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A B S T R A C T

Rechargeable zinc-air batteries (ZABs) reveal compelling potential in energy storage systems. However, slow 
kinetics in oxygen reduction and oxygen evolution reactions (ORR/OER) severely constrain the practical 
deployment of ZABs. To overcome these issues, a heterogeneous bifunctional catalyst: Nano-silver cluster- 
enhanced nickel-iron-layered double hydroxide/cobalt, nitrogen-codoped carbon nano-frames structure (Ag- 
NiFe-LDH/Co-CNF) was designed. This catalyst exhibits a half-wave potential of 0.853 V and a Tafel slope of 
86.5 mV dec− 1 for ORR, as well as an overpotential of 310 mV at 10 mA cm− 2 and a Tafel slope of 57.62 mV 
dec− 1 for OER. Its ΔE value (0.69 V) is lower than that of commercial platinum carbon and ruthenium dioxide 
(0.75 V), indicating superior bifunctional activity. Electrochemical analysis, X-ray photoelectron spectroscopy, 
and density functional theory calculations confirm that nanosilver-clusters modulated the electronic structures of 
cobalt and nicle-iron-layered double hydroxide, optimized their d-band centres, and reduced reaction over
potentials. Use as a ZABs cathode, Ag-NiFe-LDH/Co-CNF delivers an open-circuit voltage of 1.48 V, a peak power 
density of 152.82 mW cm− 2, and a specific capacity of 796.33 mAh g− 1. It also maintains stable performance for 
over 400 cycles. Additionally, ampere-hour-scale ZABs (4.2 Ah) tested under 0.5 A and 0.5 Ah conditions 
demonstrate the catalyst’s scalability for practical applications.

1. Introduction

Rechargeable zinc-air batteries (ZABs) represent a pivotal energy 
storage technology, [1–5] due to stable discharge voltage, 
cost-effectiveness, high energy density and inherent safety. These ad
vantages position ZABs as leading contenders for next-generation sus
tainable energy solutions. [6–9] Nevertheless, sluggish oxygen 
electrocatalysis kinetics at air cathodes severely constrain their power 
density and operational efficiency. Widely used commercial oxygen 
reduction reactions (ORR) catalysts, such as Pt, and oxygen evolution 
reactions (OER) catalysts, such as IrO2 and RuO2, also face critical 
challenges, including high cost and limited availability. [10–12] More
over, these catalysts do not possess the dual functionality beneficial to 
both ORR and OER, further hindering their scalability for commercial 

applications. [13–18] This has been confirmed by many researchers 
based on studies and development of non-platinum-based metal cata
lysts. [19–23]

ZIF-8 (zeolitic-imidazolate framework) distinguishes itself within the 
ZIF family through exceptional structural integrity, tuneable pore ar
chitectures, and enhanced charge transport capabilities. These attributes 
drive their adoption as precursor matrices for engineering diversified 
functional materials via templated synthesis. [24–26] Han et al. syn
thesized cobalt nanoparticles, cobalt clusters, and cobalt single atom on 
nitrogen doped carbon nanoframes by controlling doping agent of cobalt 
in the imidazole framework of zinc cobalt bimetallic zeolite. The Co 
single-atom catalyst exhibits high ORR activity in alkaline solution of 
0.1 M KOH. [27] Wang et al. systematic investigation effect of Co doping 
amount and thermal activation temperature on catalytic activity of 
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zeolite imidazole framework. Co single atom catalyst showed high ORR 
performance and stability, with half wave unit of 0.8 V vs RHE, and 
60 mV lower than commercial catalysts (20 % Pt/C). [28] Cheng et al. 
constructed a Co nanoparticles/Co single atom catalyst using 
silica-assisted control of zeolite imidazole framework, further enhancing 
the mesoporous structure in the catalyst. Co NPs effectively enhanced 
the ORR catalytic activity of cobalt single atoms, inhibited the formation 
of hydrogen peroxide, and improved the ORR activity. [29]

Considering that the different mechanisms of ORR and OER require 
different active sites, an electrocatalyst combination strategy that in
tegrates two or more components can simultaneously meet the dual 
functional requirements of ORR and OER. [30] Nickel-iron-layered 
double hydroxide (NiFe LDH) deposited on conductive carbon sub
strates exhibits excellent OER activity, superior to catalysts under IrO2 
alkaline conditions. [31,32] Wang et al. prepared metal N-codoped 
carbon nano frameworks through controlled pyrolysis of zeolite imid
azole frameworks, which have high surface area, excellent conductivity. 
When combined with NiFe LDH, efficient ORR/OER dual-functional 
electrocatalysts for ZABs will appear by utilizing their respective 
ORR/OER high activities. [31] Zhao et al. used atomically dispersed 
cobalt atoms and NiFe LDH as ORR/OER catalytic site, and integrated 
them into composite electrocatalysts, exhibiting high ORR/OER per
formance with a ΔE of 0.63 V, better than commercial catalysts (Pt +
IrO2 ΔE = 0.77 V). [33]

Rational heterointerface engineering modulates catalyst electronic 
configurations, delivering enhanced electrocatalytic functionality 
through targeted structural design. [34–37] However, transition metals 
are prone to oxidation, which can lead to catalyst deactivation. [38–43]
To address this issue, the introduction of inert metals has proven 
beneficial. [8,16] These inert metals, characterized by unfilled d-orbitals 
and moderate adsorption strength, can stabilize the catalyst surface 
thereby enhance catalytic performance. [44–46] Among them, silver 
(Ag) nanoparticles have demonstrated excellent catalytic performance 
for ORR. [47–51] Ag also more cost-effective compared to conventional 
noble metal catalysts such as Pt, Au, and Pd. [52–54] Building upon 
these advances, this study introduces a novel nanosilver-enhanced 
bifunctional catalyst comprising NiFe LDH and Co,N-codoped carbon 
nanoframes (Ag-NiFe-LDH/Co-CNF). In this design, the catalyst com
bines synergistic advantages of the silver nanoclusters, NiFe LDH, and 
carbon nanoframes to optimize the ORR/OER overall performance. The 
Ag-Co-CNF component synthesized through thermal decomposition of 
the chemically doped ZIFs, provides a high ORR activity. Here, the NiFe 
LDH is subsequently deposited onto the carbon nanoframes surrounded 
with silver nanoclusters that further enhanced OER activity. Addition
ally, the scalability of the catalyst is evaluated by constructing 
ampere-hour-scale zinc-air batteries, highlighting its potential for 
practical applications. This novel catalyst exhibits excellent bifunctional 
performance, and demonstrates its potential for application in ZABs and 
other clean energy technologies.

2. Experimental

2.1. Materials and details

Silver nitrate (AgNO3, 99 %), zinc nitrate hexahydrate (Zn 
(NO3)2⋅6 H2O, ≥ 98 %), iron(III) nitrate nonahydrate (Fe(NO3)3⋅9 H2O, 
≥ 98 %), cobalt nitrate hexahydrate (Co(NO3)2⋅6 H2O, ≥ 98 %), nickel 
nitrate hexahydrate (Ni(NO3)2⋅6 H2O, ≥ 98 %), zinc acetate (Zn 
(CH3COO)2, ≥ 98 %), sodium hydroxide (NaOH, ≥99 %), 2-methylimi
dazole (C4H6N2, ≥98 %), potassium hydroxide (KOH, ≥99 %), Nafion 
solution (5 wt%), Pt/C (20 wt% Pt), and IrO2 (≥98 %) were purchased 
from Shanghai Titan Scientific Co., Ltd. (China). Ethanol (≥99.7 %) and 
N,N-dimethylformamide (DMF, C3H7NO, ≥99 %) were obtained from 
Sinopharm Chemical Reagent Co., Ltd. (China).

2.2. Synthesis of catalysts

1. Preparation of ZIF-AgCo
A methanol solution (50 mL) of 2-methylimidazole (0.8 mol/L) was 

placed in a beaker and stirred at 500 rpm using a magnetic stirrer. To 
this solution, 500 μL of silver nitrate (0.1 mol/L) was added dropwise 
over a period of 15 min. Subsequently, 50 mL of a methanol solution 
containing Zn(NO3)2⋅6 H2O (0.1 mol/L) and Co(NO3)2 6 H2O (0.01 mol/ 
L) was introduced, and the mixture was allowed to react for 3 h, yielding 
a purple suspension. The product was collected by centrifugation at 
12,000 rpm, washed three times with methanol, and freeze-dried to 
obtain ZIF-AgCo. A control sample, designated as ZIF-Co, was synthe
sized following the same procedure without the addition of silver 
nitrate.

2. Preparation of Ag-Co-CNF
ZIF-AgCo was placed in a tube furnace and pyrolyzed under a N₂ 

atmosphere. The temperature was raised to 900 ◦C at a heating rate of 
5 ◦C/min and maintained for 2 h, yielding Ag-Co-CNF. For comparison, 
Co-CNF was prepared under identical conditions using ZIF-Co as the 
precursor.

3. Preparation of Ag-NiFe-LDH/Co-CNF
A total of 200 mg of Ag-Co-CNF was dispersed in 20 mL of N,N- 

dimethylformamide (DMF) containing Ni(NO3)2 (0.03 mol/L)⋅6 H2O 
and Fe(NO3)3 9 H2O (0.01 mmol). The mixture was subjected to im
mersion for 24 h, after which the solid was collected via centrifugation 
and freeze-dried. The resulting powder was then added to 20 mL of 
NaOH solution (0.1 mol/L) and magnetically stirred for 6 h. The final 
product, Ag-NiFe-LDH/Co-CNF, was obtained after centrifugation and 
freeze-drying. For comparison, NiFe-LDH/Co-CNF was synthesized 
using the same protocol in the absence of silver. A schematic illustration 
of the synthesis process is provided in Figure S1.

3. Results and discussion

3.1. Structure of the catalysts

The preparation of Ag-NiFe-LDH/Co-CNF is shown in Fig. 1(a). 
Firstly, ZIF AgCo was characterized by SEM (Figure S2), which show a 
rhombic dodecahedron morphology and a zeolite imidazole skeleton 
with good stability, the element mapping is shown in Figure S3, which 
displays elemental distribution of C, N, Zn, Co, and Ag. After pyrolysis of 
ZIF AgCo, the SEM images and element mapping of Ag-Co-CNF, as 
shown in Figure S4, maintained their original morphology and structure, 
Co and Ag are uniformly distributed on carbon nitrogen matrix. Further 
TEM characterization (Fig. 1(b-c)) was performed on Ag-Co-CNF. The 
lattice stripes at 0.204 nm correspond to Co (111) crystal plane, while 
the lattice stripes at 0.235 nm correspond to Ag (111) crystal plane. 
Element mapping analysis, as shown in Figure S5, further demonstrates 
the distribution of cobalt nanoparticles and silver nanoparticles in the 
catalyst. The close contact of these nanoparticles provides the possibility 
for Ag to regulate the catalytic activity of Co. ZIF AgCo was character
ized by XRD (Figure S6), the XRD curves of ZIF Co and ZIF AgCo are 
basically consistent, indicating that silver nitrate does not affect the 
spatial structure gaps of the zeolitic imidazolate framework. And 
simulated XRD curve of the zeolite imidazole framework. It can be seen 
that the prepared zeolite imidazole framework is consistent with the 
calculated XRD. After the pyrolysis of ZIF AgCo, the XRD of Ag-Co-CNF 
(Figure S7), showed a carbon (002) peak at 26◦, corresponding to the 
PDF card #26–1080 of Carbon. Diffraction peaks appear at 44.4◦, cor
responding to the Ag (200). As the silver content increases, the peak of 
silver gradually strengthens. Raman characterization of ZIF AgCo was 
carried out as shown in Figure S8. The peaks at 176 cm− 1, 284 cm− 1, and 
422 cm− 1 can be attributed to vibration of ZnN in the ZnN4 tetrahedron, 
the peaks at 266 cm− 1 can be attributed to vibration of CoN, the peaks at 
686 cm− 1 and 694 cm− 1 can be attributed to vibration of imidazole ring, 
the peaks at 836 cm− 1, 953 cm− 1, and 1024 cm− 1 can be attributed to 
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oscillation of C-H in imidazole ring, and stretching vibration of C-N in 
the imidazole ring can be seen in the 1100–1200 cm− 1 region. The 
stretching vibration of C-H in methyl group appears at 1461 cm− 1, and 
the C––C vibration appears at 1500 cm− 1. In the high-frequency region, 
the C-H of methyl and imidazole rings can be observed. Stretching vi
brations occur at 2932 cm− 1 (methyl ν C-H), 3114 cm− 1 and 3134 cm− 1 

(Imdz ν C-H), respectively. Figure S9 shows the Raman characterization 
of Ag-Co-CNF. The characteristic D band (~1300 cm− 1) and G band 
(~1580 cm− 1) are observed. The calculated ID:IG ratio is approximately 
1.1 for all samples, suggesting a comparable level of graphitization and a 
similar density of defects among the synthesized materials.

NiFe LDH was further prepared on the carbon nano framework of Ag- 
Co-CNF. The TEM of Ag-NiFe-LDH/Co-CNF is shown in Fig. 1 (d). 
HRTEM reveals NiFe LDH (012) at 0.259 nm in lattice diffraction. Fig. 1
(e) shows distribution of C, Ag, Co, Ni, and Fe in the EDS spectrum. The 
XRD of Ag-NiFe-LDH/Co-CNF (Fig. 1(f)), exhibits diffraction peaks at 
11◦, 23◦, 34◦, and 60◦, corresponding to the (001), (006), (012), and 

(110) crystal planes of NiFe LDH (JCPDS 51–0463), which have a 
structure similar to that of hydrotalcite. Diffraction peaks appear at 
38.2◦, 44.4◦, 64.6◦, and 77.59◦, corresponding to the Ag (111), Ag (200), 
Ag (220), and Ag (311) crystal planes, corresponding to the PDF card # 
87–0720 of Ag. Diffraction peaks appear at 44.23◦, 51.53◦, and 75.86◦, 
corresponding to the Co (111), Co (200), and Co (220) crystal planes, 
corresponding to the PDF card # 89–4307 of Co. Figure S10 shows the 
Raman of Ag-NiFe-LDH/Co-CNF, with peaks at 477, 546, and 681 cm− 1 

being characteristic peaks of NiFe LDH. The peak of NiFe LDH in Ag- 
NiFe-LDH/Co-CNF is more pronounced than that in NiFe-LDH/Co- 
CNF, due to the Raman enhancement effect of Ag. This indicates that 
the defect sites of Ag-Co-CNF adsorb Ni2+ and Fe3+ cations, forming 
NiFe LDH nanosheet hybrids. Moreover, Ag-Co-CNF rich micropores 
facilitate the growth of NiFe LDH.

Fig. 1. (a) Schematic diagram of Ag-NiFe-LDH/Co-CNF, (b) TEM image and (c) HRTEM of Ag-Co-CNF, (d) HRTEM of Ag-NiFe-LDH/Co-CNF, (e) High angle annular 
dark field image (HAADF) image and EDS spectrum of Ag-NiFe-LDH/Co-CNF, (f) XRD of Ag-NiFe-LDH/Co-CNF.

T. Liu et al.                                                                                                                                                                                                                                       Journal of Alloys and Compounds 1043 (2025) 184255 

3 



3.2. Electrocatalytic performance

The effect of Ag addition on the ORR activity of Ag-Co-CNF was 
studied in 0.1 M KOH saturated with oxygen. Figure S11(a) shows the 
ORR polarization curves of Ag-Co-CNF at different Ag contents. 
Figure S11(b) shows the ORR initial potential (Eonset) and half wave 
potential (E1/2) of Ag-Co-CNF with different Ag contents. The ORR half 
wave potential values for Ag contents of 0 %, 0.1 %, 0.5 %, 1 %, and 5 % 
are 0.794 V, 0.810 V, 0.838 V, 0.841 V, and 0.838 V, respectively. As Ag 
content increases, ORR performance of Ag-Co-CNF first increases and 
then decreases. The initial potential also shows the same trend, as cat
alytic performances of Co nanoclusters increases with the increase of Ag 
content, while the aggregation and growth of nanoparticles with further 
increase in Ag content actually reduces the catalytic activity. Figure S7
also demonstrates that as Ag content increases, the number of Ag 
nanoparticles increases and grows. Figure S12-16 compares the polari
zation curves of Ag-Co-CNF with different Ag contents at different 
rotational speeds, and fits the K-L equation to calculate number of ORR 
reaction electrons of the catalyst. The enhancement of Ag-Co-CNF by Ag 
nanoparticles enhances the 4-electron selectivity of ORR reaction, 
indicating that its oxygen reduction reaction is dominated by 4- 

electrons. Figure S17 tested the OER polarization curves of Ag-Co-CNF 
under different Ag contents, and the OER catalytic activity was poor. 
This indicates that the ORR performance of Ag-NiFe-LDH/Co-CNF 
catalyst comes from Co nanoparticles, and Ag effectively enhances the 
catalytic activity of Co nanoparticles.

Fig. 2(a) shows ORR polarization curves of various catalysts at 
1600 rpm, and their catalytic performances was evaluated by linear 
sweep voltammetry (LSV). Among them, the initial potentials (Eonset) of 
Ag-NiFe-LDH/Co-CNF, NiFe-LDH/Co-CNF and 20 % Pt/C are 0.953 V, 
0.948 V, and 0.955 V, respectively. The half wave potentials (E1/2) of 
Ag-NiFe-LDH/Co-CNF, NiFe-LDH/Co-CNF and 20 % Pt/C are 0.853 V, 
0.844 V, and 0.862 V (Figure S18). Ag nanoparticles significantly 
enhance the catalytic performances of NiFe-LDH/Co-CNF, and its per
formance was similar to that of 20 % Pt/C. The reaction kinetics of the 
catalyst was studied using the Tafel curve, as shown in Fig. 2(b), The 
Tafel slopes of Ag-NiFe-LDH/Co-CNF, NiFe-LDH/Co-CNF and 20 % Pt/C 
are 78.57 mV dec− 1, 94.68 mV dec− 1, and 86.05 mV dec− 1, respec
tively. This indicates that Ag nanoparticles accelerate the kinetics of 
oxygen reduction and accelerate the oxygen reduction reaction. The 
polarization curves of Ag-NiFe-LDH/Co-CNF at different rotational 
speeds were tested using a rotating disk electrode, as shown in 

Fig. 2. ORR/OER performances of Ag-NiFe-LDH/Co-CNF. (a) ORR reaction polarization curve, (b) ORR reaction Tafel slope, (c) ORR stability testing, (d) OER 
reaction polarization curve, (e) OER reaction Tafel slope, (f) OER stability testing, (g) EIS test, (h) ECSA electrochemical active area, (i) bifunctional catalyst per
formance distribution.
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Figure S19. The ORR reaction transfer electron numbers of Ag-NiFe- 
LDH/Co-CNF and NiFe-LDH/Co-CNF were fitted using the K-L equa
tion, which were 4.0 and 3.8, respectively, indicating that Ag nano
particles improved the 4-electron selectivity of NiFe-LDH/Co-CNF. The 
ring current and disk current were tested using a rotating ring disk 
electrode, as shown in Figure S20(a). The hydrogen peroxide production 
rate and electron number of the Ag-NiFe-LDH/Co-CNF catalyst were 
calculated and shown in Figure S20(b). The hydrogen peroxide pro
duction rate of Ag-NiFe-LDH/Co-CNF catalyst is close to zero, and the 
electron transfer number is close to 4, which is consistent with the data 
of the rotating disk electrode. This result indicates that ORR catalyzed by 
Ag-NiFe-LDH/Co-CNF follows a four-electron transfer pathway. As 
shown in Fig. 2(c), after 1000 cycles, the polarization curve shows a half 
wave potential decay of only 16 mV. Ag-NiFe-LDH/Co-CNF exhibits 
excellent stability for ORR.

Fig. 2(d) shows the OER polarization curves of various catalysts at 
1600 rpm. Among them, potentials of Ag-NiFe-LDH/Co-CNF, NiFe- 
LDH/Co-CNF and RuO2 at 10 mA cm− 2 are 1.54 V, 1.56 V, and 1.61 V, 
respectively, and their overpotentials are 310 mV, 330 mV, and 
380 mV, respectively. It can be seen that Ag nanoparticles significantly 
reduce the OER potential of NiFe-LDH/Co-CNF and enhance the OER 
catalytic performances. Fig. 2(e) shows the Tafel slopes corresponding 
to OER polarization curve. The Tafel slopes of Ag-NiFe-LDH/Co-CNF, 
NiFe-LDH/Co-CNF and RuO2 are 57.62 mV dec− 1, 103.12 mV dec− 1, 
and 98.88 mV dec− 1, respectively. This indicates that Ag nanoparticles 
accelerate the accelerate the OER reaction. As shown in Fig. 2(f), after 
1000 cycles, polarization curve shows a potential decay of only 15 mV at 
a current density of 10 mA cm− 2. Ag-NiFe-LDH/Co-CNF exhibits excel
lent stability for OER.

We have conducted a series of post-stability analyses to investigate 
the structural and compositional changes of the Ag-NiFeLDH/Co-CNF 
catalyst and correlate them with performance degradation. ICP-OES 
analysis was performed to quantify metal leaching. The initial metal 
contents were measured as follows: Ag 0.08 %, Co 4.43 %, Fe 3.45 %, 
and Ni 2.70 %. After stability testing, the values decreased to Ag 0.04 %, 
Co 1.86 %, Fe 2.33 %, and Ni 1.56 %, indicating significant leaching of 
active metals, which likely contributes to the observed activity decay. 
The morphological evolution was examined by SEM and TEM 
(Figure S21). SEM images show that the overall macro-structure of the 
catalyst was largely maintained after ORR/OER cycling. However, TEM 
observations revealed a noticeable reduction in the number of dispersed 
nanoparticles, suggesting dissolution or detachment of metal clusters 
during operation.Furthermore, XRD patterns of the cycled catalyst 
(Figure S22) exhibited weakened diffraction peaks corresponding to Co 
clusters and the NiFe-LDH phase, supporting the conclusion of structural 
degradation or loss of crystalline active sites. Collectively, these results 
indicate that while the carbon framework remains intact, the leaching of 
metallic species, especially Ag and Co nanoclusters, and the deteriora
tion of the NiFe-LDH phase are major factors underlying the capacity 
fading and catalytic performance decline.

The AC impedance test is shown in Fig. 2(g), and the fitting results of 
using Z-view software are shown in Table S1, where R2 is the charge 
transfer resistance. The fitting values for Ag-NiFe-LDH/Co-CNF, NiFe- 
LDH/Co-CNF, 20 % Pt/C and RuO2 are 43.2 Ω, 51.98 Ω, 54.46 Ωand 
55.34 Ω, respectively. This indicates that Ag nanoparticles regulate 
electronic structure of NiFe-LDH/Co-CNF, reduce the interfacial resis
tance, and accelerate the OER process. The above results indicate that 
Ag nanoclusters enhance the oxygen evolution activity of NiFe-LDH/Co- 
CNF catalysts. By testing the cyclic voltammetry curves at different 
scanning speeds as shown in Figure S23 and fitting double-layer 
capacitance(Fig. 2(h)) of the catalyst. Double-layer capacitance sizes 
of Ag-NiFe-LDH/Co-CNF, NiFe-LDH/Co-CNF, 20 % Pt/C and RuO2 are 
13.03 mF cm− 2, 10.25 mF cm− 2, 8.93 mF cm− 2 and 7.86 mF cm− 2, 
respectively. The larger specific surface area provides more active sites. 
To quantitatively evaluate the electrocatalytic activity of bifunctional 
oxygen electrocatalysts, the total overpotential of ΔE from ORR to OER 

was used to indicate bifunctional activity, which was defined as po
tential difference between the potential (E10) of OER and the half wave 
potential (E1/2) of ORR. Based on precious metal based electrocatalysts 
(such as Pt/C and RuO2), the Δ E is about 0.75 V, while Ag-NiFe-LDH/ 
Co-CNF has good ORR/OER catalytic performances, with a ΔE of about 
0.69 V, which is superior to commercial catalysts. Fig. 2(i) compares the 
catalytic performance of 120 recent ORR/OER bifunctional catalysts, 
and it can be seen that Ag-NiFe-LDH/Co-CNF has excellent ORR/OER 
bifunctional catalytic performances compared to existing literature.

3.3. Electronic modulation mechanism

XPS can characterize the surface chemical composition and elec
tronic structure information of samples. The XPS full spectrum of Ag- 
NiFe-LDH/Co-CNF and NiFe-LDH/Co-CNF is shown in Figure S24. 
Analysis indicates the presence of cobalt, nitrogen, carbon, oxygen, 
nickel, iron, and silver in Ag-NiFe-LDH/Co-CNF, with their composition 
contents as shown in Table S2. The analysis of XPS Ag3d is shown in 
Figure S25. The peak areas of Ag 3d5/2 and Ag 3d3/2 at 367.59 eV and 
373.59 eV, respectively. [38,55] This indicates that Ag exists in the form 
of nanoparticles in the catalyst, indicating the successful preparation of 
Ag nanoparticles and NiFe LDH heterojunctions, as well as Ag nano
particles and Co nanoparticles heterojunctions. This heterojunction may 
be a source of excellent ORR/OER catalysts. The peak fitting results are 
shown in Table S3. The XPS C1s spectrum is shown in Fig. 3(a), with 
peaks of C––C, C-C/C-N, C-O/C––O, and N-C-O at 284.4 eV, 284.8 eV, 
286.4 eV, and 289.2 eV, respectively. [56] The XPS N1s spectra are 
shown in Fig. 3(b), with pyridin-N, metal M-N, pyrrole-N, and graphite 
N at 398.2 eV, 399.1 eV, 399.8 eV, and 400.8 eV, respectively. [56]
There is a higher proportion of metal M-N in Ag-NiFe-LDH/Co-CNF, and 
metal M-N have higher intrinsic activity. [57] The XPS O1s spectrum is 
shown in Fig. 3(c), with –OH, adsorbed H2O at 531.2 eV, and 535.5 eV, 
respectively. [38,56,58] The XPS Co2p spectrum is shown in Fig. 3(d), 
with 2p3/2 and 2p1/2 of zero valent cobalt at 778.1 eV and 792.6 eV, 
respectively, 2p3/2 and 2p1/2 of trivalent cobalt at 780.1 eV and 
795.1 eV, respectively, and 2p3/2 and 2p1/2 of divalent cobalt at 
783.9 eV and 799.6 eV, respectively. The Ag nanoparticles shift the peak 
position to the left by 0.3 eV, and the proportion of high valence Co 
atoms increases (Figure S26a). [59,60] The XPS Fe2p spectrum, as 
shown in Fig. 3(e), shows 2p3/2 and 2p1/2 of divalent iron at 709.8 eV 
and 722.3 eV, and 2p3/2 and 2p1/2 of trivalent iron at 712.3 eV and 
724.8 eV. Ag nanoparticles shift the peak position by 0.1–0.6 eV to the 
left, increasing the proportion of high valence Fe atoms (Figure S26b), 
indicating higher catalytic activity of high valence transition metals. 
[61] The XPS Ni2p spectrum is shown in Fig. 3(f). There are 2p3/2 and 
2p1/2 of divalent nickel at 855.7 eV and 873.3 eV, and the Ag nano
particles shift the peak position to the left by 0.1 eV. [62] XPS analysis 
shows that Ag nanoparticles regulate the electronic structure informa
tion of NiFe-LDH/Co-CNF, enhancing the catalytic activity.

In order to further analyze catalytic mechanism of Ag-NiFe-LDH/Co- 
CNF, density functional analysis was used to investigate the reasons for 
the strengthening of NiFe-LDH/Co-CNF by Ag nanoclusters. Establishing 
an atomic model as shown in Fig. 4(a), the distribution of d-band or
bitals is closely related to ORR/OER catalytic activity. The d-band or
bitals of Co sites under influence of Ag nanoparticles were analysed as 
shown in Fig. 4(b). The d-band centre of Co is − 0.574 eV, and under 
influence of Ag, the d-band centre of Co is − 0.688 eV. The centre of the 
d-band shifts to left by 0.114 eV. The d-band orbitals of Ni and Fe sites 
under the influence of Ag nanoparticles were analysed as shown in Fig. 4
(c-d). The d-band centre of Fe was − 0.681 eV, and under influence of 
Ag, d-band centre of Fe was − 0.677 eV, and the centre of the d-band is 
shifted to the left by 0.004 eV. The d-band centre of Ni is − 1.307 eV, and 
under the influence of Ag, d-band centre of Fe is − 1.435 eV, and the 
centre of d-band is shifted to left by 0.128 eV. Calculate the ORR/OER 
step diagram as shown in Fig. 4(e), and calculation model is provided in 
Table S4. The calculation results show that Co is the main active site 
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Fig. 3. XPS spectra of (i) NiFe-LDH/Co-CNF and (ii) Ag-NiFe-LDH/Co-CNF. (a) C1s, (b) N1s, (c) O1s, (d) Co2p, (e) Fe2p, (f) Ni2p.

Fig. 4. DFT simulation calculation of catalyst structure and performance. (a) Structural diagrams of Ag nanoparticles and Co nanoparticles, and structural diagrams 
of Ag nanoparticles and NiFe LDH. (b) The density of states of Co d band orbitals induced and uninduced by Ag nanoparticles. (c) The density of Fe d-band orbital 
states induced and uninduced by Ag nanoparticles. (d) The density of states of Ni d-band orbitals induced and uninduced by Ag nanoparticles. (e) The step plot curve 
of each metal active site. (f) ORR volcano map. (g) OER volcano map.
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centre of ORR, and under Ag regulation, the overpotential of ORR 
decreased from 0.968 eV to 0.825 eV. The overpotential of Fe as the 
main active site centre in OER decreased from 0.904 eV to 0.693 eV 
(Table S5), which is consistent with the results in the literature. [28,63]
According to the proportional relationship, the ORR active volcano di
agram is described using ΔG*OH as shown in Fig. 4(f), and the OER active 
volcano diagram is described using ΔG*O - ΔG*OH as shown in Fig. 4(g). 
Both OER and ORR activities can be divided into strong adsorption zones 
and weak adsorption zones. For ORR reaction step 1 (*+O2 → *OOH) 
and step 4 (*OH → *+H2O), are the main rate limiting steps, while for 
OER reaction steps 2 (*OH → *O) and step 3 (*O → *OOH), are main rate 
limiting steps. The calculation results show that Ag effectively enhances 
the ORR/OER dual functional activity of NiFe-LDH/Co-CNF. This 
enhancement mainly comes from modulation of electronic structure, 
and the development of high catalytic activity multifunctional catalysts 
can be achieved through reasonable structural design.

While ex-situ XPS and DFT calculations strongly support the elec
tronic modulation effect of Ag clusters, future studies employing in situ 
techniques, such as X-ray absorption spectroscopy XAS (synchrotron X- 
ray absorption spectroscopy), XPS or Raman under operating condi
tions, would be highly valuable to directly capture the dynamic evolu
tion of the active sites’ valence states and local coordination 
environments during electrocatalysis.

3.4. Zinc-air batteries performances

Further preparation of the positive electrode of ZABs using air 
cathode catalyst was carried out, and the performance of ZABs was 
studied. The open circuit potentials (Fig. 5(a)) of Ag-NiFe-LDH/Co-CNF, 
NiFe-LDH/Co-CNF and 20 % Pt/C+RuO2 batteries are 1.48 V, 1.45 V, 
and 1.45 V, respectively. The ZABs assembled with Ag-NiFe-LDH/Co- 
CNF has a higher open circuit potential. The full discharge analysis of 
ZABs with Ag-NiFe-LDH/Co-CNF, NiFe-LDH/Co-CNF and 20 % Pt/ 
C+RuO2 catalysts is shown in Fig. 5 (d), with discharge specific ca
pacities of 796.3 mAh gZn

− 1, 755.5 mAh gZn
− 1, and 694.3 mAh gZn

− 1, 

respectively. Ag-NiFe-LDH/Co-CNF has a higher discharge capacity. 
Fig. 5(c) shows the curves of different discharge current densities, and 
the discharge voltage decreases with increasing current density. The 
catalytic activity of Ag-NiFe-LDH/Co-CNF is better than that of NiFe- 
LDH/Co-CNF and 20 % Pt/C+RuO2. The ORR polarization curve and 
discharge power density of ZABs are shown in Fig. 5(d), indicating that 
Ag-NiFe-LDH/Co-CNF have highest discharge power density of 
152.8 mW cm− 2. while power density of 20 % Pt/C+RuO2 was only 
102.4 mW cm− 2. This is due to excellent ORR/OER dual functional 
performances of Ag-NiFe-LDH/Co-CNF. The cycle performance test of 
ZABs is shown in Fig. 5 (e). It can be seen that during 400 cycles of ZABs, 
the charge discharge potential difference of Ag-NiFe-LDH/Co-CNF is 
smaller than that of NiFe-LDH/Co-CNF and 20 % Pt/C+RuO2. This in
dicates that Ag-NiFe-LDH/Co-CNF also exhibits excellent bifunctional 
activity in ZABs.

To investigate the practicality of rechargeable ZABs, we constructed 
a battery with an ampere hour scale (Fig. 6a). The external dimensions 
of each ZABs are 13.0 × 13.0 × 4.3 cm3, and the area electrocatalyst 
mass loading is 1 mg cm− 2. The constant current discharge performance 
of ZABs with ampere hour scale was tested, and they were discharged for 
8.4 h at an input current of 0.5 A, with a capacity of 4.2 Ah, which may 
support long-term energy storage (Fig. 6b). The average voltages were 
1.29 V, 1.21 V, 1.14 V, and 0.99 V at output currents of 0.10, 0.50, 1.0, 
and 2.0 A, respectively (Fig. 6c). In addition, cyclic tests were conducted 
under actual conditions of 0.5 A and 0.5 Ah to explore the durability of 
ZABs (Fig. 6d)., They maintained initial discharge and charging voltages 
of 1.0 and 2.2 V after cycles, indicating their potential to solve energy 
storage problems for various renewable resources.

Overall, the implementation of battery powered platforms in 
manufacturing and energy storage is highlighting the global focus on 
sustainable, high performance electrochemical systems. In this context, 
the batteries proposed in this study show clear promise for real world 
usage, in parallel with the battery powered applications on a global scale 
for off grid manufacturing, which further underscores this shift toward 
cleaner, modular technologies and complements sustainable production 

Fig. 5. ZABs performances testing, (a) the open circuit potential curves, (b) the full discharge curves, (c) rate performance, (d) ORR polarization curves and discharge 
power density curves, (e) the cycle curves.
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methodologies. [64]

4. Conclusions

In summary, we successfully developed a nanoscale heterogeneous 
ORR/OER bifunctional catalyst, Ag-NiFe-LDH/Co-CNF, by harnessing 
electron modulation effects of Ag nanoclusters. This catalyst leveraged 
the electron modulation effect of Ag nanoclusters to optimize electronic 
structure of NiFe LDH, thereby enhancing its oxygen evolution reaction 
(OER) performance. Simultaneously, it modulates oxygen reduction 
reaction (ORR) performance of Co nanocrystals, significantly improving 
the overall ORR performance. The catalyst achieves a half-wave po
tential of 0.85 V for ORR, while exhibiting an OER overpotential of 
310 mV at 10 mA cm− 2. Notably, its ΔE value (0.69 V) is lower than that 
of commercial catalysts (0.75 V), validating exceptional bifunctional 
activity. When integrated into ZABs, the battery exhibits high peak 
power and energy density. Ampere-hour-scale ZABs with a capacity of 
4.2 Ah were assembled and tested under 0.5 A and 0.5 Ah cycle condi
tions, underscoring their practical application potential. Furthermore, 
the simple synthesis process and cost-effective design indicate its po
tential for scalable production and broader application in emerging 
energy conversion and storage devices.
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