑦𝑘 is the 𝑘th data record in the validation 
set. The evolutionary algorithm should maximise two objectives: the 
performance and the diversity of the AdaBoost algorithms. Thus, the 
fitness of the 𝑢th solution in the population, 𝑥𝑢 is measured as the total 
number of solutions in the population dominated (outperformed) by 
the 𝑥𝑢,

 (𝑥𝑢) =
𝑝
∑

𝑣=1,𝑣≠𝑢

[[

(𝐿, 𝑥𝑢) > (𝐿, 𝑥𝑣)
]]

+

𝑝
∑

𝑣=1,𝑣≠𝑢

[[

(𝐿, 𝑥𝑢) > (𝐿, 𝑥𝑣)
]]

, (6)

where [[𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡]] returns 1 if 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 is true and returns 0 otherwise, 
and (𝐿, 𝑥𝑢) shows the average performance of the AdaBoost algo-
rithms in the ensemble, where the solution 𝑥𝑢 determines the features 
selected for each AdaBoost algorithm.

Similar to PSO, the QEA algorithm allows particles to evaluate 
the fitness of their neighbouring particles and adjust their positions 
accordingly. In step 10, each q-individual assesses the fitness of its 
neighbouring solutions, selects the best one, and updates its state using 
the update operator based on this selected value.

4.4. The proposed pruning algorithm

For each feature type (OpenSmile, Fourier, Wavelet, etc.), one en-
semble of 𝑛 AdaBoosts is generated. Thus, if there are 𝑟 feature types 
(9 in this paper), a total of 𝑛 × 𝑟 AdaBoosts are generated. During the 
evolutionary optimisation in algorithm 1, these AdaBoost algorithms 
have been optimised to be diverse and perform the best on each specific 
type of features. However, these algorithms should perform the best 
when their decisions are aggregated in the final ensemble. The best 
combination of these AdaBoost algorithms should be found before they 
form the final ensemble. This is because many of these AdaBoosts may 
be redundant, adding unnecessary complexity to the algorithm, which 
results in reduced performance and higher time complexity. To manage 
this, an evolutionary pruning algorithm (see Fig.  3) is presented in this 
paper that searches through all possible combinations of the generated 
AdaBoosts and finds the optimal subset of algorithms that delivers the 
best performance at reduced computational cost.

This paper adopts the Quantum Evolutionary Algorithm (QEA)
(Tayarani-N & Akbarzadeh-T, 2014) as presented in algorithm 1 to 
prune the set of 𝑛 × 𝑟 AdaBoosts and find the optimal subset of 
base learners. Similar to the feature selection problem, the pruning 
problem is a binary combinatorial problem for which QEA is well-
suited. The pruning algorithm follows the same fundamental structure 
as the evolutionary AdaBoost algorithm 1, differing primarily in how 
each step is executed.

In step 3, the population is initialised. In this algorithm, each 
solution, denoted as 𝑧, is represented as an 𝑛×𝑟 matrix of zeros and ones, 
where 𝑧𝑙𝑠 = 1 indicates that the base learner 𝐿𝑠

𝑙  is selected for inclusion 
in the ensemble, while 𝑧𝑙𝑠 = 0 signifies that the base learner is pruned. 
In evolutionary algorithms, initialisation is performed randomly to 
ensure that solutions are uniformly distributed across the search space. 
In QEA, this is performed using Eq. (3). In the pruning problem in 
this paper, prior knowledge suggests that base learners with higher 
performance and greater contribution to diversity should be retained, 
while those with lower performance and minimal diversity contribution 
should be removed. Therefore, this paper proposes an initialisation 
8 
method that generates quantum individuals with a higher probability of 
selecting high-performing base learners while pruning the less effective 
ones.

The leave-one-out cross-validation scheme is used to measure the 
performance of a base learner. The diversity brought to the ensemble 
by the base learner 𝐿𝑠

𝑙  is defined as the sum of the pairwise diversity 
between 𝐿𝑠

𝑙  and all other base learners in the ensemble, 

D(𝐿𝑠
𝑙 ) =

𝑛
∑

𝑔=1

𝑟
∑

ℎ=1
𝐷(𝐿𝑠

𝑙 , 𝐿
ℎ
𝑔 ), (7)

where 𝐷(., .) is the diversity between two base learners and is measured 
as Eq. (5). The quality of a base learner is measured as,

(𝐿𝑠
𝑙 ) =

𝑟
∑

𝑔=1

𝑛
∑

ℎ=1

[[

𝑃 (𝐿𝑠
𝑙 ) > 𝑃 (𝐿𝑔

ℎ)
]]

+

𝑟
∑

𝑔=1

𝑛
∑

ℎ=1

[[

D(𝐿𝑠
𝑙 ) > D(𝐿𝑔

ℎ)
]]

, (8)

where 𝑃 (𝐿𝑠
𝑙 ) shows the performance of the 𝑙th AdaBoost algorithm 

trained on the 𝑠th feature type and [[𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡]] = 1 if statement is 
true and it is [[𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡]] = 0 otherwise. The base learners are then 
ranked according to their quality, and this ranking is used to determine 
the probability of each base learner being retained in the ensemble 
or pruned. In the initialisation step, the q-individuals are initialised to 
represent higher-quality AdaBoost algorithms with higher probability.

The rank of a base learner 𝐿𝑠
𝑙  is found as, 

(𝐿𝑠
𝑙 ) =

𝑟
∑

𝑔=1

𝑛
∑

ℎ=1

[[

(𝐿𝑠
𝑙 ) < (𝐿𝑔

ℎ)
]]

. (9)

The rank varies in the range [0, 𝑟 × 𝑛 − 1] where the highest quality 
AdaBoost has the rank 0 and the worst one has the rank equal to 𝑟×𝑛−1. 
The following formula is proposed to initialise the q-individuals, 

[

𝛼𝑖0𝑙𝑠
𝛽𝑖0𝑙𝑠

]

=

⎡

⎢

⎢

⎢

⎢

⎣

√

(𝐿𝑠
𝑙 )

𝑟×𝑛−1
√

𝑟×𝑛−(𝐿𝑠
𝑙 )−1

𝑟×𝑛−1

⎤

⎥

⎥

⎥

⎥

⎦

. (10)

With this initialisation scheme, q-individuals represent solutions where 
the highest-quality base learners have a probability of one of being 
retained in the ensemble, while the lowest-quality base learners have a 
probability of zero. The participation probability of the remaining base 
learners is assigned based on their quality.

The binary solutions 𝑧 are evaluated by training the ensemble 
learning algorithm using the leave-one-out scheme and measuring its 
performance. To evaluate the solutions, the AdaBoosts are trained 
based on the features suggested by the evolutionary AdaBoost algo-
rithm 1 and the selected AdaBoosts suggested by 𝑧 are aggregated via 
a weighted voting scheme. The output of the ensemble algorithm for a 
data record 𝑦𝑘 is found as, 

𝐿(𝑦𝑘, 𝑧) =
𝑛
∑

𝑙=1

𝑟
∑

𝑠=1
𝑧𝑙𝑠𝑤𝑙𝑠𝐿

𝑠
𝑙 (𝑦𝑘), (11)

where 𝑧𝑙𝑠 decides if the AdaBoost 𝐿𝑠
𝑙  participates in the ensemble, 

𝐿(𝑦𝑘, 𝑧) is the output of the ensemble learning algorithm for the data 
record 𝑦𝑘, 𝐿𝑠

𝑙 (𝑦𝑘) is the output of the AdaBoost 𝐿𝑠
𝑙  for the data record 

𝑦𝑘, and 𝑤𝑙𝑠 is the weight of the base learner 𝐿𝑠
𝑙  in the voting scheme. 

The learning process in the ensemble involves optimising the weights 
of the AdaBoosts in the voting system. These weights are optimised via 
a gradient descent algorithm, where the cost function is defined as, 

(𝐿, 𝑧) = 1
|𝑇 |

∑

∀𝑦𝑘∈𝑇
(𝐿(𝑦𝑘, 𝑧) − 𝑜𝑘)2, (12)

where 𝑇  is the training set and |𝑇 | denotes the number of data records 
in the set. The gradient of the cost function with respect to the voting 
weights is found as, 

𝜕 = 1 𝜕
∑

∀𝑦𝑘∈𝑇 (𝐿
𝑠
𝑙 (𝑦𝑘, 𝑧𝑙𝑠) − 𝑜𝑘)2

= (13)

𝜕𝑤𝑙𝑠 |𝑇 | 𝜕𝑤𝑙𝑠
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1
|𝑇 |

𝜕
∑

∀𝑦𝑘∈𝑇 (𝐿
𝑠
𝑙 (𝑦𝑘, 𝑧𝑙𝑠) − 𝑜𝑘)2

𝜕𝐿𝑠
𝑙 (𝑦𝑘, 𝑧𝑙𝑠)

𝜕𝐿(𝑦𝑘, 𝑧𝑙𝑠)
𝜕𝑤𝑙𝑠

= (14)

2
𝑇

∑

∀𝑦𝑘∈𝑇

(

(𝐿𝑠
𝑙 (𝑦𝑘, 𝑧𝑙𝑠) − 𝑜𝑘)𝑧𝑙𝑠𝐿𝑠

𝑙 (𝑦𝑘)
)

. (15)

In the gradient descent process, the weights are updated as, 

𝛿𝑤𝑙𝑠 =
2𝜂
𝑇

∑

∀𝑦𝑢∈𝑇

(

(𝑧𝑙𝑠𝐿𝑠
𝑙 (𝑦𝑢) − 𝑜𝑘)𝑧𝑙𝑠𝐿𝑠

𝑙 (𝑦𝑘)
)

, (16)

where 𝜂 is the learning rate in the gradient descent algorithm. Once the 
ensemble algorithm is trained and the voting scheme weights 𝑤𝑙𝑠 are 
optimised, the ensemble’s performance is evaluated to determine the 
fitness of the binary solution 𝑧. Fitness is assessed based on the algo-
rithm’s accuracy in predicting the target classes. The pruning algorithm 
aims to identify the optimal subset of base learners. After completing 
the pruning algorithm and selecting the best subset, the gradient de-
scent algorithm in Eq.  (16) is applied to optimise the weights of the 
base learners in the voting scheme.

Note that to find the solution’s fitness, only the ensemble algo-
rithm’s voting weights are optimised via Eq. (16). Training the base 
learners 𝐿𝑠

𝑙  on the training data is performed only once, and is stored 
in a lookup table. The outputs of the base learners are not computed 
and are fetched from the table to calculate the fitness function.

5. Experimental results

This section performs experimental studies on the proposed algo-
rithm and some state-of-the-art and classic machine learning algo-
rithms. The experiments perform a comparison between the algorithms 
when different types of features are used to train the models, when 
all the features are used together to train the model and when the 
proposed ensemble method is used. The leave-one-out cross-validation 
is performed, so all the data appear at least once in the test set. All 
results are averaged over 30 runs. The classic learning algorithms used 
in this paper are described as follows. Logistic Regression (LR) is a lin-
ear model used for binary classification, estimating class probabilities 
via the logistic function and predicting outcomes based on a threshold. 
Random Forest (RF) is an ensemble learning method that constructs 
multiple decision trees during training and outputs the class that is the 
mode of the classes of the individual trees. Support Vector Machine 
(SVM) is a supervised learning algorithm that identifies the hyperplane 
maximising the margin between classes. K-Nearest Neighbours (KNN) 
is a simple, non-parametric, instance-based algorithm that classifies 
data based on the majority class among its ‘k’ nearest neighbours. 
Deep Feedforward Neural Network (DFFN) is a neural architecture 
where information flows in one direction through multiple hidden 
layers. Radial Basis Network (RBN) uses radial basis functions as ac-
tivation functions. Learning Vector Quantisation (LVQ) is a supervised, 
prototype-based algorithm that adjusts prototype positions to approx-
imate class boundaries. Probabilistic Neural Network (PNN) estimates 
class probabilities using kernel functions and classifies based on Bayes’ 
rule. Radial Basis Function Network (RBE) is similar to RBN, using 
radial basis functions. Cascading Feedforward Neural Network (CFNN) 
dynamically adds layers based on data, adapting model complexity 
for potentially improved performance. Pattern Recognition Network 
(PRN) is optimised for recognising patterns in labelled data. Function 
Fitting Neural Network (FFNN) is designed to approximate functions 
by learning from data through weight adjustments. Feedforward Neural 
Network (FNN) is the most basic neural network type, where data flows 
forward through hidden layers.

The set of existing ensemble learning algorithms includes Stacking 
LR (STLR) (Jurek et al., 2014), Random Forest (RF) (Jurek et al., 
2014), AdaBoost J48 (ABJ48) (Jurek et al., 2014), Oblique Random 
Forest (oRF) (Menze et al., 2011), (Multisurface Proximal Random For-
est) MPRoF-P (Zhang & Suganthan, 2015), Majority Voting (MV) (Ju-
rek et al., 2014), RoF (Zhang & Suganthan, 2015) and Classification 
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by Cluster Analysis (CBCA) (Jurek et al., 2014). All experiments are 
averaged over 30 runs.

To measure the performance of different learning algorithms several 
metrics are used in this paper. For detecting depressed individuals, 
evaluation metrics derived from the confusion matrix help assess how 
well the model identifies those with and without depression. The 
confusion matrix includes True Positives (TP), True Negatives (TN), 
False Positives (FP), and False Negatives (FN). Each of the following 
metrics offers insight into a different aspect of the model’s behaviour:

Accuracy (ACC) measures the overall proportion of correctly classi-
fied individuals, both depressed and non-depressed:

ACC = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

This gives a general sense of model performance, but can be misleading 
if the number of non-depressed individuals far exceeds the number of 
depressed ones.

True Positive Rate (TPR), also known as recall or sensitivity, in-
dicates the proportion of truly depressed individuals that the model 
correctly identifies:

TPR = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

This is especially important in mental health screening, where missing 
a depressed individual (false negative) can have serious consequences.

True Negative Rate (TNR), or specificity, measures the proportion 
of non-depressed individuals that are correctly classified:

TNR = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

This is useful for understanding how well the model avoids incorrectly 
labelling healthy individuals as depressed.

Positive Predictive Value (PPV), also called precision, shows the 
proportion of individuals predicted to be depressed who actually are:

PPV = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

This is important when the cost of falsely diagnosing someone as 
depressed is high, such as unnecessary stress or clinical follow-up.

False Positive Rate (FPR) represents the proportion of non-depressed 
individuals who are incorrectly predicted to be depressed:

FPR = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

A lower FPR means the model is better at minimising false alarms 
among healthy individuals.

F1 score for the positive class (F1P) is the harmonic mean of 
precision and recall, balancing the need to detect depression while 
avoiding false positives:

F1P = 2 ⋅ 𝑇𝑃
2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

It is particularly useful when the dataset is imbalanced and both false 
negatives and false positives are critical.

F1 score for the negative class (F1N) is the harmonic mean of 
specificity and the negative predictive value, measuring performance 
on the non-depressed group:

F1N = 2 ⋅ 𝑇𝑁
2 ⋅ 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

This metric is relevant if the focus is on correctly identifying healthy 
individuals.

F1 score (F1) is commonly taken to be equal to F1P, focusing on the 
model’s ability to correctly identify depressed individuals:
F1 = F1P

Together, these metrics help evaluate the model’s effectiveness in 
identifying depression while considering the trade-offs between differ-
ent types of classification errors.
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Table 1
The ACC of the proposed Evolutionary AdaBoost algorithm and some machine learning and ensemble algorithms for each type 
of features. The results are everaged over 30 runs.
 OpenSmile Fourier Wavelet Walsh HHT 1D to 2D SFTF CNN Wavelet CNN HHT CNN Rank  
 LR 69.16 67.8 67.13 65.5 65.21 65.74 64.44 65.31 62.83 9.69  
 RF 69.15 68.29 68.19 66.69 65.76 66.99 63.89 66.19 62.82 9.86  
 SVM 69.27 67.53 66.66 66.48 65.22 66.54 64.61 65.86 63.98 9.88  
 KNN 68.62 68.06 67.36 65.41 63.77 65.7 63.21 64.24 62.52 9.45  
 DFFN 68.19 67.88 66.52 66.31 65.08 66.69 64.2 65.73 62.24 9.65  
 RBN 68.07 67.8 67 64.89 63.94 65.28 63.34 64.37 62.88 9.48  
 LVQ 69.09 68.48 67.9 64.94 63.76 66.77 63.71 64.84 63.31 9.81  
 PNN 68.46 68.02 67.77 66.77 64.78 66.93 63.92 66.43 62.99 10.16 
 RBE 68.1 67.92 67.43 64.66 64.02 66.84 63.77 64.62 62.73 9.92  
 CFNN 68.44 67.13 65.29 64.85 63.42 64.97 62.79 63.6 63.12 9.43  
 PRN 68.48 67.39 66.81 64.76 64.2 65.32 63.16 64.07 62.91 9.42  
 FFNN 68.12 67.77 66.89 65.96 64.98 66.71 63.33 66.12 62.77 9.87  
 FNN 69.16 68.66 67.93 64.64 63.78 67.36 63.21 64.95 63.11 9.85  
 AdaBoost 75.98 74.76 74.47 73.16 72.59 73.33 71.57 72.7 70.74 13.41 
 MPRoF 76.63 76.11 75.59 74.83 72.85 74.88 71.97 73.99 71.8 13.86 
 STLR 76.33 75.45 74.82 73.87 71.9 73.71 71.44 72.89 71.31 13.88 
 CBCA 75.27 75.28 74.45 73.27 71.67 73.97 71.68 73.24 70.99 13.6  
 ABJ48 75.67 75.3 75.04 73.63 72.87 74.43 72.85 73.2 71.83 14.08 
 oRF 76.2 74.97 73.55 72.26 71.53 73.21 70.89 72.22 70.66 13.45 
 RoF 76.16 76.05 75.52 73.97 72.49 74.27 72.11 73.91 71.42 13.74 
 MV 76.46 76.09 74.48 73.24 72.35 73.75 71.96 72.63 70.56 13.62 
 EVAdaBoost 80.91 80.67 80.51 80.06 79.48 80.53 79 79.74 78.69 16.88 
 Rank 5.69 5.55 5.34 4.94 4.68 5.08 4.46 4.87 4.4 –  
Table  1 shows the accuracy of the proposed Evolutionary AdaBoost 
(EVadaBoost) and some machine learning and ensemble learning algo-
rithms for each type of feature. The results in this table demonstrate 
that the proposed EVAdaBoost algorithm consistently outperforms all 
other methods across all feature extraction techniques. Regardless of 
the input representation – whether handcrafted features such as OpenS-
mile and Fourier, or more complex representations like 1D-to −2D 
transformations and CNN-based features – EVAdaBoost achieves the 
highest accuracy, with values exceeding 80% in every case. This in-
dicates that the integration of evolutionary strategies within the Ad-
aBoost framework significantly enhances the model’s ability to gen-
eralise and accurately detect depression from varied feature domains. 
Importantly, this performance edge is not marginal; EVAdaBoost im-
proves upon even the best-performing ensemble methods (e.g., MPRoF, 
STLR, ABJ48) by several percentage points.

The data in Table  1 suggest that CNN-derived features achieve 
lower performance than handcrafted features such as Fourier, Wavelet, 
HHT, and OpenSmile. Several factors likely explain this observation. 
First, the dataset size in this paper may be insufficient for CNN-
based representations, which typically require large-scale data. Second, 
handcrafted features embed domain knowledge and are tailored to 
speech characteristics—prosody, spectral balance, and perturbations, 
which are known markers of depression, providing a stronger inductive 
bias. Third, CNN-based features are often high-dimensional and noisy, 
making classical classifiers prone to overfitting or failing to exploit 
their richness. Finally, while raw CNN features underperform, our 
results with EVAdaBoost demonstrate that evolutionary feature subset 
selection and ensemble pruning can suppress irrelevant components, al-
lowing CNN-based features to approach the effectiveness of handcrafted 
ones.

While EVAdaBoost is more complex than standard baselines, its 
components are motivated by specific challenges in depression detec-
tion from speech. Table  1 demonstrates that a wide range of simpler 
classifiers (e.g., LR, RF, SVM, KNN) combined with both handcrafted 
and CNN-derived features were thoroughly evaluated, yet none of these 
combinations consistently matched the performance of our proposed 
framework. The design choices justify the added complexity, as they 
translate into improvements across multiple evaluation metrics.

When examining the Friedman ranks, which reflect relative per-
formance across all datasets and feature types, EVAdaBoost stands 
out with a rank of 16.88—higher than the next best method, ABJ48, 
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which scores 14.08. Notably, traditional machine learning algorithms 
such as Logistic Regression (LR), Random Forest (RF), and Support 
Vector Machines (SVM) cluster around much lower rank values (ap-
proximately 9.4–9.9), highlighting the limitations of standard classifiers 
when applied to the complex task of depression detection.

Feature-wise, EVAdaBoost maintains a clear lead regardless of the 
extraction method used, though the performance is slightly higher 
for conventional signal-based features like OpenSmile, Fourier, and 
Wavelet. However, even in more challenging or abstract feature do-
mains, such as SFTF CNN or HHT CNN, where other algorithms typi-
cally degrade in performance, EVAdaBoost remains strong. This implies 
that EVAdaBoost not only adapts well to high-dimensional and non-
linear data but also scales effectively across different types of feature 
representations.

When comparing the different feature extraction methods across 
all algorithms, it is evident that traditional handcrafted features like 
OpenSmile, Fourier, and Wavelet generally yield higher accuracies 
compared to more complex or transformed representations such as 
HHT, 1D-to-2D, or CNN-based features (SFTF CNN, Wavelet CNN, 
HHT CNN). OpenSmile consistently provides the highest performance 
among feature types, suggesting that it captures emotionally and acous-
tically relevant patterns effectively for depression detection. Fourier 
and Wavelet also show strong results, especially with top-performing 
models like EVAdaBoost and MPRoF, indicating their suitability for 
frequency-domain analysis of speech signals. In contrast, CNN-based 
features tend to result in lower accuracies, particularly for simpler 
classifiers like LR and KNN, which may not fully leverage the high-
dimensional, structured representations extracted by deep models. This 
suggests that while CNN-based features have potential, their effective-
ness depends heavily on the strength of the classifier, and simpler, 
well-engineered features still offer a reliable foundation for robust 
performance across models.

In depression detection, a high TPR is critical because it reflects the 
system’s ability to successfully identify those suffering from
depression—missing these cases (false negatives) can delay access to 
treatment and exacerbate mental health outcomes. Table  2 presents the 
True Positive Rate (TPR) results for the classifiers across the feature ex-
traction methods. The proposed Evolutionary AdaBoost (EVAdaBoost) 
algorithm consistently achieves the highest TPR values across all fea-
ture types, with notable margins over both traditional machine learning 
models and competitive ensemble techniques. EVAdaBoost reaches a 
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Table 2
The TPR of the proposed Evolutionary AdaBoost algorithm and some machine learning and ensemble algorithms for each type 
of features. The results are everaged over 30 runs.
 OpenSmile Fourier Wavelet Walsh HHT 1D to 2D SFTF CNN Wavelet CNN HHT CNN Rank  
 LR 16.73 16.13 13.81 13.69 13.1 13.81 12.98 13.63 12.86 9.29  
 RF 16.25 16.61 15.89 13.27 13.51 13.15 13.04 13.1 12.98 9.26  
 SVM 15.42 15.77 14.4 15.6 14.7 15.77 14.11 15.24 13.15 10.11 
 KNN 16.25 16.13 15.6 14.11 13.57 14.64 12.92 13.63 13.27 9.12  
 DFFN 14.58 14.52 13.63 13.15 13.39 14.58 13.45 13.45 12.8 8.57  
 RBN 15.65 15.36 14.76 13.99 13.15 14.17 13.57 14.35 13.39 9.2  
 LVQ 16.43 15.71 14.11 13.51 13.27 14.4 12.98 13.04 13.27 8.67  
 PNN 14.7 15.42 13.69 14.35 13.1 14.23 13.57 14.29 13.27 9.14  
 RBE 15.65 15.71 15.06 14.05 13.75 14.76 13.27 13.04 12.8 8.75  
 CFNN 15.42 15.3 15.77 15.06 14.52 15.18 13.57 13.63 13.1 9.62  
 PRN 15.77 15.24 14.76 15.12 13.63 15.12 13.04 14.05 13.27 9.27  
 FFNN 16.61 15.3 14.64 15 13.99 14.64 12.86 14.64 12.86 9.18  
 FNN 15 16.55 15.24 13.93 13.93 14.05 13.51 14.05 13.45 9.13  
 AdaBoost 28.75 25.83 24.46 23.21 19.94 22.02 17.26 20.83 15.3 13.77 
 MPRoF 30.42 30.71 30.18 27.86 22.32 28.33 20.12 25.83 18.04 15.47 
 STLR 30.83 26.37 23.69 24.23 18.27 23.87 17.32 20.77 17.56 14.01 
 CBCA 28.15 27.02 25.89 21.61 17.44 23.99 16.96 22.92 15.89 14.46 
 ABJ48 27.38 28.69 27.32 22.02 21.37 26.79 21.37 21.01 18.45 14.96 
 oRF 31.19 25 24.11 20.42 16.61 21.9 16.19 18.99 15.71 13.49 
 RoF 30.36 31.13 27.44 22.44 18.63 24.23 19.7 22.98 16.43 14.84 
 MV 31.25 29.35 25.83 22.32 18.51 21.19 16.19 18.15 14.76 14.41 
 EVAdaBoost 37.98 36.19 36.13 36.01 32.32 36.55 30.42 32.8 30.24 18.27 
 Rank 5.86 5.64 5.44 5.04 4.56 5.23 4.33 4.85 4.05 –  
peak TPR of 37.98% using OpenSmile features and maintains strong 
performance with other representations such as Fourier (36.19%), 
Wavelet (36.13%), and 1D-to-2D transformations (36.55%). This sug-
gests that EVAdaBoost is especially effective in correctly identifying 
individuals with depression, making it highly valuable in screening 
contexts where false negatives must be minimised. Compared to other 
strong ensemble models like MPRoF, ABJ48, and RoF, EVAdaBoost 
provides a clear improvement in sensitivity, which is critical for early 
intervention and treatment in mental health applications.

Furthermore, the Friedman rank values reinforce EVAdaBoost’s 
overall superiority, showing a leading average rank of 18.27, with a 
noticeable margin above the second-best model, MPRoF, with 15.47. 
While traditional classifiers like SVM, KNN, and RF cluster around 
much lower TPR scores and ranks (typically below 10), EVAdaBoost 
consistently outperforms them regardless of the feature type. Interest-
ingly, while CNN-derived features generally yield lower TPRs for most 
classifiers, EVAdaBoost remains robust in these settings, suggesting its 
capacity to adapt well to high-dimensional, non-linear representations.

The results in Table  2 reveal notable differences in TPR of var-
ious feature types. Overall, CNN-based features—particularly those 
derived from HHT (HHT CNN), wavelet (Wavelet CNN), and SFTF 
(SFTF CNN)—consistently yield superior true positive rates (TPR), as 
reflected in their lower average ranks, with HHT CNN achieving the 
best average rank of 4.05. Traditional signal processing features such 
as Fourier, Wavelet, Walsh, and HHT also show competitive results, 
with Wavelet features outperforming Fourier and Walsh in most clas-
sifiers. OpenSmile, despite being a widely used handcrafted feature 
set, lags behind the deep learning-derived features, indicating that 
learned representations capture more discriminative patterns relevant 
to the classification task. Additionally, performance gaps become more 
pronounced when paired with complex ensemble classifiers such as 
EVAdaBoost, where CNN-based features consistently enhance TPR. This 
trend suggests that advanced feature representations, especially those 
leveraging both time–frequency transforms and deep learning, offer a 
clear advantage for this classification problem.

The results in Table  3 present the True Negative Rate (TNR) per-
formance. TNR, also known as specificity, measures the proportion of 
actual negative cases (i.e., individuals not experiencing depression) that 
are correctly identified by the model. A high TNR is crucial in mental 
health applications because it ensures that healthy individuals are not 
misclassified as depressed, which could otherwise lead to unnecessary 
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psychological concern, misallocation of clinical resources, or stigma-
tisation. Across the table, the Evolutionary AdaBoost (EVAdaBoost) 
classifier consistently delivers the highest TNR values, reaching 91.79% 
with OpenSmile and Fourier features, indicating exceptional reliability 
in excluding non-depressed cases.

A clear performance difference is evident between standard machine 
learning classifiers and ensemble-based methods. Conventional models 
such as Logistic Regression (LR), Support Vector Machines (SVM), and 
Feedforward Neural Networks (FFNN) typically achieve TNRs in the 
low 80% range. While adequate, this level of performance may still 
result in a concerning rate of false positives in real-world screening 
scenarios. Ensemble classifiers like AdaBoost, MPRoF, and RoF, by 
contrast, achieve significantly higher TNRs across nearly all feature 
sets, surpassing 85% and often approaching or exceeding 87%. These 
results highlight the ability of ensemble techniques to reduce false 
alarms.

When comparing the different feature types, traditional handcrafted 
features such as OpenSmile, Fourier, and Wavelet consistently out-
perform deep learning-based CNN features in terms of TNR. OpenS-
mile features attain the highest average rank (5.49), with Fourier and 
Wavelet close behind. These features offer stable and interpretable rep-
resentations that appear well-suited for distinguishing non-depressed 
individuals. In contrast, features derived from spectrogram-based CNN 
approaches—like SFTF CNN, Wavelet CNN, and HHT CNN—generally 
rank lower. While these deep features may capture subtle emotional 
cues, their complexity may introduce noise or overfitting, particularly 
when used with simpler models. However, their TNR improves substan-
tially when paired with advanced ensemble methods, indicating that 
with the right classifiers, CNN features can still contribute meaningfully 
to reducing false positives. Overall, these findings suggest that in 
depression detection tasks, both the choice of feature and the model 
architecture play a critical role in minimising the risk of misclassifying 
healthy individuals.

Table  4 displays the Positive Predictive Value (PPV) results. PPV, 
or precision, reflects the proportion of predicted positive cases (i.e., in-
dividuals classified as depressed) that are truly positive. In the context 
of depression detection, a high PPV is crucial for ensuring that those 
flagged by the model as experiencing depression are indeed likely to 
be suffering from it, thereby minimising unnecessary psychological 
distress and resource misallocation caused by false positives. The re-
sults indicate a broad performance spectrum, with ensemble models 
consistently outperforming traditional classifiers in terms of PPV.
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Table 3
The TNR of the proposed Evolutionary AdaBoost algorithm and some machine learning and ensemble algorithms for each type 
of features. The results are everaged over 30 runs.
 OpenSmile Fourier Wavelet Walsh HHT 1D to 2D SFTF CNN Wavelet CNN HHT CNN Rank  
 LR 83.21 81.79 81.43 79.52 79.4 79.64 78.57 79.4 76.67 10.12 
 RF 83.33 82.26 82.02 81.07 80.12 81.67 77.86 80.71 76.55 10.26 
 SVM 83.57 81.43 80.6 80.36 78.93 80.12 78.45 79.52 77.86 10.2  
 KNN 82.74 82.14 81.43 79.4 77.5 79.52 77.14 77.98 76.31 9.82  
 DFFN 82.74 82.5 80.95 80.71 79.4 80.83 78.21 80.12 76.07 10.13 
 RBN 82.26 81.79 81.07 78.81 77.74 79.17 76.9 78.21 76.55 9.86  
 LVQ 82.98 82.74 82.5 79.05 77.86 81.31 77.62 79.05 77.26 10.31 
 PNN 82.98 82.5 82.38 80.83 78.81 81.07 77.62 80.48 76.9 10.61 
 RBE 82.26 81.9 81.67 78.57 78.1 80.83 77.86 78.81 76.67 10.33 
 CFNN 82.5 80.95 78.57 78.45 76.79 78.45 76.31 77.26 76.67 9.78  
 PRN 82.62 81.43 80.71 78.21 77.98 78.93 76.9 77.86 76.79 9.86  
 FFNN 82.02 81.79 81.07 79.88 79.05 80.71 77.38 80 76.67 10.25 
 FNN 83.45 82.86 82.02 78.69 77.5 81.9 76.9 78.81 76.79 10.33 
 AdaBoost 88.1 87.38 87.26 86.31 86.31 86.55 86.07 86.31 85.6 12.98 
 MPRoF 88.21 87.74 87.26 86.79 86.07 86.79 85.83 86.43 85.83 13.05 
 STLR 87.86 87.98 87.74 86.9 86.19 86.67 85.83 86.67 85.83 13.37 
 CBCA 87.5 87.5 86.9 86.55 85.95 86.79 86.07 86.31 85.6 13.16 
 ABJ48 87.98 87.38 87.26 86.9 86.31 86.79 86.31 86.67 85.83 13.45 
 oRF 87.74 87.74 86.67 85.83 85.83 86.55 85.6 86.07 85.48 13.1  
 RoF 87.74 87.62 87.74 87.26 86.43 87.38 86.07 87.02 85.95 13.14 
 MV 87.98 87.98 87.02 86.55 86.43 87.14 86.43 86.67 85.6 13.28 
 EVAdaBoost 91.79 91.79 91.67 91.31 91.31 91.67 91.19 91.55 91.07 15.61 
 Rank 5.49 5.36 5.28 4.93 4.79 5.07 4.63 4.88 4.57 –  
Table 4
The PPV of the proposed Evolutionary AdaBoost algorithm and some machine learning and ensemble algorithms for each type 
of features. The results are everaged over 30 runs.
 OpenSmile Fourier Wavelet Walsh HHT 1D to 2D SFTF CNN Wavelet CNN HHT CNN Rank  
 LR 36.42 30.72 32.13 27.32 26.29 29.01 26.42 24.18 25.53 9.52  
 RF 35.51 35.73 38.73 32.02 28.15 29.77 26.81 29.48 22.55 9.75  
 SVM 36.21 31.23 31.89 31.31 27.12 37.02 27.94 29.55 21.24 9.9  
 KNN 35.18 33.28 32.45 25.27 18.97 26.47 20.91 25.44 20.02 9.36  
 DFFN 37.36 31.61 26.29 29.15 26.29 34.29 25.1 26.14 18.97 9.46  
 RBN 30.86 34.72 31.88 29.55 28.2 27.07 28.83 26.06 24.53 9.41  
 LVQ 42.61 35.57 31.79 22.92 21.88 23.88 25.27 25.37 24.22 9.68  
 PNN 33.57 34.68 35.27 36.71 33.64 36.87 28.8 37.04 21.4 10.24 
 RBE 33.56 35.94 34.92 31.66 23.26 36.92 26.53 27.83 25.66 10  
 CFNN 33.24 31.73 28.41 21.45 27.75 25.52 25.9 21.78 33.83 9.28  
 PRN 34.56 32.71 35.05 30.06 27.88 31.52 25.4 22.43 18.81 9.41  
 FFNN 38.73 38.37 34.28 27.51 27.21 38.46 23.1 33.17 22.39 9.86  
 FNN 38.25 31.31 39.12 23.58 26.18 34.83 27.46 31.46 25.64 9.94  
 AdaBoost 56.63 50.64 52.97 46.14 48.62 47.11 42.25 44.27 39.49 13.46 
 MPRoF 60.41 53.35 54.3 54.77 45.55 49.11 41.42 47.06 43.8 13.94 
 STLR 54.97 59.56 53.34 52.69 42.56 51.01 39.63 44.18 38.84 14.01 
 CBCA 50.31 52.48 48.15 47.2 41.23 53.05 46.41 51.21 44.67 13.61 
 ABJ48 63.82 61.05 62.23 47.92 42.9 54.89 45.49 45.77 49.67 14.3  
 oRF 53.75 50.52 44.35 50.74 50.65 49.91 42.74 52.7 37.74 13.59 
 RoF 59.34 49.41 53.49 48.52 45.41 48.36 43.1 50.04 46.48 13.91 
 MV 53.91 62.81 58.99 48.93 43.88 49.71 41.9 40.74 33.38 13.67 
 EVAdaBoost 69.72 67 67.12 65.62 74.64 69.35 68.3 69.24 66.39 16.73 
 Rank 5.67 5.53 5.31 4.96 4.72 5.14 4.47 4.83 4.38 –  
Among all classifiers, the proposed Evolutionary AdaBoost (EVAd-
aBoost) algorithm stands out as the top-performing model, achieving 
the highest PPV scores across nearly all feature types. EVAdaBoost 
reaches a peak PPV of 74.64% using HHT features and maintains con-
sistently strong performance across other feature sets, such as OpenS-
mile (69.72%), Fourier (67%), and SFTF CNN (68.3%). These results 
indicate EVAdaBoost’s robustness and reliability in making accurate 
positive predictions, which is especially valuable in clinical screening 
scenarios where false positives can lead to undue anxiety, overdiag-
nosis, and misdirected interventions. Other strong ensemble methods, 
including ABJ48, MPRoF, and CBCA, also achieve respectable PPV val-
ues, though they lag behind EVAdaBoost both in absolute performance 
and average rank.

When comparing feature types, it becomes evident that certain rep-
resentations are more conducive to higher PPV. Handcrafted features 
like HHT and OpenSmile deliver strong precision scores when paired 
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with top-performing models, with HHT achieving the best PPV in 
EVAdaBoost. Interestingly, time–frequency representations and hand-
crafted features tend to outperform CNN-derived features in terms of 
PPV, with CNN-based features like SFTF CNN and HHT CNN yield-
ing relatively lower PPVs across most classifiers. This suggests that 
while CNN-derived features may capture complex patterns, they may 
introduce noise or overfitting risks in certain classifiers, leading to 
less precise positive predictions. Overall, the results highlight the im-
portance of both robust model architectures and well-suited feature 
representations for maximising PPV in depression detection tasks.

Table  5 reports the F1 scores – a harmonic mean of precision and 
recall that balances the trade-off between false positives and false 
negatives – for various classification models across different feature 
extraction methods, based on 30 experimental runs. The results high-
light the superior performance of the proposed Evolutionary AdaBoost 
(EVAdaBoost) algorithm, which achieves the highest F1 scores for all 
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Table 5
The F1 of the proposed Evolutionary AdaBoost algorithm and some machine learning and ensemble algorithms for each type of 
features. The results are everaged over 30 runs.
 OpenSmile Fourier Wavelet Walsh HHT 1D to 2D SFTF CNN Wavelet CNN HHT CNN Rank  
 LR 19.69 18.7 16.6 15.87 15.08 16.06 14.89 15.54 14.49 8.99  
 RF 18.77 19.25 19.11 15.87 15.92 15.81 14.77 15.57 14.2 9.1  
 SVM 19.16 18.99 17 17.35 16.42 17.68 15.67 16.73 14.47 9.48  
 KNN 18.74 18.8 18.7 15.84 14.41 16.46 14.02 15.24 14.19 8.92  
 DFFN 18.19 17.64 15.71 15.54 15.55 17.28 15.05 15.7 13.79 8.81  
 RBN 18.29 17.96 17.67 16.1 15.08 15.8 15.18 16.17 14.59 8.92  
 LVQ 20.19 18.44 17 15.02 14.64 16.05 14.67 14.88 14.8 8.99  
 PNN 17.91 19.14 16.7 16.85 15.53 17.09 15.42 16.85 14.33 9.4  
 RBE 18.64 18.92 17.6 16.08 15.38 17.57 14.95 15.16 14.32 9.28  
 CFNN 18.84 18.04 17.27 15.72 16.15 16 15.14 14.66 15.24 8.94  
 PRN 18.84 17.59 17.49 16.58 15.37 17.62 14.48 15.15 14.31 8.94  
 FFNN 19.66 18.81 17.47 16.97 15.9 18.22 14.41 17.14 14.26 9.3  
 FNN 18.22 19.27 18.65 15.33 15.44 17.42 15.07 16.15 15.02 9.34  
 AdaBoost 33.6 31.27 27.97 27.87 22.74 27.23 21.51 24.97 19.46 13.95 
 MPRoF 36.28 35.32 33.64 31.89 26.33 32.26 23.33 29.88 22.38 15.15 
 STLR 35.47 31.4 28.97 27.63 22.24 27.95 21.58 24.99 22.03 14.51 
 CBCA 32.64 32.07 29.75 26.6 22.02 28.4 22.03 25.66 20.45 14.37 
 ABJ48 32.87 33.6 32.56 26.2 25.48 29.69 24.75 25.9 23.28 15.17 
 oRF 33.69 29.36 27.49 24.6 21.37 26.46 20.17 24.45 19.79 13.9  
 RoF 33.2 34.55 32.44 27.47 22.42 28.93 23.74 26.82 20.9 14.99 
 MV 35.9 33.82 30.49 27.04 22.54 26.2 20.32 22.92 18.3 14.23 
 EVAdaBoost 45.06 43.11 43.43 42.2 41.27 41.71 37.8 39.59 36.86 18.33 
 Rank 5.96 5.74 5.46 5.01 4.51 5.18 4.28 4.79 4.07 –  
feature types, with scores ranging from 36.86% (HHT-CNN features) 
to 45.06% (OpenSmile features). Among the feature types, traditional 
handcrafted features like OpenSmile, Fourier, and Wavelet tend to yield 
higher F1 scores overall, especially when used with strong ensemble 
classifiers. In contrast, features derived from deep learning transforma-
tions (e.g., SFTF CNN, Wavelet CNN, and HHT CNN) generally show 
lower F1 performance across models, indicating a possible challenge 
in generalising from these high-dimensional representations without 
specialised training. The ranking row further confirms this trend, with 
handcrafted features like OpenSmile and Fourier consistently ranking 
higher in model performance than CNN-based features, suggesting they 
offer more robust information for F1-optimised depression detection.

Table  6 reports the results of a Friedman statistical analysis applied 
to evaluate the performance of different algorithms using the EVAd-
aBoost method across five key classification metrics. In this context, 
the Sum of Squares (SS) quantifies the total variability observed in 
the performance metric, divided into variability between algorithm 
groups (Columns) and within-group variability (Error). The Degrees of 
Freedom (df) represent the number of independent pieces of information 
used to calculate each SS value—21 for the number of algorithms and 
609 for the residual error (based on the total number of observations 
minus the number of groups). The Mean Square (MS) is obtained by 
dividing each SS by its respective df, providing an average measure of 
variance. The F-statistic is then calculated as the ratio of the MS for 
the algorithm groups to the MS of the error, assessing whether the 
variance between groups is significantly greater than within groups. 
Finally, the p-value (Prob > F) indicates the probability that such a 
result could occur by random chance; smaller values (typically <0.05) 
suggest statistically significant differences. In this table, the p-values 
for ACC, TPR, PPV, and F1 are all extremely small (e.g., 4.66× 10−7 for 
ACC and 5.43 × 10−30 for TPR), strongly indicating that the differences 
in algorithm performance are statistically significant for these metrics. 
However, the 𝑝-value for TNR (0.06905) exceeds the conventional 0.05 
threshold, implying that differences among algorithms in terms of their 
ability to correctly identify negative cases are not statistically signifi-
cant. Overall, the Friedman test confirms that the choice of algorithm 
has a substantial effect on most classification outcomes when using 
EVAdaBoost.

Table  7 shows the performance of different algorithms in terms of 
different metrics. The performance comparison across ensemble and 
non-ensemble algorithms reveals clear advantages of advanced ensem-
ble methods—particularly EVAdaBoost—in the context of depression 
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Table 6
The Friedman statistics of the results of EVAdaBoost algorithm presented in 
Tables  1, 2, 3, 4, and 5. This is for 30 independent runs and compares different 
algorithms.
 ACC
 Source SS df MS F Prob > F  
 Columns 2884.6 21 137.3619 69.233 4.6615e−07 
 Error 23 364.4 609 38.3652  
 Total 26 249 659  
 TPR
 Source SS df MS F Prob > F  
 Columns 7331.5 21 349.119 194.0161 5.4263e−30 
 Error 16 475 609 27.0525  
 Total 23 806.5 659  
 TNR
 Source SS df MS F Prob > F  
 Columns 1280.4833 21 60.9754 31.2846 0.06905  
 Error 24 505.5167 609 40.2389  
 Total 25 786 659  
 PPV
 Source SS df MS F Prob > F  
 Columns 3009.7333 21 143.3206 73.3045 1.0279e−07 
 Error 22 856.7667 609 37.5316  
 Total 25 866.5 659  
 F1
 Source SS df MS F Prob > F  
 Columns 6756.2667 21 321.727 161.9129 9.3011e−24 
 Error 19 532.2333 609 32.0726  
 Total 26 288.5 659  

detection from speech data. EVAdaBoost achieves the highest accuracy 
(ACC = 86.38%) and the top true positive rate (TPR = 80%), indicating 
its superior ability to correctly identify depressed individuals while 
maintaining a high true negative rate (TNR = 87.98%). It also delivers 
the highest F1 scores for both positive (F1P = 71.84) and negative (F1N 
= 90.89) classes, reflecting a well-balanced model across sensitivity and 
specificity. Other strong performers include CBCA, MV, and ABJ48, all 
of which exhibit high precision (PPV) and robust F1 scores, though they 
fall slightly behind EVAdaBoost in overall performance. Traditional 
classifiers like Logistic Regression, SVM, and KNN trail significantly in 
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Table 7
The performance of different algorithms in terms of different metrics. These results are averaged over 30 runs. The last row shows 
the Friedman rank of each algorithm. A higher rank indicates better performance.
 ACC TPR TNR PPV FPR F1P F1N F1 Rank  
 LR 78.03 38.51 87.98 60.06 12.02 41.82 86.11 41.82 11  
 RF 74.17 21.07 87.86 49.27 12.14 25.78 83.98 25.78 3.63  
 SVM 77.09 33.75 87.98 58.34 12.02 38.89 85.61 38.89 8.63  
 KNN 75.79 29.64 87.74 54.88 12.26 34.71 84.85 34.71 6.63  
 DFFN 76.47 31.73 87.86 57.51 12.14 35.41 85.22 35.41 7.56  
 RBN 74.72 23.51 87.86 51.57 12.14 28.06 84.32 28.06 4.44  
 LVQ 75.17 25.77 87.98 51.69 12.02 31.09 84.58 31.09 5  
 PNN 77.61 37.8 87.86 56.75 12.14 41.02 85.91 41.02 9.19  
 RBE 78.28 40.36 87.86 59.91 12.14 44.54 86 44.54 11.94 
 CFNN 75.49 26.85 87.98 51.76 12.02 30.94 84.73 30.94 6.13  
 PRN 77.08 35.42 87.86 61.16 12.14 39.31 85.24 39.31 9.25  
 FFNN 78.03 38.51 87.98 60.41 12.02 41.02 86.05 41.02 11.19 
 FNN 78.03 38.51 87.98 58.84 12.02 41.86 85.98 41.86 11.25 
 AdaBoost 82.24 74.17 84.4 62.15 15.6 63.71 87.82 63.71 14.5  
 MPRoF 82.57 76.19 84.17 64.73 15.83 65.12 87.99 65.12 15.75 
 STLR 80.1 60.48 85 62.12 15 55.87 86.7 55.87 13.38 
 CBCA 85.33 74.76 87.98 69.7 12.02 68.39 90.18 68.39 18.31 
 ABJ48 83.52 79.52 84.52 62.33 15.48 67.89 88.73 67.89 16.63 
 oRF 84.38 74.76 86.79 66.54 13.21 67.46 89.46 67.46 16.69 
 RoF 83.43 65.24 87.98 66.3 12.02 61.91 89.1 61.91 15.13 
 MV 85.08 75.65 87.5 68.42 12.5 68.3 89.95 68.3 17.75 
 EVAdaBoost 86.38 80 87.98 69.61 12.02 71.84 90.89 71.84 19.06 
recall (TPR ranging from 21.07% to 40.36%), indicating a limitation 
in detecting depressed cases despite decent specificity. In terms of 
overall ranking based on Friedman rank, EVAdaBoost holds the top po-
sition (Rank = 19.06), outperforming both classic ensemble techniques 
(e.g., AdaBoost, Random Forest) and modern stacking or clustering 
approaches. These results collectively highlight the effectiveness of 
EVAdaBoost’s evolutionary optimisation and feature selection strate-
gies, offering a powerful and reliable tool for voice-based depression 
screening.

The proposed EVAdaBoost algorithm demonstrates exceptional con-
sistency across all key metrics, making it particularly well-suited for 
clinical and large-scale mental health screening applications. With 
the highest accuracy (86.38%) among all tested models, EVAdaBoost 
achieves a strong baseline of overall correctness. However, what truly 
distinguishes it is its true positive rate (TPR) of 80%, which reflects 
its ability to correctly identify individuals who are actually depressed. 
In real-world mental health settings, this is critical, as failing to de-
tect depression (false negatives) can result in untreated suffering and 
increased risk of deterioration. EVAdaBoost’s high sensitivity indicates 
that it minimises this risk better than any competing model.

At the same time, EVAdaBoost maintains a very high true negative 
rate (TNR = 87.98%) and low false positive rate (FPR = 12.02%), 
meaning it is also reliable in avoiding misclassification of healthy 
individuals, which is important for reducing stigma and avoiding un-
necessary interventions. Its positive predictive value (PPV = 69.61%) 
shows that the majority of individuals flagged as depressed by the 
model are indeed likely to be suffering from the condition—an essential 
quality for ensuring that limited clinical resources are directed towards 
those most in need. The high F1 scores for both the positive class (F1P 
= 71.84%) and negative class (F1N = 90.89%) indicate that the model 
strikes an effective balance between precision and recall, offering both 
thorough coverage and confidence in predictions. Taken together, these 
results suggest that EVAdaBoost is not only the most accurate model 
but also the most balanced and clinically practical, offering reliable 
detection without overwhelming healthcare systems or misclassifying 
healthy individuals.

Fig.  4 shows the Friedman statistics of the results of EVAdaBoost 
algorithm presented in Tables  1, 2, 3, 4, and 5. This is for 30 indepen-
dent runs and compares different feature extraction methods. The box 
plots in the figure compares the proposed EVAdaBoost algorithm across 
different feature types (e.g., OpenSmile, Fourier, Wavelet, CNN-based 
representations) and performance metrics. Each box plot visualises the 
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Table 8
The comparison between the performance of the EVAdaBoost before and after 
the pruning algorithm is applied. The 𝑝-value shows the result of the Wilcoxon 
rank sum test between the first and second columns. These results are averaged 
over 30 runs.
 Metric Pruning No pruning 𝑝-value 
 ACC 86.38 86.19 0.89  
 TPR 80 79.52 0.96  
 TNR 87.98 87.86 0.96  
 PPV 69.61 68.68 0.9  
 FPR 12.02 12.14 0.96  
 F1P 71.84 70.87 0.81  
 F1N 90.89 90.72 0.87  
 F1 71.84 70.87 0.81  

distribution of ranks for a given metric – such as accuracy (ACC), 
F1 score, true positive rate (TPR), true negative rate (TNR), positive 
predictive value (PPV), false positive rate (FPR), and F1 scores for 
positive (F1P) and negative (F1N) classes – across 30 experimental 
runs. Notably, OpenSmile, Fourier, and Wavelet features consistently 
result in the highest and most stable performance, with compact box 
plots centred near the top ranks, especially for ACC, TNR, and F1. 
Conversely, CNN-based features (SFTF, Wavelet, HHT CNN) exhibit 
slightly more variability and lower median ranks in some metrics like 
TNR and PPV, suggesting less consistent performance. Importantly, the 
tight distribution and high rank of EVAdaBoost across most metrics 
confirm its robustness, stability, and superior performance regardless 
of the feature type, validating its effectiveness as a versatile depression 
detection model.

Table  8 presents a comparative analysis of the proposed EVAd-
aBoost algorithm before and after applying the evolutionary pruning 
mechanism. The pruning process is designed to reduce the number of 
base AdaBoost learners in the final ensemble by eliminating redundant 
or less informative models while maintaining or improving overall 
performance. The results in the table demonstrate that there is no sta-
tistically significant difference in performance between the pruned and 
unpruned ensembles across all metrics. For example, the accuracy of 
the pruned model is 86.38%, nearly identical to the unpruned model’s 
86.19%, with a 𝑝-value of 0.89, indicating no significant difference. 
Similarly, true positive rate (TPR) remains high in both configurations 
(80% vs. 79.52%), and true negative rate (TNR) and false positive 
rate (FPR) remain exactly the same, confirming that pruning does not 
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Fig. 4. The Friedman statistics of the results of EVAdaBoost algorithm presented in Tables  1, 2, 3, 4, and 5. This is for 30 independent runs and compares 
different feature extraction methods.
Table 9
The confusion matrices when all the features are used for different algorithms. In this table, PP is predictive positive, PN is 
Predicted Negative, AP is Actual Positive, and AN is Actual Negative. All results are averaged over 30 runs.
 RF SVM KNN DFFN RBN LVQ PNN

 PP PN PP PN PP PN PP PN PP PN PP PN PP PN  
 AP 1.5 5.7 2.37 4.67 2.1 5.1 2.23 4.87 1.67 5.5 1.83 5.4 2.67 4.5  
 AN 3.4 24.6 3.37 24.63 3.43 24.57 3.4 24.6 3.4 24.6 3.37 24.63 3.4 24.6  
 RBE CFNN PRN FFNN FNN AdaBoost MPRoF

 PP PN PP PN PP PN PP PN PP PN PP PN PP PN  
 AP 2.83 4.23 1.9 5.27 2.5 4.67 2.7 4.33 2.7 4.33 5.2 1.87 5.33 1.67  
 AN 3.4 24.6 3.37 24.63 3.4 24.6 3.37 24.63 3.37 24.63 4.37 23.63 4.43 23.57  
 STLR CBCA ABJ48 oRF RoF MV EVAdaBoost

 PP PN PP PN PP PN PP PN PP PN PP PN PP PN  
 AP 4.23 2.77 5.23 1.77 5.57 1.43 5.23 1.77 4.57 2.43 5.3 1.73 5.6 1.4  
 AN 4.2 23.8 3.37 24.63 4.33 23.67 3.7 24.3 3.37 24.63 3.5 24.5 3.37 24.63  
harm the model’s ability to distinguish between depressed and non-
depressed individuals. Metrics like F1 score for the positive class (F1P) 
and positive predictive value (PPV) also show negligible differences 
(p-values > 0.88).

These findings indicate that the pruning mechanism successfully 
reduces model complexity and computational cost by discarding re-
dundant base learners without sacrificing predictive performance. This 
makes EVAdaBoost not only accurate and robust but also highly ef-
ficient and scalable, a critical property for real-world deployment in 
large-scale or resource-constrained mental health screening systems.

Table  9 presents the averaged confusion matrices over 30 runs for 
the learning algorithms when the full feature set is used. Most classical 
classifiers, such as RF, SVM, KNN, and standard neural architectures 
(DFFN, RBN, LVQ, PNN, etc.), show a systematic bias towards pre-
dicting the negative class. This is reflected in their relatively high 
counts of predicted negatives (PN ≈ 24–25) and comparatively low 
predicted positives (PP ≈ 1.5–2.7), regardless of whether the true label 
was positive (AP) or negative (AN). This imbalance suggests that these 
models are conservative in assigning the positive label, likely due to 
class imbalance or overlapping distributions in the feature space.

In contrast, ensemble-based methods, particularly AdaBoost, ABJ48, 
STLR, RoF, and the proposed EVAdaBoost, demonstrate a more bal-
anced detection of actual positives. For example, ABJ48 achieves, on 
average, 5.57 correctly identified positives (APPP), while EVAdaBoost 
achieves 5.6, the highest among all algorithms. At the same time, 
these models present low predicted negatives for actual positives (PN 
≈ 1.4–1.7), indicating stronger sensitivity. This improvement does not 
come at the cost of a significant increase in false positives for the actual 
negatives: the AN-PP values remain moderate (e.g., 4.33 for ABJ48 and 
3.37 for EVAdaBoost).
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Table 10
The training and inference time required for each algorithm in seconds. The 
data are averaged over 30 runs.
 Algorithm Training Training

 Mean STD Mean STD  
 LR 0.08 5.48e−02 0.01 4.03e−03 
 RF 0.13 1.15e−02 0.01 8.42e−04 
 SVM 1.00 1.75e−01 0.08 1.29e−02 
 KNN 0.68 1.75e−01 0.06 1.29e−02 
 DFFN 0.98 1.15e−02 0.08 8.42e−04 
 RBN 3.40 7.50e−01 0.28 5.51e−02 
 LVQ 16.62 7.99e−02 1.38 5.87e−03 
 PNN 0.15 6.24e−02 0.01 4.59e−03 
 RBE 0.08 4.29e−02 0.01 3.15e−03 
 CFNN 2.03 5.48e−02 0.17 4.03e−03 
 PRN 3.25 1.17e−02 0.27 8.61e−04 
 FFNN 0.98 1.15e−02 0.08 8.42e−04 
 FNN 1.00 1.61e−02 0.08 1.19e−03 
 AdaBoost 30.36 1.94e+00 1.64 7.03e−02 
 MPRoF 37.69 1.80e+00 1.37 1.00e−01 
 STLR 39.67 1.90e+00 1.69 5.81e−02 
 CBCA 50.19 1.48e+00 1.93 6.26e−02 
 ABJ48 51.31 1.90e+00 2.12 5.88e−02 
 oRF 40.58 1.67e+00 2.36 1.05e−01 
 RoF 31.72 1.72e+00 2.10 9.06e−02 
 MV 51.22 1.61e+00 1.96 9.03e−02 
 EVAdaBoost 161.45 6.20e+00 1.50 5.45e−02 

Table  10 presents the training and inference times for all classifiers. 
As expected, base learner algorithms such as LR, RF, or KNN require 
less training time, while more sophisticated ensemble approaches are 
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computationally more expensive. The proposed EVAdaBoost demon-
strates the highest training time (161.45 s), due to the evolutionary 
optimisation process. However, the inference time is low (1.50 s), 
which is comparable to that of other ensemble algorithms. Since train-
ing is performed only once and deployment relies on inference, the 
added computational complexity is acceptable given the improved 
performance. Furthermore, the evolutionary nature of the algorithm 
allows parallel implementation, where the fitness of individuals can 
be evaluated simultaneously on different processing units, significantly 
reducing training overhead.

6. Conclusion

This paper proposes an evolutionary AdaBoost algorithm for au-
tomated depression detection via voice signals. The proposed method 
employs a diverse set of nine signal processing feature extraction meth-
ods, including Fourier, Wavelet, Walsh, Hilbert–Huang, and OpenSmile, 
as well as time–frequency transformations for CNNs. Each of these 
feature sets is used to train a specialised AdaBoost algorithm with Broad 
Learning algorithms serving as base learners. A quantum evolutionary 
algorithm was then employed to optimise the feature subsets assigned 
to each AdaBoost model via a wrapper scheme. The evolutionary 
AdaBoost algorithm evolves to select the best subset of features for each 
AdaBoost base learner to reduce noise, redundancy and keep relevant 
information. This evolutionary selection improves the performance of 
the classifiers both in terms of accuracy and computational efficiency. 
Once a set of AdaBoost algorithms have been designed, an evolutionary 
pruning algorithm is adopted to find the optimal subset of AdaBoost al-
gorithms to optimise the performance and computational complexity of 
the algorithms. Experimental studies were performed on the algorithm, 
and it was shown that the proposed algorithm offers better performance 
compared to state-of-the-art algorithms.

The approach presented in this work can handle overfitting in 
different ways. First, generating multiple AdaBoost models on diverse 
feature subsets ensures the ensemble does not over-rely on dataset-
specific patterns from any single feature set. Second, during model 
training, a 5-fold cross-validation scheme is employed, thereby en-
forcing evaluation on unseen partitions and preventing the models 
from memorising the training data. Finally, an evolutionary pruning 
algorithm enhances generalisability by removing redundant or overfit-
prone learners. This process adopts leave-one-out cross-validation to 
carefully assess each base learner’s contribution, ensuring that only 
those improving ensemble diversity and validation performance are 
retained. The experiments in this study are performed on independent 
test sets using a leave-one-out cross-validation protocol. This scheme 
guarantees that every reported result reflects performance on unseen 
data. Moreover, all experiments are averaged over 30 runs.

Beyond its strong empirical performance, this research highlights 
the value of evolutionary learning in managing high-dimensional, mul-
timodal data, a common challenge in affective computing and mental 
health diagnostics. As mental health diagnostics increasingly turn to 
passive, technology-driven solutions, this work contributes a powerful, 
interpretable, and efficient tool for early-stage, speech-based depression 
screening in both clinical and real-world settings.

From a broader perspective, this work supports the growing shift 
towards objective, data-driven tools in mental health care, offering 
an alternative to traditional self-report questionnaires and clinical in-
terviews that are often limited by bias or accessibility. By leveraging 
passive audio data, EVAdaBoost enables unobtrusive and continuous 
monitoring, which could be integrated into telehealth systems, mo-
bile applications, or virtual agents for early detection and ongoing 
assessment.

The flexible, modular architecture of EVAdaBoost opens up several 
avenues for future research and development. One promising direction 
is the integration of multimodal data, such as textual content from 
interviews, facial expressions from video, or physiological signals like 
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EEG or heart rate, to capture a more comprehensive representation of 
depressive symptoms. This would enable the framework to model com-
plex emotional and cognitive states with greater accuracy. Additionally, 
the algorithm could be adapted to detect other psychological condi-
tions, such as anxiety disorders, bipolar disorder, or cognitive decline, 
by fine-tuning the feature extraction and classification components for 
different symptom profiles. Future work could also explore online and 
continual learning capabilities, enabling the model to update itself with 
new data over time, which is particularly valuable for tracking mental 
health changes in longitudinal settings.

A valuable direction for future work is enhancing the explain-
ability of the EVAdaBoost framework. While the model demonstrates 
strong predictive performance, understanding why specific predictions 
are made is critical for clinical adoption. Future research could in-
tegrate techniques such as SHAP (Shapley Additive Explanations) or 
LIME (Local Interpretable Model-agnostic Explanations) to highlight 
which features – such as specific vocal characteristics – most influ-
ence the model’s decisions. Additionally, exploring layer-wise relevance 
propagation in the CNN components could offer insights into which 
time–frequency patterns are associated with depressive speech. Improv-
ing interpretability not only builds trust among clinicians and users but 
also supports more transparent and ethical deployment in mental health 
contexts.

One notable limitation of the data used in this study is that the voice 
data used for training and evaluation was collected in controlled labora-
tory settings. While this ensures high-quality recordings and consistent 
conditions, it may not fully capture the variability and noise present in 
real-world environments where depression detection systems are likely 
to be deployed. Factors such as background noise, spontaneous speech, 
emotional variability, and device heterogeneity can significantly affect 
performance in practical scenarios. As a direction for future work, it 
is essential to validate and adapt the EVAdaBoost framework using 
real-world datasets collected from naturalistic settings, such as phone 
conversations, telehealth consultations, or mobile app interactions, to 
ensure robustness, generalisability, and ecological validity. This would 
help bridge the gap between experimental performance and actual field 
effectiveness.

A key limitation of the current dataset, and a broader issue across 
much of the literature, is the binary classification of subjects into 
‘‘depressed’’ and ‘‘non-depressed’’ groups. This oversimplifies the com-
plex and spectrum-based nature of depression, which includes varying 
levels of severity (e.g., mild, moderate, severe) and different subtypes 
(e.g., melancholic, atypical, seasonal). Such dichotomous labelling may 
obscure important patterns within the data and limit the ability of 
models to capture the nuanced manifestations of depressive behaviour. 
Future work should focus on collecting and annotating datasets that 
reflect the full continuum of depressive symptoms, ideally informed 
by clinical assessments such as structured interviews or standardised 
rating scales. Additionally, machine learning models, particularly un-
supervised or semi-supervised approaches, could be used to discover 
latent subcategories or symptom clusters that may not align neatly with 
existing diagnostic labels but hold clinical relevance. This could lead 
to more personalised, granular, and data-driven diagnostic tools that 
better reflect the heterogeneity of depression in real-world populations.

Given the sensitive nature of mental health diagnosis from voice 
data, some ethical concerns may arise. First, data collection must be 
conducted under strict protocols of informed consent, ensuring that 
participants understand the purpose of the study, how their data will 
be used, and how their identity will be protected. Privacy and data 
security require robust anonymisation strategies and secure storage to 
prevent misuse or unauthorised access. Moreover, false positives may 
lead to unnecessary anxiety or unwarranted interventions, while false 
negatives may delay needed support or treatment. Therefore, while the 
proposed algorithm shows promise as a screening tool, it should be 
positioned as an aid to clinicians rather than a standalone diagnostic 
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system, ensuring that automated predictions are always interpreted 
within a broader clinical and ethical framework.

Another limitation of this study is its exclusive focus on depression 
and reliance solely on audio data for detection. While depression is 
a critical and widespread mental health condition, it often co-occurs 
with or shares overlapping symptoms with other disorders such as 
anxiety, bipolar disorder, post-traumatic stress disorder (PTSD), and 
schizophrenia. These conditions can exhibit similar vocal patterns, such 
as reduced speech variability or slower tempo, but may also present 
distinct multimodal markers that are not captured through audio alone. 
To fully understand the complex and often interconnected nature of 
mental health disorders, future research should aim to collect datasets 
that include a broader range of psychological conditions, allowing for 
multi-label or hierarchical classification approaches.

Moreover, relying exclusively on voice data may limit the richness 
of the information available for diagnosis. Future datasets should in-
corporate multimodal inputs, such as video (facial expressions, gaze, 
gestures), EEG (neural activity), ECG or PPG (heart rate and vari-
ability), skin conductance (stress response), textual data (language 
patterns), and even wearable sensor data (sleep, movement, activity 
levels). These complementary data streams can provide a more com-
prehensive understanding of emotional and cognitive states, enabling 
the development of models that can better capture subtle patterns, 
distinguish between comorbid conditions, and support early detection 
and personalised interventions. Expanding the scope of data collection 
and target conditions is essential to advancing the generalisability and 
clinical utility of machine learning approaches in mental health.

A promising direction for future work is the development of models 
that support longitudinal and continuous monitoring of depression. 
Instead of relying on isolated assessments, future systems could analyse 
voice and other signals over extended periods to track the progres-
sion of depressive symptoms or response to treatment. Integrating the 
proposed framework with mobile devices or wearable technologies 
would enable real-time, passive monitoring in naturalistic environ-
ments, allowing for timely interventions and personalised care. This 
shift towards continuous data collection would enhance the clinical 
relevance and real-world applicability of automated mental health 
assessment tools.

Future work should also focus on enhancing cross-population gen-
eralisation to ensure the model performs reliably across diverse user 
groups. This includes evaluating the algorithm’s robustness across dif-
ferent demographics, such as age, gender, cultural background, and 
language, as well as accounting for variations in dialects and accents. 
Additionally, testing the model on both clinical and non-clinical popu-
lations is essential to validate its broader applicability. Achieving this 
goal will require the collection of more diverse and representative 
datasets to reduce bias and improve the fairness and inclusiveness of 
depression detection systems.

An important direction for future research is the development of 
adaptive and personalised models that can tailor predictions to indi-
vidual baselines and behavioural norms. Since vocal and emotional 
expression varies widely between individuals, static thresholds may 
lead to misclassification. Leveraging techniques like transfer learning 
or meta-learning can enable the model to calibrate itself to each user, 
improving accuracy and reliability over time. Personalised models 
would be especially valuable in long-term monitoring, where sub-
tle changes from a person’s own baseline are more informative than 
population-wide comparisons.

Future work must also address the ethical, legal, and social implica-
tions (ELSI) of deploying automated depression detection systems. Key 
considerations include ensuring privacy and data security, particularly 
when collecting sensitive mental health data through personal devices. 
Models should be evaluated for bias and fairness to prevent discrim-
inatory outcomes across demographic groups. Additionally, systems 
must incorporate mechanisms for informed consent and give users 
control over their data and participation. Studying clinical usability, 
17 
user acceptance, and the potential impact on stigma will be crucial for 
responsible, equitable, and effective real-world implementation.

To ensure real-world impact, future research should prioritise clin-
ical validation and deployment of the proposed system. Collaborations 
with clinicians will be essential for conducting clinical trials or field 
studies that assess the model’s effectiveness in real healthcare set-
tings. Additionally, exploring integration with electronic health records 
(EHRs) and telehealth platforms can facilitate seamless adoption into 
existing workflows. Ultimately, the goal is to design deployable sys-
tems, whether for use by mental health professionals or as part of mo-
bile health apps, that are practical, scalable, and capable of supporting 
early detection and ongoing mental health care.
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