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Abstract

We present a deep, high-angular-resolution 3D dust map of the southern Galactic plane over 239° < [ < 6° and
| b] < 10° built on photometry from the DECaPS2 survey, in combination with photometry from VISTA
Variables in the Via Lactea, the Two Micron All Sky Survey, and “Unofficial” Wide-field Infrared Survey
Explorer and parallaxes from Gaia Data Release 3 where available. To construct the map, we first infer the
distance, extinction, and stellar types of over 700 million stars using the BRUTUS stellar inference framework
with a set of theoretical MESA Isochrone and Stellar Tracks (MIST) stellar models. Our resultant 3D dust map
has an angular resolution of 1’ , roughly an order of magnitude finer than existing 3D dust maps and comparable to
the angular resolution of the Herschel 2D dust emission maps. We detect complexes at the range of distances
associated with the Sagittarius-Carina and Scutum-Centaurus arms in the fourth quadrant, as well as more distant
structures out to a maximum reliable distance of d ~ 10 kpc from the Sun. The map is sensitive up to a maximum
extinction of roughly Ay ~ 12 mag. We publicly release both the stellar catalog and the 3D dust map, the latter of
which can easily be queried via the Python package dustmaps. When combined with the existing
Bayestarl9 3D dust map of the northern sky, the DECaPS 3D dust map fills in the missing piece of the
Galactic plane, enabling extinction corrections over the entire disk |»| < 10°. Our map serves as a pathfinder for
the future of 3D dust mapping in the era of LSST and Roman, targeting regimes accessible with deep optical and
near-infrared photometry but often inaccessible with Gaia.

Unified Astronomy Thesaurus concepts: Interstellar dust (836); Milky Way Galaxy (1054); Surveys (1671)
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1. Introduction

The distribution of interstellar dust in the Milky Way has
profound implications not only as a foreground contaminant
for a broad range of astronomical observations, but also as a
tracer of Galactic spiral structure and the sites of star formation
within dense molecular clouds.

Interstellar dust scatters and absorbs starlight at near-
infrared, optical, and ultraviolet wavelengths, causing a
reddening effect due to the preferential attenuation of higher-
energy photons. Near bright stars, interstellar dust clouds also
reflect starlight, generating so-called “reflection nebulae”
(K. Sellgren 1984). Due to the nonspherical nature of grains
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whose major axes align perpendicular to the magnetic field,
interstellar dust polarizes starlight (J. L. Han 2017). Interstellar
dust also reradiates at mid- and far-infrared wavelengths,
acting as a critical foreground for the cosmic microwave
background (D. P. Finkbeiner et al. 1999; Planck Collabora-
tion et al. 2016).

Through its absorption, scattering, and reprocessing of
starlight, interstellar dust also plays a pivotal role in the
physics and chemistry of the interstellar medium (ISM). For
example, dust helps regulate the temperature of the ISM,
heating the gas via photoelectric heating (J. C. Weingartner &
B. T. Draine 2001). Interstellar dust also catalyzes the
formation of molecular hydrogen—the key ingredient in
molecular clouds—and allows star formation to occur by
removing the gravitational energy of collapsing clouds via far-
infrared radiation (B. T. Draine 2003).

Historically, most of our understanding of the distribution of
Galactic dust has come from emission, either from associated
H 1 or from the dust itself. These maps are inherently 2D with
varying angular resolution, where information on the structure
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of the dust as a function of distance has been projected onto the
plane of the sky. A number of 2D dust maps have been built
over the past half century. For example, D. Burstein &
C. Heiles (1978) combined galaxy counts with HI column
density measurements derived from 21 cm spectral-line maps
to probe integrated dust column density under the assumption
that gas and dust are well mixed (see also D. Burstein &
C. Heiles 1982; D. Lenz et al. 2017). D. J. Schlegel et al.
(1998) derived the dust column density from far-infrared
emission at 100 and 240 ym using IRAS (G. Neugebauer et al.
1984) and DIRBE data (N. W. Boggess et al. 1992),
calibrating the far-infrared flux to dust reddening using a
sample of elliptical galaxies, and later Sloan Digital Sky
Survey (SDSS) photometry and spectra of 250,000 stars
(E. F. Schlafly & D. P. Finkbeiner 2011), producing a map
with an angular resolution of 6’ .

More recently, Planck Collaboration et al. (2014) used a
similar technique to D. J. Schlegel et al. (1998) for modeling
far-infrared emission, combining the 100 gm IRAS data with
Planck data between 353 and 857 GHz to derive an all-sky 2D
map of dust reddening at an angular resolution of 5'.
Concurrently, A. M. Meisner & D. P. Finkbeiner (2015)
produced all-sky maps of diffuse Galactic dust emission based
on Wide-field Infrared Survey Explorer (WISE) 12 yum images
at an angular resolution of 157 The WISE-based maps are
roughly a factor of 4x higher than the next highest angular
resolution 2D dust emission maps from Herschel. Compared to
WISE, the Herschel maps achieve a lower 1’ angular
resolution (377 at 500 um; M. J. Griffin et al. 2010), but
suffer from less contamination from stars and galaxies.

Alongside 2D emission-based maps, the recent rise in wide-
field surveys has also enabled the construction of 2D dust
maps based on photometry. These 2D dust maps primarily rely
on measuring the infrared color excess toward red clump (RC)
and red giant branch (RGB) stars, because these stellar
populations act as so-called “standard crayons,” with very
consistent intrinsic colors. By estimating the color excess to
many standard crayons, these 2D star-based approaches can
reconstruct the integrated extinction out to large distances,
commensurate with the completeness limit of the underlying
stellar populations. A number of such pioneering 2D star-
based maps have been produced, particularly toward the inner
Galaxy. For instance, F. Surot et al. (2020) use RC and RGB
stars detected in the VISTA Variables in the Via Lactea
(VVV) survey to map the color excess toward a 300 sq. deg?.
region of the bulge with very fine angular resolution ranging
between 107 and 2’ (see also O. A. Gonzalez et al. 2012;
D. M. Nataf et al. 2013; J. Alonso-Garcia et al. 2017). More
recently, using intrinsic colors drawn from the StarHorse
stellar parameter catalog (F. Anders et al. 2019) rather than
purely RC and RGB stars, M. Zhang & J. Kainulainen (2022)
built a 2D dust map over the full VVV survey area, achieving
an angular resolution of 30” and sensitivity to extinctions up to
Ay ~ 10-20 mag.

While these 2D emission and 2D star-based maps have been
critical for correcting for the effects of dust obscuration
primarily on extragalactic observations—where the entire
Milky Way is a foreground—they are largely insufficient for
corrections within the Milky Way, or to probe the internal
structure of the Milky Way’s ISM. For these applications, it is
necessary to map the distribution of dust in three spatial
dimensions (3D).
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3D dust mapping has flourished over roughly the past
decade, adding the critical third dimension (distance) to our
understanding of the interstellar dust distribution. Similar to
the 2D star-based dust maps, 3D dust mapping relies on the
principle that dust reddens stellar photometric colors, so these
3D maps are based on dust extinction rather than dust
emission. By modeling this cumulative reddening effect for
stars at different distances along an individual line of sight in
the Milky Ways, it is possible to infer the differential reddening
along that line of sight. By grouping hundreds of millions of
stars sightline by sightline across the Galaxy, one can
reconstruct the 3D distribution of dust.

One of the primary challenges of early 3D dust mapping
efforts is simultaneously inferring the type of the star (and thus
its intrinsic colors), its distance, and reddening from photo-
metry alone. Despite the challenges, several such 3D dust
maps have been built solely on the optical and/or infrared
photometry readily available in large-scale surveys. D. Mars-
hall et al. (2025) combined the near-infrared photometric
colors of stars detected by the Two Micron All Sky Survey
(2MASS; M. F. Skrutskie et al. 2006) with models for stars’
intrinsic colors and distances obtained from the Besangon
Stellar Population Synthesis Model of the Galaxy (A. C. Robin
et al. 2003) to infer the 3D distribution of reddening toward the
inner Galactic plane. S. E. Sale et al. (2014) used a hierarchical
Bayesian model applied to photometry from the IPHAS survey
(J. E. Drew et al. 2005) to construct a 3D dust map toward the
northern Galactic plane. G. M. Green et al. (2015) probabil-
istically inferred the distances, reddenings, and stellar types of
~800 million stars using a combination of Pan-STARRSI1
(PS1; K. C. Chambers et al. 2016) and 2MASS photometry to
produce a 3D dust map over three-quarters of the northern sky
(the “Bayestar” map; see also G. M. Green et al. 2014, 2018).

By providing constraints on the distances of a billion stars—
independent of their colors—the second data release (DR2) of
the Gaia mission ushered in a new era of 3D dust maps with
unprecedented distance resolution. A number of efforts have
combined the broadband photometric colors of stars with Gaia
astrometry in pursuit of even more highly resolved maps with
improved distance resolution. For example, R. Lallement et al.
(2019) applied a hierarchical inversion algorithm to a
combination of Gaia and 2MASS photometry and Gaia
parallax measurements to produce a 3D dust map out to
3kpc from the Sun with a distance resolution (in Cartesian
space) of ~25pc (see also R. Lallement et al. 2018, 2022;
J. L. Vergely et al. 2022). Applying a random forest regression
to a combination of Gaia, 2MASS, and WISE photometry
alongside Gaia parallax measurements, B. Q. Chen et al.
(2019) inferred the properties of ~50 million stars and
constructed a 3D dust map of the full Galactic plane out to
~5 kpc with an angular resolution of 6’ . G. M. Green et al.
(2019) incorporated Gaia parallaxes into their “Bayestar” dust
mapping pipeline and implemented a new spatial prior
(compared to G. M. Green et al. 2018) for correlating
neighboring sightlines, resulting in a 3D dust map with 4
times finer distance resolution than their previous maps and a
typical angular resolution of ~7’. Incorporating Gaia-
informed estimates of stellar distances and reddenings
(obtained from the StarHorse catalog; F. Anders et al. 2019),
R. H. Leike et al. (2020) combined metric Gaussian variational
inference (J. Knollmiiller & T. A. EnBlin 2019), Gaussian
processes, and information field theory to map the 3D
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distribution of dust at ~1 pc Cartesian resolution out to
~400pc from the Sun—resolving the detailed internal
structure of local molecular clouds for the first time (see also
R. H. Leike & T. A. EnBlin 2019). Using a new catalog of
distance and extinction measurements from X. Zhang et al.
(2023) based on Gaia BP/RP spectra, G. Edenhofer et al.
(2024) built upon the methodology of R. H. Leike et al. (2020)
to produce a parsec-scale 3D dust map out to a distance of
1.25 kpc from the Sun at 14’ angular resolution.

While Gaia has been transformational to the field of 3D dust
mapping, the gains have largely been limited to the solar
neighborhood, within a few kiloparsecs of the Sun. This
limitation stems from the underlying requirement that stars
must be detected behind dense dust clouds in order for the
cloud to be detected in 3D maps. If the dust column is so high
—as in the inner Galactic plane—that it extinguishes the light
from background stars entirely, the cloud goes undetected in
3D maps (G. M. Green et al. 2019; C. Zucker et al. 2019).
Because most existing maps rely on either easily extinguished
optical photometry and astrometry from Gaia and/or shallow
near-infrared photometry (from, e.g., 2MASS), most structure
in the inner Galactic plane at distances =2 kpc has largely
gone unresolved in 3D. This structure includes some of the
richest regions in the inner Galaxy, including the Scutum-
Centaurus arm, which hosts much of the Milky Way’s most
active star formation.

In this work, we leverage two of the deepest infrared
surveys toward the inner Galaxy, the Dark Energy Camera
Plane Survey 2 (DECaPS2; A. K. Saydjari et al. 2023b) and
the VISTA Variables in the Via Lactea (VVV; D. Minniti
et al. 2010), to infer the distances, reddenings, and stellar
types of hundreds of millions of stars. Incorporating Gaia
parallax distances when available nearby, but relying on the
deep infrared photometry in heavily dust-enshrouded regions
at greater distances, we construct a 3D dust map of the
southern Galactic plane. Our 3D dust map achieves three
main goals:

1. By incorporating deep infrared photometry into an
improved stellar modeling pipeline, we resolve
hitherto-undetected structure toward the inner Galactic
plane at distances =2 kpc.

2. By leveraging the sheer stellar density of DECaPS2
(=800 million stars over only 6% of the sky), we
produce the highest-angular-resolution 3D dust map
(=~1") to date, constituting almost an order of magnitude
improvement in angular resolution over current 3D dust
maps (B. Q. Chen et al. 2019; G. M. Green et al. 2019).

3. By targeting the portion the Galaxy unreachable by PS1
(6 < —30°, we can combine our map with the
“Bayestar19” 3D dust map (G. M. Green et al. 2019)
to provide full coverage of the Galactic plane at
|b| < 10° and enable extinction corrections over the
entire disk.

In Figure 1, we provide a schematic overview of our
pipeline. In Section 2, we describe the various data sets and the
survey-level cuts applied to ensure data quality. In Section 3,
we describe how the photometric and astrometric data from
these surveys are combined into a single catalog. Leveraging
the assembled catalog, we describe the methodology under-
pinning our stellar modeling and 3D dust mapping pipelines in
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Section 4. In Section 5, we present the 3D distribution of stars
and dust in the southern Galactic plane. We discuss the
implications of our map in Section 6 and compare with
existing efforts. In Section 7, we discuss the availability of the
data generated and software produced under this work. Finally,
we conclude in Section 8. For a summary of known artifacts in
our 3D dust map, we refer readers to Appendix A. In this
work, our goal is to present the method of construction of the
map, while future works will use this map to further
investigate the spatial and dynamical organization of the
ISM in the inner Galaxy.

2. Data

Our analysis is based on a combination of photometric and
astrometric data from five surveys:

1. The Dark Energy Camera Plane Survey 2 (DECaPS2;
A. K. Saydjari et al. 2023b).

2. The Vista Variables in the Via Lactea Survey (VVV;
D. Minniti et al. 2010).

3. The Two Micron All Sky Survey (2MASS; M. F. Skrutskie
et al. 2006).

4. The “Unofficial” Wide-field Infrared Survey Catalog
(unWISE; E. F. Schlafly et al. 2019).

5. The third data release of the Gaia Mission (Gaia DR3;
Gaia Collaboration et al. 2023).

2.1. DECaPS2

The second release of the Dark Energy Camera Plane
Survey (DECaPS2; A. K. Saydjari et al. 2023b) is a deep,
five-band optical and near-infrared survey of the southern
Galactic plane (239° < [ < 6°, |b| < 10°).'° It builds upon
the first data release (DECaPS1; E. F. Schlafly et al. 2018)
by improving the photometric reduction and extending
the latitude range from |b| < 4° to |b| < 10°, for a total of
2700 deg” of sky coverage (6.5%) with an average of three
epochs per band. The DECaPS2 survey totals 3.32 billion
objects and achieves average single-exposure AB magnitude
depths of 23.5, 22.6, 22.1, 21.6, and 20.8 mag in the g, r,
i, z, and Y bands, respectively, though with considerable
variation due to crowding. The filters span the wavelength
range 400-1065 nm. We use the CloudCovErr-“corrected”
crowdsource photometry where the full background
covariance is modeled, improving the uncertainty estimates
in regions with structured backgrounds (see E. F. Schlafly
2021; A. K. Saydjari & D. P. Finkbeiner 2022, for details
on the methods). On a band-by-band basis, we require
an object to have an “OK” detection in at least one
epoch (nmag cflux ok>0), errors <0.1 mag, and
fracflux> 0.75, indicating that at least 75% of the point-
spread function (PSF)-weighted fraction of flux at the star’s
location is derived from itself (as opposed to neighboring
sources). The DECaPS2 survey complements the PS1 survey,
which covers three-quarters of the northern sky (6 > —30°) at
wavelengths similar to DECaPS2, which was previously used
in the construction of the Bayestarl9 3D dust map
(G. M. Green et al. 2019).

16 All the DECaPS2 photometry utilized here is available for download at
http: / /decaps.skymaps.info/release /data/files/DR2_REDUX /DATABASE/
dbfits/ and accessible via NOIRLab’s AstroDataLab.
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Figure 1. Schematic overview of the process of turning images of the sky into a 3D map of dust. The DECaPS2 survey forms the foundation of our 3D dust map,
whose photometric colors are combined with complementary photometric (VVV, 2MASS, unWISE) and astrometric surveys (Gaia) where available and fed into our
stellar inference framework. We use the brutus stellar inference framework to infer the distance, extinction, and stellar type of hundreds of millions of stars. We
then group stars into pixels and fit the set of distance-reddening measurements along the line of sight in each pixel to generate a 3D map of dust.

22. VvV

The Vista Variables in the Via Lactea Survey (VVV) survey
(D. Minniti et al. 2010) is a near-infrared survey targeting 562
deg? of the bulge (—10° < [ < 10°, —10° < b < 5°) and
southern Galactic plane (—65° < [ < — 10°, —=2° < b < 2°).
The original PSF reduction of the VVV survey by J. Alonso-
Garcia et al. (2018) used DoPhot (P. L. Schechter et al. 1993)
to derive a catalog of 846 million sources with coverage in the
Z,Y,J, H, and K; filters, spanning 0.84-2.5 um. We utilize a
more recent PSF reduction by M. Zhang & J. Kainulainen
(2019), which applies DaoPHOT (P. B. Stetson 1987) to the J,
H, and K, bands only to obtain a 926 million source catalog
that goes roughly 1 magnitude deeper than J. Alonso-Garcia
et al. (2018). The M. Zhang & J. Kainulainen (2019) reduction
achieves 5o limiting magnitudes of 20.8, 19.5, and 18.7 mag in
the J, H, and Ks bands, respectively, in the Vega system.
M. Zhang & J. Kainulainen (2019) flag sources as spurious
detections by sigma-clipping outlying sources using the
magnitude—error relations in different band combinations.

The DECaPS2 error modeling implemented by A. K. Saydj-
ari et al. (2023b) debiased and improved uncertainty estimates
for photometry on structured backgrounds using the Cloud-
CovErr algorithm. Injection tests performed on every
DECam exposure in the survey indicate that the photometric
error estimates are correct except in regions of the most
extreme crowding. Without marginalizing over structured
backgrounds, uncertainty can often be underestimated by a
factor of 2 or more. Therefore, we adopt a more stringent error

cut for VVV, 2MASS, and unWISE since their uncertainties
may be underestimated. On a band-by-band basis, we require
that no source is flagged as spurious in any magnitude—error
relation using that band, and that the error is <0.05 mag.

2.3. 2MASS

The Two Micron All Sky Survey (2MASS; M. F. Skrutskie
et al. 2006) is an all-sky infrared survey in the J, H, and K
bands, achieving a 100 point-source depth of 15.8, 15.1, and
14.3 mag, respectively, in the Vega system. The point-source
catalog contains a total of 470 million objects, of which
roughly 340 million sources are considered good quality. On a
band-by-band basis, we only utilize detection that meet the
2MASS “high-reliability” criteria'” with errors <0.05 mag.
We also exclude sources that are flagged as having possible
contamination from nearby bright point sources (requiring
cc_flg==0) and galaxies (requiring gal contam==0).

2.4. unWISE

The “Unofficial” Wide-field Infrared Survey Explorer
(unWISE; E. F. Schlafly et al. 2019) catalog analyzes the
unblurred “unWISE” coadds (D. Lang 2014) derived from the
WISE images to detect 2 billion sources over the full sky in the
W1 and W2 bands at 3.4 um and 4.5 um, respectively.

17 For a description of the high-reliability criteria, see the 2MASS All Sky
Data Release Explanatory Supplement (https://irsa.ipac.caltech.edu/data/
2MASS /docs /releases /allsky /doc/sec1_6b.html).
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Compared to the official ALLWISE catalog (R. M. Cutri et al.
2013), the unWISE catalog is based on deeper imaging and
uses the crowdsource algorithm (E. F. Schlafly 2021) to
improve modeling of crowded regions. The unWISE catalog
extends 0.7 mag deeper than ALLWISE, achieving a 5o point-
source depth of ~20.7 and 20.0 mag for W1 and W2 in the AB
system, respectively. On a band-by-band basis, we require that
no flags are set (flags unwise==0), errors <0.05 mag,
and fracflux>0.85, indicating that at least 85% of the
PSF-weighted fraction of flux at the star’s location is derived
from itself rather than contamination from adjacent sources.

2.5. Gaia DR3

Gaia (Gaia Collaboration et al. 2016) is an all-sky optical
survey providing astrometry (parallaxes and proper motions)
and photometry (in the G, BP, and RP bands) for over 1 billion
stars. Given the breadth of the Gaia passbands (330-1050 nm
in G, 330-680 nm in BP, and 630-1050 nm in RP) in
comparison to the DECaPS2 filters covering a similar
wavelength range, we only utilize the Gaia astrometry
(specifically the Gaia parallax measurements) in this work.
We leverage the parallax measurements from the third data
release (Gaia DR3; Gaia Collaboration et al. 2023), which
provides a median parallax uncertainty of 0.02-0.03 mas for
G = 9-14 mag and 0.5 mas uncertainty for G = 20 mag
(L. Lindegren et al. 2021). Following C. Fabricius et al.
(2021), we exclude stars with renormalized unit weight error
ruwe > 1.4.

3. Assembling a Final Catalog

To assemble a final catalog, we cross-match the DECaPS2,
VVV, 2MASS, unWISE, and Gaia DR3 surveys using the
Large Survey Database (LSD) architecture (M. Juric 2012).
DECaPS2 serves as the primary catalog for the astrometry,
meaning we find photometry and astrometry for sources in the
other catalogs that cross-match to detections in DECaPS2,
adopting a cross-match radius of 0.5. After applying the band-
by-band survey-level photometric quality cuts described in
Sections 2.1-2.4, we require that the star be detected in at least
four bands (g, r, i, z, Y, J, H, K, W1, W2), at least one of which
must be a DECaPS2 band. To ensure continuity across the
VVV survey boundary, we do consider sources that have
detections in both VVV and 2MASS, but do not double count
the J, H, and K detections for the purposes of imposing the
four-band minimum. For example, if a star is detected in
2MASS J, H, K and VVV J, H, K alongside a DECaPS Y-band
detection, this star would be labeled as a four-band detection
when filtering, but both the 2MASS and VVV data would be
incorporated in the fit. We do not require a Gaia parallax
measurement but include these distance constraints in the
catalog when available. In Figure 2, we break down the
number of photometric bands per star incorporated into the
stellar modeling, tabulated across the full DECaPS2 footprint.
The number of bands ranges from four (the minimum) to 13
(the full filter coverage, consisting of g, 7, i, z, Y, Jyvvv, Hyvv,
Kvvv, Jamass, Homass, Komass, W1, and W2), with an
average of five bands per star.

Our resulting catalog contains 793 million sources. Despite
targeting only one-third of the Galactic plane, our source count
is just shy of the 799 million stars used to reconstruct the
Bayestarl9 3D dust map (covering the remaining two-

Zucker et al.

Full DECaPS2 Footprint
400 A

300

200

Counts [Millions]

100

4 5 6 7 8 9 10 11 12 13
Number of Photometric Bands

Figure 2. Number of photometric bands per star incorporated into the stellar

modeling, tabulated across all stars in the full DECaPS2 footprint. The number

of photometric detections ranges from four (the minimum) to 13 (the

maximum), with an average of five bands incorporated per star.

thirds of the plane and the rest of the northern sky),
underlining the increased source density in the DECaPS2
footprint (Figure 3). In Figure 4, we break down the number of
stars detected per band. There are between 605 and 772 million
detections in any individual DECaPS2 grizY band. Roughly
20% of the sample have detections in a VVV band (138-186
million detections per band), compared to roughly 3% for
2MASS (25-35 million detections per band). Less than 2% of
stars are detected in unWISE (15 million detections per band).
In contrast, roughly half of the sample (427 million stars) have
a Gaia parallax measurement, though only 5% of stars (40
million) have a parallax that alone will strongly constrain the
star’s distance (signal-to-noise ratio SNR > 5). In many cases
the low-SNR parallaxes are still useful for breaking the dwarf—
giant degeneracy. Considering only the region of the sky
where there is overlap between the VVV and DECaPS2
footprints (purple polygon in Figure 3, encompassing part of
the bulge and the plane and the southern plane |b| < 2°),
roughly 75% of stars have both DECaPS2 and VVV
detections, underlining the importance of the deeper near-
infrared photometry of VVV compared to 2MASS in dust-
enshrouded regions.

4. Methods

Here we outline our methodology for mapping the 3D
distribution of dust in the southern Galactic plane. As
described in Section 4.1, we start by inferring the stellar
parameters, dust extinction, and distance on a star-by-star basis
using our assembled photometric and astrometric catalog from
Section 3. We then group the stars into discrete pixels on the
celestial sphere and use the per-star distance and extinction
estimates within each pixel to model the distribution of dust as
a function of distance along the line of sight, as described in
Section 4.2. The per-star and line-of-sight inference required a
significant number of CPU hours, and the computational
resources required to generate these data products are
described in Appendix B.

4.1. Stellar Modeling

To perform the stellar modeling, we leverage the open-
source Python package BRUTUS (J. S. Speagle et al. 2025).
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Figure 3. Distribution of source density on the plane of the sky for stars we model in Section 4.1.1, the majority of which will be used in the line-of-sight dust
reconstruction. The VVV footprint (purple polygon) shows a modest increase in source density in comparison to the rest of the DECaPS2 footprint. The median
source density is 70 stars per arcmin?, with an interquartile range of 37—125 stars per arcmin’.

BRUTUS derives estimates of extrinsic stellar parameters ¢
(distance, extinction, total-to-selective extinction ratio) over a
grid of intrinsic stellar parameters @ (e.g., initial mass). The
BRUTUS pipeline has already successfully been applied to
estimate distances, extinctions, and stellar properties of 170
million stars at high galactic latitude (the Augustus catalog)
as presented in J. S. Speagle et al. (2024). In Section 4.1.1, we
briefly summarize the core inference framework from
J. S. Speagle et al. (2025) and highlight specific adaptations
implemented in this work with respect to J. S. Speagle et al.
(2024). In Section 4.1.2, we describe the BRUTUS setup
(version v0.8.3) used to perform the inference on the
assembled catalog from Section 3.

4.1.1. Statistical Framework

We assume that the observed magnitudes of a star, denoted
by m = {m;};—,..,, measured across a set of b photometric
passbands, can be modeled as

mo gy =My + i+ Ay x (R+ Ry x R'), (1

where My is the set of absolute magnitudes for a star as a
function of its intrinsic stellar parameters 6; p is the distance
modulus; Ay is the dust extinction, measured as the total
attenuation in magnitudes in the V band; R is the reddening
vector; Ry is the total-to-selective extinction ratio, measured as
the attenuation in the V band Ay relative to the color excess in

the B and V bands, Ez _y (Ry = EA" ); and R’ is the

differential reddening vector that sets the shape of the
reddening vector R’.

Following J. S. Speagle et al. (2024), to parameterize 6 we
utilize the MESA Isochrone and Stellar Tracks (MIST) models
(J. Choti et al. 2016), which are a set of theoretical isochrones
that relate intrinsic stellar evolutionary parameters 6 to
surface-level parameters 6, via stellar atmospheric models
(see P. A. Cargile et al. 2020). The intrinsic stellar parameters
0 include the initial mass M, the initial metallicity
[Fe/Hlini,, and the equivalent evolutionary phase (EEP), which
breaks down the various stages of stellar evolution into an
equal number of steps to ensure efficient sampling of phases
even when stars are rapidly evolving on the post main
sequence. The surface-level parameters 6, include the
effective temperature T.¢, the surface gravity log g, the surface
metallicity [Fe/HJs,s, and the surface «a-abundance

enhancement [a/Felg,. As in J. S. Speagle et al. (2024),
[a/Felsus = O by default since the current models assume
solar-scaled abundance patterns. However, we hope to explore
the effect of a-abundance enhancements—and particularly any
potential degeneracies between [a/Felg,s and extinction—in
future work.

We utilize version 1.2 of the nonrotating MI ST models. We
do not model the secondary mass fraction and assume all stars
are single stars. The exact grid of models for the stellar
evolutionary parameters @ utilized in this work (grid -
mist v10) is summarized in Table 1 and available for
download via the BRUTUS GitHub page. Notably, we extend
the mass grid down to 0.2 M from the minimum mass of
0.5 M, considered in J. S. Speagle et al. (2024) to account for
the abundance of M dwarfs now being detected at greater
distances in the DECaPS2 survey. Note that we do not include
any models on the pre main sequence (EEP < 202) or beyond
the start of the thermally pulsing asymptotic giant branch
(AGB; EEP > 808).

The quantities R and R’ are fixed to the extinction curve of
E. F. Schlafly et al. (2016) and published filter curves for the
different bandpasses.'® Unlike J. S. Speagle et al. (2024), we
assume that R and R’ are the same for all models, such that
Ry = R and Ré = R’. Therefore, the extinction curve does not
change as a function of spectral type. The gray component of
the extinction curve is not measured in E. F. Schlafly et al.
(2016), and instead relies on the study of R. Indebetouw et al.
(2005), which finds Ay/Ax = 1.55. The components of R are
computed as derivatives of Asy, at Asyy = 2.3 mag for a 4500
K solar-metallicity giant, where As4, is the extinction at 542
nm. The values of R’ give the derivative of the extinction at
Ry = 3.32 for each filter for the same dust column and solar
spectrum. We renormalize the extinction curve to scale with
Ay, and the extinction coefficients normalized to Ay = 1 mag
for the mean Ry, = 3.32 are summarized in Table 2. Note that
the extinction coefficient for the WISE W2 band, Aws», is larger
than typically reported in the literature, on par with A, (see,
e.g., S. Wang & X. Chen 2019). The W2 band is the only
infrared band (and the only band other than the g band) to have
a negative derivative R’, causing this value to be slightly larger
than literature values when we renormalized the extinction
curve to scale with Ay, (see Equation (1)). Less than 2% of stars

1% We document the extinction curve script originally published in E. F. Schlafly
et al. (2016) on Zenodo at doi:10.5281/zenodo.16813633
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Figure 4. Breakdown of the number of stars detected in each photometric band (shown in blue for DECaPS2, purple for VV'V, pink for 2MASS, orange for unWISE)
and with an available Gaia parallax measurement (shown in yellow). For Gaia, we further subdivide the stars into all those with a Gaia parallax detection and only
those with a signal-to-noise ratio on the parallax detection >5. The top panel shows the breakdown of band coverage for the entire DECaPS2 footprint, while the
bottom panel shows the breakdown for the subset of the DECaPS2 footprint that overlaps with the VVV footprint (see purple polygon in Figure 3).

Table 1 Table 2
Parameter Grid for the MIST Models (grid mist v10) Adopted Reddening Vector
Minimum Maximum Spacing Filter R R
Initial Mass (M;,;,) DECam g 1.3285 —0.0169
02 M, 20M, 0.025 M., DECam r 0.7000 0.0631
— — DECam i 0.3529 0.0982
Initial Metallicity ([Fe/H]iniv) DECam z 0.1814 0.0989
—30 —2.0 0.10 DECam ¥ 0.1297 0.0933
-2.0 0.45 0.05
VISTA J 0.0823 0.0609
Equivalent Evolutionary Point (EEP) VISTA H 0.0492 0.0371
202 454 6 VISTA K 0.0318 0.0241
454 808 2
2MASS J 0.0835 0.0624
2MASS H 0.0489 0.0370
have detections in W2 (and the extinction behaves as expected IMASS K 0.0315 0.0239
when scaling with Ay in Equation (1)) so this effect should be WISE W1 0.0484 0.0052
negligible on the resulting stellar inference. This model for the WISE W2 0.0746 —0.0080

extinction curve is an approximation, assuming that a
particular parcel of dust will change the magnitude of any
observed star in exactly the same way. This model would be
correct if the bandpasses were infinitely narrow or the
extinction curve constant in wavelength over a bandpass. In
fact, variation of the extinction curve over the bandpass
introduces small dependences of R and R’ in Table 2 on
extinction and stellar type. Here we neglect that variation,
which is quite small for the bandpasses considered in this work
but is much larger for the very broad Gaia G, BP, and RP
bands, for example. This model has the advantage that it is
simpler and can be implemented more efficiently. While we
technically allow the extinction curve to vary from star to star
(by sampling in Ry), any inference surrounding the dust

Note. Parameterization of the mean reddening vector R (corresponding to
Ry = 3.32) and the differential reddening vector R’ in this work (see
Equation (1)). The extinction coefficients have been normalized to Ay = 1 mag
with the gray component fixed assuming 2—: = 1.55 following R. Indebetouw

et al. (2005).

extinction curve is highly prior driven, as we discuss further in
Appendix C.

Based on our model, the posterior probability P (0, ¢| ri, <)
that the set of intrinsic stellar parameters 6 and extrinsic
parameters ¢ is consistent with the observed magnitudes 7,
measured Gaia parallax <, and prior information on 6 and ¢ is
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given by Bayes’ theorem:
P(0, ¢| m, @) x P (i, | 0, §)P(O, )
= Ephol(aa ¢)£aslr(¢)ﬂ-(0’ ¢)’ (2)

where P (0, ¢| m, @) is the posterior probability for 8 and ¢,
P@i, %] 0, @) = Lpnoi(0, @) Los(¢) is the likelihood—bro-
ken into the photometric Lyn, (0, ¢) and astrometric like-
lihood L, (¢p)—and P(8, ¢) = (8, ¢) is the Galactic prior.
Our photometric likelihood Lpho(¢) compares the set of
observed magnitudes m with the predicted magnitudes mg 4
given the associated observational errors &. We assume
Lohot (60, @) to be independent and roughly Gaussian in the
measured magnitude in each band b such that
b A2
L@, & =[] exp[_%(m,(b’, ?2 ) ]

i=1 2757 i
3)

Likewise, the astrometric likelihood L, (¢) compares the
predicted parallax w(¢) with the observed parallax < given
the associated parallax error ,,. We also assume L, (¢) to be
Gaussian such that

Lasu(@) = “

)
L exp [_g(w@) - %) ]
J2rd? 2 &2
The Galactic prior 7(8, ¢) encompasses prior beliefs on the
3D distribution and properties of stars and dust in the Milky
Way. The prior is broken up into several components that are
assumed to be independent:

(0, @) o< 7 (Minit)
IMF
x (d|¢, b)
7
3D number
x m([Fe/Hlnitld, ¢, b)
3D metallicity
X 7T(tag6|d7 ¢, b)
[
3D age
x m(Av|d, ¢, b)
[ A
3D extinction
X 7(Ry) . %)
-~ 77

Dust extinction curve

Here d is the distance to the star and (¢, b) are the star’s
Galactic coordinates. We adopt the same default priors for the
initial mass function (IMF), metallicity, age, and dust
extinction curve as described in Appendix A of J. S. Speagle
et al. (2025). Briefly, we assume that the initial masses of stars
follow a broken power law following P. Kroupa (2001). For
the 3D number density prior, we adopt a three-component thin
disk, thick disk, and halo model on stellar distance, metallicity,
and age informed by previous studies (X.-X. Xue et al. 2015;
J. Bland-Hawthorn & O. Gerhard 2016; F. Anders et al. 2019).
Our 3D number density prior is conceptually similar to
C. A. L. Bailer-Jones et al. (2018), except they adopt a
Galactic model based on a Gaia mock catalog from J. Rybizki
et al. (2018). Following E. F. Schlafly et al. (2016), for the
prior on the dust extinction curve we assume a mean Ry of
pg, = 3.32 and standard deviation of og, = 0.18. This is a
very tight prior on Ry, so any significant variations we may see
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in Ry are likely due to our fit compensating for limitations in
other areas (e.g., the stellar models) rather than capturing
meaningful variations in the dust extinction curve. Unlike
J. S. Speagle et al. (2024), who adopt a 3D extinction prior
based on the 3D dust map of G. M. Green et al. (2019), we
instead place a flat prior on extinction over the range
Ay = 0-24 mag. The range for the flat prior was chosen to
match the reddening range of G. M. Green et al. (2019), who
sampled for the stellar reddening between 0 and 7 mag.

4.1.2. Application to Data

We apply the BRUTUS pipeline to all 793 million stars in the
assembled catalog described in Section 3. As discussed in
J. S. Speagle et al. (2025, 2024), there are systematic offsets
between the MIST models and the underlying photometric
data that are not fully captured by the photometric errors. We
thus apply both a zero-point correction and an error floor to the
photometry.

Full details on both the zero-point correction and the error
floor are summarized in Table 1 of J. S. Speagle et al. (2024).
Briefly, the photometric zero-point corrections range from 1%
to 4% on a band-by-band basis, and are multiplied to the
observed flux densities after transforming from magnitude
space to flux density space. The error floors are added in
quadrature to the reported observational uncertainties on the
magnitudes and range from 0.02 mag for DECaPS2 up to 0.04
mag for unWISE.

In addition to the photometric corrections, we also apply a
correction to the Gaia astrometry. Specifically, we implement a
parallax zero-point correction (as described in L. Lindegren
et al. 2021) dependent on the star’s magnitude, color, and
ecliptic latitude. To apply the correction, we utilize the
gaiadr3-zero-point package."

The brutus configuration used to generate our stellar
modeling results, including all photometric and astrometric
corrections, is available online via Zenodo (J. Speagle
et al. 2025).

We generate 1000 random samples from the posterior to
construct a 2D binned posterior on distance and reddening for
each star, which will be used to fit the line-of-sight 3D dust
model as described in Section 4.2. To generate the 2D
posteriors, we use the built-in bin pdfs distred function
in BRUTUS, evaluating the posterior density of each star on a
grid with distance modulus spanning 4 = 4—19 mag in steps of
0.125 mag and reddening spanning £ = 0-7 mag in steps of
0.01 mag. We convert from extinction to reddening using the
Ry samples. Following G. M. Green et al. (2019), we smooth
the posteriors, adopting a Gaussian kernel with a standard
deviation equal to 1% of the total range.

In addition to the 2D distance—reddening posteriors, we use
the 1000 random samples to compute the 2.5th, 16th, 50th,
84th, and 97.5th percentiles (median, 1o, and 2¢ errors) of the
intrinsic and extrinsic stellar parameters. After saving the
marginalized distance—extinction 2D posteriors and the
percentiles, we thin the samples and save a subset of random
samples to enable other science cases beyond those described
in this work.

' https://gitlab.com /icc-ub/public/gaiadr3_zeropoint
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4.2. 3D Dust Modeling

In this section, we describe our approach to utilizing the
posterior density estimates of distance and reddening for
individual stars generated as part of the modeling in
Section 4.1.2 to constrain the line-of-sight distribution of dust
in the Milky Way. In Section 4.2.1, we explain the quality cuts
imposed on individual stellar posteriors, and in Section 4.2.2
how we group stars into individual pixels on the celestial
sphere to fit for the extinction as a function of distance along
each line of sight. Finally, in Section 4.2.3, we discuss the
inference framework for the line-of-sight fits, and in
Section 4.2.4, we describe how we use data-driven Gaussian
process priors to infill missing pixels.

4.2.1. Filtering per-Star Posteriors

To fit the line-of-sight dust distribution, we partition the sky
using a HEALPix pixelization (K. M. Gérski et al. 2005) with
Nsige = 8192 and a nested ordering scheme. Before grouping
stars by HEALPix pixel, we filter out stars with unreliable
modeling. First, we remove stars with poor best-fit chi-square
(x*) values. Because x> depends on the number of bands
detected per source, which varies from four to 13 bands, we
remove all stars for which

PG > X)) < 001, (6)

Nbands
with np,ngs being the number of detected bands. Equation (6) is
designed to filter stars that fail to achieve even a single

reasonable fit. The term P(Xibands > xlz)est) denotes the y°
survival function, or the probability of observing a x> value
larger than X%est assuming the number of degrees of freedom is
equal to the number of detected photometric bands. By

filtering at the P(x> > Xﬁm) < 0.01 threshold, we remove

Nbands
stars whose best-fit model is statistically inconsistent with the

data at the 99% confidence level, roughly equivalent to
removing outliers at the 20-3¢ level.

Next, we impose a cut to remove low-mass M dwarfs from
the sample. The theoretical MIST isochrones are known to
exhibit large systematic biases in predicted colors at masses
below M, < 0.5 M, (see, e.g., J. Choi et al. 2016; J. S. Spe-
agle et al. 2025, 2024). Thus, we remove all stars where the
50th percentile of the M;,; samples is less than 0.5 M. As
noted in Section 4.1.1, we extend the initial mass grid down to
My = 02M,. Although stars with masses between
M = 0.2-0.5 M, are ultimately filtered out, extending the
mass grid down to lower masses improves the line-of-sight fits,
since these stars are more effectively excluded rather than
potentially being mismodeled as higher-mass solutions due to
known degeneracies between, for instance, dwarf and giant
(see, e.g., G. M. Green et al. 2014).

Next, we impose a cut on the maximum distance to a star,
removing all stars where the 2.5th percentile of the distance
samples (20 below the median distance) is greater than 30 kpc.
This cut roughly corresponds to the edge of the stellar disk on
the far side of the Milky Way and removes a very small
fraction (<1%) of spurious fits, which largely manifest in
nebulous and crowded regions near b = 0°, likely due to
source blending.

Finally, we apply a cut to remove a small fraction of stars
displaying a prominent, very nearby (¢ < 8 mag), high-
reddening (Ez v 2 3 mag) mode. This mode appears
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predominantly within a few degrees of the Galactic center
and does not correspond with any nearby known dense clouds.
We explored several pathways to explain the existence of this
mode, ruling out any obvious issues in our pipeline such as
poor stellar model coverage, the quality of the stellar
photometry in the most crowded area of the sky, or the more
extreme variation in the extinction law toward the Galactic
center. While we could not definitively identify the root cause
of this issue, we know the modeling of this mode is
nonphysical based on the absence of such extreme, nearby
dust in high-Cartesian-resolution 3D dust maps of the solar
neighborhood (see, e.g., R. H. Leike et al. 2020; G. Edenhofer
et al. 2024). To address this issue, we remove stars where a
majority of the probability in their 2D binned posterior on
distance and reddening is inconsistent with the G. Edenhofer
et al. (2024) 3D dust map. G. Edenhofer et al. (2024) provide
12 samples of the extinction density at parsec-scale resolution
out to 1.25kpc from the Sun. For each p bin in our binned
posteriors, we determine the maximum extinction density of
the G. Edenhofer et al. (2024) map (over the entire sky and all
12 samples) at that distance, considering only distance bins out
to the limit of the G. Edenhofer et al. (2024) map (= 10.4375
mag).”® We then sum over all probability within = 10.4325
mag and above the maximum reddening from G. Edenhofer
et al. (2024) at each distance, removing stars where >50% of
their probability lies in this unphysical regime. For the
remaining stars, we set this unphysical portion of the binned
posterior equal to zero, and renormalize each posterior before
running the line-of-sight fits.

Of the 793 million stars in the catalog, 84 million are
removed via this filtering scheme, leaving 709 million stars to
constrain the line-of-sight dust distribution. We hereafter refer
to these 709 million stars as the “high-quality” stellar sample.
Over the DECaPS2 survey footprint, we sample the 3D dust
distribution in roughly 51 million N4, = 8192 pixels and 120
distance bins (over 6.1 billion total voxels) using this high-
quality stellar catalog.

4.2.2. Pixelization

The angular resolution of extinction-based 3D dust maps
depends on both the stellar density and chosen pixelization. If
there are insufficient reliable posteriors for stars in a given
resolution element, then the line-of-sight reddening for that
pixel will be poorly constrained. Previous works have assigned
stars to pixels with a binary weight function, including stars
that fall within a HEALPix pixel and excluding them from all
other pixels (e.g., G. M. Green et al. 2019).

One of the primary reasons for the high angular resolution
of our map is our use of the DECaPS2 catalog, which goes
deeper than PS1 and carefully deblends crowded fields to
obtain an extremely high-stellar-density catalog. The other key
to our high angular resolution is methodological, choosing to
use a Gaussian weighting function when assigning stars to
pixels, rather than a binary one. Specifically, before a star’s
posterior contributes to the likelihood for a given HEALPix
pixel (see Section 4.2, Equation (7)), its posterior is multiplied
by a Gaussian weighting function on the great-circle distance
between the star and the HEALPix pixel center, with FWHM

20 we convert from the unitless extinction of the G. Edenhofer et al. (2024)
map to Ep_y using the published extinction coefficients from X. Zhang et al.
(2023).
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=2.5 pixels (1. 07 at Ngq. = 8192, which has 26" pixels) so it
is well sampled. We truncate this weighting function at 2x
FWHM (5 pixels, 4.70, 2015 at Nsige = 8192) for computa-
tional efficiency, because stars far in the tails of the weighting
function do not change the line-of-sight inference significantly.
Note that we implement this Gaussian weighting scheme not
due to uncertainty on the star’s sky coordinates, but rather
because it acts as a form of regularization that correlates the
inference across neighboring pixels

While this weighting scheme can increase the accessible
angular resolution with a given stellar density, the maximum
angular resolution is still limited by the stellar density of the
photometric catalogs used. We find that ~1% of pixels have
too few stars (<10) for a reliable line-of-sight inference when
using a HEALPix pixelization with Ngq. = 8192. For
comparison, this angular resolution is 5x higher than the
integrated Planck reddening maps (Planck Collaboration
et al. 2014).

One added benefit of our Gaussian weighting scheme is that,
in the limit of uniform stellar density, the dust map presented
here has a well-defined PSF*' with FWHM = 1.07. This
facilitates comparisons with (near-)infrared emission-based
dust maps and is in contrast to many other 3D dust maps
(where angular resolution varies across the sky and as a
function of distance), despite most astronomers expecting
image data to have a well-defined PSF. Previous 3D dust
mapping works have imposed correlations between indepen-
dent pixels after the fact (G. M. Green et al. 2019) or imposed
a spatial correlation kernel prior at inference time (R. H. Leike
& T. A. EnBllin 2019; R. H. Leike et al. 2020; G. Edenhofer
et al. 2024), but neither approach yields a well-defined PSF on
the sky.

4.2.3. Line-of-sight Inference

For each N4, = 8192 pixel, we split the line of sight up into
discrete distance bins, evenly spaced in distance modulus from
1 =4 to 19 mag, with a bin spacing of 0.125 mag. We model
the dust distribution as a step function, where the parameter «
denotes the increases in reddening in the set of distance bins,
discretized as integer multiples of 0.01 mag. Recall that we
precomputed the joint posterior density on distance modulus p
and reddening E for individual stars in Section 4.1.2, which we
now denote by p(u, E).

Following G. M. Green et al. (2019), the posterior
probability of « is given by

pla|{p E}) xpla) []

i € stars

f i (s E(or, ) dp; . (7)

p(a) is a prior that encompasses our expectations on the
differential reddening. Following G. M. Green et al. (2019),
we place a log-normal prior on the increase in reddening in
each distance bin, adopting a smooth model of the distribution
of dust in the Galaxy based on R. Drimmel & D. N. Spergel
(2001). The term fﬁi (1 E(a, ) dy; is our likelihood
function for the ith star in the pixel, and is equivalent to taking
the line integral over pu through the star’s precomputed
distance—extinction posterior following the distance—reddening

2! We caution that a pixel on the edge of a dense cloud or filament may have a
very nonuniform angular distribution of stars. In this case, the PSF is still
somewhat ambiguous.
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curve defined by «. The total likelihood is the product of the
individual stellar likelihoods over all stars.

We sample for o using a custom C++ implementation®* of
parallel tempered Markov Chain Monte Carlo (MCMC:
J. S. Speagle 2019) that fits a model in which line-of-sight
extinction is discretized at the 0.01 mag level (G. M. Green
et al. 2019). We begin with a randomized initial extinction
profile for each line of sight. In each distance bin, the initial
guess in the jump in extinction is drawn from a chi-square
distribution (with 1 degree of freedom) and the total extinction
(in the large-distance limit) is normalized to equal (£20% of)
the 90th percentile of the extinctions of the individual stars
along the line of sight.

We use chains at four different temperatures (with inverse
temperatures of 0.90, 0.9, 0.92, and 0.93). Each chain is
generated using Metropolis—Hastings sampling, with a mix of
four proposal types: 33.3% “shift” steps (moving differential
extinction up or down by 0.01 mag in a given distance bin),
16.7% “‘absolute” steps (setting the total extinction at a given
distance to a random value between the extinctions of the
neighboring distance bins), 33.3% “swap” steps (swapping the
differential extinction at two randomly chosen distances), and
16.7% “swap neighbor” steps (swapping the differential
extinction at two neighboring distances). We sample the
ensemble of temperature chains in rounds of updates. During
each update round, we first take 2400 (2400, 4800, 4800) steps
in each temperature chain. Then, we propose a “temperature-
swap” step, which swaps the state of two randomly selected
temperature chains. We perform a total of 2500 (5000, 5000,
10,000) rounds of updates. The first 20% of update rounds are
discarded as burn-in.

Convergence was assessed through the autocorrelation times
of three variables: the prior, the likelihood, and the strength of
the first principal component of the parameter vector in the
MCMC chain. We require that none of the autocorrelation
times exceed 5% of the total number of MCMC steps. Pixels
that failed to converge were rerun a maximum of three times
per setting, under each of four increasingly expensive MCMC
settings (settings listed parenthetically). Empirically, we found
most pixels that could “converge” under a given configuration
would do so within three attempts, so we repeat computation-
ally cheaper sampling configurations before changing config-
urations. Even if pixels did not “converge” under this
autocorrelation metric, the result of the final (lowest-temper-
ature) line-of-sight sampling is reported in our map, though it
is flagged by an accompanying bitmask.

4.2.4. Infilling

A small fraction (~1%) of our pixels have too few stars for
a reliable line-of-sight fit (<10 stars). These pixels occur most
frequently at the edges of the DECaPS2 imaging footprint or
for lines of sight with sufficient extinction to significantly
suppress detection of stars behind the dust. One could simply
excise such pixels from the map or fill them with an average of
neighboring pixels, but both of these options are unsatisfying.
We do have some information about the dust extinction in
these pixels, based on their neighbors and the spatial
correlation of dust density. We can use the extinction in
neighboring pixels to make an informed prediction that gives a
mean and variance for the extinction in the missing pixels,

22 hups: //github.com/andrew-saydjari/bayestar.git v0.2.0
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which is often called “inpainting” or “infilling.” While
principled infilling is better than returning no value for the
map at those locations, the infilled values will be biased low
because we include no prior to account for the fact that the
stars/pixels we are missing are preferentially more extin-
guished. Such pixels are flagged in the bitmask, so the user can
decide whether to ignore them, or use them as a “best guess.”

We perform this infilling with a method akin to conditional
Gaussian process regression, using correlations only within a
single distance slice (i.e., the cumulative reddening integrated
to that slice). However, because these infills are conditioned on
the pixels that are not missing, which are correlated along the
distance axis, the infills will be reasonably correlated along the
distance axis even though we have not imposed a prior on
correlations in that dimension.

We adapt the A. K. Saydjari & D. P. Finkbeiner (2022)
method, designed for Cartesian pixel images, to work on ring-
ordered HEALPix images far from the poles. The restriction
on ordering allows a simple translation operator to be defined,
which is necessary to obtain local samples of images the same
size as the region of interest. We use these samples to learn a
completely data-driven model of the covariance of pixels in
the region of interest. This translation operator is only valid at
low latitude because HEALPix rings above |b| 2 41°8 have a
decreasing number of pixels toward the poles. Fortunately, our
map at |b| < 10° is well within the region of validity.

First, we do a preliminary moving median infill, replacing
missing pixels with a rough guess so that every sample the size
of the region of interest can be used to build a model of the
pixel—-pixel correlations. The rough first pass uses the median
of missing pixels in an 11 pixel-wide region, as long as more
than 5% of the pixels are not missing. This infilling is repeated
seven times to completely fill larger holes in the map.

Then, we loop over pixels missing from the original map,
infill all missing pixels in a region 21 pixels wide around a
given missing pixel, and repeat until no missing pixels remain.
We use samples of this 21 pixel-wide region that are translates
of the original region within a larger 51 pixel-wide region to
learn a local mean and pixel-pixel covariance matrix. This
allows us to predict missing pixels in the region of interest
conditioned on the nonmissing pixels. The prediction gives a
posterior on the missing pixels, so we obtain not only a mean,
but also realistic samples of the missing pixels with noise
properties and fluctuations consistent with the local nonmiss-
ing pixels. We stably seed the random number generator used
for the draws to ensure draw consistency between different
distance bins.

To ensure the self-consistency of the infill, the infills for
subsequent missing pixels are conditioned on previously
infilled pixels. This is performed independently for each infill
draw (and the mean). Thus, while each infill is guaranteed to
make use of the same pixels in their conditional prediction, the
values of those pixels can differ if they were infilled in a
previous step in the loop. This self-consistency comes at the
cost of introducing a (slight) dependence on the infill order.
Given this dependence, we make the infills at least
deterministic by infilling pixels in order of their (great-circle)
distance from the approximate center of our survey footprint
(¢ = 301°, b = 0°). This iterative infill, conditioned on past
infills, could extend arbitrarily far from the survey edge, but
we limit it by requiring all pixels in the training samples are
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Figure 5. Spatial distribution of stars over the full catalog. Each panel shows a
projection of the stellar density in heliocentric Galactic Cartesian coordinates.
The Galactic center is marked with a “+” symbol and the Sun with a “®”
symbol in the XY and XZ projections. We detect stars out to distances of
d = 15 kpc and beyond, but with an underdensity of stars near the midplane
(z = 0 pc) due to high levels of dust extinction.

not missing after the preliminary (moving median) infill,
which sets the boundary implicitly.

We provide the mean infill for the mean map and a random
draw of the infill for the samples of the map, alongside the
code used to generate the infill, in Section 7. Pixels that were
infilled are identified in the associated bitmask.

5. Results

This work presents two main data products: a star catalog of
distance, reddening, and other parameters of 709 million stars,
and the 3D dust map derived from them.

5.1. Stellar Catalog

We release the stellar catalog of distance, extinction, total-
to-selective extinction ratio (R,), and stellar type, including the
median, 1o, and 20 errors (expressed by the 2.5th, 16th, 50th,
84th, and 97.5th percentiles of the posterior samples). We also
release five random samples from the posterior. Our catalog
includes all 709 million high-quality sources used in the line-
of-sight dust reconstruction, selected from the 793 million
stars over which we performed the stellar inference. The table
(decaps dr2.stellar inference)is also available to
query via NOIRLab’s AstroDataLab®® and accessible via
TAP-accessible clients, including the astroquery Python
package.

In Figure 5, we show XY, XZ, and YZ projections of the
spatial distribution of stars in the catalog in a heliocentric
Galactic Cartesian frame. The underdensity of stars along the
z = 0 pc axis is due to the high levels of dust extinction in the

2 hitps: / /datalab.noirlab.edu /data-explorer?showTable=decaps_dr2.stellar_
inference


https://datalab.noirlab.edu/data-explorer?showTable=decaps_dr2.stellar_inference
https://datalab.noirlab.edu/data-explorer?showTable=decaps_dr2.stellar_inference
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Figure 6. Comparison between the observed CMD (apparent magnitude vs. apparent color), the absolute CMD (absolute magnitude vs. absolute color) and the
absolute, dereddened CMD (dereddened absolute magnitude vs. intrinsic color) for DECaPS i vs. i — z. We compute the CMDs over the full high-quality stellar
sample that have detections in both i and z bands, totaling roughly 670 million stars. In the absolute, dereddened CMD, we see clear overdensities corresponding to
the asymptotic giant branch (the “AGB bump”) and the red clump and red giant branches (the “RC/RGB bump”), highlighting the strength of our modeling in the

post-main-sequence regime.

midplane, while the dearth of stars in the immediate solar
vicinity (d < 1kpe) is due to both the latitude limits of the
survey and the M dwarf cut we impose, given the unreliability
of the MIST models in the low-mass regime. We also detect a
noticeable drop-off in stellar density around / =~ 300°, which
aligns with the edge of the VVV footprint.

In Figure 6, we show a comparison between an observed
color-magnitude diagram (CMD), an absolute CMD (corrected
for distance), and an absolute, dereddened CMD (corrected for
distance and extinction) in the DECaPS bands i versus i — z. We
compute the CMD for high-quality stars that have detections in
both i and z bands, totaling roughly 670 million stars. We derive
the dereddened CMD using the median (50th percentile) of the
distances and extinction samples. As expected, we see a
pronounced tightening of the CMD around the main sequence
and giant branches, with noticeable overdensities corresponding
to a blended RC and RGB bump, as well as a bump in the AGB,
as marked in Figure 6.

In Figure 7, we show a Kiel diagram, which displays the
surface gravity, log(g), versus effective temperature, T.g. Like
the CMDs, we compute the Kiel diagram over the full catalog,
and take the median of the surface gravity and effective
temperature samples. As expected, we see a clear bifurcation in
the Kiel diagram between the main sequence (log(g) < 4) and
the post main sequence (log(g)= 4). Roughly 12% of the sample
(89 million stars) has evolved off the main sequence, corresp-
onding to EEP > 454 in the context of the MIST models. This
large fraction of bright, midplane giants is critical for constraining
the 3D distribution of dust at large distances, as we will show in
Section 5.2. Beyond the Kiel diagram shown in Figure 7, we are
also able to broadly reproduce general trends in the age-
metallicity relation. However, our inferred ages and metallicities
are highly prior dominated and affected by our choice of binning
when constructing the model grid described in Section 4.1.1.
Therefore, unlike our estimates of distance and extinction, we
caution future users not to overinterpret the stellar type
parameters given that a majority of stars are fit with only five
bands of photometry (see Figure 2).

Finally, in Appendix D, we show that we can recover the Gaia
G-band photometry. We infer the intrinsic type, distances, and
extinction of stars based on other broadband photometry from a
combination of DECaPS2, VVV, 2MASS, and unWISE, and do
not incorporate Gaia photometry (only the astrometry) into our
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Figure 7. Kiel diagram, showing the distribution of two of the inferred stellar
parameters, surface gravity, log(g), as a function of their effective temperature,
Terr. We compute the Kiel diagram across the full sample used in the line-of-
sight dust reconstruction, totaling 709 million stars.
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model. However, using these inferred stellar parameters, we can
predict the G-band photometry and compare this prediction to the
observed G-band photometry for stars detected in Gaia. While we
find overall good agreement across all SNR regimes, we
systematically underpredict the Gaia G-band magnitudes by
~0.05 mag, which we discuss more in Appendix D.

5.2. 3D Dust Data Product

We produce a 3D dust map with an angular resolution of
FWHM =1’ (HEALPix N4 = 8192 pixels of 0. 43) sampled
in 120 logarithmic distance bins evenly spaced between 63 pc
and 63 kpc. Our map is probabilistic, and we generate 100
samples of the line-of-sight reddening (see Section 4.2.3). Our
primary data product is the mean line-of-sight reddening in
each distance bin. Our map is released in units of E(B — V) in
magnitudes. E(B — V) is derived from the underlying stellar
inference on Ay and Ry, where E(B — V) = 2—t, with a mean
of Ry = 3.32 based on our prior on the variation in the
extinction curve from E. F. Schlafly et al. (2016). For each
pixel of the map, we provide an estimate of the minimum and
maximum reliable distance, which we discuss more in
Appendix E. Given that we sample over 51 million HEALPix
pixels on the plane of the sky and 120 distance bins along the
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Figure 8. Plane-of-sky reddening in Ep _ y of the DECaPS 3D dust map, integrated over discrete distance intervals.

line of sight, our primary data product constitutes the
reddening inferred in over 6.1 billion voxels.

Given our high angular resolution, recall that some pixels lack
the minimum number of stars (=10 stars) requisite to perform the
line-of-sight inference, and these pixels were infilled (at each
distance slice) following the procedure described in Section 4.2.4.
We flag these pixels and also release a corresponding HEALPix
bitmask of the infilled pixels.

The map can be downloaded at the Harvard Dataverse (see
doi:10.7910/DVN/J9JCKO). The map can also be easily
accessed via the dustmaps Python package (G. M. Green
2018), which provides a standard interface to query this map—as
well as a host of other 3D and 2D reddening maps—over a user-
defined set of sky coordinates and distances.

In Figure 8, we show the plane-of-sky reddening integrated
over discrete distance ranges (d < lkpc, 1kpc < d < 2kpc,
2kpe < d < 3kpe, 3kpe < d < 5kpe, Skpe < d < 10 kpe, and
d — 00). We see a wealth of structure over the distance range
probed by our map. Within 1kpc, we detect nearby molecular
clouds including Vela C, the Pipe Nebula, and Lupus. Beyond
1 kpc, we detect massive star-forming regions like NGC 6334 and
RCW 120. We also detect a diversity of feedback-driven bubbles,
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including several H I shells cataloged by S. Ehlerovd &
J. Palous (2013).

Like every data product, our map contains artifacts that users
should be aware of, many of which only occur in specific regions
of the sky and/or manifest at specific distances. These artifacts
may be less obvious to the reader, since our maps are not
produced the same way typical astronomical images are
produced. We show and discuss these artifacts in more detail in
Appendix A, but note that the boundary of the VVV survey is
visible near b = +2° primarily between d = 2-3 kpc across part
of the fourth quadrant in Figure 8. This artifact stems from the
fact that VVV goes 3 magnitudes deeper in J, H, and K compared
to 2MASS. Since highly reddened stars needed to be detected
behind clouds for the cloud to be detected with 3D dust mapping,
the vastly different depths translate to some dense clouds being
detected in VVV within |b| < 2° that are largely undetected and/
or placed at a different distance at higher latitudes where only
2MASS data existed at the time of the map’s generation.”*

24 After generating our 3D dust map, the VVVx survey (R. K. Saito et al.
2024) has become publicly available, which extends the latitude coverage of
the original VVV survey that we utilize here. Utilizing the VVVx survey in
future 3D dust maps will likely shift this artifact to higher latitudes.


https://doi.org/10.7910/DVN/J9JCKO
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Figure 9. Top-down view of DECaPS 3D dust map, integrated over z = +300 pc. The Sun is marked with a “®” symbol at (x, y) = (0, 0) and the Galactic center is

to the right.

In Figure 9, we show a bird’s-eye view of the southern
Galactic plane, integrated over z = 4300 pc. Despite evidence
of “Fingers of God”—owing to our angular resolution being
finer than our distance resolution—we detect a significant
amount of dense structure in the fourth quadrant between
d = 24 kpc previously unresolved in purely Gaia-based maps.
Particularly at / < 300°, we also detect discrete dust complexes
between d = 5-10 kpc. We observe several kiloparsec-sized
voids in this top-down view, akin to those seen in nearby face-
on galaxies with JWST (J. C. Lee et al. 2022).

6. Discussion

Here we highlight the two greatest strengths of the map in
the context of existing approaches: its high angular resolution
(Section 6.1) and its depth (Section 6.2). In Section 6.2, we
also combine the DECaPS 3D dust map with the complemen-
tary Bayestar19 3D dust map in the northern sky to provide
complete coverage of the plane |b| < 10°. The combination of
the map’s angular resolution and its ability to resolve structure
at large distances provides an important proof of concept for
the future of 3D dust mapping in the era of LSST and Roman
(see Section 6.3).

6.1. Herschel-resolution 3D Dust Mapping

As detailed in Section 4.2.2, the angular resolution of 3D
dust maps is directly tied to the density of stars on the plane of
the sky and the chosen pixelization. Thanks to the increase in
plane-of-sky stellar density made possible by the DECaPS2
survey, the data support a pixelization at HEALPix
Ngge = 8192, with an angular resolution defined by a 1
Gaussian PSF (2.5x the 0.43 pixel scale at HEALPix
Nsige = 8192) across the full footprint.
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In Figure 10, we show a cutout of our 1’ resolution map
alongside a cutout from the Bayestarl9 3D dust map
(G. M. Green et al. 2019) and the Herschel far-infrared
emission map at 500 ym (S. Molinari et al. 2016) toward a
dense filament in the Galactic plane centered at
(I, b) = (24275, —1°). Both the Bayestar19 3D dust map and
the DECaPS 3D dust map have been integrated out to a
distance of 7 kpc, roughly the maximum reliable distance of
the DECaPS map toward the filamentary dust structure in this
region of the sky. While the angular resolution varies across
the Bayestar19 3D dust map, G. M. Green et al. (2019)
estimate a typical resolution of 6.8 (see their Section 2.3.1).
For comparison, the Herschel emission map has an angular
resolution of 377 at 500 pm.

Figure 10 clearly highlights the strength of our map’s
angular resolution and sensitivity: We are able to capture a
majority of the rich filamentary structure seen with Herschel in
dense regions. Our map constitutes the highest-angular-
resolution 3D dust map available today, achieving 7x higher
angular resolution than Bayestar19 and an angular resolution
within a factor of 2 of the Herschel 500 um emission maps.
However, unlike Herschel, we have distance information and
can place the filament in 3D within its broader Galactic
environment given the significant depth of our 3D dust map, as
discussed in Section 6.2. While Figure 10 demonstrates the
strength of our map, we also caution that compared to 2D
approaches, we still underpredict the total amount of reddening
in very dense regions, particularly toward the Galactic center.
In Appendix A, we discuss the limitation of our map toward
the Galactic center, by comparing our projected 3D dust map
with the 2D reddening map of F. Surot et al. (2020), which
relies solely on infrared VVV photometry.
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Figure 10. Plane-of-sky comparison of a dense filament in the Galactic plane. The top two panels show the projected Bayestar19 3D dust map and the DECaPS 3D
dust reddening maps, integrated out to a distance of 7 kpc. The bottom panel shows the 2D Herschel 500 ym emission map, which is by definition integrated to
infinity.

6.2. Depth structure substantially deeper into the Galactic plane than most

existing 3D maps. Unlike the angular resolution of 3D dust

Alongside possessing an angular resolution comparable to maps, which is tied to the density of stars on the plane of the
the Herschel 500 um emission maps, our approach resolves sky (Section 6.1), the depth of 3D dust maps depends on the
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ability to resolve a sufficient number of highly reddened stars
at large distances. If reddened stars are not detected back-
ground to a dense cloud, that cloud will not appear in the
resulting map, even if the cloud nominally lies within the
distance range targeted in the reconstruction. In contrast to
most existing approaches, 76% of our stellar sample (541
million stars) lies at d > 3 kpc, 43% (303 million stars) at
d > S5kpc, and 17% (119 million stars) at d > 7kpc,
underlining the ability of our map to resolve structure
significantly beyond the solar neighborhood.

We can characterize the depth of our maps in the context of
two regimes: those that require Gaia parallax measurements
and those that do not. In contrast to Gaia-reliant approaches,
our inference pipeline is flexible enough to infer stellar
distances in the absence of parallaxes, allowing us to probe
much larger volumes of the Galaxy. In addition, in comparison
to maps that also do not depend on Gaia, we incorporate
deeper photometry and more sophisticated modeling of highly
reddened post-main-sequence stars, allowing us to penetrate
further into the midplane. Our pipeline’s flexibility to
incorporate and model deeper photometry in the absence of
Gaia translates to a data product capable of resolving dense
clouds up to a depth of roughly d = 10 kpc. However, the
exact depth varies across the sky, particularly as a function of
latitude, and is estimated in part by our maximum reliable
distance calculation (see Appendix E).

6.2.1. Comparisons within the Solar Neighborhood

Most modern 3D dust maps (B. Q. Chen et al. 2019;
R. Lallement et al. 2019; J. L. Vergely et al. 2022; T. E. Dha-
rmawardena et al. 2024) rely on higher-quality Gaia parallax
measurements to constrain stellar distances, a key ingredient
for 3D dust mapping alongside stellar extinction estimates.
As an optical instrument, Gaia has a limiting magnitude
of G ~ 21 mag for stars with a full astrometric solution
(Gaia Collaboration 2022). Maps that require Gaia detections
typically lose a sufficient number of background sources
at d Z2kpe in the inner Galaxy due to the high levels of
dust extinction. Therefore, most Gaia-based maps focus on
the solar neighborhood (d < 2-3 kpc; R. Lallement et al.
2019; R. H. Leike et al. 2020; G. Edenhofer et al. 2024,
T. E. Dharmawardena et al. 2024) and caution that the
detection of structure is inhomogeneous and sparsely sampled
at the edges of their maps.

In Figure 11, we show a comparison between the Gaia-
based 3D dust map from J. L. Vergely et al. (2022; extending
out +3 kpc in X and Y with a Cartesian resolution of 10 pc)
alongside the DECaPS 3D dust map. In comparison to the
J. L. Vergely et al. (2022) map shown in Figure 11, our
pipeline does not require a Gaia parallax, and 46% of stars in
our sample (366 million stars) are not detected in Gaia and
modeled using photometry alone. Thanks to the flexibility of
our pipeline to model stars in the absence of parallaxes,
Figure 11 illustrates the vastly different scale probed by the
DECaPS map. Even focusing on the region of overlap,
Figure 11 shows that we also detect more clouds between
d = 2-3 kpc and recover more extinction per cloud, indicating
that we are detecting more highly reddened stars background
to each cloud complex. We further emphasize this point in
Figure 12, where we compare the extinction profiles (the
cumulative extinction as a function of distance) between
J. L. Vergely et al. (2022) and our DECaPS map along three
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Figure 11. Top-down view of DECaPS 3D dust map (top) alongside the
J. L. Vergely et al. (2022) map (bottom, restricted to the DECaPS footprint),
each integrated over z = +400 pc. The J. L. Vergely et al. (2022) map has
been restricted to 239° < [ < 6° to facilitate comparison with DECaPS over
the same longitude range. The Sun is marked with a “®” symbol at (x, y) = (0,
0). Both are displayed on the same relative extinction scale and saturate at the
99.95% percentile of the respective reconstruction. Spiral arm models from
M. J. Reid et al. (2019) for the Sagittarius-Carina (Sgr-Car) and Scutum-
Centaurus (Sct-Cen) arms are overlaid. Within d < 5 kpe, we find that a
majority of the massive cloud complexes lie in the interarm region, deviating
from log-spiral fits in this region of the Galaxy. An interactive version of this
figure that allows you to flash back/forth between the panels is available. A
version is also available at the author’s Harvard website (https://faun.rc.fas.
harvard.edu/czucker/Paper_Figures/DECaPS_Marshall_Comparison.html).
An interactive version of this figure is available in the online article.

lines of sight in the Galactic plane out to a distance of 3 kpc
from the Sun. While the maps largely agree at low extinction
within d < lkpc and Ay < 2mag, we find significant
differences at larger distances, with DECaPS detecting a factor
of a few times more extinction per cloud compared to
J. L. Vergely et al. (2022).%°

Therefore, while Gaia-based solar neighborhood 3D dust
maps achieve a higher distance resolution in the nearest 2 kpc,
the DECaPS map recovers more dense clouds in the southern
Galactic plane at d 2 2 kpc, where most of the star formation is
occurring along the Sagittarius-Carina and Scutum-Centaurus
arms (see, e.g., the distribution of YSOs in the southern
Galactic plane from M. A. Kuhn et al. 2021).

In Figure 11, we overlay the traces for the Sagittarius-Carina
and Scutum-Centaurus arms, constrained by maser parallax
measurements toward high-mass star-forming regions from
M. J. Reid et al. (2019). We find that while we recover large
cloud complexes at the correct range of distances, most of the
dust lies in the inferarm region (between the near Sagittarius-

2 The J. L. Vergely et al. (2022) map is provided in units of Assonm.
equivalent to extinction in the V band. We query the J. L. Vergely et al. (2022)
extinction profiles using the G-TOMO tool at https://explore-platform.eu. For
this comparison, we convert our DECaPS 3D dust map from E(B — V) to Ay
assuming an Ry = 3.32.


https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/DECaPS_Marshall_Comparison.html
https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/DECaPS_Marshall_Comparison.html
https://doi.org/10.3847/1538-4357/adfbe6
https://explore-platform.eu
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Figure 12. Comparison of the cumulative extinction as a function of distance
between the J. L. Vergely et al. (2022) map (orange profiles) and the DECaPS
map (purple profiles) toward three lines of sight in the Galactic plane. The
DECaPS map recovers significantly more extinction per cloud (particularly
beyond 1 kpc) compared to J. L. Vergely et al. (2022).

Carina and near Scutum-Centaurus arms, at distances d < 4
kpc) as defined by M. J. Reid et al. (2019). Given the dearth of
maser measurements in the fourth quadrant, we anticipate
substantial revision may be needed to spiral arm models in
the fourth quadrant, which can be informed by a combination
of this 3D dust map, future maser parallax measurements,
and complementary spatial-dynamical constraints on the
Milky Way’s ISM (e.g., diffuse interstellar bands, or DIBS;
K. Tchernyshyov et al. 2018; A. K. Saydjari et al. 2023a) in
the southern Galactic plane.

6.2.2. Comparisons beyond the Solar Neighborhood

As established in Section 6.2.1, maps that do not depend on
Gaia to infer stellar distances are able to probe much larger
volumes of the Galaxy. Several such 3D dust maps currently
exist in the literature, and we focus here on comparisons with
G. M. Green et al. (2019) and D. Marshall et al. (2025), the
latter of which is an update to the original 3D dust mapping
work from D. J. Marshall et al. (2006). S. Rezaei Kh. et al.
(2024) also reconstructs the distribution of dust out to
d = 10kpc. However, we forgo detailed comparisons with
S. Rezaei Kh. et al. (2024) since they rely on APOGEE
spectroscopy for their 3D dust reconstruction. APOGEE Data
Release 16 is so sparsely sampled in the southern Galactic
plane that no stars are incorporated in much of the fourth
quadrant (see their Figure 2) and only 44,000 stars are included
in the sample over the remainder of the plane.

The Bayestar19 3D dust map (G. M. Green et al. 2019) is a
complementary map to the DECaPS map and reconstructs the
3D dust distribution over three-quarters of sky in the north,
primarily based on PS1 photometry for 799 million stars.
While G. M. Green et al. (2019) use an empirical set of stellar
models rather than the theoretical MI ST models we adopt here,
the procedure for determining stellar distances is similar to the
methodology outlined in Section 4.1.1: Measured parallaxes
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and their corresponding uncertainties are incorporated into the
per-star modeling as an additional likelihood where available;
otherwise, stellar posteriors on distance and extinction are
inferred using a minimum of four photometric passbands, as in
this work. In Figure 13, we combine the Bayestar19 3D dust
map with the DECaPS 3D dust map to provide complete 360°
coverage of the Galactic plane. The combination of the two
maps provides complete coverage of the plane |b| < 10°. In
Figure 13, we show a top-down view of the plane integrated
over |z| < 100 pc to highlight differences in the maps near the
midplane.”® Close to z = 0 pc, we find that the DECaPS map
detects more dense clouds at distances between d = 2—6 kpc
compared to Bayestar19.

We attribute the greater depth of the DECaPS map to two
causes. First, we incorporate significantly deeper infrared
photometric data, allowing us to detect more stars background
to dense clouds at larger distances. G. M. Green et al. (2019)
combine PS1 photometry with 2MASS photometry, but due to
its shallow depth, only 10%-20% of PS1 sources also have
2MASS detections. While we also utilize 2MASS data, we
primarily rely on VVV photometry in the infrared near the
midplane, which is 3 magnitudes deeper than 2MASS and
provides complementary detections to DECaPS for a majority
of sources in the VVV footprint. In addition to the
incorporation of deeper infrared data, we also employ more
sophisticated modeling of post-main-sequence stars, allowing
us to detect highly reddened giants at larger distances.
G. M. Green et al. (2019) derive empirical stellar templates
based on observations of uniformly old stellar populations
toward globular clusters with SDSS and only approximate the
morphology of the giant branch (see discussion in G. M. Green
et al. 2014). In contrast, the MIST models encompass a
broader range of evolved evolutionary phases (up to the
beginning of the thermally pulsing AGB phase) and extend to
higher initial masses (for a comparison between the Bayes-
tarl9 and MIST post-main-sequence models, see Figure 8 in
J. S. Speagle et al. 2024)

In Figure 14, we compare with the D. Marshall et al. (2025)
3D dust map, which is the most similar to the DECaPS 3D dust
map in terms of depth. D. Marshall et al. (2025) adopts a 3D
stellar distribution based on the Besancon Galaxy model (see
A. C. Robin et al. 2003; M. A. Czekaj et al. 2014). The
Besancon model provides the intrinsic (unreddened) colors of
simulated stars in the 2MASS bands, which can be compared
with the observed reddened 2MASS photometric colors to
infer the near-infrared color excess along each line of sight.
Our map is qualitatively similar to the D. Marshall et al. (2025)
reconstruction, and we place several dense clouds in the third
and fourth quadrants at similar distances. In some cases, we
find the same features, but systematically offset in distance
(see, e.g., dense clouds between [ = 240° and 270°), which
may be the result of systematic uncertainties in the Besangon
model used in the reconstruction of D. Marshall et al. (2025).
As raised in Section 6.2.1, we argue that there is scant
delineation between the dust associated with the Scutum-
Centaurus and Sagittarius-Carina arms within d < 5kpc in the
DECaPS dust map. However, D. Marshall et al. (2025) argues
for more clearly defined arms and finds evidence of the
Centaurus and Carina tangencies in the fourth quadrant,

26 We mask out the Bayestar19 3D dust map at latitudes |b] > 10° before
integrating over z to facilitate a one-to-one comparison to the DECaPS map,
which only spans || < 10°.
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Figure 13. Top-down view of the Bayestar19 3D dust map (red; G. M. Green et al. 2019) combined with this DECaPS 3D dust map (blue), both integrated over

|z| < 100 pc and limited to |b| < 10°.

particularly on scales spanning 10 kpc in the bird’s eye view in
Figure 14, where D. Marshall et al. (2025) is more sensitive to
large-scale structure. While beyond the scope of this work, a
more detailed comparison of the nature of spiral structure in
the fourth quadrant is worthy of follow-up investigation. For
now, see the interactive version of Figure 14 to flash back and
forth between the D. Marshall et al. (2025) and DECaPS maps
on the same grid.

6.3. The Future Era of LSST and Roman

The future of 3D dust mapping lies not in the era of Gaia but
in the era of LSST and Roman. The fourth and fifth data
releases (DR4 and DRS) of Gaia circa 2026 and 2030 will
herald even more precise astrometry, with parallaxes expected
to improve by factors of 1.4x and 1.9x, respectively (Gaia
Collaboration et al. 2023). However, future Gaia data releases
will not substantially improve the limiting magnitude of the
survey (G =~ 21 mag), so the number of DECaPS stars that
have an accompanying parallax detection in Gaia DR4 and
Gaia DRS5 will not substantially increase. Therefore, studies
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that rely on Gaia alone will never be able to push significantly
beyond the solar neighborhood, either now or in the future.

Recall from Section 6.2 that 46% of stars in our sample
(366 million stars) do not have a Gaia parallax measurement:
Their stellar type, distance, and extinction are inferred using
photometry alone. The future era of LSST and Roman will be
an era of even deeper photometry than utilized here, and we
need to be prepared to meet it. Expected to start science
operations in 2025, LSST will target the southern Galactic
plane between A = 320 and 1050 nm in the u, g, r, i, z, and y
bands. While the filter balance and footprint are still being
finalized, the LSST strategy will consist of a high-visit region
near the bulge and a thick strip of the Galactic plane in the
fourth quadrant as part of its Galactic plane “Wide Fast Deep”
(or WFD) survey, alongside a low-visit “Dusty Plane” survey
that fills in the remainder of the third quadrant (LSST 2024).
LSST is expected to produce a photometric catalog of roughly
20 billion stars over its 10 yr duration, with a typical 5o single-
visit point-source depth in r of 24.5 mag in the AB system
(Z. Ivezié et al. 2019).
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Figure 14. Comparison of the DECaPS dust map (top panel) and the
D. Marshall et al. (2025) 3D dust map (bottom panel, restricted to the DECaPS
footprint). To better highlight structures over a narrow latitude range, we show
the average differential extinction, rather than the integral (as in Figure 11).
Both are displayed on the same relative extinction scale and saturate at the
99.5% percentile of the respective reconstruction. Arm models from
M. J. Reid et al. (2019) for the Sagittarius-Carina (Sgr-Car) and Scutum-
Centaurus (Sct-Cen) arms are overlaid. An interactive version of this figure
that allows you to flash back/forth between the panels is available. A version
is also available at the author’s Harvard website.

An interactive version of this figure is available in the online article.

Complementing LSST, Roman will target the Galactic plane
in the first 2 yr of its mission as part of its General
Astrophysics Survey program (R. E. Sanderson et al. 2024).
Launching by mid-2027, Roman’s Wide-Field Instrument has
eight science filters spanning 0.48-2.3 um (NASA 2024),
where the longest-wavelength F213 filter will prove critical for
peering through highly extinguished regions in the plane. Like
LSST, the filter balance and footprint for the Roman Galactic
Plane Survey are still being defined, but is expected to reach a
50 point-source depth of 25.4 mag in F146 in the AB system,
assuming a typical 57 s integration (NASA 2024). Roman has
the potential to provide multiband photometric imaging for
tens of billions of stars (R. Paladini et al. 2023). Therefore,
either alone or in combination, LSST and Roman will produce
photometry for at least an order of magnitude more stars in the
Galactic plane than currently available.

To match the potential of these next-generation photometric
surveys, we anticipate three required methodological improve-
ments. First, we need to employ faster inference frameworks.
Second, we need to develop more accurate templates for the
intrinsic colors of stars that capture both low initial stellar
masses and a broad range of post-main-sequence evolutionary
phases. And third, we need to implement more nuanced
modeling of the extinction curve.

The stellar inference pipeline we present here is effective
but slow—on average, BRUTUS took 4 s/star”' to generate our
stellar catalog (see Appendix B). Machine learning approaches
are more easily scalable and offer an alternative to our brute-
force Bayesian inference pipeline, producing outputs in a

19

Zucker et al.

fraction of a second per star once the model is trained. For
example, X. Zhang et al. (2023) developed a data-driven
model to infer stellar atmospheric parameters, distances, and
extinctions for stars in the Gaia XP catalog (see also data-
driven models from G. M. Green et al. 2021). The model was
trained on the 1% of Gaia XP stars with stellar atmospheric
labels (T, log(g), and [Fe/H]) from the LAMOST survey.
Training took 25 hr on one GPU node and was used to infer the
parameters for all 220 million Gaia XP stars in roughly 36 hr
on 2—4 GPU nodes (X. Zhang & G. M. Green 2024, private
communication), making this type of approach very compu-
tationally efficient in the era of LSST and Roman.

One potential challenge of data-driven approaches is that the
quality of the inference is predicated upon capturing a broad
range of stellar types in the spectroscopic training data set: If a
certain type is not represented in training, those stars will be
mismodeled in the final catalog. Two of the most critical stellar
types to capture in the era of LSST and Roman are stars with
low initial stellar masses (e.g., M dwarfs) and those that have
evolved off the main sequence (e.g., RGB, horizontal branch,
and AGB stars). Roman will detect low-mass dwarfs out to a
few kiloparsecs, representing a critical foreground population
for anchoring the distribution of dust at larger distances.
Likewise, strong coverage of the post main sequence will
allow future dust maps to model highly reddened giants at
distances far beyond the distances probed in this work,
enabling the construction of 3D dust maps beyond the Galactic
center. The data-driven models from X. Zhang et al. (2023)
have poor coverage of low-mass M dwarf solutions, as well as
sparser coverage of post-main-sequence evolution than the
MIST models we employ here. Therefore, incorporating new
and upcoming spectroscopic surveys like SDSS-V’s Milky
Way Mapper (A. Almeida et al. 2023) will prove critical for
accurately modeling these stellar types in the context of future
data-driven machine learning approaches.

Finally, future 3D dust mapping frameworks will need to
implement more sophisticated modeling of the 3D variation in
the extinction curve. Improved modeling of the intrinsic colors
of stars (across a broader range of spectral types) will only go
so far if the modeling of the extinction curve is too simplistic.
Recall from Section 4.1.1 that the shape of the extinction curve
is parameterized by the total-to-selective extinction ratio, Ry.
In this work, we adopt a tight prior on Ry, with a mean
Ry = 3.32 and a standard deviation of og, = 0.18 based on
E. F. Schlafly et al. (2016). We also assume that the extinction
curve is independent of stellar type. However, the dust
extinction curve depends on the underlying stellar spectrum
and is known to vary substantially throughout the Milky Way
(X. Zhang & G. Green 2025). Failure to capture these effects
could, for example, create systematics in the modeling of Ay
that would be nearly indistinguishable from changes in a star’s
effective temperature T.g. SDSS-V’s Milky Way Mapper is
currently targeting a much larger number of stars at high
extinction. These measurements will prove critical for study-
ing variations in the extinction curve across the Galaxy at
large, which can be folded into future inference frameworks in
the era of LSST and Roman.

7. Code and Data Availability

The software to reproduce the per-star and line-of-sight
inference is publicly available on Zenodo at doi:10.5281/
zenodo.16813633. The stellar inference pipeline is based on
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the publicly available BRUTUS software package (v0.8.3),
which is publicly available on Zenodo (J. Speagle et al. 2025).

For the per-star inference, we release the 2.5th, 16th, 50th,
84th, and 97.5th percentiles of the samples for the stellar
properties, distance, extinction, and the total-to-selective
extinction ratio of each star in our high-quality catalog (709
million stars; see Section 4.2.1), which have been computed
from all 1000 posterior samples prior to thinning. We also
release five random samples of distance, extinction, total-to-
selective extinction ratio, and model indices, the latter of
which can be translated to samples of stellar type given the
underlying BRUTUS model grid. In addition to being available
on the Dataverse at doi:10.7910/DVN/K88GFI, the stellar
catalog is archived in AstroDataLab (decaps dr2.stel-
lar_inference),” so it is accessible via TAP-accessible
clients, including the astroquery Python package.

For the line-of-sight inference, we release the mean 3D
reddening map (computed from all 100 samples) and five
random samples (in units of Ep _  in mag) as the core data
product, which is publicly available for download on the
Dataverse at doi:10.7910/DVN/J9JCKO. Ep _y is derived
from the underlying stellar inference on Ay and Ry, where
EB-V)= %’ with a mean of Ry, = 3.32 based on our prior

on the variation in the extinction curve from E. F. Schlafly
et al. (2016). This core data product is released in HEALPix
Nsige = 8192 format, where we provide the reddening in 120
logarithmically spaced distance bins. Recall from Section 4.2.4
that we infill roughly 1% of pixels in our footprint due to an
insufficient number of stars. All five released samples have
been infilled, alongside the mean map. We release a number of
quality flags, including whether the line-of-sight fit converged
in a given pixel, whether the pixel was infilled, and the
minimum and maximum reliable distance modulus in that
pixel (see Appendix E). We also provide the number of stars
used to inform the line-of-sight fit for each Ng;q. = 8192 pixel.

In addition to being available on the Dataverse, the map can
also be queried via the Python package dustmaps using the
DECaPSQuery class, which is the recommended way of
performing extinction corrections. We also provide the
functionality to query with memory mapping (DECaPSQuer-
yLite) so the entire map does not have to be read into
memory. Via dustmaps, users can also combine the
DECaPS query with the existing Bayestar query to perform
extinction corrections across the entire disk || < 10°, and an
example is provided online in the dustmaps documentation.

8. Conclusion

We present a deep, high-angular-resolution 3D dust map
over the range 239° < [ < 6° and |b| < 10°. We start by
inferring the distance, extinction, and stellar type of almost 1
billion stars using optical and infrared photometry from the
DECaPS2, VVV, 2MASS, and unWISE surveys. Unlike most
solar-neighborhood-based maps, we do not require Gaia
parallax measurements, though we incorporate these distance
constraints when available (roughly half the sample). We then
group the stars into pixels, and fit the distance and extinction
measurements of stars in each pixel to infer the distribution of
dust along 51 million lines of sight in the southern Galactic

%7 https: / /datalab.noirlab.edu /data-explorer?showTable=decaps_dr2.stellar_
inference

20

Zucker et al.

plane, totaling over 6 billion voxels. Our main conclusions are
as follows:

1. Thanks to the increased stellar density provided by the
DECaPS2 survey, we produce a 3D dust map with an
angular resolution of FWHM= 1’ , which is roughly an
order of magnitude finer than any existing 3D dust map
and on par with the angular resolution of the Herschel 2D
dust emission maps.

2. The flexibility of our pipeline to model stars using
photometry alone allows us to probe significantly deeper
into the Galactic plane than most current maps, targeting
regions inaccessible to Gaia. We resolve cloud com-
plexes toward the nearby Sagittarius-Carina and Scutum-
Centaurus arm as well as more distant complexes lying
between 6 and 10 kpc from the Sun. However, we find
that most of the cloud complexes lie in the interarm
regions (between Sagittarius-Carina and Scutum-Cen-
taurus), suggesting the need for substantial revision to
spiral arm models in the fourth quadrant, where
constraints are currently limited by a lack of maser
parallax measurements.

3. Our map fills in the one-third of the Galactic plane absent
from the Bayestar19 3D dust map (G. M. Green et al.
2019). By combining Bayestar19 with our new map, we
enable extinction corrections over the entire disk within
|b| < 10°.

Our map serves as a valuable proof of concept for the future
of 3D dust mapping in the era of LSST and Roman, which will
provide deep optical and infrared photometry for tens of
billions of stars. In this work, we focused on pushing the
angular resolution frontier, in contrast to, for example, the
G. Edenhofer et al. (2024) map, which pushed the limits of
distance resolution. As we transition from voxel counts of
several billion in this current work to the trillion that may be
possible with LSST and Roman, simply storing and handling
maps of this size will become challenging, and we may need to
move beyond voxelization. Improved storage and data
handling—alongside the development of faster stellar infer-
ence frameworks, improved modeling of low-mass and post-
main-sequence stars, and more sophisticated treatments of the
dust extinction curve—will prove critical for fully realizing the
potential of 3D dust mapping in the coming decade.
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Appendix A
Artifacts

Here we highlight several artifacts in our 3D dust map that
potential users should be cognizant of. Many of these artifacts
preferentially manifest in certain parts of the sky and/or over a
certain range in distances. Likewise, some artifacts may only
be visible if the map is stretched in a particularly extreme way.
A few of these artifacts are captured by our accompanying
bitmask, including for example the known limitations of the
map outside our minimum and maximum reliable distance
range.

In Figure 15, we show a gallery of known artifacts, where
each panel highlights a different artifact. In panel (a), we show
the limitations of our map at very close distances toward a
local molecular cloud, using the Pipe nebula (d = 152 pc;
C. Zucker et al. 2021) as an example. We integrate our map
out to d = 200 pc (beyond the nominal distance of the Pipe
nebula) to show that while we recover the gross morphology of
the nebula, the map is very patchy at close distances. The
patchiness stems from a combination of our M dwarf cut
(removing stars foreground to the cloud; see Section 4.2.1),
our high-angular resolution (see Section 4.2.2), and our lack of
a spatial regularization scheme to correlate distance slices
across neighboring pixels. This artifact is typically captured by
our minimum reliable distance bitmask.
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In panel (b), we show a speckling that appears in our map
over a small fraction of the sky when integrated out to large
distances. As an example, we show a piece of the Herschel
filament originally seen in Figure 10 but instead of integrating
out to d = 7 kpc (where no artifacts are seen), we integrate out
to the edge of the map. We are unable to explain the root cause
of this artifact, but note that it is typically captured by our
maximum reliable distance bitmask.

In panel (c), we highlight the artifact associated with the
VVYV boundary. We show an 8° longitude strip of the Galactic
plane integrated out to d = 2 kpc, where the VVV boundary is
clearly visible at b = +1975. This artifact is also visible over a
broader distance range, manifesting between d = 1-5 kpc. This
artifacts stems from the fact that not only do we detect more
highly reddened stars with VVV compared to 2MASS, but the
inclusion of VVV photometry alongside 2MASS photometry
(in regions of overlap) can modify the underlying distance—
extinction posterior, which can cause clouds to be placed at
slightly different distances above and below the boundary.

In panel (d), we show a striping artifact that appears at the
edges of the DECaPS map (near b + 8°-10°) when integrated
out to d — oco. This artifact stems from chip gaps in the
underlying DECaPS survey, causing stars within the gaps to
have fewer photometric detections, which again modifies the
underlying distance—extinction posteriors, and propagates to
the inferred amount of reddening within the gaps.

Finally, in panel (e), we show an artifact that manifests in all
dense regions across the plane, where the cores of dense clouds
seem to be “missing” in the sense that they they appear to be in
“shadow” (at much lower extinction) than their envelopes. As
an example, we show a cloud envelope (integrated out to d = 3
kpe) at Ep _ v ~ 3-4 mag, where the core of the cloud lies at
lower extinction (Ep _ v =~ 1 mag). This artifact stems from the
fact that the cloud is so dense that it is fully extinguishing,
rather than simply reddening, the light from stars background
to the clouds, so the core of the cloud is undetectable in 3D
dust maps.

In Figure 16, we better illustrate the DECaPS map’s
inability to recover the total extinction in very dense regions.
Specifically, we show the ratio of the reddening of our
projected DECaPS map (integrated out to 8.5 kpc, roughly the
distance of the Galactic center) over the reddening obtained
from the 2D infrared star-based dust map of F. Surot et al.
(2020). We convert the F. Surot et al. (2020) map in units of
E;_k to Eg _ y assuming Ej_g = 0.57 x Eg_y based on our
reddening vector in Table 2. Unlike our DECaPS map, F. Surot
et al. (2020) leverages VVV infrared photometry toward RC
and RGB stars and does not require a detection in the optical.
Therefore, the F. Surot et al. (2020) map is able to detect more
stars in dense regions and recover more of the total extinction.
However outside |b| < 0.5, we generally find strong agreement
with the F. Surot et al. (2020) 2D dust map.
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Figure 16. Ratio of the reddening of the DECaPS map (integrated out to 8.5 kpc) over the reddening from the 2D F. Surot et al. (2020) dust map. We find good
agreement except for in the midplane, where we underpredict the reddening with respect to 2D maps based solely on infrared photometry.

Appendix B
Computational Details

The generation of this 3D dust map took significant
computational resources. In total, we utilized roughly 3.5
million CPU hours on the FASRC Cannon cluster, supported
by Harvard’s FAS Division of Science Research Computing.
The per-star inference took ~887,000 CPU hours, primarily
with 9 GB per process. Across all 793 million stars, we
averaged roughly 4s/star. The line-of-sight inference took
~22.6 million CPU hours, ranging from 4 to 8 GB per process.
Across all 51 million pixels, we averaged roughly 182s per
pixel. Infilling the 3D dust map took ~320 CPU hours, with
~90 GB per process.

Appendix C
Inferred Ry Distribution

Recall that we infer the total-to-selective extinction ratio,
Ry, toward every star as part of the methodology described in
Section 4.1.1. In Figure 17, we show the distribution of Ry,
tabulated across the full sample of 709 stars used in the
generation of the 3D dust map. For each star, we draw a
random Ry sample. As is apparent in Figure 17, we caution
that Ry is not strongly constrained by our data and closely
aligns with the adopted mean Ry of y1p = 3.32 and standard
deviation of og, = 0.18 of our prior.
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Figure 17. Normalized probability density function (PDF) of the distribution
of Ry inferred per star for the high-quality stellar sample (709 million stars).
For each star, we draw a random sample. The distribution closely follows our
adopted prior, limiting potential implications of our work for understanding
the variation in the extinction curve across the Milky Way.

Appendix D
Predicting Gaia G-band Magnitudes

While we do not incorporate Gaia photometry into our
stellar modeling pipeline described in Section 4.1.1, the Gaia
photometry provides an additional means to verify the fidelity
of our inferred stellar parameters. For each star with a Gaia
detection (roughly half the sample see; see Figure 4), we
predict the Gaia G-band magnitudes based on the inferred
stellar type constrained using the photometry from other wide-
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Figure 18. Offset between the predicted and observed Gaia G-band magnitudes, computed as an average per Ngige =

1024 over the full DECaPS2 footprint for stars

with a Gaia detection. While we find good agreement overall, we tend to systematically predict slightly smaller (brighter) Gaia G-band magnitudes than observed, at

the level of ~0.05 mag.

field surveys (see Section 2). In Figure 18, we show the
difference between the predicted and observed Gaia G-band
magnitude, averaged in Ngq. = 1024 pixels over the full
DECaPS2 footprint. We overall find good agreement, but
underpredict the observed Gaia G-band magnitudes by ~0.05
mag, favoring a slightly brighter Gaia G-band detection. There
are a number of potential causes for this discrepancy. For
example, we adopt a different reddening vector to produce the
predicted G-band magnitudes because the Gaia passbands are
not modeled in E. F. Schlafly et al. (2016). Moreover, the
intrinsic Gaia colors in our current model grid are based on the
Gaia DR2 photometric system, but we compare to magnitudes
reported in the Gaia DR3 photometric system in Figure 18
(M. Riello et al. 2021). We defer a detailed investigation of
this small systematic offset to future work.

Appendix E
Minimum and Maximum Reliable Distance

To compute an estimate of the variation in the minimum and
maximum reliable distance of the 3D dust map across the sky,
we utilize the set of 2D binned posteriors on distance and
reddening (Section 4.1.2) used in the line-of-sight fits
(Section 4.2.3). The reliability of our inference is directly tied
to how the stars are distributed along the line of sight toward a
given patch of sky—if there is an insufficient number of stars
constraining the line-of-sight fit at a given distance, we cannot
adequately constrain the amount of reddening at that distance.
To quantify this effect for each Nyq. = 8192 pixel, we sum the
set of binned posteriors on distance and reddening (of shape
Nyars X Ny, X Ny, ) over the Nyar and Ng, - axes to obtain
the probability distribution in distance modulus along that line
of sight. We then compute the cumulative probability
distribution in distance modulus stepping both forward
(starting at © = 4 mag) and backward in distance (starting at
1 = 19 mag) to characterize the minimum and maximum
reliable distance modulus, respectively.
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We define the minimum and maximum reliable distance
modulus as the first distance bin (computed forward in
distance for the minimum and backward in distance for the
maximum) to exceed some probability threshold. We tested a
range of probability thresholds ranging from p 0.025
(cumulative probability of a small fraction of a single star) to
p = 10 (cumulative probability of 10 stars) over a range of test
beds, including those shown in the gallery of artifacts in
Figure 15. While the selection of a probability threshold is
subjective, our goal was to select thresholds that minimized the
known artifacts across the test beds, including striping,
speckling, patchiness, and undersampling of the reddening in
very dense regions. We find an optimal value of p = 0.5 for the
minimum reliable distance modulus and p = 5 for the
maximum reliable distance modulus. In many, but not all, lines
of sight, we find that the p = 0.5 minimum cumulative
probability threshold roughly corresponds to the distance of
the first foreground star.

In Figure 19, we show the spatial variation in the minimum
(top) and maximum (bottom) reliable distance across our
footprint. In Figure 20, we show normalized histograms of the
minimum reliable distance (left), maximum reliable distance
(middle), and corresponding reddening at the maximum
reliable distance (right, computed from the mean map) over
the full footprint. We find a median and lo spread in the
minimum reliable distance modulus of ;. = 9.670§
(dmin = 0.8793 kpc). We find a median and 1o spread in the
maximum reliable distance modulus of g = 14.970¢
(dmax = 94738 kpc). Since the maximum reliable reddening
—defined as the reddening of the map at the maximum reliable
distance—is a function of both the sensitivity limit of the map
and of natural variation in reddening over the plane (i.e.,
higher latitudes will have less reddening), we take 20 above
the median as the adopted maximum reliable extinction
(spread spanning +1o to +30 above the median), finding
Ep vy = 3.77}3 mag (Ay_ = 123733 mag) for the mean 3D

max ‘max

dust map (see Section 5.2).
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