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Abstract

This paper presents the Generalized Newmark Dual Reciprocity Boundary Element Method and the Single Step Dual Reciprocity
Boundary Element Method for solving nonlinear transient field problems with phase change. Both are a combination of a general family of
single step time marching schemes and the Dual Reciprocity Boundary Element Method. Iterations are performed at each time step using the
Newton—Raphson method with line searches. Latent heat effects due to phase change are incorporated using a fixed-grid apparent heat

capacity method.
© 2003 Published by Elsevier Ltd.
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1. Introduction

A number of physical processes are governed by the so-
called quasi-harmonic equation including heat conduction,
gas diffusion, seepage and compressible flow, magneto-
statics, torsion and Reynolds film lubrication. These
processes are generally termed field problems.

An initial restriction of the boundary element method
was that the fundamental solution to the original partial
differential equation was required in order to obtain an
equivalent boundary integral equation. Another restriction
was that domain integrals were needed to account for non-
homogeneous terms arising from initial conditions and body
loads. One widely used method to overcome both these
problems is the dual reciprocity method. The method uses a
fundamental solution to a much simpler partial differential
equation and treats the remaining terms using global
approximating functions [1].

The Generalized Newmark, or GNpj, method was
originally called the Beta-m method [2]. The GNpj method
is a generalization of the Newmark method and is a general
family of single step time marching schemes, choice of
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integration parameters controls accuracy and stability.
Other well-known methods (e.g. Newmark, Wilson, Hou-
bolt, etc.) are contained within the GNpj family. The SSpj
method [3] is another general family of single step time
marching schemes.

Transient field problems with phase change can be
solved numerically by either front-tracking methods or
fixed-grid methods. In front-tracking methods, the phase
change front is tracked continuously and the latent heat
effects are treated as moving boundary conditions. Fixed-
grid methods can be divided into source-based methods and
apparent heat capacity methods. In source-based methods,
latent heat effects of phase change are incorporated by
fictitious sources and sinks. This paper deals with two-
dimensional transient field problems with phase change
using a fixed-grid apparent heat capacity method.

2. Heat conduction

The heat conduction equation for two-dimensional

problems for isotropic materials is

ad au a ou au

—|K— —|K— V = pc— 1
ax( ax)+ay( ay>+ pcat M

subject to boundary conditions:
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e Dirichlet boundary condition, prescribed temperature

u=1iu 2)

e Neumann boundary condition, prescribed flux

J
_—_K_” 3)
qr = 4y = an

e Convection boundary condition

gc = h(uc — u) 4

e Radiation boundary condition

qr = os(ug — u®) (5)

Here u is the temperature, K is the thermal conductivity, V is
the heat generated, p is the density, c is the specific heat, & is
the convection transfer coefficient, uc is the ambient
temperature for convection, o is the Stefan—Boltzmann
constant = 5.667 X 10_8, € is the surface emissivity and ug
is the ambient temperature for radiation.

3. The dual reciprocity method

The Laplace operator is isolated on the left hand side and
all other terms are transferred to the right hand side to form
an equation of the type

Viu= b(x,y,u) (6)

In order to take the right hand side b(x, y, u) to the boundary,
the approximation of b is written as

N+L

=

where b; is the function b at node i, f;; are approximating
functions and «; unknown coefficients. The approximation
is performed at (N 4 L) nodes called DRM collocation
points, N boundary nodes and L internal nodes. The
functions f are defined by

Vii=f (8)

where # is a particular solution. Combining Egs. (6)—(8)
gives

N+L

J=1

Multiplying by the fundamental solution u* and integrating

by parts gives [4]

cil; +J qudl— J uigdl’
r r

N+L
= r r
where ¢ = du/dn, after discretization this becomes

N N
cit; + > Hyig — > Gygy
k=i k=1

N+L N N
= Z aj(ciﬁij + zHikﬁkj - Z Gikflkj) (11)
= =1 =1

which is written for each of the (N + L) nodes i and
incorporating the c; terms into the diagonal of H gives

Hu — Gq = (HU - GQ)a (12)
From Eq. (7), b = Fa, hence
a=F'p (13)

which is substituted into Eq. (12) to give

Hu — Gq = Sb (14)
where
S=HU - GQF ! (15)

The matrices fJ Q and F are all known if f is defined.

4. Generalized Newmark dual reciprocity method

The GNpj method was originally called the Beta-m
method [2]. The GNpj method is a generalization of the
Newmark method, where p is the order of the approximation
function and j is the order of differential equation. The p
integration parameters provide a subfamily of methods
which control accuracy and stability as well as options for
explicit and implicit algorithms.

The method can be defined by writing the kth derivative
of w with respect to time as

W =g +bAW (16)
where
() ,Gh
- w,h
“=2 o (17)
=
and
S =k
= L (18)
(m — k)!
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A is the forward difference operator

AW =Wl =, (19)
where subscripts n and n + 1 refer to time nand n + 1 and &
is the time step. ®

In the above qy s the Taylor series expansion of w,,\; up
to the term wn Thus each g, is a known history vector. The
last term in Eq. (16), which contains the unknown increment
AW, may be 1nter’¥’)reted as an approximation to the next
Taylor series term w,, . The accuracy of the approximation
is controlled by the choice of the integration parameters,
Bo>Bis--» Bn—i1- By choosing By = 1/(m—k+ 1),
scalar terms b; become the Jrrlecogmzable Taylor series
coefficients for the term w . However, this is not
necessarily an optimal choice. It is applicable to any system
of initial value problems providing we choose m greater
than or equal to the highest order differential appearing in
the system.

Eq. (1) can be written as

V2 pc ou Vv l(aKau
u= - — — —

oK au>
K ot K K\ ox ox

dy dy

Applying the dual reciprocity boundary element method to
Eq. (20) gives

(20)

Hiauy — Gigye

—g [pck auk _ Vk _ 1 (aKk auk + aKk al/tk)]
TR K, o K, Ko\ ax ox - dy dy
(2D

In general, Eq. (21) is a nonlinear equation. Matrices H, G
and S are independent of temperature but vectors K, pc and
V may be dependent upon temperature. Rearranging Eq.
(21) for the residual, or out of balance, s gives

;= Hyuy — Gigy
. [ka auk Vk _ 1 (aKk auk + aKk al/tk)]
dy dy

K, ot K, K\ ax ox
(22)
Applying the Newton—Raphson method
(Kr)yj dw; = = (23)
where
(K)y = 2 4

J
and w represents the vector of unknowns either % or 3)
dependmg upon the conditions at the node.
If qj is unknown, then
Y _ Y, 9qk
(KT)IJ 71 = (nll) = _le— =
7o9g; 9 qj

_szbOSk] = _Gbo

y

(25)

for all i.

If (L’Z») is unknown

oY Y
Ky = 30 =
Wi du;
Jj
ouy Pk ad ouy
— Mik (m) ~ Sik K m) ?
9 u; ko u
_po 9K duy 1 3(po) Qe
2
K; a%? or K a(fl}) ot
_laVk VkaKk_la
K; a(};}) Kk a(m) K a({g)
x(aKk al/tk aKk auk)
ox Ox dy dy
1 aKk (aKk auk + aKk al/lk)
_2 m Oy A+ "9y av
K; a(u;) ax ox dy 9y
(26)
for all i.

Let « be the slope of the thermal conductivity curve,
hence
aKk aKk al/tk

= 22k S = by 27)
a(lz}) oy, P (lrdr;) v

and let 3 be the slope of the heat capacity curve

d(pc) _ d(pc) duy

= = Bibody (28)
J (M]) auk J (M]

Substituting into Eq. (26) gives

PCx PCy k
(Kt)j = Hybo&; — Sik{ bi8y — oy by Sy —
b J J Kk J ot
6uk 1 aVk Vk
+ .Bk 00k Y K, o —— Dby + K2 by Oy

1 [ J (aKk)auk + aKk J <6uk)
K, m \ 9x ) ax ax o m \ ox
k 0 Llj
d 0K, \ ou dK, 0 du
T (a_k)a_k + 2% 2 (a_k>
d u; y y Y o9 i y
0K, ou
LY J)
dy dy

The Dual Reciprocity Method approximation to a derivative
of temperature with respect to a spatial coordinate, say x,
can be written as [1]

aKk al/tk

byd
+K2 0 k’( ax ox
(29)

d oF _

ouw _ o gy, (30)
ox ox

Similarly for thermal conductivity

0K  oF

9 _ % g (3D
0x 0x
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Substituting Egs. (30) and (31) into Eq. (29) gives

PCy

K2 aby 5k, 8

pc
(Kt1)ij = Hybo oy — Sik[ ?kbl%

auk 1 aVk
+ .Gk 08— o

1 aka
K (

0x
aFkr -1 aka aFkr

ay FVS MS + ay an Kil . y

OF,, OF,,
+— boﬁk]( ak F,'K, a)’;

b) k aubydy
Kk i 00y + K/? QD O;

Fkr 1
ox mn nb08 ox Frs U

8Fkr

_ oF _
+ anlKn rslbOSSj + o anlanboanj

F;1b05sj)

-1
F rs Us

+

aF oF
km F 1K kr Frslus)] (32)
dy ay

which can be rewritten as

1 ou
(KT)U = Hljb(] j( J b] K2 a; b() a[ ?B]bo_

i Sic [ OF
___Jb A b _( km
0+ CY 0 + Kk ax

aFkr

a;bg

mJJ

F,
a =z FI?II‘l Kn
X

oFy,
rFrSI S

X Flu, +

oF
+ kmijabo

*1
Fyj by

aF _

+ " FuK,
y

aFk -1 ij -1 aFjr

ayr Frj b()) - SU K2 b()( a mn “*n ax

. F, . OF, _,
XF s = P K = 2 33)

no sum on j.
For Dirichlet boundary condition, prescribed tempera-
ture, u = u

(m)

i=qy+byAu (34)
A =L (35)
by
For Neumann boundary condition, prescribed flux
_ ou
g =qr =K n
_ ou (m)
qr = K% K| g0+ boA q (36)
ar
m = 490
A (q) - K 37)
by

. . a
For convection boundary condition, gc = K a_u = h(uc — u)
n

auk
;= Hyuy — GikT
n
. ka auk Vk . 1 (aKk auk + (')Kk abtk):l
K, ot K, K\ ox ox dy dy
(38)
Hence an extra term appears in Kt
1
(Kr);j = (K1) + EGg,‘hbo (39
J
no sumonj.
For radiation boundary condition
0
=Ko = oe(uf — u)
on
auk
;= Hyuy — GikT
n

sl Vi L (0K 0K )
dy 9y

k Fk ot Kk Kk 0x o0x
(40)
Hence an extra term appears in Ky
4
(Kr)j = (Kn)j + - Gioeu by (41)
7
no sum on j.

5. Single Step dual reciprocity method—SSDRM

The SSpj family of algorithms was motivated by
supposing that u(¢) is represented in the time step by a
polynokmial. Writing the kth derivative of y with respect to
time, u , at a time 7 between time steps n and n 4+ 1, i.e.
0=71=<Atas

n o ® 7P=h

1(4: =1, +ap(p_k)' 42)

where

& P 9=k

o-Sw 43)
= @k

The vector ¢} is determined by substituting for u(7) and its
derivatives into the weighted residual equation

At
. W(n)(Cyit; + Kyju; — f;) dT =0 (44)
Labelling a set of p 4+ 1 parameters 6,, ¢ =0, 1,..., p thus
At
W) dr
0 =1, - = 0,Ar" (45)
W(r) dr
0
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gives
At
W Pudr  p-1 Af
t AP
. =3 6 "6, o, (46)
w(ndr = T P
At
W(nidr
0
At
W(r) dr
p_1 q =1
@ At At
=N =0, +dd—0,_ A7)
e O VT N R VTR
At
W(nfdr
Ar =f=0fpn + (A — 01, (48)
W(r) dr

Substituting into the weighted residual equation (44) gives

-1 g -1
@ At At
QI:Z Un W%—l) + Qfﬁ(p_l)!%—n:l

g=1
Ast Ar
Dol ALy (49)
= 4 p! ~

Solving for af gives

AfP~D A
I:g(p 1)'0([, 1)+K 0 Ql,f)

Aq
[f Z(Q) tl), -1 Kzl(f)—to:l (50)

Once o} is evaluated then Eq. (43) gives

k) p—1 @ At(q_k)
l’:tn = Uy —~ (51)
i qz:k (q— b

and finally Eq. (42) gives the values at the next time step
AP
(P —k)!

Applying the dual reciprocity boundary element method to
Eq. (20) gives

(k) &)
U1 = Bpp1 + @

(52)

Hywy, — Giqy

-3 [pck auk . Vk _ 1 (GKk c')uk + aKk auk>]
TR K, o K, K\ ax ox | dy dy
(53)

Let w be the vector of unknowns, either u; or g, depending
upon the conditions at the node. Writing the kth derivative
of w with respect to time, w , at a time 7 between time steps

nandn+1,ie. 0= 7= At as

*) 7P~
W= el (54)
where
(k) p—1 ,T(q—k)
W= W (55)
g=k (C] - k)

The vector o/, is determined by substituting for w(7) and its
derivatives into the weighted residual equation

At
PCx al/tk Vk
W Howr — Goagr — S| Pk %k Tk
. (T){ ikt — Giqp Slk[ K o K
1 (0K, 0 0K, 0
( k +—"ﬂ)]}d7=9 (56)
Kk ox 0x day dy

Labelling a set of p + 1 parameters 6,, ¢ =0, 1,..., p thus

At
W(r)1?! dr
o=1. 1o — 9,Ar (57)
W(r)dr
0
gives
At
Wnwdr  p-i
t @ Af p A
5 = W bt a6, (58)
w(ndr 0
At
W(nw dr
0
At
W(r) dr
p—1 (g—1) (p—1)
@ At At
= W, n+at 0 %59)
e TR A PR R
At
W(nVdr
OAT = Y 61 Yn—H + (1 - el)Yn (60)
W(r) dr

Let « be the slope of the thermal conductivity curve, as
before, thus
aKk _ aKk auk aMk

= ——= (61)
ox ou, 0x K ox

The Dual Reciprocity Method approximation to a derivative
of temperature with respect to a spatial coordinate, say x,
can be written as [1]

E)uk . oF kl

= —F,, 2
ox ox lm U, (6 )
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Thus, the last term in Eq. (56) is

If u; is the unknown, then

1 <8Kk auk aKk 6uk)
K\ ox ox 3y oy @\ At
K.\ oax ox oy 9y i, = Z(" ) —9, +(o/’)n (69)
Fu o1, Fk 1, Fy 0Fy 1 =0 n
—Flm U, + —Flm Uy, Frs Ug
Kk ox ax ay ay
(63)
9 A AP
In general Eq. (56) is a nonlinear equation. Rearranging Eq. Y W(ai)n —r 0 =9 rn 0y (70)
(56) for the residual, or out of balance, i gives ! !
p—1 p—1
@ At @ | A
l!fizHik(Z | =90, +(0€p)n >_Gik<z dx —9 +(Cl’p)n >
q=0 q=0
p—1 (g—1) =1 V
pPCk @ | Af At Vi
Y — 6, o), ————6,_ - —=
i Kk<; N Pl n+( k)n(p_l)! v 1)> X,
3ty
ot
-1 p—1 p
oy 8F,d 1 4 Q) Al aFk, 1 (q9) Al A[I
-—— F — 0, + (&, F — 0, + (&
Kk ax Im < Z Uy + ( )n 9x rs Z Ug + ( )n !
=0 g=0
aFy [ @ | A , ” OF, 1~ @ | A A
+—lelm1 Z I’Zn _ + (a] )n i Frsl qv 0, + (af)tz (64)
ay = ! ! E)y =0
g g
Applying the Newton Raphson method kY7, pl Af9=D AP~ D
pplying p U (5};) A g+ (@D
o &\ ) - »— D!
a
el =~y (65) an
o (om0, AfPD B ArPD
W(?)_ dal G —yr om0 = g,y Yoo
If g; is the unknown, then J J
(72)
o _ _ _
_ @) A oY; ity pc 90 (a”k> per 9Ky ity
= 7 — Hi — Si — 5 - = T
9k qzo(qk)n 0, +(ap)n (66) aa_Jj kaaf k Kk aap ot K]% 80157 ot
1 a(pck) 6uk 1 aVk Vk aKk
il -k A
23, 3 AP AP K, 9d) ot K ddf K 9d)
b o o = %0 (7 S0 (i o)
! ! K 9\ ox ax  ay ay
oK, ( 0wy, ou ol 0l
o 0K, (o o ﬂﬂ)] )
o A K; o : ox ox dy dy
v —G;—-0, (68)
J p- Let a be the slope of the thermal conductivity curve as
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before, hence

aKk aKk auk Atp Atp (74)
aaf duy aa" kThi p! 7 p!
and let 8 be the slope of the heat capacity curve
a(pc),  9(pc), Ouy A AP
= =B — 75
aaj»’ duy aa” = Bidy— p! =5 p! (75)
Substituting into Eq. (73) gives
aY; A pCk AP~
a l :Hikskjﬁep_sik{?kakj(p ) 0(p ])
ka At auk Af auk
TR T Bkkw?
1 av, . A¥ V AP
- k6kj 0 + ];akﬁkj 0[7
Kk auk p‘ K p
_ak J (81_4k)8uk+6k d (8 k)
aap ax d ap a
J auk al/tk aﬁk aMk
==+ —
Emf(f)y)ay oy ao/’
a A (omy, On 8u oi
+ Ry |( b, A . Bt (76)
K; p!l \ ox ox dy ay
From Eq. (62) we have
J auk J aFkl —1_ )
— —F
3“}”( ax) daf ( ax | mtm
oFy 1. AF
substituting into Eq. (76) gives
alpi . Atp PCy At(p_l)
W—Hik‘skj?@p_sik X, ak](p ),G(p 1
PCr A oy, n 1 AP oy,
K2 plar KT pl o
1 0V, . AP Vi A
_Fka_lltkSkJFOp-’_K_]gakSkj_'ep
Kk 9x MmTMpL P ax T oax ox MM
ArP aF AV ;17 diy, OF
X =g, S, =g, Sk S CH
p! ay pl Ty 9y dy
_ ArP ay ArP
X Fpp) 8, ——0 ]+—a & —-
Im “mj p| P K]g k Ykj p|
ofy, ol ofy, di
X(ﬂﬂJrﬂﬂ)} (78)
ax 0x ay dy

which can be rewritten as

oY, A _s, {pc ArP~D P A 0u;

=H;—0 0
o] 'fp!” K (p—D! b Kpr' ot
Aﬁau 1 oV, AP V; AWG
Kj pl ot Kaup'pszp'p
oFy, | AY 9 o, OFy, | AP
+Slk7 leljli pﬂ Ol O g l]l
Kyl 9x p' ox ax dx p!
T, Fu = Ty Lo %
3 ay ay dy p!
@ AP (au<au
”Kz ]p ox dx

0

D

dy dy

no sum on j
For convection boundary condition

o

gc = K—

on he(uc — u)

_ ol
U = Hyiy — Gikia
n

5 [ka aﬁk - Vk . 1 (61_(k aljlk 81_(k aﬁk):l
dy dy

K, ar K, K\ ox ox
(80)
Hence an extra term appears in Ky
1 A
(K1); = (Kp); + Eszhc o 0, (81)
no sum on j.

For radiation boundary condition

0
=K = oo, — i)
on
_ oty
W = Hy iy — GikT
n
- ka auk Vk _ 1 (61_(k aﬁk + 81_(k aﬁk)]
K, ot K, K\ ox ox ay ay
(82)
Hence an extra term appears in Ky
4 AP
(Kr)y = (Kp)y + — Gyoei; ——6, (83)
K; p!
no sum on j.

There is a link between the GNpj and SSpj algorithms.
They are very closely connected for linear problems but can
give different effects when used on nonlinear problems [5].
For linear problems, the GNpj and SSpj algorithms can be
matched exactly by taking 6, =8, ;, j=1,2,....,p, 6 =
B, = 1. However, for nonlinear problems they can have
quite different stability properties [5].
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6. Phase change

In the apparent heat capacity method Eq. (1) is replaced
by

ad du 9 au dh
—K— —|K— V=— 84
ax( 6x)+8y( 8y>+ ot (84)

where £ is the enthalpy defined as
h:J pe dT + pL (85)
Uref

and u, is the reference temperature and L is the latent heat.
The right hand side of Eq. (84) can be rewritten as

oh _ 0h du

5 o e )a (86)

where (pc), is termed the apparent heat capacity. Using the
apparent heat capacity directly leads to numerical problems
due to the step like behaviour of (pc),. In order to overcome
these problems both space-averaging and time-averaging
methods have been used in the finite element literature. Del
Guidiceetal. [6] used a space averaging method and evaluated
the apparent heat capacity, for two dimensions, using

dh ou  Oh du

_0h | ax ox oy dy
(pc)y = ou | duou  ou ou (87)

ox ox Jdy dy

It has been reported by Hibbitt [7] that the space averaging
technique of Del Guidice, Eq. (87), can lead to problems in
certain circumstances. In this work, we use the space-
averaging technique of Lemmon [8] where for two-dimen-
sions, the apparent heat capacity is evaluated using

oh 0h  9h dh 712
_0h | ax ox | oy dy
(pc)a = ou | duou  ouou (88)
dx ox ay 9y

Using the Dual Reciprocity Method approximation to a
derivative with respect to a spatial coordinate, say x, the terms
of Eq. (88) are evaluated using

oh; oF;

E = a v Fklhk (89)
and

ou; oF; _

o T ax 0)

7. Line searches

The direction of the line search is given by the Newton—
Raphson iteration equation

w=—(Kp) ¥ 1)

The vector of unknowns w, either (741) or (3) depending upon
the conditions at each node, is then updated according to
wil =w + ndw 92)
where the superscript refers to iteration number and 7 is a
scalar quantity chosen to minimise the residual, or out of
balance, . Performing line searches at every iteration
would be expensive since most iterations would not benefit.
Fortunately, it is easy to check if the current iteration is a
good or bad iteration in terms of reducing the residual at
virtually no cost before deciding if line searches would
benefit the current iteration. Eq. (92) is used to update the
vector of unknowns w, with 1 set to unity. Then if

¢/+1¢/+1
R

is not satisfied then the current iteration is deemed not good
and line searches are then performed. Defining the scalar
¢ = ;; and subscripts on the scalars 1 and ¢ to denote the
line search number, then for iteration i 4+ 1 we have starting
conditions 1y = 0, ¢y = Y4, and 1 = 1, ¢, obtained
from the standard iteration. The line search parameter is
then continually updated from

— Mi-1 4
d)l( d)l d)l 1 ) (9 )
until Eq. (93) is satisfied. Limits on the line searches have to
be imposed in order to avoid numerical problems. The first
is that ldnl is limited to 25% of 1. The second is that 0.25 <
mn < 25. The third is if Eq. (93) is not satisfied within 25 line
searches. When iteration stops due to condition two or three
then m is set to the value that was nearest to satisfying Eq.
(93) during the line search procedure.

=05 93)

M1 = M +dn =

8. Results

In this example taken from Ref. [9], a unit square of
liquid with an initial temperature of 0.3 °C is subjected to a
constant temperature of — 1 °C on the surfaces of the wedge
AB and AD, surfaces BC and CD are perfectly insulated, as
shown in Fig. 1.

The material properties are K = 1 J/m®, ¢ = 1 J/Kg/°C,
p=1Kg/m>, latent heat = 0.25J/m’, liquidus tempe-
rature = 0.005 °C and solidus temperature = —0.005 °C.
From these material properties, the enthalpy data given in

T h

D c -50 0

-0.005 | 49.995

0.005 | 50.255
50 |100.25

Enthalpy Data

T=-1°C T,=03°C

A B
T=-1C

Fig. 1. Problem definition.
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0.02

0.04

0.06

0.08

Fig. 2. Phase front location.

Fig. 1 is derived. The problems associated with corners and
discontinuous boundary conditions have been handled via
the gradient approach [10]. The boundary was divided into
40 elements with 81 equally spaced internal points. Linear
radial basis functions f =14 r are used for the dual
reciprocity method. Fig. 2 shows the phase front, deter-
mined by the 0 °C contour, at 0.02, 0.04, 0.06 and 0.08 s
obtained using the GN11, By = 1 scheme and very small
timesteps, df = 0.1 X 107 s.

In order to compare the time-stepping schemes, we shall
concentrate on where the 0 °C contour crosses the diagonal
AC in Fig. 1 at 0.01 s intervals. Table 1 shows the average
and maximum percentage difference in the phase front
location when compared to the reference results for three
timestep lengths for various time-stepping algorithms. The
reference results were obtained using the GN11, By =1
backward difference algorithm with extremely small time-
steps, df = 0.1 X 107%s, with timesteps this small all
algorithms give the same results or do not converge at all.
NC signifies that no convergence could be obtained even
with the use of line searches. The * symbol in the table
signifies that no convergence was obtained without the use
of line searches.

In Table 1, algorithm code A is the backward difference
algorithm for the first order scheme using parameters,
GN11, By =1, and SS11, 6, = 1. There is very little
difference between GNI1 and SS11 when using the
backward difference algorithm. Algorithm code B is the

Table 1
Phase front location, percentage differences to the reference solution

Crank—Nicolson or trapezium algorithm for the first order
scheme using parameters, GN11, 8, = 0.5 and SS11, 6, =
0.5. Both GN11 and SS11 have problems obtaining
convergence when using the Crank—Nicolson algorithm.
The persistent noise effects, i.e. troublesome oscillations,
associated with the Crank—Nicolson method can off-set the
advantage of the higher order error obtained over the
backward difference algorithm [5]. Algorithm code C is
Lees’ [11] algorithm for the second order scheme using
parameters, GN21, 3, = 2/3, B; = 1/2 and SS21, 6, = 1/2,
0, = 2/3. Both GN21 and SS21 have problems obtaining
convergence when using Lees’ algorithm. Lees’ algorithm
is notoriously oscillatory [12]. Algorithm code D is the
backward difference algorithm for the second order scheme
using parameters, GN21, By = 2, B; = 3/2 and SS21, 6, =
3/2, 8, = 2. GN21 has problems obtaining convergence and
SS21 produces inaccurate results for large timesteps,
dr = 0.01 s, when using the backward difference algorithm.
Algorithm code E is Liniger’s [13] algorithm for the second
order scheme using parameters, GN21, By = 1.292, B; =
1.218 and SS21, 6, = 1.218, 6, = 1.292. GN21 provides
slightly better results than SS21 when using Liniger’s
algorithm. Algorithm code F is Zlamal’s [14] algorithm for
the second order scheme using parameters, GN21, 8, = 8/9,
B1 =5/6 and SS21, 6, = 5/6, 6, = 8/9. Both GN21 and
SS21 have problems obtaining convergence when using
Zlamal’s algorithm. Algorithm code G is the backward
difference algorithm for the third order scheme using

Method Algorithm code dr=0.01s dr =0.001 s dt = 0.0001 s

Average Max Average Max Average Max
GNI11 A 3.16 543 0.27* 0.36* 0.04 0.07
SS11 A 3.16 5.43 0.26%* 0.36%* 0.05 0.07
GNI11 B NC 0.48 1.11 0.02 0.04
SS11 B 1.04%* 4.63* 0.20* 0.65%* NC
GN21 C NC 1.00 1.86 NC
SS21 C 1.12 4.22 0.29* 0.90* NC
GN21 D NC 0.55 1.21 NC
SS21 D 12.78 44.04 1.27 2.71 0.12 0.25
GN21 E 8.57 16.99 0.49 1.11 0.03* 0.05%
SS21 E 10.51 24.43 0.84 1.76 0.07 0.11
GN21 F NC 0.49* 1.11* 0.03* 0.05%*
SS21 F NC 0.34 0.65 NC
GN31 G 9.01 16.64 0.48 1.06 0.02%* 0.04*
SS31 G 23.05 53.95 1.52 3.67 0.13 0.25
GN31 H 8.68 18.90 0.47 1.06 0.02* 0.04%*
SS31 H 17.52 52.09 1.16 2.31 0.11 0.20
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parameters, GN31, B, =6, 8; = 11/3, B, = 2 and SS31,
0, = 2,6, =11/3, 6; = 6. SS31 produces inaccurate results
for large timesteps, df = 0.01 s, when using the backward
difference algorithm. Algorithm code H is the Shayya et al.
[15] algorithm for the third order scheme using parameters,
GN31, By = 2.86, B; = 2.0067, B, = 1.46 and SS31, 6, =
1.46, 6, =2.0067, 6; =2.86. SS31 produces inaccurate
results for large timesteps, df = 0.01 s, when using the
Shayya et al. algorithm.

9. Conclusions

GNpj and SSpj time-stepping schemes have been
presented for nonlinear transient field problems with phase
change using the dual reciprocity boundary element method.
Due to the complexity of the problem, there are very few
analytical results available in order to verify the results so
no comparison of the results presented is made. The authors
have verified the results presented by comparing the results
obtained to the results produced from a commercially
available finite element code and very good agreement was
found. Since the method is a fixed-grid apparent heat
capacity method, it can easily be extended to three-
dimensions without difficulty, unlike the front-tracking
methods previously used for this type of problem using
boundary element methods. The line search technique is
fundamental to obtaining convergence in some situations,
particularly when using time-stepping schemes that are
known to be oscillatory. The authors were unable to obtain
convergence at all using any of the time-stepping schemes
for any time step length using the space averaging technique
of Del Guidice et al. [6], Eq. (87), or the time averaging
technique of Morgan et al. [7], using a simple backward
difference approximation. The results show that the higher
order schemes, GN21, SS21, GN31 and SS31, give less
accurate results than the first order schemes, GN11 and
SS11, when using large time steps. This could be because
the higher order schemes are less able to model the
discontinuity due to phase change than the first order
schemes when using large time steps. There is very little
difference between the results between the first order
schemes, GN11 and SS11, whereas for higher order
schemes, GN31 gives more accurate results than SS31

when using large time steps. Both GN11 and SS11 schemes
using the backward difference algorithm are recommended
for field problems with phase change using the dual
reciprocity boundary element method.
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