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ABSTRACT

The abundance, temperature, and clustering of metals in the intergalactic medium are important parameters for understanding
their cosmic evolution and quantifying their impact on cosmological analysis with the Ly o forest. The properties of these
systems are typically measured from individual quasar spectra redward of the quasar’s Ly « emission line, yet that approach may
provide biased results due to selection effects. We present an alternative approach to measure these properties in an unbiased
manner with the two-point statistics commonly employed to quantify large-scale structure. Our model treats the observed flux
of a large sample of quasar spectra as a continuous field and describes the one-dimensional, two-point statistics of this field
with three parameters per ion: the abundance (column density distribution), temperature (Doppler parameter), and clustering
(cloud—cloud correlation function). We demonstrate this approach on multiple ions (e.g. C1v, Si1v , and Mg11 ) with early data
from the Dark Energy Spectroscopic Instrument (DESI) and high-resolution spectra from the literature. Our initial results show
some evidence that the C v abundance is higher than previous measurements and evidence for abundance evolution over time.
The first full year of DESI observations will have over an order of magnitude more quasar spectra than this study. In a future
paper, we will use those data to measure the growth of clustering and its impact on the Ly « forest, as well as test other DESI
analysis infrastructure such as the pipeline noise estimates and the resolution matrix.

Key words: methods: data analysis —intergalactic medium — quasars: absorption lines.

is typically associated with temperatures of 10* K (McQuinn 2016).
The rise and decline of strong Mg 1l absorbers with redshift trace
the cosmic star formation history, which suggests links between

1 INTRODUCTION

The metals in the Universe are produced by star formation within

galaxies and ejected into the circumgalactic medium (CGM) and
the intergalactic medium (IGM) through various feedback processes
(see Tumlinson, Peeples & Werk 2017, for a review). The CGM is
a multiphase and complex medium with temperatures ranging from
10* to 10° K (Anderson, Bregman & Dai 2013), whereas the IGM

* E-mail: karacayli.1 @osu.edu

metals and the fuelling/feedback of star formation and galactic
superwinds (Tumlinson et al. 2017). Similarly, the increase in C1v
abundance in the IGM from z ~ 4.3 to 2.4 shows that some fraction
of heavy elements seen at z ~ 2.4 must have been ejected from
galaxies by that time (Simcoe 2011). Different models that include
galactic winds and Population III stars have different implications
for metal enrichment and clustering in the inter- and circum-galactic
media.
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Metal line systems in the IGM and CGM have been observed
by their absorption profiles in quasar spectra since 1980s, and
have been studied extensively (Sargent et al. 1980; Sargent, Bok-
senberg & Steidel 1988; Steidel 1990; Cowie et al. 1995; Ellison
et al. 2000; Songaila 2001; Pichon et al. 2003; Schaye et al. 2003;
Scannapieco et al. 2006; D’Odorico et al. 2010; Cooksey et al.
2013; D’Odorico et al. 2013; Boksenberg & Sargent 2015; Hasan
et al. 2020). Typically, these systems are individually identified
by visual inspection and/or by automated search routines. Various
quantities such as metallicity, column density or equivalent width
distributions, and cloud—cloud clustering are then measured from
these individual detections. These quantities tie metal systems to
their local environment and are rich in information. These studies
usually focus on a small number of high-resolution, high-signal-to-
noise ratio (SNR) spectra because they require long observations with
large telescopes. For example, Hasan et al. (2020) used 369 spectra to
study the distribution and evolution of C 1v absorbers. Nevertheless,
the field is not limited to small samples. An exceptionally large study
from Cooksey et al. (2013) visually verified 16000 C1v systems
from approximately 100 000 quasars in the Sloan Digital Sky Survey
(SDSS; York et al. 2000) Data Release (DR) 7 (Abazajian et al. 2009;
Schneider et al. 2010).

A key complication faced by line-identification studies is the
identifier completeness (human or machine). The completeness
depends on SNR of the spectra and depth of the metal absorption,
where confidence and completeness increase with both. This bias is
further complicated by the requirement that metal lines exist in an
observed sightline in the first place. Long exposure times are typically
focused on objects that manifest interesting features, resulting in a
somewhat biased archive for SNR-limited samples. In contrast, large
spectroscopic surveys of quasars are largely free of bias with respect
to intergalactic and circumgalactic medium properties.

Even though moderate-resolution spectra from SDSS cannot
measure individual weak column density systems, it can study these
systems statistically. Two current methods that allow such statistical
studies of metals are the pixel optical depth (or pixel correlation
search) method and stacked/composite spectra. In the pixel optical
depth method, the Ly o optical depth in each pixel is compared to the
optical depth at the corresponding metal-line wavelength (Cowie &
Songaila 1998; Aguirre, Schaye & Theuns 2002; Schaye et al. 2003).
The lack of homogeneity and cosmic variance challenges in small
samples require modifications for pixel correlation searches to be
suitable for SDSS spectra (Pieri et al. 2010a). In the stacking method,
the whole spectrum is shifted to the Ly o absorber rest frame, stacked,
and repeated for all Ly « absorber detections for each quasar (Pieri
etal. 2010b, 2014; Yang et al. 2022). The requirement for statistically
significant absorber detections can further be relaxed to probe weak
metal populations (Frank et al. 2018). These works derive the column
densities of various metal species as a function of Ly « absorber
strength and redshift, which then can be used to study the chemical
enrichment of the CGM and IGM. These are promising methods
that can provide metallicities for populations of different column
densities while being statistically robust.

A complication for pixel optical depth and stacked/composite
spectra is determining the thresholds for the Ly « optical depth.
Such uncertainties at the detection limit make pixel studies difficult
to interpret without mocks (Pieri & Haehnelt 2004). These studies
further require a significant signal (typically Ly «) with which to
correlate. Frank et al. (2018) address the impact of stacking low
probability noisy signal by attempting to measure the weak Ne vIiI
signal with ‘agnostic stacking’, in which all pixels that show apparent
absorption regardless of their source transition are treated as Ne VIII.
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The resulting stacked signal is diluted by both pipeline noise and non-
Ne v1II absorbers, which then still requires an optimal selection for
absorbers to maximize, though are capable of probing weak systems
none the less.

We propose to mitigate these systematics by using 1D two-
point statistics similar to large-scale structure studies while trading
off the local environment information. Our proposed method to
study the metal abundance and clustering treats the flux as a
continuous field and connects previous detection-based endeavours
to the large-scale structure framework. This method has the potential
to measure the redshift evolution of cosmic metal abundance [e.g.
Qcw(z)] using large numbers of quasar spectra in a different way.
It does not require measurement of associated Ly « absorption
to measure the metal signal, which allows us to be sensitive to
weaker absorption systems and to exploit lower SNR data. Even
though agnostic stacking allows a more direct inference of metal
population properties, our model is able to measure the metal
signal mixed more fully within the noise and to measure metal
clustering. The future 1-yr and 5-yr data from Dark Energy Spec-
troscopic Instrument (DESI; Levi et al. 2013; DESI Collaboration
2016a, 2022) will provide hundreds of thousands of medium-
resolution spectra and will be an excellent data set to apply this
framework.

The Ly « forest is formed by neutral hydrogen in the inter- and
circum-galactic media, and is observed only below the Ly « transition
line in the quasar rest frame. Similarly, the C1v, Silv, and other ions
create forests below their transition lines, which leave signals in the
1D power spectrum (P;p). These regions are called ‘side bands’ (SB)
in Ly @ Pjp studies, and are used to subtract the metal contamination
from Ly « forest measurements (McDonald et al. 2006; Palanque-
Delabrouille et al. 2013; Chabanier et al. 2019; Karacayl et al. 2022).
Fig. 1 shows a quasar at z = 2.99 from DESI early data. The SBs are
numbered starting at the Ly « line, such that the Ly «—SiIv region is
called SB 1 and the Si1v—C 1V region is called SB 2. Much like there
is Si1v and C1v absorption in Ly « forest, there is Si1v and C1v
absorption in SB 1, but no SiIv absorption in SB 2. Furthermore,
the measured 1D flux field correlation function (power spectrum)
in these SBs shows clear peaks (oscillations) due to the doublet
nature of the most dominant metal transitions. As an illustration,
Fig. 2 clearly shows C1v doublet oscillations that peak at k =
0.013 s km~! in the SB P;p from DESI early data (see Section 4 for
details).

The flux correlation function was theoretically studied by Hennawi
et al. (2021) for Mg1 and Tie et al. (2022) for C1v at high
redshifts in the context of reionization with numerical simulations.
Here, we develop a theoretical model for the flux field that can
be extended to any regime given certain statistical properties are
known or can be calculated. We use a simplified version of the
absorber model of Ir§i¢ & McQuinn (2018) that is analogous to
the halo model of Cooray & Sheth (2002). We formulate the flux
field two-point statistics in terms of the column density distribu-
tion, an effective Doppler parameter for temperature, and cloud—
cloud clustering (analogous to halo-halo correlation function in
halo model) of discrete systems. We then apply our model to
data.

This paper is organized as follows: In Section 2, we introduce a
toy model and then develop our full absorber model. We detail our
method and software used in Section 3. This includes a description of
how we estimate the power spectrum and infer the model parameters.
We describe the high-resolution spectra and DESI data in Section 4.
We discuss our findings and some limitations of our model and data
in Section 5 and summarize our results in Section 6.
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Figure 1. Quasar at z = 2.99 observed during DESI SV (TargetID 39633362754732929). The Ly « forest is typically studied between the Ly o and Ly 8
emission lines. Absorption redward of Ly « in the quasar rest frame cannot be H1 from the IGM, but may be intervening metal systems such as SiIv and C1v.
The regions from Ly o—Si 1V and from Si1v—C 1V are called the ‘side bands’ (SB) in 1D power spectrum studies, and are used to estimate the metal contamination

in the forest. We call the Ly o—Si1v region SB 1 and the SiIv—C1V region SB 2.
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Figure 2. Measured SB power spectra from DESI early data ata Ly « redshift
of 3.3 (see Section 4 for details). Large scales are contaminated by continuum
errors, whereas small scales are limited by the spectrograph resolution. The
C1v doublet leaves a clear feature on the SB power spectrum as oscillations
peaking at k = 0.013 s km™! .

2 ABSORBER MODEL

We start this section with a toy model for a single doublet profile,
and then move on to developing the full model.

2.1 Toy model

Let us build our intuition with a simple model by approximating the
transition profile of a single doublet with Gaussian functions g(x)
in the optically thin limit. A doublet features two absorption lines,
one of which is a factor of r weaker. For a doublet centred at v with

MNRAS 522, 5980-5995 (2023)

velocity separation u between two lines, we can write the total profile
K and find its Fourier transform as follows:

K@) =g(v—un/2)+rglv+un/2), (D

R(k) = g(k) (7472 4 relnl?) @

The power spectrum will then be P |I€ |2.

P =g (1+r>+r (e +e")) 3)
= 181> (1 + r* + 2r cos(kp)) C))

In this optically thin limit, the Doppler parameter b is responsible

for the line width, such that g(k) = g(0)e~*"**/2. Finally, $(0) =
J dv g(v) = EW (equivalent width).

P(k) oc EW? (14 12 + 2r cos(kp)) e ™+ (5)

This equation tells us that a single doublet feature produces
oscillations in the power spectrum and the oscillation amplitude is
proportional to the system’s equivalent width two times the relative
strength r of the weaker transition. Note that r is purely determined by
atomic physics when lines are unsaturated. The Doppler parameter
b broadens the lines due to thermal motion and therefore suppresses
the power on small scales. Equation (5) is a surprisingly good fitting
function according to our preliminary tests; however, it is hard to
interpret their results without building a sophisticated model.

Naturally, there could be multiple doublets in a given line of sight
such that Kioc = Y ;K;. Then, the two-point function would be

(KoKo) = > (KiKi) + Y (KiK;). 6)
i i#j

The second term vanishes when the doublets are uncorrelated, but
they are in fact clustered as we discuss in the next section.
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Table 1. Atomic data from NIST (Kramida et al. 2021) for the ions in this study. The columns provide the doublet
transition wavelengths A, their spontaneous emission coefficients A, and their oscillator strengths f;.

Ton A (A) Ay (s7h fi A2 (A) Ay (s7h f

Sitv 1393.76 8.80 x 108 0.513 1402.77 8.63 x 108 0.255
Civ 1548.20 2.65 x 108 0.190 1550.77 2.64 x 108 0.0952
Mgu 2795.53 2.60 x 108 0.608 2802.70 2.57 x 108 0.303
Fel 2373.74 4.25 x 107 0.0359 2382.04 3.13 x 108 0.320
Fe11-2 2585.88 8.94 x 107 0.0717 2599.40 235 x 108 0.239

2.2 Full model

The halo model approach assumes that all particles reside in discrete
dark matter haloes. This model splits the statistics of the mass density
field into two components. The small-scale statistics depends on the
density distribution of individual haloes (i.e. halo profile), and it
is called the one-halo term. The large-scale statistics depends on
the spatial distribution of haloes (i.e. halo clustering), and this is
called the two-halo term (Cooray & Sheth 2002). Similar to the halo
model, the absorber model decomposes the two-point flux statistics
into contributions of absorption profiles from one or multiple ions,
where the correlation function consists of one-absorber (la) and
two-absorber (2a) terms (IrSi¢ & McQuinn 2018). The one-absorber
term captures the doublet shape’s correlation with itself (first term in
equation 6), whereas the two-absorber term captures the clustering of
two different systems (second term in equation 6). The key difference
of absorber model is that it does not build on actual dark matter
haloes, but uses the formalism of discrete tracers.

We start with expressions for the doublet absorption profile. The
optical depth of a transition line with wavelength X, spontaneous
emission coefficient A,, oscillator strength f,, and column density
N is given by the Voigt profile, which we approximate using the
Tepper-Garcia function T(x; o, y) (Tepper-Garcia 2006):

L (hkm\ (Na\. (% o
T =—F7=\ 77— — — ljog, s
NAVNYASIE N oY

where the Doppler parameter b and the speed of light ¢ are in
km s!, the wavelengths are in A, and the column density N
is in cm™2. The Gaussian spread is given by og = b/c; the
Lorentzian parameter is given by y = A, A, I'/4mc, where ' = 10713
km A~! is the conversion coefficient between distance units; and
a, = nq? fi/mec = 0.02654 f, cm®*s~! in cgs units. The Tepper-
Garcia function is given by the following analytical expression:

e H W), ®)

2

T(x;o,y)=¢" —

Hu) =™ (du* +7u® +4+ 35) — 25 — 1, ©)

2u?

where u = x/o and a = y/o. We obtain ion transition wavelengths
and their respective oscillator strengths from the National Institute
of Standards and Technology (NIST) Atomic Spectra Database'
(Kramida et al. 2021). Our values are written in Table 1. The
normalized flux is given by F = e™*. We also define K = 1 —
F.

The absorption profile is the doublet shape such that the optical
depths of the two transition lines are added: T = t; + 7,. The final
profile K only depends on the Doppler parameter b and the column
density N for a given ion:

Kb, N)=1—exp[—11(A;b, N) — a(X; b, N)]. (10)

Thttps://physics.nist.gov/PhysRefData/ASD/lines_form.html

The rest are determined by atomic physics, which includes the
relative strength r (note that r also depends on A, i.e. saturation).

The spectra are reported in wavelength units, but we prefer to
map the wavelength to velocity by v = cln (A/Aiv). This mapping
originates from P;p measurements of logarithmically spaced SDSS
spectra, but note that it does not correspond to a physical velocity
in space. The exceptional feature of these velocity units is that the
doublet separations do not depend on the pivot or absorber redshifts.
For example, all C1v doublets at all redshifts occur at a separation
of Av~ 500 kms™!.

The flux correlation function is defined as £(v) = (8p(v')$p(v' +
v)), where 8 = F/F — 1. However, the metals in the SB are mostly
weak and sparse, so that we assume F = 1 in the SBs. The mean
flux can be calculated and added to this model, but the deviations
from one are small, such that mean flux errors can be marginalized
out like large-scale continuum errors. Therefore, our flux correlation
function definition is equivalent to &£(v) = (K(v')K(v' + v)). Then,
the absorber model correlation function is given by integrations over
the column density distribution f{NV).

£1,(v) = [dN; F(N;) [ V'K (v)K; (V' + v), (11)
Ea0) = [ ANAN, SN SN
X /dxdv’K,-(v’)Kj(v’ +x + v)éec(x; Ni, Nj), (12)

where K; = Ki(v; begr, N;) as given in equation (10) and & is
the two-point cross-correlation function between systems of column
density N; and N;. As we stated previously, the one-absorber term &1,
and two-absorber term &,, correspond to the first and second terms
in equation (6), respectively. For simplicity, we assume a single
effective Doppler parameter b.i. However, it is easy to extend this
model for some b distribution by replacing [dNAN) — [dNdbAN,
b). Since the physically additive quantity is the optical depth instead
of K, there are higher order contributions to the two-point function
(Ir8i¢ & McQuinn 2018). We ignore those terms here. Note that the
velocity integrations can be implemented by fast Fourier transforms
(FFTs) on a fine, equally spaced grid.

We perform an empirical study based on previous line identifi-
cation studies for column density distribution f{NV) and cloud—cloud
clustering €., but our long-term goal is to independently constrain all
parameters of the model. As a forewarning to Section 3, we will keep
& fixed and limit free parameters to an effective Doppler parameter
begr and an amplitude scaling of f{V) for each ion.

For column density distribution f{V), we will use the best-fitting
parameters from Scannapieco et al. (2006) for the functional form:

N -
— 10/0 _
f(N)=10 <1013c _2> . (13)

The numerical values of f; and « are in Table 2. In our analysis,
we are keeping « fixed, and fit for deviations from f; for each ion.

MNRAS 522, 5980-5995 (2023)
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Table 2. Fiducial parameter values for the column density distribution and
small-scale clustering. These values rely on Scannapieco et al. (2006), where
C1v and Si1v systems are in the 1.5 < z < 3.1 redshift range, whereas Mg II
and Fell systems are in the 0.4 < z < 1.9 redshift range. The f; and «
values are the best fits by Scannapieco et al. for our fiducial column density
distribution and &, ro, and y are our best-fitting values to equation (15) using
measurements in Scannapieco et al. The mean redshifts of C1v and Si1v are
z~2.3, and are z = 1.15 for Mg1I and Fe I. We ignore the redshift evolution
of this function for simplicity.

Ion fo a o ro (km s™1) 4
Civ —12.7 1.8 57+8 90 £ 16 1.8+ 0.2
Sitv —13.5 1.7 130 £ 55 45 £ 22 1.6 £ 0.2
Mg —132 1.6 170 &+ 20 125+ 15 26+02
Fen —134 1.7 270 £ 55 100 £+ 15 3.14+03
T T T T T T 71
[ $ CIv ]
[ 2l ¥ OSilV |
T T Mgl
102;—1\“~|s_\ f 4 Fell E
i 4 ]
L 4 \
9 b
(YW |
+ r \
= !
Rl o |
[ |
105 —_— — ]
10! 102 103
v [km/s]

Figure 3. Small-scale clustering of ions (filled points) measured by Scanna-
pieco et al. (2006). The solid lines are calculated with equation (15) and the
best-fitting parameter values listed in Table 2 for each ion.

Since both the 1a and 2a terms directly scale with the amplitude of
A(N), this makes the fitting simple. We first calculate templates for
the fiducial values, and then scale each template by 10%in, where
Ajon 18 the fitting parameter (not to be confused with the spontaneous
emission coefficient A,). Therefore, Ao, = 0 means agreement with
Scannapieco et al. Furthermore, the column density distribution is
usually given per column density per redshift path X (Songaila 2001;
Scannapieco et al. 2006). We need the column density distribution
per velocity for our model, so we apply the following transformation
to the measurements in literature.
dX dz (1427142

Fo(N) = fx(N) v fx(N) EQ) < (14)
where E%(2) = Qa + Qum(1 + z)>. We assume a flat Lambda cold
dark matter cosmology with €, = 0.315 (Planck Collaboration VI
2020).

For our fiducial small-scale cloud—cloud clustering, we again use
the measurements of Scannapieco et al. (2006), and fit the following
function for each ion:

§o
1+ (v/ro)r”
where & is the clustering amplitude, ry is the correlation length,

and y is the slope. All three are fitting parameters. Fig. 3 shows the
Scannapieco et al. measurements and our best fit.

gcc(v) = (15)

MNRAS 522, 5980-5995 (2023)
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Figure 4. Two-point functions calculated from purely fiducial values for
bett = 15 km s~ and C1v redshift zcy = 2.5. Other ions are at different
redshifts according to their transition wavelengths: zsiry = 2.9, zpen = 1.3,
ZFen—2 = 1.1, and zmgn = 0.9. (Top) Correlation function. Note that the 2a
term broadens the peaks and contributes approximately 50 percent of the
signal. (Bottom) Power spectrum. Localized peaks in the correlation function
become modulated in the power spectrum with many overlapping oscillations.
Even though some features remain, the maxima points (dashed lines, defined
as 2m/p) get significantly blurred. These features will be further blended
when the power spectrum is measured in bins that are averages over certain
k ranges.

Scannapieco et al. find some evidence for &cy redshift evolution,
but for this preliminary analysis we ignore the redshift evolution
of this clustering. D’Odorico et al. (2010) further indicate that &
is in fact N dependent, where higher column density systems are
more clustered, but we again ignore the N dependence for simplicity.
The best-fitting parameters are listed in Table 2. Fig. 3 shows the
best-fitting curve as solid lines.

2.3 Illustration of the model

An illustration of the final model is shown in Fig. 4. We use the
purely fiducial values outlined earlier, and pick a pivot C1v redshift
of zc = 2.5. Other ions are at different redshifts according to
their transition wavelengths: zsiwy = 2.9, Zpen = 1.3, Zpen—2 = 1.1,
and zymen = 0.9. They all follow the correct scaling with respect to
equation (14). The top panel shows the correlation function for b =
15 km s~!, which would be expected from purely thermal broad-
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Figure 5. Relative contributions of the 2a terms to the power spectrum for
each ion individually. The pivot CIV redshift is zcy = 2.5 as in Fig. 4.
Surprisingly, most of the signal comes from the 2a term for all ions for scales
k < 0.01 s km™'. However, these results heavily rely on &, which carry
uncertainties as large as 40 per cent.

ening. The 2a term broadens the peaks as expected and contributes
approximately 50 per cent of the signal. The corresponding power
spectrum is plotted in the bottom panel. Here, the 1a and 2a terms
are summed for each ion. Localized peaks manifest as oscillations
in the power spectrum, similar to baryon acoustic oscillations. Since
the final power is the sum of multiple sources, the total power is
blurred. These features will be further blended as we measure the
power spectrum in bins that are averages over certain k ranges. For
visual guidance, we mark maxima points (27r/u) as dashed lines.
Fig. 5 shows the relative contribution of the 2a terms to the total
power spectrum at the same redshifts as before. We find that most of
the signal comes from the 2a term for all ions on scales of k < 0.01 s
km~'. These results heavily rely on &, which carries uncertainties
as large as 40 per cent. We do not consider these errors here, and
hence the dominance of the 2a term is most convincing for C1v and
Mg 11. One could introduce a separate fitting parameter for the &,
amplitude 10Per, Such a fitting function for an ion would be

g’; — lOAiongla + 102Aion+Dion§'2a’ (16)

where D;,, is responsible for quantifying the uncertainties in the
amplitude of &, as well as its redshift evolution; however, this
additional parameter could be degenerate with Ajq,.

Fig. 6 shows the power spectrum for low and high b values for
C1v at z = 2.5. Higher b values bring the suppression to smaller k
values, but also increase the amplitude at large scales. The result is
that the impact of the Doppler parameter is not trivial even for the 1a
term.

Finally, Fig. 7 shows the relative contribution of each ion to the
power spectrum. The 1a and 2a terms are summed up as in the bottom
panel of Fig. 4 and the majority of the signal comes from C1v and
Mg 11 on most scales. Other ions also exceed 20 per cent of the total
power threshold at their distinctive scales.

2.4 Dependence on column density cuts

We calculate the integrals over the column density distributions in
equations (11) and (12) within the measurement range of Scanna-
pieco et al. (2006) for fiN) and &, which is between 10'' and
10'%. However, as Cooksey et al. (2013) note, a simple power law
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Figure 6. Comparison of two different Doppler b values for C1v at z = 2.5.
The solid lines represent the 1a term, whereas the dashed lines represent the
2a term. The lower b = 15 km s~ yields a lower power spectrum (blue) at
large scales than the higher b = 60 km s~! value; however, higher b has less
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Figure 7. Contribution of each ion to the total power spectrum, which is the
sum of the 1a and 2a terms. The majority of the signal comes from C1v and
Mg 11 on most scales.

for f{iN) is divergent for quantities such as Q¢,. We address this
in Section 5. Fortunately, divergence is not an issue for our model.
Fig. 8 shows how much each logarithmic column density bin size
of 0.1 contributes to the total power for each ion. We integrate each
power spectrum from k = 0.001 to 0.1 s km™! for the same pivot
C1v redshift zcy = 2.5 and b = 15 km s~! and show the ratios. The
excluded regions (shaded grey) contribute <10 per cent to the total
signal.

We can intuitively understand this dependence considering only
the one-absorber term. In the optically thin limit where T o N and (
KK) oc N?, the contribution of each column density to the two-point

statistics from equation (11) reads as
A

A8 e (17)

Alog N

According to this equation, the power contribution per log N climbs
with column density N for ¢ < 3 and declines for « > 3. All metals
we consider in this work have « ~ 1.7, so their contribution to the
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Figure 8. Contributions from each log N bin to the total power. We integrate
each power spectrum from k = 0.001 to 0.1 s km~! and show the ratios.
Approximately more than 90 per cent of the power comes from our nominal
range 11-16 (unshaded region).

power spectrum increases with column density. This contribution
will eventually turn over as saturation fixes the power in (KK) =
const and the power contribution becomes A&1,/Alog N oc N' ¢ for
o > 1. Note that the integration does not converge at high N for o <
1.

Individual detection studies (e.g. Cooksey et al. 2010; Hasan
et al. 2020) on high-resolution spectra report only 50 percent
completeness at log N > 13, whereas Fig. 8 shows that logN =~
12—-13 systems primarily contribute to the total power in our model.
High-resolution data sets (e.g. O’Meara et al. 2017; Murphy et al.
2019) have SNR larger than five per pixel of 2.5 km s~! for most of
their spectra calculated at 1450 A in the quasar’s rest frame. They
also possess incredibly high-quality quasar spectra with SNR over
100 per pixel. In contrast, DESI is a medium-resolution instrument
with a median SNR of two per pixel of 0.8 A, which is approximately
40 km s~ at 1450 A in the rest frame for a quasar at z = 3. Scaling
this median SNR ratio to 2.5 km s~! pixel size gives an SNR of
0.5, which is significantly smaller than the mean SNR of the high-
resolution data sets. Yet this difference is offset by the substantially
larger number of DESI spectra. The early DESI data we present in
Section 4.2 have over 40 000 quasars, and the final sample will have
over a million at sufficiently high redshift for this work. Even though
the individual DESI spectra are well below the SNR threshold for
individual detection limit of low column density systems, our model
relies on the collective signal of these smaller systems in the power
spectrum.

3 METHOD

3.1 Power spectrum estimation

We measure Pp using the quadratic maximum likelihood estimator
(QMLE). QMLE works in real space (instead of Fourier space)
to estimate the power spectrum, and therefore is not biased by
gaps in the spectra, allows weighting by the pipeline noise, and
accounts for the intrinsic Ly « large-scale structure correlations.
We refer the reader to Karacayli, Font-Ribera & Padmanabhan
(2020) and Karagayli et al. (2022) for our development process
and application to high-resolution spectra. DESI-related updates are
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detailed in a companion paper that measures the 1D Ly « forest flux
power spectrum from early DESI observations (Karacayl et al., in
preparation). We present a short summary of the relevant features in
this section.

An important feature of our QMLE implementation is estimating
deviations from a fiducial power spectrum such that P(k, z) = Pgq(k,
2) + >, nWomm (K, 2)0 umy, where we adopt top-hat k bands with k,, as
bin edges and linear interpolation for z bins with z,, as bin centres. We
use the following fitting function to characterize the fiducial power
spectrum:

kP(k,z) (k Jko)>tr+einklko /1 4 7 B+BInk/ko
m 0 1+ k) (1+z0)

where ko = 0.009 s km~! and zo = 3.0 (Palanque-Delabrouille et al.
2013; Karacayl et al. 2020, 2022). This fitting function is sufficient
for a baseline estimate as Pjgqg, which in turn can be used to weight
pixels, but does not capture all scientific information in Pjp, .

Given a collection of pixels representing normalized flux fluctua-
tions 8 i, the quadratic estimator is formulated as follows:

, (18)

A 1

O+ = ; EF;,(da, — by —tw), (19)
where X is the iteration number and

dy, =8T.C71Q,C14p, (20)
by = Tr(C~'Q,C~'N), 2D
fo = Tr(C™'QuC'Sha), (22)

where the covariance matrix C = (88T ) is the sum of the signal and
noise as usual, C = Sgq + > 0 Qubs + N, Q, = 0C/06,, and the
estimated Fisher matrix is

Fu = 5THCQUCTQu). 23)

The covariance matrices on the right-hand side of equation (19)
are computed using parameters from the previous iteration 6.
Assuming different quasar spectra are uncorrelated, the Fisher matrix
F,y and the expression in parentheses in equation (19) can be
computed for each quasar, and then accumulated, i.e. F =) F,,
etc.

DESI spectral extraction is built on an improved spectro-
perfectionism algorithm (Bolton & Schlegel 2010; Guy et al. 2022).
Spectro-perfectionism produces a resolution matrix R associated
with each spectrum that is based on the spectrograph resolution
as well as the noise properties of each spectrum, and captures the
wavelength-dependent resolution on the same discrete wavelength
bins as the spectrum. The observed signal becomes a matrix—vector
multiplication.

5z = RS 24)

Our quadratic estimator naturally incorporates this matrix and de-
convolves it from power spectrum measurements. The signal S and
derivative matrices Q are given by the following expressions:

Sk = (8x8%) = RSR” 25)

Q% = RQ“R’, (26)

where the subscript R denotes smoothed matrices, and matrices
without a subscript are given by

> dk
Siﬁjd :/ ;COS(kU,‘j)Pﬁd(k,Zij)s 2N
0

G202 1990}20 9} U0 1saNB Aq £EEES L L/086S/7/22SG/2I0IME/SEIUW/WOod"dNo"d1Wapeo.//:Sd)y WOy papeojumod


art/stad1363_f8.eps

Table 3. Fitting parameters for three combinations we test in this work. We
fit each redshift bin independently.

Label Fitting parameters

Baseline
Baseline + smooth
Baseline + Mg1I

Ac v, bc v, Asi s bsiv
AC vy bC Vs ASi vy bSi w, P1, Py
Ac v, bc v, Asiw, bsi v, AMg 1 bvg 1t

where v; = v; — v; and 1 +z; =+/(1+2z)(1 +z;), and the

derivative matrix for redshift bin m and wavenumber bin 7 is
- kust dke
ng V= Im(Zi.i)/ o cos(kvij), (28)
kn

where 1,,(z) is the interpolation kernel, which is one when z = z,,
and zero when z = z,,+ 1. We compute these matrices for as many
redshift bins as necessary for a given spectrum.

3.2 Parameter inference

We limit our parameter inference tests to three possible cases. All
three cases include parameters for C1v and Silv at minimum. We
begin our tests with this minimum combination (referred as our
baseline from now on). We then introduce Mg 1I to observe its effect
on these estimations. Note that the Mg 1l doublet separation is close
to the C1v separation and therefore it is difficult to constrain using
only the current two SBs. Thus, we treat it as a systematic to be
marginalized over. Furthermore, our model does not account for
large-scale clustering nor any error in the noise power subtraction.
To marginalize over these unmodelled effects, we introduce a simple
additive smooth power Pgpoom (k) = Pg,, Where Py, can be negative.2
A negative amplitude would mean that the noise is oversubtracted.
We model each SB with different amplitudes. The parameters for
each case are listed in Table 3. Note that C1v, Silv, MgIl, and P,
parameters model the power in SB 1 (Psg;), whereas C1v, Mg 11, and
P, parameters model Psg,. As an explicit example, Psg; and Psgy
for baseline + smooth case are given by

Psgi(k) =P+ >, 104 Py (k; bi) + 10%4 Py (k3 by),

ie{C 1v,Si 1v}

(29)

Pspa(k) = Py + > 10% Pyy(k; b;) + 10%4 Py (k: by). (30)
ie{C 1v}

To infer the cosmological parameters, we use the ULTRANEST®
(Buchner 2021) software, which is especially easy to set up and use.
More importantly, the underlying nested sampler algorithm is able
to handle many difficult problems. Nested sampling has become
a common tool in many fields since its inception (Skilling 2004,
2006). We refer the reader to Ashton et al. (2022) for a nice review
that focused on the physical sciences.

To speed up calculations, we cache interpolation points for the
Doppler parameter b. The lowest and highest values of b also
constitute a hard prior for each ion. We calculate the template power
spectra on a fine grid with velocity spacing dv = 1 km s~!and
216 points using FFTs. The integrations over column densities are

2To elaborate, we initially tried a scale dependence with a power law in our
preliminary analysis. However, we observed a strong degeneracy between
amplitude and scale-dependence power, so we decided to remove the scale
dependence. We leave this to future work.
3https://johannesbuchner.github.io/UltraNest
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calculated as discrete rectangles of dlog;oN = 0.1 size ranging from
logjoN; = 11 to log;oN, = 16. We fit each redshift bin independently
and all SBs simultaneously (note again that SiTv will not add power
to SB 2).

The power spectrum is measured in discrete k bins of a certain
width and this binned measurement is the integral average of a
model within that bin. Furthermore, our quadratic estimator actually
measures the power spectrum as deviations from a fiducial power
as discussed in the previous section, which alleviates the averaging
effect in bins. In our x2 and likelihood calculations, we take this
effect into account by summing model power minus fiducial at g
discrete points linearly spaced within a bin.

Various challenges along the way pointed us towards a nested
sampler. Due to a combination of data and modelling difficulties, the
biggest challenge has been the instability. For example, the signal
is small such that any contamination in the data will have relatively
large impact. These contaminants could come from continuum errors
at large scales, resolution errors at small scales, calibration errors,
sky subtraction errors, etc. Fitting the power spectrum is not ideal
either, as the model in Fig. 4 shows the blending of many features.
Furthermore, any unmodelled ions or clustering will affect all scales.
Therefore, our work requires a method and software that is robust
against this multifaceted numerical challenge. We initially used the
minimizer IMINUIT* (Dembinski et al. 2022), and then sampled
around the minimum using the EMCEE® sampler (Foreman-Mackey
et al. 2013). However, neither were robust against these problems.
The minimizer often failed to produce a valid fit and the sampler
got stuck around local minima, and did not converge. Our most
successful tool is the nested sampler.

4 DATA AND ANALYSIS

To assess the descriptiveness of our model and challenges regarding
parameter inference and systematics in data, we apply our model
to real SB power spectrum measurements. In the first subsection,
we analyse publicly available, high-resolution quasar spectra and in
the second subsection we analyse early data from DESI. This data
analysis and parameter inference are mainly exploratory, and we
focus on C1v while marginalizing over SiIv and Mg1lL.

4.1 High-resolution spectra

We use the 1D SB power spectra from Karacayl et al. (2022). That
work used three publicly available data sets with high-resolution
quasar spectra to measure the Ly o power spectrum. They find clear
doublet features in both the power spectrum and correlation function
in the SBs. Of the three data sets, only two were used for the SB
power spectrum estimation and are therefore analysed here:

(i) Keck Observatory Database of Ionized Absorption towards
Quasars DR 2° (Lehner et al. 2014; O’Meara et al. 2015, 2017) from
observations with The High-Resolution Echelle Spectrograph (Vogt
et al. 1994, HIRES) on the Keck I telescope. This data set has 300
reduced, continuum-fitted, high-resolution quasar spectra at 0 < z
< 5.3 with resolving power R 2 36 000. The continuum is fitted by
hand one Echelle order at a time using Legendre polynomials.

“https://iminuit.readthedocs.io

Shttps://emcee.readthedocs.io
Shttps://koa.ipac.caltech.edu/workspace/TMP_939bFW_53591/kodiaq53591
.html
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(ii) The Spectral Quasar Absorption Database DR17 (Murphy
etal. 2019) from observations with UVES (Dekker et al. 2000) on the
European Southern Observatory’s Very Large Telescope. This data
set consists of 467 fully reduced, continuum-fitted, high-resolution
quasar spectra at redshifts 0 < z < 5 with resolving power R 2
40 000. Its continuum fitting consists of an automatic phase and then
a manual phase to eliminate the remaining artefacts.

Karacayl et al. (2022) further resample all these high-resolution
spectra on to a common 3 kms~' grid. To measure the power
spectrum, they apply the optimal quadratic estimator, which is robust
against spectral masking and gaps, and deconvolve the spectrograph
window function from the results. They use the following fiducial
power spectrum parameters in equation (18): A = 2.71 x 1073,
n=-292,a =—-0.174, B = 2.36, and B = —0.014. Note that the
Lorentzian term is zero for SB power. They devise a regularized boot-
strap method to obtain the statistical covariance matrix. In this work,
we use the full covariance matrix. We add the resolution systematic
errors by rescaling the reported budget with respect to the fiducial
power used in the SB estimation. Continuum errors and their system-
atics budget can be ignored in the SBs, since this region of the quasar
spectrum is absorption free and the continuum can be extracted
faithfully.

We create and cache 21 interpolation points of Doppler parameter
b between [1, 101] km s~! . We assume a hard prior of [—3, 3] for
Aion [deviation of log;of(N) amplitude] for all ions.

Fig. 9 shows data points and the model power spectrum when
Mg is taken into account. We calculate all model power spectra
using all equally weighted posterior samples. The line corresponds
to the mean of this power, while shaded regions are the standard
deviations.

The C1v peak is the most visible feature in data. However, other
ion features could be present and introduce uncertainties to the
measurement. Fig. 10 shows the amplitude and Doppler parameter
for C1v (top panel) and Si1v (bottom panel) for the baseline
model, and the baseline model with the addition of Mg11, and the
baseline model with the addition of a smooth component Pgsg. In
this figure, redshift is with respect to the absorber line and the
data points are obtained from the mean and standard deviation.
One important caveat is that strong metal lines from high-column
density systems are not masked in the SB power estimation. This
means that our abundance and Doppler parameter measurements
do not only represent IGM metals. Adding contaminants to C IV
lowers the measured amplitude and increases the Doppler parameter.
Even though the SiIv results do not seem to be affected by the
contaminants, the measured b values are too large to be physical.
Moreover, the results seem most unstable below zcy < 2.0, which
manifests as strong jumps and increased error bars on the Doppler
parameters, and some redshifts yield bimodal results. We adopt
physically motivated values with Mg1I contamination as our main
result.

We checked the amplitude and Doppler parameter for Mg 11 for
the baseline model plus Mg1I and show the results in Fig. 11. Even
though the signal is most likely dominated by high-column density
systems, such as Mg Il systems that reside in damped Ly o absorbers,
the results appear broadly consistent with our fiducial value of A =
0.

"htps://doi.org/10.528 1/zenodo. 1345974
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4.2 DESI early data

A major strength of our model is its capability to exploit large
numbers of noisy spectra. DESI can observe nearly 5000 objects
simultaneously in a single exposure (DESI Collaboration 2016b;
Silber et al. 2023), and is currently conducting a 5-yr survey to
observe millions of quasars with moderate SNR and improved
resolution over SDSS (DESI Collaboration 2016a). Therefore, DESI
has access to higher k modes in the power spectrum, which are needed
to better constrain the b parameter in our model.

DESTIhas conducted a Survey Validation (SV) period to test various
target selection methods before it began the 5-yr main survey in May
2021. The first phase of SV collected deep observations that were
used to optimize the selection algorithms with a visually inspected
sample (Alexander et al. 2022; Chaussidon et al. 2022). Another
phase was aimed at studying the clustering programme and covered
about 1 per cent of the DESI main survey. We use these two surveys
that are part of early data release (EDR), and further include 2 months
of main survey to increase the statistical precision in our analysis.
We limit ourselves to objects that are targeted as quasars in the
afterburner catalogue (Dey et al. 2019; Yeche et al. 2020; Alexander
et al. 2022; Chaussidon et al. 2022).

The continuum fitting algorithm we use has been developed
over the last few years and applied to many Ly « forest baryon
acoustic oscillation (BAO) analyses (Bautista et al. 2017; du Mas
des Bourboux et al. 2019, 2020). We model every quasar continuum
qu(ARF) with a global mean continuum C(Agg) and two quasar
‘diversity’ parameters, an amplitude a, and slope b,:

FC,0xrr) = COxp) (ag + byA), (31

10g Arr — log Ay
=—5 o (32)
log Agr — l0g Arg

where Agr is the wavelength in the quasar rest frame. Note that our
quasar continuum definition absorbs the IGM mean flux F(z) into
a, and b,. The software Package for Igm Cosmological-Correlations
Analyses (PICCA) is publicly available.® It fits every quasar for a,
and b,, and stacks the residuals in the rest frame to update the global
mean continuum C (Agp). To effectively study the effects of damped
Ly o absorbers (DLAs), we demand all of Ly « forest region to be
present in spectra. The minimum wavelength DESI can observe is
3600 A; and taking the forest lower end to be 1040 A in the rest frame
results in a quasar redshift cut of z4s, > 2.43. We define SB 1 (Si1v
forest) to be between 1268 and 1380 A and SB 2 (C1v forest) to be
between 1409 and 1523 A in the rest frame. Given our quasar redshift
cut, SB 1 starts at 4350 A and SB 2 starts at 4830 A in the observed
frame. We further demand all spectra to observe SB 2. We use PICCA
to calculate the continuum multiplied by the mean flux FC,(Agr) in
4830-6500 A in the observed wavelength range and in Algg =2.5 A
coarse rest-frame binning pixels. Here, we require SNR greater than
0.25 to weed out possible contaminants. We mask broad absorption
line (BAL) features in the spectrum using both the absorptivity and
balnicity index criteria (e.g. see Guo & Martini 2019; Ennesser et al.
2022). We also mask major sky lines® and do not consider spectra
with less than 50 of the 2.5 A-wide pixels.

After all these masks and cuts, we are left with 41341 quasars
with data for SB 1 and 48 497 quasars in SB 2. Removing sightlines
that have DLAs and sub-DLAs (i.e. log Ny, > 19) reduces these

8https:/github.com/igmhub/picca
https://github.com/corentinravoux/p1desi/blob/main/etc/skylines/list_mas
k_pld_DESI_EDR.txt
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Figure 9. Data points (blue circles and orange squares) versus our model (crosses with shaded regions) for high-resolution spectra. Here, three ions C1v,
Si1v, and Mg1I are modelled and the smooth power is not included. The mean power (solid lines with crosses) and its standard deviation (shaded regions) are
calculated using all equally weighted posterior samples. We fit up to kmax = 0.1 s km~! (shaded grey region).

numbers to 11395 and 15346 (Wang et al. 2022). These numbers
are listed in Table 4. For brevity, we present results on non-DLA and
non-sub-DLA quasars unless explicitly stated.

The quadratic estimator splits the spectra into two if they have
more than 500 pixels. We are using the resolution matrix produced by
the spectroscopic pipeline based on tests on pixel-level simulations
(Karagayl et al., in preparation). We smooth the noise estimates in
the covariance matrix by a hybrid Gaussian box-car window function.
The box size is 50 pixels with a Gaussian sigma of 20 pixels. We
marginalize out three modes of continuum errors: constant, In A,
and (In1)> polynomials. The fiducial power spectrum has A =
2.084 x 1073, n = —3.075, o = —0.074 23, B = 1.599, and 8 =
—0.2384. Finally, we measure the power spectrum in 20 linear and

20 log-linear k bins with Ak, = 0.0005 s km~! and Akjog = 0.05 bin
sizes in 7 redshift bins from 3.1 to 4.3 with respect to Ly « transition
line. We perform only one iteration. Subsequent iterations mostly
refine Fisher matrix estimates, which we replace with bootstrap
analysis (Karagayl et al. 2020).

We generate 5000 bootstrap realizations over 320 subsamples
for each SB. Even though our implementation of QMLE generates
correlations between redshift bins, we ignore all correlations between
power spectrum bins, and assume that the covariance matrix is
diagonal. We replace Gaussian errors only if they are smaller than
bootstrap estimates.

Fig. 12 shows our power spectrum measurement in these two SBs,
where the error bars are from bootstrap realizations. We report the
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Figure 10. Amplitude and Doppler parameter from high-resolution analysis
for C1v (top panel) and Si1v (bottom panel) as a function of redshift. The
three sets of points and lines correspond to our baseline model (blue squares
and lines), the baseline model plus a smooth component (orange circles and
lines), and the baseline model plus MgII. Redshift is with respect to the
absorber transition.

redshift according to the Ly « transition line. Each ion will be at
a different redshift. The oscillations produced by C1v are clearly
visible at all redshifts.

We perform nested sampling with same settings as high-resolution
analysis. Fig. 13 shows the A and b parameters for CIv in the top
panel and Silv in the bottom panel. The most stable results come
from C1v as expected. The abundance A seems to be higher compared
to our fiducial measurement from Scannapieco et al. (2006), and
shows a downward trend over redshift (note that even though our
resolution improves at higher redshifts (wavelengths), our statistics
decline). The Doppler parameter » mostly remains under 20 km s~ ,
and any seemingly non-physical values and jumps are only present
with error bars. Marginalizing over a smooth power component

MNRAS 522, 5980-5995 (2023)

B e e Lo o s s o ™

——
0.5 /\ —— Baseline + Mg Il 3
h 4 i N ok [ |

0.0
-0.5
-1.0

Awmgli

-15
-2.0

-2.5
100

80

M B B i ST AT PR e PR T R

bugi [kms—1]

B e e e e e R B R R R R N R R AR AN EREREREEREREE N

| I A

1 L L L 1 1 £ 1 L L L L
0.4 0.6 0.8 1.0 1.2
Redshift

Figure 11. Amplitude and Doppler parameter from high-resolution analysis
for Mg 11 as a function of redshift. The signal most likely comes from high-
column density systems, i.e. nearly saturated lines. The results are broadly
consistent with our fiducial value of A = 0.

Table 4. SB rest-frame wavelength ranges and number of quasars in DESI
early data. For our default analysis, we also remove sightlines that have DLAs
and sub-DLAs (non-DLA quasars).

Wavelength range (A) # All quasars ~ # Non-DLA quasars
SB 1 1268-1380 41341 11395
SB 2 1409-1523 48497 15346

adds sudden jumps in the results, which could mean it is a highly
degenerate nuisance parameter. Introducing Mg 11 (a more physically
motivated nuisance model) lowers the amplitude A¢ v and increases
the uncertainties in a more stable fashion. As previously, we take
the results with Mg1I as our main results. However, the Mg II results
themselves are not trustworthy as the b value consistently hits the

upper boundary of its prior of 100 km s~ .

4.3 Comparison between DESI and high resolution

Fig. 14 compares our A and b measurements for C1v for the high-
resolution data to the DESI data both with and without DLAs.
The effects of Si1v and Mg1I are marginalized over. Interestingly
enough, high-resolution P,p (with DLA sightlines) agrees well with
the DESI non-DLA measurement. All three measurements show a
clear downward trend with redshift similar to Yang et al. (2022),
indicating a gradual increase in the abundance of these metals at z
~ 3.0. However, as we discuss in Section 5, our findings could be
partially attributed to the growth of cloud—cloud clustering.

5 DISCUSSION

5.1 Correlation function versus power spectrum

The reader may already suspect that this analysis would have
been more robust if it were performed on the correlation function
instead. After all, the features are localized as peaks in correlation
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Figure 12. Data points versus model fits for DESI analysis. DLA and sub-DLA sightlines have been removed. Error bars on data points are from 5000 bootstrap
realizations of 320 subsamples. Gaussian values are replaced only if they are smaller than bootstrap estimates. We model three ions (C1v, Silv, and Mg11),
and leave out smooth power. The mean power (solid lines with crosses) and its standard deviation (shaded regions) are calculated using all equally weighted

posterior samples. Our confidence regions are 0.5 x 1073 < k < 1.2/Ryms.

function, whereas they are modulated and superposed in the power
spectrum. The challenge for correlation function comes in two major
points. First, the spectrograph resolution smooths the correlation
function at all scales. Without a quadratic estimator for &, we
would have had to convolve the model power spectrum with an
average window function, similar to 3D analyses. We are spared
from this complication because our quadratic estimator deconvolves
the individual, wavelength-dependent spectrograph resolution from
each spectrum based on spectro-perfectionist extraction (Bolton &
Schlegel 2010). Secondly, the continuum errors distort the correlation
function at all scales. Again, without a quadratic estimator for &,
a distortion matrix has to be introduced into the model similar to
what is done for 3D studies. These distortions are localized to
large-scale modes (low k) in power spectrum, and are marginal-
ized out by our quadratic estimator. Therefore, the correlation
function analysis would be more robust only with a quadratic
estimator.

5.2 Metal contamination in the Ly « forest

These same metals are also present in the Ly o forest, and are
considered contaminants in the Ly « Pp analyses. Because of strong
H1 absorption, metal lines cannot be identified even in high-SNR
spectra in the Ly « forest, and therefore must be removed statistically
from the Ly o power spectrum. This is achieved by subtracting the
estimated SB 1 power from the Ly « forest estimates (McDonald
et al. 2006; Palanque-Delabrouille et al. 2013; Chabanier et al. 2019;
Karacayl et al. 2022). However, this only removes power due to

metals with Agg = 1400 A, and hence leaves behind some metal
contamination such as Si IlI, which produces oscillatory features due
to the Silll-Ly « cross-correlation (McDonald et al. 2006; Palanque-
Delabrouille et al. 2013). Our model can potentially better remove
these Agr < 1400 A metals from the Ly o Pip . Such an application
requires also including singlets into the model, which unfavourably
do not manifest any characteristic features in the two-point
statistics.

5.3 Growth of cloud-cloud clustering

We assume that cloud—cloud clustering & is constant with respect
to redshift. However, there are hints for structure growth in &
(Scannapieco et al. 2006). Even though this term only is important
for the 2a term, we showed that the 2a term is usually larger
than the la term. Therefore, some or even all of the redshift
trend for the A (abundance) parameter could be due to enhanced
clustering of metals. A more proper analysis would reformulate
equation (16):

Ain(@) = Ao+ A1 log ($) (33)
Din(2) = Dy + Dy log (). (34)

and then fit for all redshifts simultaneously. This could potentially
produce tighter constraints on modelled parameters, but requires
better understanding of the wavelength dependence of systematics
and related correlations between redshift bins. We leave this to a
future study.
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Figure 13. Amplitude and Doppler parameter from DESI analysis when
DLA sightlines are removed against these two contaminants for CIv (top
panel) and Si1v (bottom panel). Redshift is with respect to the absorber
transition.

5.4 Large-scale cloud—cloud clustering

In this work, we empirically quantify cloud—cloud clustering using
direct observations. The data and our formulation work better on
small scales, and cannot properly capture large-scale correlations,
which may become important for the 2a term at low k. One might try
the standard tracer-biased power spectrum:

Pion(k) = b2 (1 + Biouit®)* PL(K)F (), 35

where bj,, is the bias, B, is the redshift space distortion parameter,
Py is the linear power spectrum, and F(k) accounts for non-linear
effects (du Mas des Bourboux et al. 2020). However, since these metal
systems are heavily governed by small-scale physics, it is unclear
whether this modelling would be advantageous over an empirical
formulation.

MNRAS 522, 5980-5995 (2023)

0.8F
0.6

T
=

0.4F
0.2F
0'0:_4— High-resolution j ]
—0.2] —4— DESI {No DLA) ! N
[ —4— DESI (All) \
—————+—1 -

} F—+————+—+—+—F—+—+—+—F—+

Acw

bcy [kms™1]
T

| Y " i R

I I L L | L E. "
2.2 2.4 2.6 2.8 3.0 3.2
Redshift

Figure 14. Comparison of A and b values of CIV measurements between
DESI and high-resolution spectra. The No DLA case excludes both DLAs and
sub-DLAs. All three data sets show a clear downward trend with increasing
redshift.

5.5 Thermal broadening of C1v

At the expected IGM temperature of 15000 K, the carbon atom has
bcw = 4.5 km s~! from pure thermal broadening. We find somewhat
higher but consistent results. Higher temperatures and/or turbulent
motion can physically explain our bcy findings. For example, these
systems may not reside in the IGM despite our efforts to eliminate
such sources through the exclusion of sightlines with DLAs and
sub-DLAs. A possible candidate is the strong and blended Ly «
forest systems where the column densities are not high enough to
self-shield and show different metal properties (Pérez-Rafols et al.
2022). However, systematic errors including resolution effects and
model fitting deficiencies are more likely explanations. Therefore,
we reserve our temperature conclusions for a future study.

5.6 Line blending

Our model 2a term breaks down when lines get saturated at
high column densities such that they cannot be superposed. This
overlapping happens at scales of b ~ 10 km s~! or the corresponding
spectrograph resolution, whichever is higher, and it is more important
for ions with smaller correlation lengths ry (see Table 2). This effect
is noted as the absorber exclusion in Ir§i¢ & McQuinn (2018), which
is again analogous to the halo exclusion in the halo model (Cooray &
Sheth 2002). However, the absorption profiles are spread out due to
temperature broadening or the spectrograph resolution, and are free
to overlap in flux. The problem occurs when the system is saturated
such that K =1 — e~ " & t is no longer valid. This exclusion effect
might be a bigger problem for H1, but should be less concerning for
weak metal lines.

5.7 Addition of other side bands

Our model is also capable of constraining Mg1I values, but results
from this analysis are not particularly reliable. Ideally, we would
isolate the Mg I signal in a ‘third’ SB. A common choice is 1600-
1800 A in the rest frame (du Mas des Bourboux et al. 2019). In
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principle, one can consider as many SBs as one desires, but pipeline
noise systematics will eventually become dominant. This might be
true even with just SB 3 of the current data set since the Mg II signal
is weak. Generally, systematics will make analyses for weak signals
including Mg 1 especially difficult.

5.8 Correlations between different species

One might be tempted to include correlations between different ions
(e.g. C1v=Si1v). However, we must be aware of the SB lengths before
modelling such correlations. SB 1 is about 11 000 km s~! and SB 2 is
10000 km s~! in length, whereas the velocity separation between the
C1v and Si 1V transitions is 14 000 km s~ . Similarly, many transition
lines between different species occur at large separations. Therefore,
the cross-correlations between the most conspicuous ions will not be
present in data at all. The study of possible combinations is out of
the scope of our work.

5.9 Fell specific complication

All three ions we considered in this work show only one doublet
feature, and therefore their contributions to one Ly « redshift bin
come from single (separate) sources. In contrast, Fe Il shows two main
doublet features. This means that two Fe I sources at different red-
shifts contribute to the same Ly « redshift bin. This interconnection
of multiple redshifts is better handled in an analysis using equations
(33) and (34).

5.10 Recovering DLA sightlines

For simplicity, we removed all spectra that show high-column density
systems. This conservative choice significantly reduces the SNR and
constraining power of the data set. In a future study, we plan to only
mask regions that correspond to all possible metal transition lines,
which should add more quasar spectra to the analysis.

5.11 Studying metals in CGM or high-column density systems

Our model can also be extended to studying metals in the CGM or
high-column density systems instead of removing them. For example,
we can simply introduce another population into the column density
distribution f{iN):

SN) = fism(N) + feam(N). (36)

Ideally, cross-correlations between the two populations would be
inconsequential.

5.12 High-column density cut-off

As Cooksey et al. (2013) note, a power law for fAiNV) o« N~* formally
corresponds to infinite Q¢ for o < 2.

Homc

CPc,0

Qcy = / F(N)NAN o« N*™* (37
Studies such as Scannapieco et al. (2006) and ours usually limit the
integration ranges. As we have shown in Section 2.4, divergence is
not a problem for our model since log N > 16 systems contribute
little P;p . However, a power law f{/N) is not physical either, so we
expect a high-column density cut-off N, in f{iN). Furthermore, if
log Neywe =~ 16, our method can constrain this value with better data.
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6 SUMMARY

The metal abundance in the universe and its evolution with redshift
has implications for the enrichment and clustering of the CGM
and IGM. There is a rich literature that individually detects metals
lines in quasar spectra to study the properties of that sample.
These studies connect local environments to the metal systems, but
come with possible selection biases from SNR-limited samples and
incompleteness issues due to identifier efficiency for a cosmological
measurement.

In this work, we treat the observed flux as a continuous field and
develop an analytical model for 1D two-point flux statistics of metal
ions in quasar spectra. Our model makes use of three quantities
to describe the two-point statistics: the column density distribution
f(N), an effective Doppler parameter b, and cloud—cloud clustering
&... We decompose the correlation function contributions into one-
absorber (la) and two-absorber (2a) terms, where the la term
captures the correlation of the doublet’s shape with itself and the
2a term captures the clustering of two different systems. The most
important difference with the halo model is that the 1a term does
not correspond to metal (matter) clustering, but to a tightly bound
single system that manifests Doppler broadening in its absorption
profile. Since prominent features are due to doublet transitions, the
1D flux field correlation function (power spectrum) shows a peak
(oscillations) at the doublet separation scale even at the one-absorber
level.

We apply our model to power spectrum measurements from
high-resolution spectra and DESI early data. For this exploratory
application, we focus on CIV values and marginalize over Silv
and Mgi. We use high-resolution Pjp as is, and decompose the
DESI data into two samples: with and without DLA and sub-DLA
sightlines. All three data sets show a clear increase in the amplitude
of C1v with decreasing redshift, although this trend could partially be
due to the growth of cloud—cloud clustering. The results from high-
resolution spectra and non-DLA DESI sightlines agree well between
2.0 < z < 3.0. However, the abundance results using all DESI
spectra are noticeably larger. Significant difficulties for our model
arise from fitting superposed oscillations in the power spectrum, the
sensitivity to contaminants, and unmodelled large-scale power. For
example, it is unclear how well we can constrain the b parameter
(therefore temperature), so we refrain from making cosmological
statements about the temperature of these systems. Making robust
claims also requires a careful study of systematics in the data and
related numerical artefacts, as well as improved modelling of the
large-scale correlations. We plan to improve our model and numerical
approach to apply for the next set of DESI spectra.
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DATA AVAILABILITY

All data points shown in figures are available in simple text files
on the following website: https://doi.org/10.5281/zenodo.7548373.
Some underlying DESI spectra will be publicly available as EDR in
2023. We added 2 months of main surveys to improve our statistics.
The main survey spectra will be made publicly available as part of
Year 1 DR in the future.
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