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1. Introduction and summary

The Alexandrov—Kontsevich—Schwarz—Zaboronsky (AKSZ) sigma model [1] (reviewed in [2—
6]) provides a uniform construction of many Schwarz-type topological field theories in any
dimension (such as Chern—Simons theory, BF model, topological Yang—Mills theory F A F,
Poisson sigma model, etc) and provides structural insights in terms of their gauge structure as
a symplectic Lie n-algebroid. They appear in holography [7, 8] and in double field theory [9].

This article extends the construction by deforming the AKSZ sigma models using a Dirac
structure (or Manin pair). This class of (non-topological) theories, which we call Manin—AKSZ
sigma models, provides a uniform construction of such diverse theories as (nonsupersymmet-
ric) Yang—Mills theory, the third-way theories (a subsector of the ABJM model in a Romans
background) [10-13] (reviewed in [14]), the Manin theories [15], Yang—Baxter integrable
deformations [16, 17] (reviewed in [18, 19]) of the principal chiral model, and more. In par-
ticular, this provides a way to construct theories that exhibit the third way mechanism [10-13]
using L.-algebras and L..-algebroids. Furthermore, many of this class of theories admit an
interpretation as a gravitational theory coupled to backgrounds [20, 21]. For prior approaches
to deforming AKSZ models to generate non-topological theories see, for example, [22-28]
and the references therein.

2. Geometric structures

We recall the relevant notions of differential graded geometry in terms of which the Batalin—
Vilkovisky formalism is naturally formulated, and define the notions of admissible subalgebras
and admissible fibrations that define the geometry of homotopy Manin theories.

2.1 Symplectic differential graded manifolds

AKSZ models are naturally associated to symplectic differential graded manifolds, which we
now review, fixing our conventions. For more comprehensive reviews see [5, 29, 30]. Our
(graded) vector spaces are over the real numbers unless otherwise specified. We use the Koszul
sign convention throughout. For a grading indexed by i € Z, V = €D, V;, suspensions are such
that (V[i]); = Vi4;. The symbol ® denotes graded symmetrisation.

Definition 1. An L.-algebra (g, {1;}7°,) is a graded vector space g = €D, g’ equipped with
totally graded-antisymmetric multilinear maps

pi: No—so (1
of degree 2 — i such that
(=1)"x(o)
Z i (11 (Ko (1) -+ Xo (1)) »Xor(i41)5 - - -1 Ko (k) = O, 2
i+j=k I
o€Sym(k)

where x (o) is the graded-antisymmetric Koszul sign for the permutation o. A cyclic structure
of degree k on an L., -algebra g is a graded-symmetric nondegenerate bilinear pairing

(,):g°®g" =R 3)
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that satisfies the following identity:

(xen, i (x5, Xig 1)
(_1)i+i(\x1 [ 11 D) A i [ (e |- ]) (

X1 fhi (X1, -5 X)) 4)
A cyclic Ly-algebra is an L -algebra equipped with a cyclic structure.

Note that, if g is an L..-algebra concentrated in nonnegative degrees, then g[1] is a differ-
ential graded manifold whose body is a single point.

Definition 2. A Lie n-algebroid (X, Q) is a nonnegatively graded manifold X concentrated in
degrees {—n,1 —n,...,0}, together with a homological vector field Q on X of degree +1.

Example 1. A Lie 0-algebroid is the same thing as a smooth manifold (and Q = 0 necessarily).

Example 2. A Lie 1-algebroid (X, Q) is the same thing as a Lie algebroid. Then X has the
structure of a vector bundle E[1] — |X|. With appropriate local coordinates (x',6“), then

iaa 1 bca
Q_pae @_Ef(lbcae 80“7

such that p: E — TX defines the anchor map, and f defines the bracket.

&)

Example 3. A Lie n-algebroid (X, Q) over a point is the same as an L,-algebra g concentrated
in degrees {1 —n,...,0}. Concretely, X = g[1], such that

c=x)=C)elll", ©)
and then Q: C*°(X) — C*°(X) is the Chevalley—Eilenberg differential. Given a basis #, of g,
0 0o 1 .0
o p g p O L ped 7
0 fuata fﬂbata zfﬂb By ) @)
and %y, p, ., defines the structure constants for g : g"*f — g.

Definition 3. A symplectic Lie n-algebroid consists of a Lie n-algebroid (X, Q) equipped with
a nondegenerate closed two-form w € Q?(X) of degree n + 2°.

For example, a symplectic 0-algebroid is the same thing as a symplectic manifold. On a
smooth manifold Y, the degree-shifted tangent bundle T[1]Y is a Lie (1-)algebroid, and a sym-
plectic structure on it is the same thing as a Poisson structure; a Lie 1-algebroid on the one-point
space e is the same thing as a Lie algebra, and a symplectic structure on it is the same thing as
an invariant nondegenerate metric. A symplectic two-algebroid is the same thing as a Courant
algebroid. A symplectic n-algebroid on e is the same as (the décalage’ of) a cyclic L..-algebra
in degrees {1 —n,...,1}.

The following proposition is standard.

Proposition 1. Given a symplectic n-algebroid (X,Q,w) and a point x € |X| in the body |X|
of X, then there exists a canonical cyclic Ly-algebra structure on the tangent space T[—1]X,

where the cyclic structure is given by (the décalage of) w, and the L,-algebra structure is
given by the Taylor expansion of Q near x.

6 Differential forms on a graded manifold are bigraded by form degree and the inherent degree of the coordinates.
7 Here, décalage refers to constructing an Loo [1]-algebra from an Loo-algebra; see e.g. [31].
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2.2. Admissible subalgebras

The appropriate gauge structures for Manin theories in arbitrary dimensions are L. -algebras
equipped with an isotropic admissible subalgebra. The admissible subalgebra defines the
gauge subalgebra that is left unbroken by the mass term. This notion reduces to that of a Manin
pair for Lie algebras.

Definition 4. Let 0 be an L,-algebra with a cyclic pairing of degree d — 3 of split signature.
An admissible subalgebra of 0 is a homogeneous Lagrangian subspace g C 0 that satisfies the
following three conditions:

1. Forany 1 <j<iandaj +---+a; <j— 2, we have

wi(g”,...,89,0,...,0) Cag. 8)
2. Forany0<j<i—1landa>3—dandb; +---+b; <j—2, we have

pi (g%, 9%, g%,0,...,0) =0. 9)
3. Foranya>3—d,a+b;+---+bj—1 22+i—d, we have

pi (g 9™,....g" ") Cg. (10)

Example 4. In a Lie algebra g (regarded as an L.,-algebra concentrated in degree zero), a
linear subspace h C g is an admissible subalgebra if and only if it is a Lie subalgebra.

Example 5. Given an vector space V equipped with a split-signature inner product (—,—),
then 0 := V[—1] may be regarded as a L,-algebra with y; = 0 for all i and a cyclic structure
of degree —2 = 1 — 3. Then an admissible subalgebra is the same as (the degree shift of) a
Lagrangian subalgebra L[—1] C V[—1].

Given a manifold ¥ and an L,-algebra 0 the tensor product {2(X) ® 0 carries the structure
of an L.-algebra®, with products given by

Qs
1 (Z)&o (1 ®@x1,...,0; @) == £ (a1 A= Aay) @ pf (x1,...,x;) + Gday @ x; (11
for every homogeneous ay,...,q«; € Q(X2) and xq,...,x; € 0, where =+ is the Koszul sign cor-
responding to transpositions of «vy,...,a; and x, ..., x;. Furthermore, it is cyclic if 9 is cyclic.

This is, however, too large for homotopy Manin theories, where we wish to kill half of the
gauge symmetry (into g-valued ghosts rather than 0-valued ghosts for an admissible subal-
gebra g C 0)). This breaking of the gauge symmetry is what will ultimately yield propagating
degrees of freedom, generalising the construction introduced in [15]. An appropriately smaller
L.-algebra is provided by the following theorem.

Theorem 1. Let X be a d-dimensional compact oriented manifold, and 0 be a cyclic Lo -
algebra concentrated in degrees {2 —d, ... ,0,1}, such that one can construct the Lo-algebra
Q(X) ®0. Let g be an admissible subalgebra of 0. Then the following holds.

1. the homogeneous subspace Q(3;0,g) C Q(X) ®0 given by

- P (8;97) i<0
Q'(3:0,9) = GB”“:’QP( fgq) l. (12)
pt+q=i (Z,D ) 12 1

8 Since the de Rham algebra (X)) carries the structure of a graded-commutative associative algebra.
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is an Loo-subalgebra of Q(¥) ® R
2. The homogeneous subspace Q' (3;g) C Q(3;0,g) given by

0 i

s2 (13)
@p+q:i QP (M7 gq) l 2 3

Q%zwy:{

is an Log-ideal of Q(3;0, g).

Thus, the subquotient
Q(50,9) == Q(;0,0) /Q(;0) (14)
exists as an Lo.-algebra.

Proof of 1. We must show that Q(2;9,g) C Q(X) ®0 is closed under ,uQ(E “e

simply write as u; below).

(which we

e Closure under p1: we must check that, for a @ x with o € (X)) andx € g?andp+ g < 1,
thatda @ x + (—1)Pa @ pd (x) € Q(X;0,9). Now, da @ x € Q1 (; g7) ¢ QrHat! (0, g).
As for the other term, the argument in the case p; for general i applies verbatim.

e Given the above, it suffices to show that

1 (2 (D) o O (B10) Q7 (B10p,),..., 20 (S50, ) €Q(S) @
(15)

whenever p; —ay,...,pj—a;<0and g — by,...,qi—j—b;_; > 1 and
Q=i+ P1—a)+-+p—a)+(q —b1)++(q-;—bi-j) <O0. (16)

It thus follows that we can without loss of generality set the form degrees to their minimum
values, that is, to ensure

1 (20 (S19-0,) ®... @ Q% (S19-4) @ (Z50,,) ® -+

@O (B0, ) €Q(D) @ g an
whenever
2—i)—aj—-—aj+(i—j) <0. (18)
But this follows from (8).
O

o®@)e

Proof of 2. We must check the ideal condition for 1, that is, to show that the value of

uiﬂ(z)@a lies in 2(X; g) whenever at least one of its argument belongs to (X; g) and the rest

(if any) belong to Q(3;0, g). As before, we simply write yi; for MQ(Z)@)D
The operator i (a®x) =da®@x+ (—1)*la® ©?(x) contains two terms, among which
the first term always increases form degree and hence can pose no problem. Hence it suffices

to ensure that

(Y (Z5977), 07 (2

g_h‘) e, QY (Z;g_’"’) N 0 (E;D_”‘) ety
Qe (B 1)) € QS

Q(%50) (19)
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whenever p—a >3 and | —cy,...,7,_j—1 — ¢i—j—1 = 1. There are two ways in which (19)
could fail: (a) the total degree might dip to < 3 so that we fall out of Q(E;D, g); (b) the p?
might make me fall out of (3;9, g) in that we end up in Q(2;0,g) \ (Z;g). To avoid (a), it
suffices without loss of generality to consider the case when all form degrees are minimised,
that is, to ensure

(7 (S5077), 20 (Ss7™) ., 20 (S, 09 (B507) .
Q-1 (S0791) ) =0 (20)
whenever
Q2-)+3-bj—--—bj+(i—j—1)<2. 21
But this follows from (9). To avoid (b), we need to ensure that
i (9 (23977) Q0 (S5g70) .., 08 (Sig7) ..., Q0 (8507) .
Qi (3075 ) € (s g) (22)
wheneverp —a >3 and ry —cy,...,ri_j—1 —ci—j—; = 1 and
(27i)+(pfa)+(q1 —b1)+~~+(qj—bj)+(r1 76‘1)+"'+(Vi_j_| 76,'_]'_1) Z 3 (23)
and
prai+-+q+n+--+rij1<d (24)

Thatis, given (—a,—by,...,—bj,—c1,...,—c;i—j—1), if we can choose (p, ¢, r) so that the above
inequality is satisfied, then the corresponding . has to take values in g.

l+ita+bi—q)++(bj—q)+(ct—r)+-~+ (ciejm1 — rij1)
<p (25)
Sd—qi—-—qj—r —-—Ti—j1.
Such a p exists iff
atbi+--+b+c+- e <d-—1-1i (26)
But now we see that the condition (10) is the condition that we need. O

Definition 5. Given a multiset of nonnegative integers S, property (A) holds iff there is at most
one element of S is positive:

(A) = #{seS||s|>0} < 1. 27

(Here # denotes the cardinality of a multiset.) Property (B) holds iff all but two elements of S
are zero, and the two remaining elements are equal:

(B) <= JpeN:5={0,...,0}u{p,p}. (28)
(Properties (A) and (B) hold simultaneously iff S only contains zeros.)

Definition 6. A Hodge structure on an admissible subalgebra g of a cyclic L.,-algebra d
(where d carries cyclic structure of degree 3 — d) consists of nondegenerate symmetric (not
graded-symmetric) bilinear pairings

#0: (d/g) @ (2'/¢') = R (29)
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for each degree i, which we can regard (using the isomorphism’ g?=3~/ 22 (3 /g’)*) as linear
maps

MWD ol — pd3 (30)
with

imM @30 = ¢' = kerm" (i<0), (31)
and that is cyclic in that

(Mx,y) = (x,My) 32)
for any x,y € 0, such that given ay,...,a; € {2—d,...,1} and py,...,p; € {0,...,d},

e if neither (A) nor (B) hold for the multiset {py,...,p;}, then
XP1ie e 3dispi cv YZl;Pl%"'%“/,Pi cv (33)

forall ke {1,...,i};
¢ if only (A) holds, then

b GRS ik O (34)

forallke {1,...,i} and p; > 1;
e if only (B) holds, then

YZI P15 34isDi + (_I)Pk(d_Pk) Y;ll P15 3aisDi cv (35)
forall k,/ € {1,...,i} withpy=p; > 1;
e if both (A) and (B) hold (i.e. p; = --- =p; =0), then
XD 3P JFZYZI;PH”'?[H;IU cv. (36)
k=1

In the above,

Xalvpl;"';aivﬂi
M (pi(gh,...,6%) if pr+--+pi<dandai+pi+otai+p=i—1 37
0 otherwise
and
YZhPl%"'?ampi
(@ M(g%) ., 6%) i pre 4 < 2prand @+ pre = 1 (38)
' 0 otherwise

9 This isomorphism exists because g is a homogeneous Lagrangian subspace with respect to a degree d — 3 pairing.

7
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where M is applied to the kth argument (k € {1,...,i}), and in which
- A <0
gak = g ak + Pk (39)
0% ap+pr =1
and

Ve {g ifay+pr+--+a+p =i 40)

0 otherwise.

Example 6. Let d be a cyclic Lie algebra with a Lagrangian subalgebra g C 9. Then a Hodge
structure on (9, g) is a linear map M: ? — 0 with imM = g = ker M such that

(Mx,y) = (x,My) D
for any x,y € 0 and

M{x,y| = [x,My] (42)

foranyx € gandy €.
Example 7. Let g be an L., -algebra with cyclic pairing of degree 3 — n. Then

0=gdg" (43)
forms a Manin pair. A Hodge structure consists of suitable (anti-)symmetric pairings on each
of g;.
Theorem 2. Let 3 be a d-dimensional compact oriented Riemannian manifold, and 0 be a
cyclic Loo-algebra concentrated in degrees {2 —d,...,—1,1} with an admissible subalgebra

g. Let M be a Hodge structure on (9,g). Then the Lo, -algebra structure u?l(z;o’g) onQ(2;0,9)
admits a one-parameter deformation

pht = u?(zm’g) +w M= ?(Z;D’g) Vi>2 (44)
where t is an arbitrary real number and
M if =1
v(agx) = § CEME@ I x +a] (45)
0 otherwise

forany a € Q(X) and x € 0, where x is the Hodge star on Q(X). Furthermore, this deformation
10

is cyclic™.
Proof. We first show that the L, -algebra homotopy Jacobi identities hold for p. It is con-
venient to decompose the L.,-algebra homotopy Jacobi identities according to the power of
the formal parameter f, so that we have the O(#°), O(t), and O(#*) components, which must
each vanish separately.

e The O(°) component of the homotopy Jacobi identities for pM is the original homotopy
Jacobi identities of Q(3;0,g), so there is nothing to check.

e The O(#*) component of the homotopy Jacobi identities for ;2 vanishes since v o v = 0 for
degree reasons: v is only nonzero on elements of degree one.

10 Tt is possible to generalise to topological deformations that do not require the Hodge star [21]. We leave this analysis
for future work.
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e The O(t) component of the homotopy Jacobi identities for p is

v ([LIQ (Z52.9) (xl,...,xi)) JrZ:I:,uiQI(E;D’E) (X1, (%) 5., x) = 0. (46)
j=1

The operator uiﬂ(zm’g) has two kinds of terms: one (only present on u?(z;a’g) ) involving the

exterior derivative of forms, and the other involving 10 and wedge products of differential
forms. )

Let us first check the exterior derivative term on M?(Z;D,g ). Given o € Q° (X) and x €0,
the L.-algebra identity is

[laf + [ = 0] xda®@ M (x) + [Jaf + x| = 1]dxa @M (x) € V, 7

where [- - -] is the Iverson bracket [32] (1 if the enclosed statement is true, 0 otherwise). When
|| + |x] = 0, we need « € g, and the term vanishes since M(g) = 0. When |a| + |x| = 1, then
M(x)d * « carries degree 3, and since M(x) € g, the result belongs to V. (As a special case: if
|x| = 1, then the first Iverson bracket can never be true; the second Iverson bracket is nonzero
only if |x| = 0, but then the second term vanishes for form-degree reasons.)

Let us consider the other terms in Misz(z;a,g)’ that is, those which are ;0 with the form
legs wedged together. In (46), applied to i arguments of form degrees py,...,p; and internal
degrees ay,...,a;, one sees that since Hodge stars do not distribute across wedge products,
the terms cannot cancel each other unless condition (A) or condition (B) holds. When neither
hold, then each term must vanish individually, corresponding to (33). When condition (A)
holds (all but one are O-forms), we have the identity

* (g Nag A Aag) =agAag A== (xag) A Aoy (48)

where all the as are zero-forms except for oy, so that (34) suffices. When condition (B) holds
(all but two are 0-forms, and the two have the same form degree), we have the identity

ag A A xag) A Aoy = (= DIEIAD G oA A k) A A (49)
where o and g are the two forms with positive degree, and then (35) suffices. When all

forms are O-forms, then we can relax the condition to (36).

Finally, cyclicity of p}! follows from (32). O

2.3. Admissible fibrations on symplectic dg-manifolds

We now formulate a notion analogous to Manin pairs in a Lie algebra, which is necessary to
consider homotopy Manin theories with nonlinear target spaces.

Definition 7. An admissible fibration consists of a graded vector bundle p: X — Y on a graded
manifold Y together with a homological vector field Q and a symplectic form w on X and an
Ehresmann connection

TX=V,®&H (50)
(where V), is the vertical bundle) such that:
e w is bilinear on each fibre of p

e Q is a finite sum of homogeneous components with respect to the linear structure on the
fibres of p,
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o for any every x € X, the fibre
H, CT.X (51)

defines an isotropic subspace of the cyclic L.-algebra T,X that is also an admissible
subalgebra.

Note that this notion is similar to, but differs from, the notions of Dirac structures in [33],
A-structures in [34], or homotopy Manin pairs defined in [35, Def. 34]. Our notion is adapted
to the current context of homotopy Manin theories.

Definition 8. A Hodge structure on an admissible fibration (p: X — Y, H) is a family of Hodge
structures defined for the family of admissible subalgebras H, C T,X for each x € X that is
smooth with respect to X and constant along the fibre directions.

3. Homotopy Manin sigma models

Using the algebraic and geometric structures from the previous section, we now deform the
topological AKSZ sigma models to construct non-topological homotopy Manin sigma models.

Let us recall the construction of an AKSZ sigma model. Given a spacetime (or world-
volume) ¥ and a symplectic n-algebroid (X, Q,w), then the space

M :=C>(T[1],X) (52)

of graded-smooth maps carries canonically the structure of a symplectic (Fréchet) dg-manifold
(M, Qrm,waq) with a symplectic form w of degree — 1, whose coordinates are concentrated
in degrees —n,...,0. This may be regarded as a BV-extended configuration space satisfying
the classical master equation.

Let M be a Hodge structure on an admissible fibration X — Y. Let us deform the differential

Om by

Ol = Ot + M1, (53)

o’
where t, are the coordinates of degree 0 (the fields) and 7 are the corresponding coordinates
of degree —1 (~the antifields) with a DeWitt index a. This vector field is not nilpotent on M.
However, let M be the subspace of M consisting only of the following coordinates:

e any coordinates of degrees 0 or 1
e any coordinates of degrees other than O or 1 that are constant along the fibres of the admiss-
ible fibration.

Then Q)  restricted to M is nilpotent, so that (M, Q w>w| i) forms a symplectic dg-manifold.
The homotopy Manin theory associated to the data (X, L, M) is the classical field theory whose
BV formulation is given by the above symplectic dg-manifold.

Example 8. Consider the case where the body of X = 9[1] is a single point. Then we are simply
dealing with a cyclic L;-algebra d and an admissible subalgebra g C 9. Then the L,-algebra
associated to the homotopy Manin theory has the underlying graded vector space

=P () c) o, (54)
P49

10
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where
01/g? 2<p+q
of = ¢ 01 1<p+g<2 (55)
g’ prg<l
The L -algebra structure p; on & is given by restriction of the L, -algebra structure uiﬂ. (Z)@o
on °*(X) ® 0 to the above subspace, except that 1; has an extra term:

p=p O (> 1)
iy = LT @M =1 (56)
1 = fold

i () x| # 1.

3.1. Action of homotopy Manin models in local coordinates

Given that the homotopy Manin theory is given by a symplectic dg-manifold, it admits an
action formulation. (As such, the class of homotopy Manin theories described here cannot
suffer from the kind of failure of unitarity described in [36].)

We can write down the corresponding classical homotopy Maurer—Cartan (hMC) action for
the (deformed) cyclic Lo,-algebra Q(3;0,g), uM:

1
TR
:/E <;<A,dA>+(l.+ll)!<A7ZM? (A,-~-7A)> +;<A>*MA>>

restricted to the space of ordinary fields (rather than antifields, ghosts, or ghost antifields),
which is given by A € @, Q' (Z;0_,).
Picking a splitting for convenience, this is

@Ql+’ Sig-) @ QT (X (9)") (58)

(57)

Call the first component A (the dynamical field) and the second component A (the field made
auxiliary by the mass term). Then the action is

/ hMC (A® A) + %(A/\*MZU. (59)
%

3.2. Energy positivity

We briefly examine the Hamiltonian formulation of an arbitrary homotopy Manin gauge theory
in order to demonstrate that the Hamiltonian (sans constraints) is bounded from below. In other
words these gauge theories have positive energy.

The calculation is essentially the same as in [15]. First, we perturbatively expand the sym-
plectic L,-algebroid into a cyclic L..-algebra 0 = @il:z_ 40i» now concentrated in degrees
{2—d,...,1} (where d is the dimension of spacetime ). Let us write the homotopy Manin
action as

/ O(A) + 5 (A,dA) + (A,*MA>, (60)

1
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where

1. A is a polyform whose p-form component is valued in 9;_,; 0

2. ©(A) is the contribution to the action from the target-space Lo, brackets, and thus involves
no derivatives of A; and

3. we have set all antifields, ghosts, etc to zero.

For the Hamiltonian formulation, we split the field A into time and space components:

A=dAg+Az,  gho=1tgAz =0, dA=d’AAsz +d=Az —dx’Adz A,
(61)

where spacetime . is also split into time and space as > =R x = as a product of (pseudo-
)Riemannian manifolds (hence g% = 0) and x° runs along R, and ¢ denotes the interior product,
and’denotes derivative along x°. (In fact everything below is also valid locally up to integration
by parts.) To ensure positivity we will make the additional assumption that (e, Me)|, > 0,
where ¢, to be defined below, is a complement to ker M.

First, we evaluate the term involving derivatives:

/ 0 (AdA) = / 1 (200 gz A= + Azaihz)), 62)
by by

from which we see that Ay, together are the positions and momenta, while A, appears linearly.
In fact Ay will appear linearly also in ©(A) (because it must be linear in dx”) but it appears
quadratically in the mass term:

O(A)=d"AAGAG’,
| dx® AMAG A% (dx® A Ag) + MAz A Az
S ((MA)ASA) = 50| 4 2dx” A MAg A Az

=0

(63)

Here G’ (which depends on A=) is part of the Gauss law constraint for the AKSZ sigma model
and is defined by the above formula; the last term in the second equation may be seen to vanish
by linear algebra due to the fact that spacetime is a direct product > = R x = — if the dx* are
e.g. orthonormal, Ay, will contain dx° and thus dx° x Ay, = 0.

Let us now introduce another split:

0=kerM+e¢; A= Lo + Eo, (64)
ckerM ce

where ¢ is any Lagrangian complement of g in 9, which may be identified with g*. (We do not
split Az this way.) Then the action takes the form

. 1
S:/ <A5 AP A Ag +dx°(L0+IE0)/\G+§(MAE)/\*AE
b
1
+2dx0/\(ME0)/\*(dxo/\IEo)> (65)

with G:=G’+2ds AAg being the AKSZ model Gauss law constraint; it depends
only on A=.
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The fields to be varied in the action are now Ay, Iy and Ej. Of these, L, is a Lagrange
multiplier enforcing certain components of the AKSZ sigma model Gauss law. Since imM =
g = ker M, we see that (Me, e)|, is nondegenerate, and £y may be integrated out algebraically.
To do this we need the identity

(dx” (MEo) ,* (dx°Ey)) = " (MEq " +[Ey) (66)

which is best obtained in index notation. (We have also started omitting wedges where unam-
biguous.) The positivity of the Hamiltonian now follows along the same lines as for 3d Manin
theories [15, §2.3] from the following completing-the-square calculation.

We will be more explicit to account for our compact notation: The term linear in Ey can be
rewritten using index notation and the identification e = g* facilitated by 7 as

(dx® AEoG) = dx® AEo,G* (67)

In this basis, G* are half the components of G*, the other half being G, and appearing con-
tracted with the Lagrange multiplier LLy. Moreover, we have (MX,Y) = M*X,Y,. Since M is
nondegenerate when restricted on e (by the definition of ¢), M is invertible (and symmetric),
and in particular may be used for index gymnastics. Therefore we may introduce a e-valued
polyform C in place of G* by

dx® AE,GY = (MEy/ * C). (68)

The bilinear form (M e /) x @) is symmetric and nondegenerate on ¢-valued polyforms so we
can now complete the square in [Ey. The complete result for the Hamiltonian (density) is thus

% (MAz) AxAz — % (gOO)" (MC" % C) (69)

which is manifestly positive definite whenever M“ is (since g% < 0).

4. Examples

Let us discuss particular examples of the class of homotopy Manin theories constructed above.

4.1. General classes of examples

First, we list those examples that can be defined in an arbitrary number of spacetime (or world-
volume) dimensions.

Example 9 (first-order Yang—Mills theory). Let g be a Lie algebra. Then (9,g) is a Manin
pair, where

0=g"[n-3]dg (70)
carries Lie bracket
e, v]y =[x, [x, %], = coad, (X) [%,5] =0 (71)

for x,y € g and X,y € g*[n — 3|, where coad is the coadjoint representation.
Suppose that x: g ® g — R is an invariant metric on g, which induces the musical iso-
morphism

wig—g* (72)
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x s K (=), (73)
Then
M:0—0 (74)
(xein—3)) ~ () (75)

(for any x € g, X € g*) is a Hodge structure on (9, g).
Given a d-dimensional oriented (pseudo-)Riemannian manifold X, then

QE)RI=0X) g (Q2(X)®g")[d-3].
The subquotient (30, g) may be identified with the subspace of (3;9) that excludes the

following:

e elements of the form v ® x where o € % and x € g*[d — 3] and p — d + 3 < 0 (such elements
do not lie in 2(3;0,g)) §
e clements of the form o ® x where o € P and x € g and p > 3 (such elements lie in Q(%; g)).

That is, we may identify

Q(20,9) 2 Q° (Z;g) Q! (S59) © Q2 (597 [d-3))

c A B
ghost fields
OO (Tig"[d - 3) @ 0 (Z59) O (Zsg” [d - 3)), (76)
A B c
antifields ghost antifield

which agrees with the field content for first-order Yang—Mills theory. The associated hMC
action is

1 1
S(s0.0) = / BA (dA +5 [A,A]) +c(dAT +ANAT +BABY) + Ec+ [c,c]. (77)
9, -
The deformation M adds an extra quadratic term to the Maurer—Cartan action:

1 1 1
S:/B/\(dA—i—z[A,A])+2tB/\*B+c(dA++A/\A++B/\B+)+2c+[c7c]7 (78)
b

where we may set r = 1 (or absorb it into B), which yields the usual action for first-order Yang—
Mills theory (see e.g. [37], [29, §5.4]).

Example 10 (ordinary sigma model). Let (X,g) be an (n+ 1)-dimensional pseudo-
Riemannian manifold (worldvolume), and let ¥ be a smooth manifold (target space). Define
the shifted cotangent bundle

X:=T'[nY>Y (79)

with vanishing homological vector field Q = 0 and the canonical symplectic structure is a sym-
plectic n-algebroid. The corresponding AKSZ theory is given by the action

S = / A; ANdg' (80)
b
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where ¢ € Q0(3;Y) and A € Q*(X;¢*T*Y) and d is the derivative of a smooth map between
manifolds so that dp € Q'(X;¢*TY). This is a trivial theory describing a constant ¢ and
closed A.

Fix a pseudo-Riemannian metric M;; on Y. Then the Levi—Civita connection on TY induces
a canonical Ehresmann connection

TX=V,&H (81)

on TX, where p: X — Y is the canonical projection. Then (p, H) is an admissible fibration,
and a Hodge structure on it is given by the inverse Riemannian metric MY. The corresponding
homotopy Manin theory is

S= /EAi ANde' — %MUAi A*A;. (82)
The equation of motion for A is now

A =+~ Mydd. (83)
Integrating out A, we obtain

S = %/EM,-,- (x'd¢') Adg/, (84)
which is the action for the ordinary sigma model on the Riemannian manifold (X, M).

Example 11 (Freedman-Townsend form of principal chiral model). Let g be a Lie algebra.
Then (9,g*[d — 3]) is a Manin pair, where

0=g"[d-3]dyg (85)

carries Lie bracket
[x’)’]a = [x’)’]g [xv;c]a = coad, (%) [JNC,}NJ} =0 (86)

for x,y € gand X,y € g*[d — 3], where coad is the coadjoint representation.
Suppose that x: g® g — R is an invariant metric on g, which by musical isomorphism
induces an isomorphism

wig—g* (87)

x— k(x,—). (83)
Then

M:d—0 (89)

(x@x[d—3])— (0@ 5 (x)) (90)

(for any x € g, X € g*) is a Hodge structure on (9, g*[d — 3]).
The corresponding homotopy Manin theory on an n-dimensional (pseudo-)Riemannian
manifold ¥ has field content
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Q(S5g* [d—3)) @--- @ Q3 (9% [d - 3))

c(0) c(d=3)
(d_4)(h-0rder ghost ghOSl
Q! (S0) Q" (S50 [d-3)) e (S0t [d-3) @ O (Ssg)
cld=D+=:4 c(n=2)=:B cld=1) =:A+ c(d=2)+=:p+
fields antifields
® D (Zg) @@ Q(%0) o1
cld=3)+ c(0)+
—— ——
ghost antifield (d—4)th-order gh. antif.

The corresponding action is the Freedman—Townsend formulation [38, 39] of the principal
chiral model:

d—2
1 . . o . )
S= /Z tr| SANRA+ ,§=o D AdelHDF 4 % DA TDAHD ] (92)

Amongst these terms, the terms involving at most one field not of degrees 1 or 2 are

1 1
S:/tr<B/\ (dA+[A,A]> +-ANKA
. 2 2

1
+c=) A (d+AN)BY + §B+ ABT A c(d4)> 4o (93)

The field B enforces flatness of A. We can solve this constraint as A = g~ 'dg, so that the action
becomes that of the principal chiral model.

Example 12 (Broccoli-Deger-Theisen theory). Suppose that h° is a Lie algebra, and let V
be a vector space. Let

a: (1) = v (94)
be a V-valued Lie algebra cocycle. Then

h:=b"®V[i—1] (95)
admits an L..-algebra structure that is a central extension of h°. Let us then define

v=pevi-1evid-p-2e K [d-3] (96)

to be the L,-algebra in which any bracket vanishes when one or more of the arguments belong
to V*[d — p — 2] ® (h°)*[d — 3]. This admits a canonical cyclic structure. Then

g=V0d-p-2a(°) [d-3]cd 97)
is an Abelian L,-subalgebra, which is easily seen to be admissible. Further suppose that g
admits an invariant inner product, and also equip V with an inner product. A Hodge structure
is then given by

M:0—0 (98)

(a,l},b,a) — (0,0,B,a) (99)
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where we have implicitly identified g with g* and V with V*, via the musical isomorphisms
induced by the inner products on g and V. The resulting action is then

~ 1 - 1 . .
S = /A/\F[A] + EM””Aa A*A“+BA(AB+AN---NA)+ EM,;,»B’ AN*B (100)

where the field content is

Ac Q' (M;g) (101)
B € O (M;h) (102)
B Q=1 (M;p*) (103)
Aec Q2 (M:g). (104)

The equations of motion are then

dB4+AN---NA=0 (105)
dB; + M;jxB' =0 (106)
dA+ANA=0 (107)
dA, + My AT =0, (108)

which reproduces the equations in [40, §3].

4.2. Two dimensions

A Lie 1-algebroid is the same as a Lie algebroid 0 — Y, and a symplectic Lie (1-)algebroid
(the target space for a one-dimensional AKSZ sigma model) is the same as a Poisson manifold
(Y,7), or rather the associated cotangent Lie algebroid X := T%*[1]Y, whose underlying vector
bundle is the cotangent bundle T*[1]Y and whose anchor is given by 7f: T*Y — TY, and the
symplectic form is the canonical pairing between T*[1]Y and TY.

The AKSZ sigma model in two dimensions is the Poisson sigma model [41-43] (reviewed
in [44, 45]), given by

S= LA, /\dgbl — EWUAi /\Aj (109)
for ¢ € Q°(2;Y) and A € Q! (Z;0*T*Y).

Example 13. Given a Poisson manifold (¥, 7) with a Riemannian metric M;; on Y, we have
the admissible fibration

T:[1]Y - Y (110)

of the cotangent Lie algebroid X := T%:[1]Y together with an Ehresmann connection corres-
ponding to the Levi—Civita connection of M. A Hodge structure on this is given by the inverse
Riemannian metric MY,

The action of the homotopy Manin theory is

A 1 .
S:/X:A,/\d¢l _EWUAl/\AJ_EMl]Al/\*Aj (111)
This action is not quite invariant under the full Lie algebroid gauge symmetry
. " 1 .
§¢' = —mle; SAp = Ayi+ 00+ 5a,wkaWak (112)

17
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for a € Q°(3, *T*X) due to the mass term.
Now, we can integrate out A as

A = (M 4 5r?) ™ dg, (113)

where M!: T*Y — TY is induced by the Riemannian metric M, so that
_ i f )~ ! j
Sf/g,»jdqb/\(M +x7f) xde/ (114)
p)

Example 14. Let (Y, 7) be a linear Poisson manifold, i.e. a Lie coalgebra, and let X := T%[1]Y.
Then we have the admissible fibration consisting of the graded vector bundle
T YXYx Y [1] » Y [1] (115)

equipped with the trivial Ehresmann connection. A Hodge structure is given by a nondegen-
erate bilinear metric M on X. Then the action is

A 1 . )
for ¢ € Q°(X) @ X and A € Q!(2) ® X. We can integrate out ¢ as
@' = MV xdA; (117)
so that
. P
S= *deAi/\*dAj—*ﬂ'in/\Ai. (118)
» 2 2 X

This theory contains two-dimensional Maxwell theory as the special case where Y is a one-
point space. In the general case, the theory describes a deformation of a U(1)" gauge theory,
which is reminiscent of the Proca theory.

4.2.1. Yang-Baxter sigma models. Yang-Baxter sigma models [16, 17] (reviewed in [18,
19]), which are integrable deformations of the principal chiral model or sigma models on sym-
metric spaces, may be naturally realised as homotopy Manin theories on Poisson-Lie groups
[46, 47] (reviewed in [48, 49]).

Let (G, ) be a Poisson-Lie group whose Lie algebra is g, so that X := T [1]G. The Poisson
structure of G induces a Lie bialgebra structure on g. The corresponding Poisson sigma
model is

1
S:/tr(g_ldg/\A)—Ewﬁ (ANA), (119)
b

where g € Q°(3;G) and A € Q'(3;¢*). An admissible fibration on this Poisson-Lie group is
given by the vector bundle X = T:[1]G — G together with the canonical Ehresmann connec-
tion given by the canonical trivialisation T*[1]G = G x g*[1]. A Hodge structure (metric) is
given by the choice of an invariant metric on g. Using this, we can deform the Poisson sigma
model to

1 1
s:/tr(gfldgAA) fiwﬁ (A/\A)fEA/\*A. (120)
b

The equation of motion for A is

A++mf (A, —) =g dg. (121)
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So, integrating A out, we obtain

S= / r (gfldg(l ) ™! A*gfldg), (122)
b

which is seen to be the action for the Yang—Baxter sigma model.

4.3. Three dimensions

A symplectic Lie 2-algebra is equivalent to a Courant algebroid [50, 51]. Specifically, a
Courant algebroid (E — X, {,),[,]) corresponds to a symplectic Lie two-algebroid

T*2]X®E[1] - X. (123)

Picking local coordinates, we have the action
S:/D¢>/\B+A/\dA+A/\A/\A+B/\p(A). (124)
)

A Courant algebroid over a single point is the same as a Lie algebra d with an invariant metric.
In this case, the corresponding AKSZ theory is (three-dimensional) Chern—Simons theory

2
/tr(A/\dA+3A/\A/\A> (125)
pX

for A € Q'(2;0). A choice of a Manin pair g C 0 and a Hodge structure M: 0/g — g leads to
the action

2
/tr(A/\dA+3A/\A/\A> + A A*MA, (126)
b

which is the Manin theory [15].
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